746 research outputs found

    Hybrid-Vehcloud: An Obstacle Shadowing Approach for VANETs in Urban Environment

    Full text link
    Routing of messages in Vehicular Ad-hoc Networks (VANETs) is challenging due to obstacle shadowing regions with high vehicle densities, which leads to frequent disconnection problems and blocks radio wave propagation between vehicles. Previous researchers used multi-hop, vehicular cloud or roadside infrastructures to solve the routing issue among the vehicles, but they suffer from significant packet delays and frequent packet losses arising from obstacle shadowing. We proposed a vehicular cloud based hybrid technique called Hybrid-Vehcloud to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. The novelty of our approach lies in the fact that our proposed technique dynamically adapts between obstacle shadowing and non-obstacle shadowing regions. Simulation based performance analysis of Hybrid-Vehcloud showed improved performance over Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP) and Cloud-VANET schemes at high vehicle densities

    A secured message transmission protocol for vehicular ad hoc networks

    Get PDF
    Vehicular Ad hoc Networks (VANETs) become a very crucial addition in the Intelligent Transportation System (ITS). It is challenging for a VANET system to provide security services and parallelly maintain high throughput by utilizing limited resources. To overcome these challenges, we propose a blockchain-based Secured Cluster-based MAC (SCB-MAC) protocol. The nearby vehicles heading towards the same direction will form a cluster and each of the clusters has its blockchain to store and distribute the safety messages. The message which contains emergency information and requires Strict Delay Requirement (SDR) for transmission are called safety messages (SM). Cluster Members (CMs) sign SMs with their private keys while sending them to the blockchain to confirm authentication, integrity, and confidentiality of the message. A Certificate Authority (CA) is responsible for physical verification, key generation, and privacy preservation of the vehicles. We implemented a test scenario as proof of concept and tested the safety message transmission (SMT) protocol in a real-world platform. Computational and storage overhead analysis shows that the proposed protocol for SMT implements security, authentication, integrity, robustness, non-repudiation, etc. while maintaining the SDR. Messages that are less important compared to the SMs are called non-safety messages (NSM) and vehicles use RTS/CTS mechanism for NSM transmission. Numerical studies show that the proposed NSM transmission method maintains 6 times more throughput, 2 times less delay and 125% less Packet Dropping Rate (PDR) than traditional MAC protocols. These results prove that the proposed protocol outperforms the traditionalMAC protocols

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times

    Secure Position-Based Routing for VANETs

    Get PDF
    Vehicular communication (VC) systems have the potential to improve road safety and driving comfort. Nevertheless, securing the operation is a prerequisite for deployment. So far, the security of VC applications has mostly drawn the attention of research efforts, while comprehensive solutions to protect the network operation have not been developed. In this paper, we address this problem: we provide a scheme that secures geographic position-based routing, which has been widely accepted as the appropriate one for VC. Moreover, we focus on the scheme currently chosen and evaluated in the Car2Car Communication Consortium (C2C-CC). We integrate security mechanisms to protect the position-based routing functionality and services (beaconing, multi-hop forwarding, and geo-location discovery), and enhance the network robustness. We propose defense mechanisms, relying both on cryptographic primitives, and plausibility checks mitigating false position injection. Our implementation and initial measurements show that the security overhead is low and the proposed scheme deployable

    Secure Data Aggregation in Vehicular-Adhoc Networks: A Survey

    Get PDF
    AbstractVehicular ad hoc networks (VANETs) are an upcoming technology that is gaining momentum in recent years. That may be the reason that the network attracts more and more attention from both industry and academia. Due to the limited bandwidth of wireless communication medium, scalability is a major problem. Data aggregation is a solution to this. The goal of data aggregation is to combine the messages and disseminate this in larger region. While doing aggregation integrity of the information can not be easily verified and attacks may be possible. Hence aggregation must be secure. Although there are several surveys covering VANETs, they do not concentrate on security issues specifically on data aggregation. In this paper, we discuss and analyse various data aggregation techniques and their solutions

    A Novel Energy-Efficient Reservation System for Edge Computing in 6G Vehicular Ad Hoc Network

    Get PDF
    The roadside unit (RSU) is one of the fundamental components in a vehicular ad hoc network (VANET), where a vehicle communicates in infrastructure mode. The RSU has multiple functions, including the sharing of emergency messages and the updating of vehicles about the traffic situation. Deploying and managing a static RSU (sRSU) requires considerable capital and operating expenditures (CAPEX and OPEX), leading to RSUs that are sparsely distributed, continuous handovers amongst RSUs, and, more importantly, frequent RSU interruptions. At present, researchers remain focused on multiple parameters in the sRSU to improve the vehicle-to-infrastructure (V2I) communication; however, in this research, the mobile RSU (mRSU), an emerging concept for sixth-generation (6G) edge computing vehicular ad hoc networks (VANETs), is proposed to improve the connectivity and efficiency of communication among V2I. In addition to this, the mRSU can serve as a computing resource for edge computing applications. This paper proposes a novel energy-efficient reservation technique for edge computing in 6G VANETs that provides an energy-efficient, reservation-based, cost-effective solution by introducing the concept of the mRSU. The simulation outcomes demonstrate that the mRSU exhibits superior performance compared to the sRSU in multiple aspects. The mRSU surpasses the sRSU with a packet delivery ratio improvement of 7.7%, a throughput increase of 5.1%, a reduction in end-to-end delay by 4.4%, and a decrease in hop count by 8.7%. The results are generated across diverse propagation models, employing realistic urban scenarios with varying packet sizes and numbers of vehicles. However, it is important to note that the enhanced performance parameters and improved connectivity with more nodes lead to a significant increase in energy consumption by 2%
    • …
    corecore