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Recent progress in the use of singular perturbation and two-time
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INTRODUCTION

Singularly perturbed systems and, more generally, two-time-scale 

systems, often occur naturally due to the presence of small "parasitic" 

parameters, typically small time constants, masses, etc., multiplying time 

derivatives or, in more disguised form, due to the presence of large 

feedback gains and weak coupling. The chief purpose of the singular 

perturbation approach to analysis and design is the alleviation of the 

high dimensionality and ill-conditioning resulting from the interaction of 

slow and fast dynamic modes. This two-time-scale approach is asymptotic, 

that is, exact in the limit as the ratio e of the speeds of the slow versus 

the fast dynamics tends to zero. When e is small, approximations are 

obtained from reduced-order models in separate time scales.

While singular perturbation theory, a traditional tool of fluid 

dynamics and nonlinear mechanics, embraces a wide variety of dynamic 

phenomena possessing slow and fast modes, its assimilation in control theory 

is recent and rapidly developing. The methods of singular perturbations 

for initial and boundary value problem approximations and stability were 

already largely established in the 1960s, when they first became a means 

for simplified computation of optimal trajectories. It was soon recognized 

that singular perturbations are present in most classical and modern control 

schemes based on reduced order models which disregard high frequency 

"parasitics." This recognition led to the development of two-time-scale 

methods for a variety of applications including state feedback, output 

feedback, filter and observer design. Singular perturbation methods also 

proved useful for the analysis of high-gain feedback systems and the
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interpretation of other model order reduction techniques. More recently 

they have been applied to modeling and control of dynamic networks and 

certain classes of large-scale systems. This versatility of singular 

perturbation methods is due to their use of time-scale properties which are 

common to both linear and nonlinear dynamic systems.

The first survey [A4] of control theory applications of singular 

perturbations in 1976 included 130 references. The last six years have 

witnessed an even faster growth of this research area both in theoretical 

depth and breadth of applications, as evidenced by surveys and books [Al— 

A20]. The present survey of over 400 publications can only outline research 

directions with brief references to the representative issues and results. 

Each of the topics discussed here is rich enough for a detailed survey.

This is particularly true of the references [B1-B2], which contribute 

to the continuing strengthening of mathematical foundations of classical 

and modern asymptotic methods. Let us only mention that a new coordinate- 

free formulation of singular perturbations and time scale properties appears 

in [B19], while [B13] and [B16] compare matched asymptotic expansions and 

averaging methods with multi-time scale formulations. Some basic results, 

proofs of correctness, and extensions of asymptotic methods have been 

obtained in [B2,B4,B6,B12,B15,B17,B18,B20]. Singular perturbation 

techniques are used to study bifurcations in ordinary differential equations 

[Bll,B27], and jump phenomena in electrical circuits [B28]. Applications 

of distributions to the analysis of singularly perturbed systems appear in 

[B20,I24].

Our bibliography includes a group of references [01-043] on 

"singular systems." Under this heading we encompass seemingly diverse, but
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closely related topics such as numerical methods for mixed differential- 

algebraic systems [01,03,032,041-043], descriptor systems [08,013,030,034, 

039], singular-singularly perturbed systems [02,05,010-019,025], generalized 

state (semi-state) equations for singular (degenerate) systems [06,020, 

023,024,027,029,033,035,036], etc. However, we do not attempt to review the 

intricate issues discussed in these references. The rich literature on 

partial differential equation methods, such as homogenization [A9,B9,B14], is 

also beyond the scope of this survey.

To make this text accessible to a broad audience of control 

engineers, Section 1 introduces singularly perturbed systems as a 

special class of two-time-scale systems. This section includes a survey 

of recent results on discrete-time systems. We then proceed with Sections 2 

and 3 on system properties and linear composite control. Section 4 is 

dedicated to nonlinear and adaptive control, and Section 5 to stochastic 

filtering and control. A singular perturbation view of high-gain feedback 

systems is given in Section 6, which includes references on multivariable 

root loci and variable structure systems. Sections 7 and 8 deal with 

applications of time-scale methods to modeling and control of networks, 

Markov chains and other large scale systems with several control agents.

For ease of orientation the references are arranged in fifteen 

groups which largely correspond to sections or subsections of the text.
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1. TWO-TIME-SCALE SYSTEMS

Examples of multi-time-scale systems abound [A4,M15] and include 

electrical networks [B28,K2,K3,K5,K7,K10-K14], power systems [K6,K8,K9, 

K15-K19], aircraft and rocket systems [HI,H4,H13,H15,H18-H20,H25,H27-H29, 

H31-H33], nuclear reactor systems [E14], scheduling systems [125,L9], 

large space structures [E23], chemical kinetics [B24,G4], diffusion processes 

[13,110], population biology models [BIO], and bifurcations [B11,B27,B29,B30]. 

Such systems can be modeled by the set of nonlinear differential equations

x = f(x,z,t) x (t^) = x°
(1.1)

z = g (x, z, t) z (tQ) = Z°

where the n-dimensional vector x is predominantly slow and the m-vector z 

contains fast transients superimposed on a slowly varying "quasi-steady-state." 

A linear time-invariant version, sometimes obtained by linearization of 

(1.1), takes the form

X A B X
z G D z

The separation of states into those which are slow and those which 

are fast is a nontrivial modeling task [ C24,K19,M15] demanding insight and 

ingenuity on the part of the analyst. In the absence of empirical estimates 

of x and z, physical parameters such as time constants, loop gains, and 

inertias are examined to determine which states are slow and which are fast. 

As illustrated in [C17], a permutation and/or scaling of states is required
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to obtain the state separable model (1.1) or (1.2). In some applications 

the slow and fast states of the overall system can be determined from the 

slow and fast states of each subsystem, but in general, the effect of 

interconnections on the speeds of some states may be by no means negligible. 

A new choice of state variables may then be needed to make the overall 

system model state separable. A time-scale modeling methodology which 

accomplishes this in networks and Markov chains is discussed in Section 7. 

If the linear model (1.2) satisfies (rather conservative) norm conditions 

[C6] or conditions involving a correlation of states with eigenvalues [K9, 

C20], its two-time-scale property is assured. Otherwise, a remodeling with 

a different selection of states is required.

1.1. Linear Systems

Linear time-invariant system (1.2) exhibits a two-time-scale 

property if it can be transformed into the block-triangular system

(1.3)

such that the largest eigenvalue of F^ is smaller than the smallest eigen

value of F^»

max|X (F.)| < min|X.(F?)|. (1.4)
i 1 1 j J z

Application of the transformation [C5,C6,C10,C11,C13,C14]

n z + Lx (1.5)



I
6

where L satisfies the algebraic Riccati equation

D L -LA + LBL-C = 0 (1.6)

to (1.2) results in the block-triangular system (1.3) where

F1 - A-BL, F2 = D + LB. (1.7)

To completely separate the "slow" and the "fast" subsystems we let 

? = x - Mri (1.8)

and choose M to satisfy

(A - BL)M - M(D + LB) + B = 0. (1.9)

If the eigenvalue separation (1.4) is sufficiently large, the achieved 

decomposition

i = (A-BL)? (1.10)

T) = (D + LB) n (1.11)

defines the "slow" state ? and the "fast" state n and relates them to the 

original variables x and z. As we shall see, this relationship is made 

clearer when instead of the exact decomposition (1.10), (1.11), an 

approximate expression for L can be obtained.

Approximations enter into the decomposition by way of solving 

(1.6) and (1.9) for L and M respectively, up to a specified degree of 

accuracy. In [C6,C11,C14] the determination of the matrices L and M is
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iterative. When the separation of time-scales (1.4) is large, the conver

gence is quite rapid, typically a couple of iterations. Even when the 

separation (1.4) is small, as for example in the power system decomposition 

of [K9], the iterative scheme [C14] is still applicable, provided that 

the original choice of slow and fast states in (1.2) is valid. The 

iterations for solving (1.6) are related to the simultaneous subspace 

iterations [C8,C14]. An alternative scheme for separating the slow and 

fast subsystems are the quasi-steady-state iterations [C15,C17,K9], which 

remove the inconsistencies of the classical quasi-steady-state approach [Kl], 

With minor modifications, the iterative procedures for two-time

scale system decomposition apply to linear time-varying systems. A nonlinear 

version, appropriate for a class of nonlinear systems separable in x and z, 

is outlined in [C17]. Decomposition of multi-time-scale systems can also 

be achieved along the lines of repeated two-time-scale decompositions [K9]. 

That a singularly perturbed system

x = Ax + Bz x(0) = x° (1.12)

ez = Cx + Dz z(0) = z° (1.13)

where e > 0 is small and D 1 exists, is a two-time-scale system, can be 

easily seen by substituting C/e and D/e for C and D, respectively, in (1.2) 

to (1.11). Then it follows from (1.6) that an approximation of L is

L = D~1C + 0(e) (1.14)

and hence the slow and the fast subsystems (1.10), (1.11) become
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k = [A - BD""̂ C + 0 (e) ] Ç (1.15)

en = [D + 0(e)]n. (1.16)

This proves that the small eigenvalues of (1.12), (1.13) are close to the

eigenvalues of A-BD ^C, while the large eigenvalues are close to those of

D. Hence, smaller values of e result in wider separation of time scales.

If for e =0 we denote £ by x , then (1.15) becomes the so-called reduceds
(or "quasi-steady-state") model of (1.12), (1.13),

x = (A-BD 1C)x , x (t )=x°. (1.17)s s s o

Formally (1.17) can be obtained by setting ezg = 0 in (1.13) and substituting

z = -D ^Cx . (1.18)s s

From (1.5) and (1.14) we see that (1.18) is consistent with neglecting both

£ and n in (1.5), that is, z is the "quasi-steady state" of z at £ = 0. Ifs
we introduce the fast time scale

t-t
t = ---— , t = 0 at t = t , (1.19)£ o

and denote n by z^ whenever we set £ = 0, then (1.16) becomes the so-called 

boundary layer system

dzf (t) 
dt Dzf (x) , zf(0) = z° z (t ) • s o ( 1 . 20 )

We have thus shown that if D is a stability matrix, then a two-time-scale 

approximation of the state of (1.12), (1.13) is
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x(t) = x (t) + 0(e) (1.21)s

z(t) = zg(t) + zf(t) + 0(e) (1.22)

where xg(t) and z^(x) are the limits as e ■+ 0 of the exact slow and fast 

states £(t) and n(t), respectively. Based on (1.21), (1.22) a model order- 

reduction, related to modal methods [C2] and aggregation [C3], but specific 

to two-time-scale systems, is achieved by neglecting the fast subsystem 

while retaining the reduced model (1.17). The justification for this is 

that z^(t) decays rapidly in an initial "boundary layer" interval after which 
the system response is essentially due to xg(t), zg(t). Because this order 

reduction is based on time-scale properties and not on linearity, it is also 

applicable to two-time-scale nonlinear systems.

1.2. Nonlinear Systems

The structure of the approximation (1.21) and (1.22) remains the 

same for singularly perturbed time-varying and nonlinear systems

dx
dt " f(x,z,t) x(t ) = x° 0 (1 .23)

dz
e i r = g(x,z,t) N \ r+ O

II N O • (1 .24)

In the limit as e->0, the asymptotically stable fast transient decays 

"instantaneously" leaving the reduced-order model in the t time-scale 

defined by the quasi-steady-states xg(t) and zg(t)
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dxs
dt f(x ,z ,t) s s

, V OX (t ) = Xs o (1.25)

0 = g(x ,z ,t). s s (1.26)

To obtain the fast parts of x and z we rewrite (1.23) and (1.24) in the fast
t—t ’time-scale t = ---  , where t’ is any fixed instant,

dx
dx ef (x, z, t’+ ex) (1.27)

dz
dx g(x,z,t'+ ex) (1.28)

and again examine the limit as e->-0. Then dx/dx = 0, that is x = constant 

in the fast time-scale. The only fast variations are the deviations of z 

from its quasi-steady-state Zg. Denoting them by z^ = z-z^ and letting e = 0 

in (1 .27), (1.28), we obtain the fast subsystem

dz
-fa- = g(x°,z° + zf(x),tQ), zf (0) = z° - z° (1.29)

where the fixed instant tf has been chosen to be t and x° and z° are fixedo s
parameters. Conditions under which the slow subsystem (1.25), (1.26) and

the fast subsystem (1.29) together yield the state approximation (1.21),
lc(1.22) (and higher order approximations up to 0(e )) are given in [Cl] 

and in more recent references surveyed in [A4]. These references assume 

that the fast transients described by (1.29) are asymptotically stable 

uniformly in x°, z°, tQ . For linear time-invariant systems this means 

that the large eigenvalues have large negative real parts so that the fast 

state rapidly reaches its quasi-steady-state z^. On the other hand,
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mechanical and electromechanical systems often have lightly damped modes 

resulting in sustained high frequency oscillations. After linearization 

such systems can be put in the singularly perturbed form (1.12), (1.13) and 

a transformation similar to that of (1.5), (1.8) can be applied [K4]. 

However, in this case, the two-time-scale approximation (1.21), (1.22) is 

only valid up to a finite time. Under additional assumptions the slow 

phenomena in the oscillatory singularly perturbed system are adequately 

modeled by the slow subsystem which has an "averaging" effect on the fast 

oscillations. An example of this modeling procedure is the study of 

coherency in power systems where high frequency intermachine oscillations 

are not negligible [K4]. Related control studies of quasi-conservative 

large space structures are reported in [E32]. More general treatment of 

oscillatory two-time-scale systems and periodic structures is possible via 

averaging methods [A8,A14,B16] and homogenization [A9,B9,B14].

1.3. Discrete Time Systems

In recent years considerable progress has been made in formulation 

and analysis of two-time-scale discrete-time models [D2-D27]. The fact that 

the theory of difference equations is in most respects akin to that of 

ordinary differential equations [Dl] suggests that a similar two-time-scale 

decomposition [D6] might be obtained for discrete-time systems. Attempts, 

however, to model general discrete-time systems with slow and fast modes 

in a strict singularly perturbed format encountered stability difficulties 

[D5,D8]. For a discretization of a continuous-time singularly perturbed 

system, the discretization interval can be compatible with either 

fast or slow time scales. The former case is considered in [D18]
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where the discretization interval is 0(e). This case admits a hybrid 

two-time-scale approximation consisting of a discrete-time fast model 

and a continuous-time slow model. This decomposition has been applied to 

the design of linear optimal regulators in [D18]. A further development 

in [D27] relates this result with its continuous-time counterpart [E8].

The assumption that the interval is small or the number of time-steps is 

large is pursued by [D3,D10,D20] using asymptotic expansions. Other topics 

include the numerical solution of continuous-time boundary value problems 

[D7] and initial value problems [D15], discrete system initial value problems 

[D20] and boundary value problems [D22,D23], optimal control problems [D24, 

D25], limiting behavior of solutions of singular difference equations [D12], 

and multi-time methods for discrete systems [D9,D13].

The application of the block-diagonalization [C6] to two-time-scale 

discrete-time systems is straightforward. Paralleling the continuous time 

approach, references [D16,D19,D26] establish that the linear system

x(k+l) A B x(k) x(0) o'X

z(k+l) C D z(k) z (0)
m -

0z

exhibits a two-time-scale property if it can be transformed into the block- 

diagonal system

5(k+1) 0 5(k)

n(k+i)
-

0 F2. n (k)
(1.31)

where the largest eigenvalue of F9 is less than the smallest eigenvalue of F^. 

Formally setting z(k+l) = z(k) in (1.30) is equivalent to assuming that after
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the decay of (stable) fast modes, the system (1.31) reaches the quasi

steady-state described by the slow subsystem

x (k+1) = (A - BL ) x (k), L = -(I -D)_1C. (1.32)s o s  o m

During the initial short transient period in which the fast modes

are active, we assume that x (k) and z (k) are constant. Subtractings s
z (k) = -L x (k) from z(k) to obtain the fast part z_(k) = z(k) -z (k) , the fast s o s  r s
subsystem of (1.30) can be expressed as

z (k+1) = Dzf(k) z (0) = z ° - z s(0). (1.33)

The singular perturbation parameter e can be introduced to explicitly express 

the magnitudes of system matrices as

A = A, B = e1-aB, C = eaC, D = eD (1.34)

where 0 < a < 1 and A, B, C, and D are 0(1). In this case BLq is 0(s). 

Alternatively A, B, C, and D may be required to satisfy more general norm 

conditions [D19].
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2. SYSTEM PROPERTIES

Attention is now focused on how certain properties of two-time 

scale systems; namely, stability, controllability, observability, and system 

zeros, can be deduced from lower-order subsystems in separate time scales.

2.1. Stability

In order to guarantee a stability property of the linear singularly 

perturbed system (1.12), (1.13), it is sufficient in view of the decoupled 

nature of subsystems (1.15), (1.16) that they both possess that property.

More specifically, if the reduced system (1.17) and the boundary layer 

system (1.20) are asymptotically stable, then there exists an e >0 such 

that the original system (1.12), (1.13) is asymptotically stable for all 

zt [0,e*], that is, for z sufficiently small. Such a result for time- 

varying and nonlinear systems dates from [Gl]; see [A4]. For linear time- 

varying systems an explicit expression for the upper bound z* is more 

recently presented in [C12]. A different condition via singular values 

appears in [G9]. In [K3] input-output stability is analyzed, while conditions 

for preservation of absolute stability in the presence of singular pertur

bations are derived in [G12,G17].

Considerable progress has been made in constructing Lyapunov 

functions for singularly perturbed systems [G2,G5,G11,G16]. For nonlinear

systems which are linear in z,

x = f(x) + F(x)z (2.1)

zz = g(x) + G(x)z ( 2 . 2)
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where G ^(x) exists for all x, the Lyapunov function proposed in [G5] 

consists of two functions. The first function

v = a T (x)Q(x)a(x) (2.3)

establishes the asymptotic stability of the slow subsystem x =a(x ), wheres s

a(x) = f(x) -F(x)G_1(x)g(x), (2.4)

and Q(x) > 0 satisfies

Q(x)ax (x) + ax (x)Q(x) = -C (x) , a 9a 
x 9x (2.5)

for some differentiable C(x) > 0. The second function

w =  (z + rg-p rfF V )  'p(z + rg-p r f v^) (2.6)

where F = G  ̂(x) and P(x) satisfies

P(x)G(x) + G (x)P = -I, (2.7)

establishes the asymptotic stability (uniform in x) of the fast subsystem

dzf
= G(x)zf + g(x) . (2.8)

The Lyapunov function V(x,z,e) for the complete system (2.1), (2.2) is

V(x,z,e) = v(x) + j  w(x,z) (2.9)

and can be used to estimate the dependence of the domain of attraction of 

x = 0, z = 0 on £. For example, the system
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X = x - X + z,

is analyzed in [G5] using

ez = -x - z (2.10)

e 3 2V(x,z,e) = -j- + (z + x + 2x ) ( 2 . 11)

and for e<0.01 the region includes |x| < 1, | z| < 10, while for e < 0.005 the 

z bound is extended to Izl <20.

2,2. Controllability and Observability

Let us now consider the singularly perturbed control system

x

£Z
A11 A12
A A

21 a 22

x B.

B,
u.

x(0)

z(0)
(2 . 12)

y = [Cx c2] _ „n ^ „ m  x€ R , z £ R (2.13)

where u(t)6 is a control vector and y(t)€ Rr is an output vector. Its 

slow and fast subsystems are

X = A x + B u , x =s o s  o s s

y = C x + D uJ s o s  o s

e i f
= A22z f + B2uf, zf (0)

yf = C2zf

(2.14)

(2.15)

(2.16)

(2.17)

where z, = z - z , u, = u - u , yf = y -  y . andI S I S I s
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A o A 11 A 12A 22A 2 1 5 B o B 1 A 12A 22B 2 ’

Co = C 1 ” C 2A 22A 2 1 ’ D o = "C 2A 22B 2*

The controllability conditions [J2]

(2.18)

rank[aIn - A Q, 3q] = n, rank[alm - A22, B2] = m, Va complex (2.19)

together imply the controllability of (2.12) for e sufficiently 

small. The observability of the original system (2.12), (2.13) follows from 

observability of the subsystem pairs (A^C^) and (A22»C2). Controllability 

results along these lines were introduced in [E5] for linear time-invariant 

systems and subsequently extended to linear time-varying systems in [G3] 

and [E25], and to the class of nonlinear systems in [G8]. Analogous results 

apply to continuous-time [E36] and discrete-time [D19] linear two-time

scale systems. In [E15] it is shown that the controllability of the 

singularly perturbed system (2.12) for e >0 does not necessarily require 

the controllability of the subsystems (2.14) and (2.16), although in practice, 

such weakly controllable systems are undesirable.

2.3. Analysis in the Frequency Domain

Taking one-sided Laplace transforms of (2.12), (2.13) yields, upon 

rearrangement,

A 11 aIn A 12 B 1 x(a) '-x(O)'

A 2i/e A 22/,£_aIm  B 2^£ z(a) = -z(0)

_ C 1 C 2 ° ^ u(a) y(cr)

( 2 . 20 )
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The matrix in (2.20) denoted by P(a) is known as the system matrix [J2].

The invariant zeros [J7] of the system are those complex frequencies a = o q 

for which P(aQ) loses rank and the corresponding invariant-zero directions 

are those vectors that lie in the null-space of P(aQ). The asymptotic values of 

the invariant zeros and associated invariant-zero directions as e -* 0 are 

the values computed from the system matrices

A12 Bi'
, P (f)(cî) -

I 0 n

1----
o

A21 A22 B2 0 A«0-aI 22 m B2

1
o ro C2 0 CMu

o___
I

0

( 2 . 21)

associated with the slow and fast subsystems, respectively [J23].

Just as the system matrix P(cr) exhibits the internal structure 

associated with the singularly perturbed system (2.12), (2.13), the external 

relation between the input and output is described by y(a) =G(a)u(a) where

G(a) = [C1 CTln-Al1 _A12
-1 r~CNI

PQ
1 ____

"A21/e CTV A22/e B2/e
( 2 . 22 )

is an rxp proper transfer-function matrix which is given to within an 0(e) as

G(a) = C (al - A  )_1B + C0(eal - A o0)”XB0. (2.23)o n o  o 2 m 2 2  2

As shown in [C7] the asymptotic forms of G(a) for low and high frequencies 

are

G..low

Ghigh

(a) = C0(aIn - A o)-1Bo + Do 

(a) = C2(ealm - A 22)_1B2

(2.24)

(2.25)
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which, as expected, are the transfer-function matrices for the slow sub

system (2.14), (2.15) and the fast subsystem (2.16), (2.17), respectively. 

Moreover, the asymptotic values of the transmission zeros of G(a) as e -* 0 

are made up of those of an<̂  Gh i g h ^  [J39].

Further insight into the frequency-domain analysis and design of 

singularly perturbed multivariable feedback systems is obtained by exhibiting 

the return-difference matrix at the input [E2,E3], associated with the 

application of a linear state feedback control law. The static decoupling 

problem for two-time-scale multivariable systems is considered in [E18].
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3. LINEAR COMPOSITE CONTROL

The decomposition of two-time scale systems into separate slow 

and fast subsystems suggests that separate slow and fast control laws be 

designed for each subsystem and then combined into a "composite" control of 

the original system. If the fast control is not needed, then only the slow 

"reduced" control is used. These ideas have motivated numerous two-time

scale designs [A4,E4-E9,E11-E14,E17-E42] which are now surveyed through a 

couple of representative problems.

3.1. Linear State Feedback

Suppose that the controls

u = K x , u = K.z- (3.1)s o s  f 2 f

are separately designed for the slow and fast subsystems (2.14) and (2.16). 

In order to use

u = u + u . = K x  + K-z_ c s f o s  2 f (3.2)

as a "composite" control for the full system (2.12), we must express the 

fictitious subsystem states xg and in terms of actual states x and z. 

Noticing that

zs = -¿¡2(A21+B2Ko)xs (3.3)

and substituting the approximation x - x s, z - zg + into (3.2) we obtain a

realizable composite control
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(3.4)

When this control is applied to (2.12), the resulting feedback system is 

singularly perturbed. The time-scale decomposition shows that its slow 

and fast subsystem matrices are, respectively,

where A and B are defined by (2.18). Therefore, K and K„ can be used 

for separate slow and fast eigenvalue placement, stabilization, or optimal 

state regulator designs provided that the pairs (Ao »Bq) an^ ^22*^2^ are 

controllable or stabilizable. This approach was proposed in [E7,E8] and in 

[E12]. A proof of near-optimality of the composite control for a quadratic 

cost is given in [E8]. A two stage design extending these results to more 

general two-time-scale systems appears in [E36] and to linear time-varying 

systems in [E25]. When A^  is a stability matrix the fast subsystem 

need not be controlled. Then setting =0 in (3.4) reduces u^ to the 

reduced order stabilizing control of [E4]. A similar slow-mode design was 

developed for the so-called linear multivariable tracking problem [E11,E22, 

E42]. The problem of eigenstructure assignment [E10,E16] is addressed in

Two-time-scale decomposition of near-optimal regulators for discrete

time linear systems appears in [D18,D25,D17]. The results in [D27] parallel 

the continuous time results of [E8]. Asymptotic expansions of the compu

tationally attractive Chandrasekhar type of equations are presented in [E43]. 

Reference [E30] considers the case of designing a control with partial state

A + B K + 0(e), o o o i  [a 22 + b 2k 2 + 0(£)] (3.5)

[E21].
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feedback to approximate the performance cost of a given full state feedback 

control where the given control need not be optimal. Extensions of the 

linear quadratic regulator to three-time-scale systems using two 

singular perturbation parameters are presented in [E20.E41], while [E40]

on the optimal regulator for linear singularly perturbed systems includes 

the asymptotic expansion methods of [E31], the near-optimum control of distri

buted parameter systems [E6], the near-optimum control of nuclear reactors 

with distributed parameters [E14], the control of quasi-conservative linear 

oscillatory systems [E32], the use of degeneracy to simplify the synthesis 

[E35], and the control of large space structures [E23].

3.2. Output Feedback and Observers

Static output feedback design of two-time-scale and singularly 

perturbed systems has been dealt with in several recent references [F7,F8, 

F11,F13,F14,F17]. To stress that the output feedback may be non-robust 

with respect to singular perturbations [Fll], we consider

considers near-optimum feedback with multiple time scales. Other work

x = z

ez = -x-z + u (3.6)

y = 2x + z.

If instead of (3.6), its reduced order slow model

xs -x + us
(3.7)
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is used to design the output feedback u = kyg to place the eigenvalue 

at -3, then k=2. Applying the same feedback law u = 2y to the actual 

system (3.6) we see that the resulting feedback system

x = z

ez = 3x + z
(3.8)

indeed has a slow eigenvalue - 3 + 0(e) as desired. However, it also has an

unstable fast eigenvalue —■+ 0(1), that is, the design is nonrobust. The

possibility of instability is due to the presence of z in the output equation

("strong observability of parasitics"). It can be easily seen that a

sufficient condition for a robust reduced order design is that =0 and,

hence, D =0 in (2.15). Similar conditions in [F7,F8] also have the form o
of "weakly observable parasitics." If they are not satisfied, then a dynamic 

rather than static output feedback design should be used.

Typical dynamic feedback design is based on an observer [F1,F18].

We focus our attention on the reconstruction of the inaccessible state of 

the singularly perturbed system (2.12), (2.13) using the full-order observer

— • ~*AX
« (A. - GC)

X
Z e z

+ Gy + B u
J e (3.9)

where x, z is an estimate of the state x, z, and

A 11 A 12
9 B = ’ Bi ’

A21 / e A22^c
£ B2/e

(3.10)
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The state reconstruction error e(t)
x

satisfies

" x(0) 'x(O)'
e(t) = (A - GC)e(t), e(0) = -£ z(0)

(3.11)

Following the duality with composite control an observer gain matrix, composed

of G and G„, o L

G = A 12A 22G2 +  G0 ( I m - C 2A 22G2)
(3.12)

is designed in [F4-F6,F9,F10,F15]. It is pointed out in [F12] that although the 

observer gain (3.12) does not depend on e, some knowledge of e is required 

in order to implement the observer. Nonrobustness of reduced order 

observers is analyzed in [F11,F12] and conditions are given under which a 

reduced-order observer can be designed to estimate the "slow" states of a 

singularly perturbed linear system from a knowledge of its reduced slow 

model. Decentralized identity observers for a large-scale system with two 

time-scales are treated in [F3] and the design of observer-based controllers 

for discrete two-time-scale systems is considered in [F17]. Another approach 

to reduced-order compensator design is described in [F19].
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4. NONLINEAR AND ADAPTIVE CONTROL

The common theme of references surveyed in this section is that 

a scalar function (functional) defined for the full problem is decomposed 

into similar functions (functionals) for separate slow and fast subsystems. 

For optimal control problems this function is the Hamiltonian and for 

stabilization problems it is a Lyapunov function, which, in case of optimal 

regulators, coincides with the optimal value function.

4.1. Nonlinear Composite Control

Recent generalizations [G16,G18] of the composite control 

establish that if the boundary layer system (fast subsystem) and the reduced 

system (slow subsystem) are separately made uniformly asymptotically stable, 

then the full singularly perturbed system is stabilized for sufficiently 

small e. To avoid more complex notation we briefly outline an earlier 

result [G6,G7,G11]: a nonlinear infinite interval problem in which the system 

and cost to be optimized are

x = a^(x) + A^(x)z + B^(x)u, x(0) = x° (4.1)

ez = a2(x) + A2(x )z + B2(x)u, N O II N O (4.2)

00
J = / [p(x) + a '(x)z+ z’Q(x)z+ u'R(x)u]dt (4.3)

0

subject to assumptions of differentiability, positivity and the existence 

of an equilibrium at x = 0, z = 0. This problem is difficult even for well- 

behaved nonlinear systems. The presence of 1/s terms in the Hamilton-Jacobi
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equation increases the difficulties. However, avoiding the full problem, 

and taking advantage of the fact that as e + 0 the slow and the fast 

phenomena separate, we can define two separate lower-dimensional subproblems, 

The slow subproblem is to optimally control the slow subsystem

x = a (x ) + B (x)u ,S O S  O S S X (0) * Xs (4.4)

with respect to

J = / [p (x ) + 2a’(x )u +u'R (x )u ]dt S q O S  O S S  s o s s (4.5)

where

a a_ “ An >o 1 1 2  2 Qo B2A2 ^ A2 a2 ” 2

Bo ' B1 “ A 1A2 B2* r o = R + b ’a ’-1q a ^1b 2, (4.6)

po = p = a ’A ^ a 2 + a ’A ’

Assuming the existence of the optimal value function L(xg) satisfying the 

lower dimensional Hamilton-Jacobi equation

0 = (p -slR"”1a ) + L (a -B R"1a ) -4- L B L(0) = 0 (4.7)*o o o  o x o oo o 2 x o o  o x

the minimizing control for (4.4), (4.5) is

u = -R“V  + t  B ’l ')s o o 2 o x (4.8)

where L denotes the derivative of L with respect to its argument x . Then x s
L(x ) is also a Lyapunov function which guarantees the asymptotic stability s
of x =0 for (4.4) controlled by u , s s
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x = a -B R (a + 4  B'l ') = i (x ) s o o o o 2 o x o s (4.9)

and provides an estimate D of the region of attraction of xg = 0.

Introducing zf = z-z , uf = u-u and neglecting 0(e) terms, we1 S I  S
define the fast subproblem in the x-scale (1.19) as

dzf
"¿7 - = A2 (x)zf + B2 (x)uf, zf(0) = z - zs(°)>

Jf = f (z^O(x)z^+u^R(x)u^)dt,f f

(4.10)

(4.11)

which is to be solved for every fixed x€D. It has the familiar linear
l

quadratic form and under a controllability assumption its solution is

uf(zf,x) = -R 1 (x)B2 (x)Kf(x)zf (4.12)

where K^(x) is the positive-definite solution of the x-dependent Riccati 

equation

0 = KfA2 + A2Kf - K fB2R 1B2Kf + Q. (4.13)

The control (4.12) is stabilizing in the sense that the fast feedback system

dz
= (A2-B2R = A 2 (x)zf (4.14)

has the property that ReX[A2 (x)] <0, Vx€D.

The design is completed by forming the composite control uc = us +u^, 

in which xg is replaced by x and z^ by z + A ^  (a2+^2us (x)) , that is,

uc(x,z) = us(x) - R  1B2Kf(z + A2 1 (a2-B2us(x)))

= -r ' V  b V )  - r - 1b ;k  (z + a :1^ )  o o z o x Zf z z (4.15)
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where

à200 = a2 ‘i B2R"1(bîLx + B2Vl)» 32(0) = °»
(4.16)

V ’ = -(a*+ 2 3 ^ + L xÂ 1)Â”1 Â x = k x - B ^  1B*K •

Under the conditions stated in [Gil], there exists e* such that Ve€ (0te*], 

the composite control stabilizes the equilibrium x = 0 , z = 0 of the full 

system (4.1), (4.2). An estimate of the region of attraction is also 

given. The corresponding cost is bounded and it is near-optimal in the 

sense that Jq -* Jg as e->0. Thus the problem (4.1), (4.2), (4.3) is well 

posed with respect to e.

In [Gil] a composite Lyapunov function of the type (2.3), (2.6), 

(2.9) is used. More general Lyapunov functions in [G16] remove the 

restriction of the linearity with respect to z.

4.2. Trajectory Optimization

For the trajectory optimization problem the control interval is

finite, t€ [t ,T], and some conditions are imposed on x,z of the full system

(1.23), (1.24) at both ends of the interval. A control u(t) is sought to

minimize

T
J = / V(x,z,u,t)dt. (4.17)

to

The necessary optimality condition consists of — =0 and
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P 3H
9x (4.18)

ez = 9H
9q eq = - 9H

9z (4.19)

which is a (2n + 2m)-dimensional singularly perturbed boundary value problem, 

where H is the Hamiltonian and p and eq are the adjoint variables. Typical 

optimal trajectory consists of a slow "outer" part with "boundary layers" 

at the ends. In the limit as e 0 the problem decomposes into one slow 

and two fast subproblems. The slow ("outer") subproblem

3H 9H
(4.20)

is 2n-dimensional. To satisfy the remaining 2m boundary conditions, the 

layer ("inner") corrections zfL(TL)» zfR^TR^ for z* and qfL^TL^* qfR^TR^ for 
q are determined from the initial (L) and final (R) boundary layer systems

dzfL
dx.

9H
9q

fa
fL

dqfL
dx.

9H
9z

f z 
fL

(4.21)

dzfR
dx.

3H
3q

fa
fR

dqfR
dxR

3H
3z

R 
f z
fR

(4.22)

T-twhere x_ is the same as x in (1.19), while x = ---  is the reversed fast timeL K £
scale. The results of these subproblems are used to form approximations 

of the type (1.21), (1.22). Analytical issues of such approximations have 

been discussed in [H3,H5-H12,H17,H21,H24,H26,H30], and for the time

optimal control problem in [H16,H22]. Conditions for asymptotic validity
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are given in [H6,H7,H12,H30]. A trajectory optimization problem for 

systems of the type (4.1), (4.2) is solved in [H21].

In flight dynamics both low thrust (aircraft) and high thrust 

(missile) conditions can be modeled as singular perturbations. Several 

applications to specific problems arising in jet engine control, missile 

guidance and energy management have been reported in [H1,H2,H4, 

Hl3,H15,H18,H19,H22,H25,H27-H33]. Some approaches, such as [H20],

use sequential multi-time-scale modeling and obtain solutions in convenient 

feedback form. Problems of scaling are addressed in [H27,H28,H32,H33]

and indicate that more research is required to properly introduce singular 

perturbation parameters for specific aircraft and missile control problems. 

These issues are more complicated in the presence of singular arcs [H24].

4.3. Adaptive Control

The study of robustness of model-reference adaptive schemes in the 

presence of singular perturbations has recently been initiated. The general 

formulation examines situations when the order of the model is equal to the 

order of the slow part of the unknown plant and the model-plant "mismatch" 

is due to the fast part of the plant. A fundamental requirement for feasi

bility of an adaptive scheme is that it be robust, that is tolerate a 

certain model-plant mismatch. The singular perturbation parameter 

e is a convenient parameterization of this mismatch.

The robustness of continuous-time identifiers and observers when 

the parasitics are weakly observable is established in [G14,G19]. The 

bounds for output/parameter error indicate possibilities for reducing the



31

error by a proper choice of the input signal. When the parasitics are 

strongly observable, the problem is no longer robust. Robustness is 

re-established either by using a low-pass filter at the output, or by an 

appropriate modification of the adaptive laws [G15]. Analogous results for 

discrete time parallel and series-parallel identifiers have been obtained in 

[G13,G21]. The methodology in [G14,G19] has been to transform the singularly 

perturbed plant (2 .1 2) into

x = A x  + B u  + A 10? (4.23)o o 1 2 ^

= A^c + eA^B^u (4.24)

where

C = z + Lx + A^B^u (4.25)

and L is the same matrix as in Section 1.1. The matrices A , B of theo o
dominant part (4.23) are matchable by the model, while the parasitic part 

(4.24) introduces a disturbance A^C* It is crucial to observe that the 

disturbance is persistently excited by the derivative of the input signal 

u(t) and is large if u(t) has high frequencies in the parasitic range. For 

this reason the input signal should achieve its richness condition at 

dominant, rather than parasitic frequencies. A significant conclusion is 

that, contrary to common belief, white noise and similar wide-band signals 

are not as appropriate as some lower frequency signals.

The situation is more complex in adaptive control where the plant 

input depends on the adaptive feedback. In this case the parasitics can 

destroy global stability and boundedness properties. The singular perturba

tion approach in [G20,G23] has led to a modified adaptation law which
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guarantees the existence of a region of attraction from which all signals 

converge to a residual set whose size depends on disturbances and the 

mismatch parameter e. The modified law achieves robustness by sacrificing 

the ideal convergence in the parasitic-free case, i.e., the residual set 

is not zero even if e = 0. It is of interest that the development of the 

modified law uses a two-time-scale Lyapunov function of the type discussed in 

subsection 2.1. The details are given in a recent monograph [ G23 ].
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5. STOCHASTIC FILTERING AND CONTROL

Research in singular perturbation of filtering and stochastic

control problems with white noise inputs has revealed difficulties not 

present in deterministic problems. This is due to the fact that the input 

white noise process "fluctuates" faster than the fast dynamic variables, 

no matter how small z is. In the limit as e-^0, the fast variables them

selves tend to white noise processes, thus losing their significance as 

physically meaningful dynamic variables. The papers dealing with stochastic 

differential equations and diffusion models such as [13,17,19,122,126] have 

also indicated the importance of attaching clear probabilistic meaning to 

time scales.

5.1. LQG Problems

To illustrate the problems arising in the singularly perturbed 

formulation of systems with white noise inputs, consider the linear system

where w(t) is white Gaussian noise. An approximation to (5.1) is desired 

that is valid for small z and is simpler than (5.1). Setting c = 0 in (5.1) 

is inadequate, since

x = A ^ x  + A ^ 2 + G^w (5.1a)

ez = A^^x + A 2 2Z + G^w (5.1b)

(5.2)



34

has a white noise component and, therefore, has infinite variance. Although 

(5.2) may be substituted for z in defining a reduced (slow) subsystem, z 

cannot serve as an approximation for z in the mean square sense. Under the 

assumption

Re X(A22) < 0, Re < 0 (5.3)

the mean-square convergence

lim E{ (x - x ,) (x - x ,) } = 0 
e->0 d d

lim E{ (z - z.) (z - z.) } = 0 (5.4)
e+0 d d

was demonstrated in [1 1 ,1 1 0 ] for x^, z^ defined by 

Xd = Â ll-A12A 22A2 p Xd + Ĝ 1_A1 2A22G2^W

£Xd = A 2 1Xd + A2 2Zd + G2W - (5'5)

For the linear filtering of (5.1) with respect to the observations

y = CjX + C^z + v (5.6)

where v(t) is a white Gaussian noise independent of the process noise w(t), 

the analysis in [II] demonstrates that the Kalman filter can be approximately 

decomposed into two filters in different time scales, thereby yielding estimates 

of the slow and fast states. Similar results are obtained for near-optimal 

smoothing [1 1 1 ], and state estimation with uncertain singular perturbation 

parameter £ in (5.1) [119].
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For the singularly perturbed LQG control problem 

x = A ^ x  + A ^ z + B^u + G^w

ez = A ^ x  + A22z + B2u + G2w  (5.7)

y = C^x + C2z + v (5.8)

J = E(x’(T)r x(T) +2ex'(T)ri2z(T) + ez 1 (T)T2z(T)

T
+ / (x’L ^  + 2x,L1 ?z + z *L9z + u’Ru) dt} (5.9)

0  i A

it was demonstrated in [18] that the optimal solution to (5.7)-(5.9) may be 

approximately obtained from the solutions of two reduced order stochastic 

control problems in the slow and fast fime scales. The drawback of the 

formulation (5.7)-(5.9) is that it results in J being 0(l/e). To avoid 

divergent performance indices, it is required that L2 = 0(e), r2 = 0(e2).

A new approach [129] to this problem is based on singularly
xperturbed Lyapunov equations. The two-time scale solutions yield 0(e )

(r>l) approximation to the optimal performance. For r=l, the results of 

[129] are equivalent to those of [18].

A conclusion from [11,18,129] is that in order to obtain well- 

defined reduced-order filtering and control problems as e->0 , it is 

necessary to scale the contribution of the white noise disturbances to the 

fast subsystem in some sense. Reference [117] introduces small parameters

as powers of £ as follows
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x = A ^ x  + ^i2Z + B 1U + G 1W

(5.10)

(5.11)

J = E{x’(T)rxx(T) +2ex’(T)ri2z(T) + ez'(T)T2z(T)
1

£ ^ z  'L^z + u ’Ru)dt}. (5.12)

The parameters a, 3, v, 6 represent the relative size of the small para

meters within the system, with respect to the small time constants of the 

fast subsystem. The inclusion of a separate observation channel y^ for 

the fast subsystem is essential, since for a > 0 , the fast variables cannot 

be estimated in a meaningful manner from the slow observation channel 

(signal-to-noise ratio tends to zero) . The analysis of [117] shows that 

the performance index is finite if

The restriction a = v  is crucial; otherwise, either the fast variables are 

not observed due to noisy observations (a > v), or they are observed noise

lessly (a < v) in the limit as e + 0. If a > h, the problem becomes deter

ministic as e->0 , and if $ > h, the coupling between x and z becomes of

6 > (y- a) . (5.13)

Furthermore, a well-defined formulation also requires that

0 < a = v < 3 <^. (5.14)
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, Uorder less than 0(e ). The constraint 0 > a  insures that the state z is 

predominantly fast, and relaxing it causes no conceptual difficulties.

Setting ot = B = v  = 0 , yields the results of [18]. In this case 

6 = % to yield a finite performance index. Setting a = v = %  and 6 = 0 results 

in the full weighting of the fast variable. This important case, which is 

the only one to yield a well-defined stochastic process in the fast time 

scale, has been studied separately in [127] and [118], They have established 

the weak convergence, as e-*0 , of the fast stochastic variable z which 

satisfies the Ito equation

edz = Az dt + Æ  Gdw; Re X(A) <0 (5.15)

where w(t) is Gaussian white noise with covariance W. The results of [118,

M27] show that

lim z(t;e) = z weakly (5.16)
£->0

where z is a constant Gaussian random vector with covariance P satisfying 

the Lyapunov equation

AP + PA' + GWG’ = 0. (5.17)

Alternative formulations of the linear stochastic regulator problem have 

been reported in [12,16,110,116,120]. Colored noise disturbance in the 

fast subsystem is assumed in [116] , which accounts for situations when the 

correlation time of the input stochastic process is longer than the time 

constants of fast variables. When the fast subsystem is stable, the 

results of [116] demonstrate that the optimal solution to the stochastic
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regulator problem can be approximated by the optimal solution of the slow 

subproblem, and the performance index does not diverge.

5.2. Nonlinear Stochastic Control

A composite control approach for a class of nonlinear systems 

driven by white noise disturbances appears in [123] as a stochastic version 

of [G6,G7,G11], namely

dx = (c(x)z+ d(x) +28(x)u)dt + /2 dŵ  

edz = (a(x) z+b(x) + 2a(x)u)dt + e/2 dw^ (5.18)

00

J£ (u(-)) = E / e'Vt[(f(x)+h(x)z) 2 + u2]dt (5.19)x,z JQ

where w^(t), w^Ct) are standard Wiener processes independent of each other. 

The optimal feedback law for (5.18), (5.19) is given by

a(x)V£(x,z)
u£(x,z) = -S(x)v£(x,z)------- \-----  (5.20)

0where V (x,z) is the Bellman function

V£(x,z) = inf J£ (u(*)) (5.21)
u (•) X,Z

As e-^0, the optimal solution (5.20), (5.21) converges to the solutions of 

two reduced-order problems, which yield an 0 (e) approximation to the optimal 

performance.
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The slow control problem is

dx = (- — (b + 2au ) + d + 2gu ) dt + /J dw a s  s

00 2
J° (u  (• ) )  = E /  e_ V t [ ( f - ^  (b + 2au )) +  y 2]dt.  (5.22)X S q cl o S

The fast problem is an x-dependent deterministic optimal control problem 

given by

ez. = az. + 2au. f f f

CO
J° (u.(0) - / (h2Zf + u^)dt. (5.23)zf f £ f f

The composite control is formed as

u (x,z) = u (x) + u_(x,z) (5.24)c s t

where ug(x) is the optimal control of (5.22) and u^(x,z) is the optimal 

control of (5.23).

Under mild regularity conditions, the existence of ug(x) has been 

established. This is in contrast to the deterministic problem of [66,67, 

611], where the existence of the slow optimal control had to be assumed. 

Furthermore, the composite feedback control uc(x,z) maintains the payoff 

bounded as £ + 0 for v sufficiently large. Also

V£(x,z) V°(x) pointwise as e -► 0 (5.25)

where V° is the Bellman function of the slow subproblem (5.22). s
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Noticing that [123] has scaled the white noise input to the 

fast subsystem by the factor e/2 , we understand why the fast optimal 

control problem becomes deterministic in the limit e-*-0. A more realistic 

formulation may be obtained by using the scaling /2e".

Singular perturbations of quasi-variational inequalities arising 

in optimal stochastic scheduling problems are investigated in [125]. The 

system considered is the diffusion process

dx = m(x )dt + /2e a(x )dw . (5.26)t i t  t t

With this process we associate an index process i^, a pair of cost rates

(f1 (x), i = 0 ,l}, and a pair of switching costs (k_(x); i,j = 0 ,l; i^j}.

Scheduling the system (5.26) consists of changing the cost rate f1 (x) to a

more favorable rate f^(x) at discrete times S . A cost k..(x) is incurredm 13

for each change. Changes are based on the full observation of (xt,it) which
00is a Markov process. The solution of the optimal policy {S , i } with

m £
respect to a certain cost function leads to a system of second-order 

singularly perturbed quasi-variational inequalities. Asymptotic approxima

tions to the optimal solution are obtained using standard singular pertur

bation analysis of boundary value problems.

5.3. Wide-Band Input Noise Formulations

Keeping in mind the limiting behavior of the fast variable, it 

is perhaps more realistic to model the input disturbances as wide-band 

noise [114]. In formulations for linear systems [15], nonlinear systems
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[1 1 2 ], and linear filtering problems [14], both the parasitic elements of 

the system and the correlation time of the input stochastic process have 

been represented by the same perturbation parameter. By doing so, informa

tion about the relative behavior of the two asymptotic phenomena is lost.

In fact, it has been shown in [118] that the interaction between the two 

idealization procedures does affect the reduced order model. The following 

second order system is considered in [118],

ex + x = a(x) + b(x)V^ (5.27)

where is exponentially-correlated noise with correlation time y. It is 

shown that for sufficiently small e and y, x(t) can be modeled as a Markov 

process x(t), which is the solution of the Ito equation

d5 = [ a ®  + T ^ r | | b ® S ( 0 ) ] d t  + du (5.28)

where S(*) is the spectrum of V. The important feature of (5.28) is the 

dependence of the drift coefficient on the ratio s/y. This has been 

generalized in [128] to the nonlinear singularly perturbed system

x = a^(x) + A^2 (x)z + (x)

ez = a?1 (x) + A2z + B2 (x)Vy (5.29)

where V^(t) is a wide-band zero mean stationary process with correlation 

matrix

EiV11 (t) (V11 (t+r)) '} = RC-j). (5.30)
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Assuming that Re < 0, a diffusion model for x(t) is obtained where

the drift coefficient depends on e/p. Similar scaling problems appear in 

bifurcation of stochastic differential equations.[B30].
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6 . HIGH-GAIN FEEDBACK SYSTEMS

Multivariable generalizations of classical single-input single

output high-gain feedback arise in a number of control problems: disturbance

rejection, parameter uncertainty, decoupling of large-scale systems, and 

are implicit in cheap control problems [J8,J12,J16-J18,J20,J36,J41,J43,J48, 

J50,J52,J59,J60], almost singular state estimation [J45,J61], and variable 

structure systems with sliding mode [A3,A6,A7,J14,J26-J30,J58]. High gain 

feedback is treated in the context of multivariable root loci [J5,J21,J22, 

J33,J37,J42,J61,J62] and multivariable optimal root loci [J6,J19,J25,J38], 

and, more recently, the theory of invariant subspaces [J46,J53]. There is a 

synergism between these approaches and singular perturbations. Singular 

perturbation methods provide a unifying framework for the analysis and 

elucidation of diverse high-gain feedback problems in both linear and non

linear systems. Conversely, high-gain systems, which seldom appear in the 

standard form (1.23),(1.24), motivate the investigation of more general 

forms of singularly perturbed systems.

6.1. High-Gain and Time Scales

Perhaps the simplest multivariable high-gain feedback system is

x = Ax + Bu, n dx€ r , u e r (6.1)

1 „ 1 u = — Cx = — y,£ £ y€RP. (6.2)

Substitution of (6.2) into (6.1) yields

ey = CBy + eCAx (6.3)
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and shows that, if CB is nonsingular, then y is the fast variable. After 

the fast transient near the range space of B decays, the slow motion is 

continuous near the null space of C, [J14]. From the theory of asymptotic 

root loci [J5,J22,J33,J42] as £ + 0 the p fast eigenvalues of the high-gain 

system (6 .1), (6 .2) tend to infinity (the infinite zeros) along the 

asymptotes defined by the directions of A^CB), while the n-p slow eigen

values tend to the transmission zeros (finite zeros) of the open-loop 

system (6.1) with the output y = Cx. Thus when CB is nonsingular system (6.1), 

(6.2) can be expressed in the standard form (1.12), (1.13) and analyzed 

using the methods of Section 1.

When CB is singular the situation is more complicated. For 

example, under the condition

CA1B = 0, i = 0,1,...,q-2

q—1 .CA B is nonsingular,
(6.4)

which is sufficient for the invertibility of (6 .1) with y = Cx q [J 1 ] (and 

corresponds to case q in cheap control and singular arc problems [J8 ,J12,J52], 

that is to infinite poles of uniform order q in multivariable root locus 

problems [J37]), there are q fast time scales

t-t ___o
e

t-to t-to
£q

(6.5)

As e tends to zero, the slow eigenvalues coincide with the system trans

mission zeros as before, while the fast eigenvalues form the familiar 

Butterworth pattern of asymptotic root locus theory [J5,J22,J33,J37,J42].
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6.2. Composite State Feedback and Cheap Control

Let matrix C be free to be chosen in a state feedback design 

and, without loss of generality, consider that (6 .1) is in the form

* 1 = Allx l + A 12x 2 > x^€ Rn P , x^C RP (6 .6)

x2 = A2 1 x 1 + A22X2 + B2U * u£ RP (6.7)

and
B 2

nonsingular. Then the composite high-gain feedback

u = —  cx = —  [K-K x. + K J.x0 e e f s 1 f 2] (6 .8)

can be used for a separate assignment [J14] of the slow and fast eigenvalues

to locations

X (A., -A.,K ) + 0(e), J 1 1 iz s j = 1»•• • >P (6.9)

j  [Aj (B2Kf) +0(e)], j = p+1 ,...,n. (6 .1 0)

Developments of this approach for high-gain state feedback and error- 

actuated tracking controllers are reported in [J24,J31,J34,J35,J44,J51]. 

Geometric conditions whereby the multivariable high-gain feedback system 

is insensitive to disturbances and (possibly large) parameter variations 

are explored in [J54]. An analysis of the interaction of actuator and 

sensor parasitics (frequently neglected in feedback systems design) with 

the fast system modes is undertaken in [J56].

The slow and fast gains can alternatively be determined from the 

solution of two separate lower-order regulator problems so as to provide 

a near-optimal composite state feedback control for the original system (6 .1).
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A cheap control problem analogous to the preceding eigenvalue assignment 

problem arises when the system (6 .1 ) is regulated with respect to a 

quadratic performance index having small (cheap) penalty on u
00

J =4- / [x’Q x + e^u’Ru]dt (6.11)
0

and e is a small positive parameter. Assuming B ’QB>0, a composite control

[J14] of the form (6 .8), where K and K are the state feedback gains f
matrices associated with the respective solutions of slow and fast regulator

2problems, is near-optimal in the sense that the performance is 0 (e ) close to 

the optimum cheap performance. As e->0, the original system (6.1) under 

cheap control exhibits a two-time-scale response in that an initial fast 

transient (boundary layer) is followed by a slow motion on the singular 

arc determined by a dynamical system and matrix Riccati equation of reduced 

order n-p [J8,J12,J32]. In the limit e = 0, the stable fast modes decay 

instantaneously, so that the optimal solution is given by the slow regulator 

solution which is identical to the singular linear quadratic solution [J10]. 

If instead of B fQB> 0  we have

B’(A1)1QA1B = 0, i = 0,1,...,q-2,

B’(A')̂  ^QAq *B is nonsingular,
(6 .11)

then, in successive cases, a singular perturbation analysis [J1 2 ] reveals 

increasingly impulsive behavior at the initial time t = 0 , increased thick

ness of the boundary layer and lower dimensionality of the singular arc 

solution. It is often desired that the state trajectory xQ (t,£) be bounded 

or at most step-like near t = 0 as e tends to zero, for any initial state
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[J17,J32,J43]. A condition [J17] for bounded peaking is that rank 

C(al-A) = rank CB. Moreover, for a square invertible [J1 ] transfer- 

function matrix G(a)=C(aI-A) ^B, perfect regulation (zero cost) is 

achieved as s + 0 , irrespective of the initial state, if and only if the 

transmission zeros [J7] of G(a) lie in the open left-half plane (G(a) is 

minimum phase) [J6,J14,J32]. Dual results on perfect state estimation in 

the presence of weak measurement noise are discussed in [J32,J45]. In the 

nonminimum phase case, there is a set of initial conditions for which 

perfect regulation cannot be achieved [J6,J52,J60]. This has to be viewed 

as an inherent performance limitation of nonminimum phase systems. The 

cheap control problem also forms the basis of a design procedure, using 

multivariable root loci [J5,J6], for the selection of the cost weighting 

matrices of the state regulator problem [J18,J36] and the output regulator 

problem [J41]. A partial cheap control problem, in which some but not 

necessarily all of the control inputs have arbitrarily small weighting in 

the performance index is studied in [J59]. Recent results [J61] establish 

that assumption (6 .1 1 ) is not essential and the high-gain results extend to 

include all invertible systems [J 1 ].

6.3. Variable Structure Systems

Variable structure systems [A3,A6,A7,J14] are systems (6.1) for 

which the so-called sliding mode on the switching surface £(x) = 0  is 

achieved by the discontinuous feedback control, component-wise,
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?i<xo> > 0

Uĵ Cx) - < (6 .12)

\ ?i(xo) < 0 .

For c(x) = C x =0 and CB nonsingular the system (6.1) in sliding mode is 

governed by the "equivalent control"

The feedback system (6.1), (6.1*3) is robust with respect to parameter varia

identical to the slow motion of the high-gain feedback system (6 .1 ), (6 .2). 

The switching surfaces can be synthesized from the solution of either an 

eigenvalue assignment problem or a quadratic regulator problem for the slow 

subsystem [J14,J27,J28]. Developments of the variable structure approach 

include model-following systems [J30,J58],and servomechanism design with 

application to overspeed protection control [J57].

(6.13)

obtained by requiring that

t = CAx + CBu = 0. (6.14)

tions, similar to high-gain systems, and the motion of (6.2) with (6.13) is



7. WEAK COUPLING AND TIME SCALES

The need for model simplification with a reduction (or distribution) 

of computational effort is particularly acute for large-scale systems 

involving hundreds or thousands of state variables, often at different geo

graphical locations. Some form of decentralized modeling and control which 

exploits the weak interactions between subsystems is then required. While 

there are a number of approaches to the study of large-scale systems [A12], 

the success of any proposed decentralized scheme critically depends upon the 

choice of subsystems [M15]. In this respect, two-time-scale methods 

can be developed to aid the modeling process itself.

A fundamental relationship between time scales and weak coupling 

has been independently developed for power systems and Markov chains [K15, 

K18,L1,L2,L11,L13]. If the weak interactions of N "local" subsystems are 

treated as 0 (e), and if each subsystem has an equilibrium manifold (null 

space), then the local subsystems are decoupled in the fast time scale. 

However, they strongly interact in a slow time scale and form an aggregate 

model whose dimension is equal to the number of the local subsystems N. The 

system is thus decomposed into N+l subsystems (N in the fast and one in the 

slow time scale ) .

7.1. Slow Coherency in Power Systems

The motivation to seek a system decomposition/aggregation along 

the above lines originates in the post-fault transient analysis of electro

mechanical models for multi-machine power systems [K6,K9,K15-K17] of the

linearized form
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x = M~1 (K, +eK )x = A x in ex e (7.1)

where x represents the rotor angles, are strong "internal," and eKex are

weak "external connections." It has been observed that after a fault some

machines have the tendency to swing together with an "in phase" slow motion.

Such coherent machines are grouped into "coherent areas" which are then

represented by "equivalent machines." Given the N slowest modes of A£, the

machines i and j are said to be slowly coherent if the angles x̂ -x_. contain

only fast modes [K6,K15]. The practical problem in reduced order modeling

of power systems is to find the groups of slow-coherent machines when the

partition of A into K. and eK is not known, that is, the location of K e in ex
£-connections is not explicit. When the number of coherent areas is equal

to N, the number of slow modes of A£, the time-scale separation algorithm

[K6 ] for the "dichotomic" solution L - t*ie Riccati equation auto-
|~ v

matically groups the machines into areas. In the present notation, V = y 1

is an nxN basis matrix for the N selected slow modes of A . For this ideal,£

so-called N-decomposable case, the matrix L consists of rows which have only

one nonzero element and it is equal to unity. This matrix L is termed a
2grouping matrix because it associates the remaining n-N angles x to the 

N reference angles x^. The angular differences x^“xj i-n the areas are 

fast variables defined by

n(t) = x2 (t) - Lx^(t) (7.2)

as a special case of (1.5). The slow variables are the area "centers of 

inertia"

m.l£ = Z —“ x ., m = Z m ,  J = 1,. . . ,N.
J i€J mj 1 J i€J 1

(7.3)
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In the new coordinates £, r\ a near-decomposable power system appears in a 

standard singular perturbation form (1.12),(1.13). It is shown [K17] that for 

a 48-machine system, the area decomposition obtained for the linearized 

model remains valid in nonlinear simulations. Further details and applica

tions of these methodologies are given in a recent monograph [K19].

7.2, Aggregation of Markov Chains

It has recently been established [L12] that the coherency method 

in power systems is analogous to a method for aggregation of Markov chains 

developed earlier in [L1,L2,L5,L7] and more recently in [L3,L4,L6,L10,L11,

L13]. In Markov chains, high transition probabilities within a group of 

states, permit that for long-term studies this group be treated as an 

aggregate state. Much weaker transition probabilities to states of other 

groups have effect only after a long period of time, and can therefore be 

neglected over shorter periods, while for long-term studies an aggregate 

model can be used.

The probability vector p of an n-state Markov chain with N groups of 

strongly interacting states satisfies

where A = diag[A^,A0,...,A^]. Weak interactions eB become significant after 

a long period in the fast time scale t . In the slow time scale t = ex

= p (A + eB) (7.4)

(7.5)
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the fast transient is formed of separate transients within the strongly 

coupled groups. After some time pA decays to 0(e), and from then on 

pB is no longer negligible with respect to ^  pA. To make the slow and fast 

parts of p(t) explicit, let

where

y  =: PT, z = ps, P =! yV + zW

AT = o, VA = 0, VT
= ha

WT = o, VS = 0, WS = In-N*

Then (7.5) appears in the standard singular perturbation form

y = yVBT + zWBT 

ez = eyVBS + zW(A + eB)S

(7.6)

(7.7)

(7.8)

(7.9)

where W(A+eB)S is a stable matrix. The slow subsystem is

ys = ys(VBT - eVBS(WAS)_1WBT) = ygAg (7.10)

For e =0 it reduces to the aggregate chain proposed in [LI]. Its states 

are the groups of the original states and y^, J = 1,...,N is the probability 

for the original process to be in group J. Based on the aggregate chain 

(7.10), near-optimal policies have been obtained for controlled Markov 

chain problems [L2,L4-L8,L10,L11,L13,L14]. The resulting optimization 

algorithms are decentralized in the sense that fast subsystems compute 

their controls "locally" with the aggregate coordinating necessary informa

tion between subsystems and in a slow time scale. These results can be 

considered as discretized versions of diffusion control processes [L3] and 

are applicable to queueing problems [L9].
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8 . CONTROL OF LARGE SCALE SYSTEMS

Large scale systems are characterized by decentralization in

available information, multiplicity of decision makers, and individuality 

of objective functions for each decision maker.

tool for structuring large scale system models. Indeed the preceding 

section has shown that for a wide class of large scale systems, the notions 

of subsystems, their coupling, and time scales are interrelated and lead to 

a singularly perturbed model with a strongly-coupled slow "core" representing 

the system-wide behavior, and weakly-coupled fast subsystems representing 

the local behavior. The impact of this model on the design of control 

strategies is discussed in the section on multimodeling, while the last 

section deals with singularly perturbed differential games.

8.1. Multimodeling

Suppose that with original controls, or by their voluntary grouping, 

the linearized model of a large scale system exhibiting one slow and N fast 

subsystems can be written as

In recent years, singular perturbations have become an important

N N

N
E.z. = A . nx + A . . z . +l i  i0 li l + B..u.li l

(8 .1)
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where each fast subsystem is associated with a different singular pertur

bation parameter and is weakly coupled to other fast subsystems through

e . .. ij
In a situation like this, it is rational for a fast subsystem 

controller to neglect all other fast subsystems and to concentrate on its 

own subsystem, plus the interaction with others through the slow core. For 

the i-th controller, this is simply effected by setting all e-parameters to 

zero, except for e^. The i-th controller’s simplified model is then

.ix

eizi

= A.x + Aa .z . + Bn.u. + l Oi l Oi l

= A.nx +A..Z. + B..u.. lO n  l il i

NI B..u. j=l U  3
(8 .2)

Often (8.2) is all the i-th controller knows about the whole system. The 

k-th controller, on the other hand, has a different model of the same large 

scale system. This situation, called multimodeling, has been formulated 

and investigated in [M4,M10,M15] for deterministic problems, and in [M18,M19] 

for stochastic problems. Control u^ can be divided into a slow part, which 

contributes to the control of the core, and a fast part controlling only 

its own fast subsystem. Pole-placement and Pareto solutions have been

studied in [M4], while the closed-loop Nash solution has been analyzed in

[M10].

In stochastic problems, a careful treatment is required to 

establish the validity of the multimodel problem. In addition to the usual 

difficulties encountered in modeling a fast stochastic variable, as 

discussed in Section 5, the problem is involved due to the presence of
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nonclassical information patterns. To elucidate this aspect, consider the 

model

Nx = Annx + £ An . z. +
00 1

N
Z Bn .u. + Gnw 

i-i 0i 1 °

e .z.l l = A . _.x + A . . z . +lO il l e ..A..z. ij ij 1
+ B . .u. + v'eTG.wli l l i

(8.3)

where w(t) is white Gaussian noise. The information available y^(t) and 

performance objective J of each decision maker are to be compatible with 

the multimodel assumption (8.2). This implies that

yi0 = CiOX + vi0

y .. = C . . z . + /iT v ..•'ll li l l il (8.4)

yi = [ y Io  y h ] ’ ;
i = 1,2,... ,N

J. = E{xlrr..x_ + e.z! r . .z +/ (x’Q.nx +z!Q. .z.+uÎR.u.)dt} l T Oi T l îT il lT xi0 l li l i l l

i = 1,2,... ,N (8.5)

where an(̂  vü ^ t  ̂ are Gaussian noise processes, independent of

each other and of the process noise w(t). Clearly, the problem defined by 

(8.3), (8.A) under any solution concept is one involving nonclassical 

information patterns for which no implementable finite-dimensional solution 

exists. Further assumptions need to be made about the information structure 

to obtain implementable solutions. In any case, the optimal strategies 

generally lead to the solution of a set of coupled integro-differential 

equations, and it is not clear whether their limiting solution would
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correspond to the solution of the multimodel problem. To answer this 

question, a detailed investigation is undertaken in [M18,M19] for two 

important classes of quasi-classical information patterns. In [M18], well- 

posedness of the multimodel problem is established for a class of stochastic 

Nash games with a prespecified finite-dimensional compensator structure for 

each decision maker. The same fact is established in [M19] for static and 

dynamic team problems with sampled observations, under the one-step-delay 

observation sharing pattern. These results establish certain "robustness" 

of the multimodel problem to a class of solution concepts and information 

structures.

The assumption of weakly interacting fast subsystems is removed 

in [M6,M7,M8,M11,M17] where a sufficient "block D-stability" condition 

guarantees the asymptotic stability of the multiparameter boundary layers. 

Several tests for identifying classes of systems which satisfy this condition 

are reported in [M7,M8,M17], The relationship of this condition with 

multiple time-scales is exmained in [M7]. The main result of [M6] is a 

procedure for including limited, though not necessarily weak, interactions 

of fast subsystems. In [Mil], applications to decentralized stabilization 

are examined and in [M16] a near-equilibrium solution to closed-loop Nash 

games is obtained. Extension of the "block D-stability" condition to a 

class of nonlinear systems which are linear in the fast variables, is 

obtained in [M14]. Related approaches to the multi time scale problem are 

reported in [M9] and [Ml2] for linear systems, and in [M20] for nonlinear 

systems. A series of papers [M1-M3,M5,M13] deal with the stability of large- 

scale singularly perturbed systems within a general framework, while [K8] 

uses singular perturbation techniques to study the hierarchical stability 

of power systems.
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8.2. Singularly Perturbed Differential Games

The references in this section report on the impact of singularly 

perturbed reduced order models in the determination of simplified zero-sum, 

Nash and Stackelberg strategies. The main question investigated is one 

of well-posedness, whereby the limit of the performance using the exact 

strategies is compared to the limit of the performance using the simplified 

strategies. The simplified solution is said to be well-posed if the two 

limits are equal. Unlike the state feedback problem, the natural singular 

perturbation order reduction does not always lead to well-posed solutions 

of differential game problems. The answer crucially depends on the 

information structure of the game and its preservation in the reduced order 

problem since it is well-known that, in contrast to the optimal control 

problem, differential games admit different open- and closed-loop solutions.

The crucial role of information structure in reduced order modeling 

of differential games can be seen from the following two-player Nash game

x = f(x,z,u1,u2,t); X ( t ) = Xo o
(8 . 6)

ez = g(x,z,u1,u2,t); z(t ) = zo o

J.
1

= / Li(x,z,u1,u2,t)dt; i = 1,2. (8.7)
o

Necessary conditions for a closed-loop solution are

P. = -V H.
1 x i

(8 .8)

eV. = -V H. - (-
3Ÿ.

l z 1
(t,x , z) ) vu H_.
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and uu = ¥^(t,x,z) minimizes the Hamiltonian H^(x,z,t,u^,¥_.) , i,j=l,2; i ̂  j . 

For open-loop solution, (8.8) is replaced by

P. = -V H.; P.(t.) - 0l x i  i f

eV. = -V H.; V.(tJ = 0,
1 z 1 i f

(8.9)

The partial derivative terms in (8.9) give rise to generally different open- 

and closed-loop solutions. Setting e = 0  reduces the necessary conditions 

for the closed-loop solution to

0 = g(x,z,t,u1,u2)

ay.
0 = -V H - (-r-J- (t,x, z) )Z 1 d Z H..J

(8 .10)

Using (8.10) to eliminate z from (8.6), (8.7) implies that the optimal 

strategies ^  are functions of t and x only. Thus S ' P 3z = 0. Suppose, 

however, that (8.6)-(8.8) are first solved and then e->0. If it is not true 

that >.

lim V H. = 0; Vt€(t ,t_) (8.11)
e+0 2 1 0 f

then the order reduction is generally not well posed. Under appropriate 

assumptions one may be able to show that

ay
lim(7zHi+(l f ) v v  = 0;£-^0

vtecto.if) (8 .12)

The fact that (8.12) does not imply (8.11) is the reason for the ill- 

posedness of closed-loop Nash solutions [N2-N5]. In open-loop and partially



59

closed-loop (control functions of x alone) Nash solutions, (8.12) does
ay.

imply (8.11) because — — =0; and hence these solutions are well-posed [N5].9 z

Another class of problems for which (8.12) implies (8.11) are LQ problems 

where the performance indices are modified (i.e., no penalty on the fast 

variable z) as in [N2], where also an alternative way of defining a reduced 

game whose closed-loop solution is the limit of the closed-loop solution of 

the full game is proposed. Related work on near-Nash feedback control of a 

composite system with a time-scale hierarchy is reported in [Nil].

Analogous results for the Stackelberg problem are [N6,N9]. For zero-sum 

games, the normal order reduction is well-posed [Nl], which is to be 

expected because zero-sum games have the same open- and closed—loop solutions.

Singular perturbation techniques are applied to pursuit-evasion 

problems in [N7,N8,N10,N12,N13].
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CONCLUDING REMARKS

Research trends, discernible from this survey, can be briefly 

summarized in the broad categories of modeling, analysis, and design.

In modeling the trend is to go beyond the standard model discussed 

in Sections 1.1 and 1.2. The two more general classes are, first, models 

with known small parameters which do not multiply derivatives, and, second, 

models whose time-scale properties are caused by "hidden" parameters. 

Representatives of the first class are high-gain and some singular systems.

In the second class are dynamic networks with coherent groups of states. 

Modeling issues in stochastic systems center around probabilistic scaling 

of fast phenomena. Scaling is also an issue in trajectory optimization 

problems.

In analysis, the trend is to encompass new classes of systems: 

discrete-time, stochastic and nonlinear; and to analyze their controllability, 

stability and other properties in separate time scales. In particular, 

singular perturbation method promises to be a powerful tool in robustness 

analysis of adaptive systems. In linear systems new frequency and geometric 

methods are being related to asymptotic methods.

Two-time-scale state feedback design methods are being extended to 

ouptut feedback, observer and compensator design problems. The success of 

the composite control method for a class of nonlinear and stochastic systems

motivates its extension to broader classes of systems. The multimodeling
>

approach is one of the potential applications of time-scale methods to 

decentralized design of large scale systems and differential games.

These and related research directions depend on and will contribute 

to a deeper understanding of nonlinear and stochastic perturbation, bifurcation 

and averaging problems.
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