344 research outputs found

    Repetitive Model Refactoring for Design Space Exploration of Intensive Signal Processing Applications

    Get PDF
    The efficient design of computation intensive multidimensional signal processing application requires to deal with three kinds of constraints: those implied by the data dependencies, the non functional requirements (real-time, power consumption) and the availability of resources of the execution platform. We propose here a strategy to use a refactoring tool dedicated to this kind of applications to help explore the design space. This strategy is illustrated on an industrial radar application modeled using the Modeling and Analysis of Real-time and Embedded systems (MARTE) UML profile. It allows to find good trade-offs in the usage of storage and computation resources and in the parallelism (both task and data parallelism) exploitation

    MARTE based design approach for targeting Reconfigurable Architectures

    No full text
    International audienceThis paper demonstrates the use of a model driven design flow for Multiprocessor System on chips (MPSoCs) such as those dedicated to intensive signal processing applications. Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC codesign methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs

    MARTE based modeling approach for Partial Dynamic Reconfigurable FPGAs

    Get PDF
    International audienceAs System-on-Chip (SoC) architectures become pivotal for designing embedded systems, the SoC design complexity continues to increase exponentially necessitating the need to find new design methodologies. In this paper we present a novel SoC co-design methodology based on Model Driven Engineering using the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology is utilized to model fine grain reconfigurable architectures such as FPGAs and extends the standard to integrate new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The goal is to carry out modeling at a high abstraction level expressed in UML (Unified Modeling Language) and following transformations of these models, automatically generate the code necessary for FPGA implementation

    MARTE based design approach for targeting Reconfigurable Architectures

    Get PDF
    International audienceThis paper demonstrates the use of a model driven design flow for Multiprocessor System on chips (MPSoCs) such as those dedicated to intensive signal processing applications. Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC codesign methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs

    CCSL denotational semantics

    Get PDF
    The Clock Constraint Specification Language (CCSL) has been informally introduced in the specifications of the \uml Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE). In a previous report entitled ``Syntax and Semantics of the Clock Constraint Specification Language'', we equipped a kernel of CCSL with an operational semantics. In the present report we pursue this clarification effort by giving a mathematical characterization to each CCSL constructs

    Automatic Translation of UML Sequence Diagrams into PEPA Models

    Get PDF
    The UML profile for modeling and analysis of real time and embedded systems (MARTE) provides a powerful, standardised framework for the specification of non-functional properties of UML models. In this paper we present an automatic procedure to derive PEPA process algebra models from sequence diagrams (SD) to carry out quantitative evaluation. PEPA has recently been enriched with a fluid-flow semantics facilitating the analysis of models of a scale and complexity which would defeat Markovian analysis

    High level modeling of Partially Dynamically Reconfigurable FPGAs based on MDE and MARTE

    Get PDF
    International audienceSystem-on-Chip (SoC) architectures are becoming the preferred solution for implementing modern embedded systems. However their design complexity continues to augment due to the increase in integrated hardware resources requiring new design methodologies and tools. In this paper we present a novel SoC co-design methodology based on aModel Driven Engineering framework while utilizing the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology permits us to model fine grain reconfigurable architectures such as FPGAs and allows to extend the standard for integrating new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The overall objective is to carry out modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformations of these models, automatically generate the necessary specifications required for FPGA implementation

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Modeling Networks-on-Chip at System Level with the MARTE UML profile

    Get PDF
    International audienceThe study of Networks on Chips (NoCs) is a research field that primarily addresses the global communication in Systems-on-Chip (SoCs). The selected topology and the routing algorithm play a prime role in the performance of NoC architectures. In order to handle the design complexity and meet the tight time-to-market constraints, it is important to automate most of these NoC design phases. The extension of the UML language called UML profile for MARTE (Modeling and Analysis of Real-Time and Embedded systems) specifies some concepts for model-based design and analysis of real time and embedded systems. This paper presents a MARTE based methodology for modeling concepts of NoC based architectures. It aims at improving the effectiveness of the MARTE standard by clarifying some notations and extending some definitions in the standard, in order to be able to model complex architectures like NoCs
    corecore