
HAL Id: inria-00525009
https://hal.inria.fr/inria-00525009

Submitted on 10 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MARTE based design approach for targeting
Reconfigurable Architectures

Imran Rafiq Quadri, Samy Meftali, Jean-Luc Dekeyser

To cite this version:
Imran Rafiq Quadri, Samy Meftali, Jean-Luc Dekeyser. MARTE based design approach for targeting
Reconfigurable Architectures. 2nd Embedded Systems Conference - ESC’09, May 2008, Alger, Algeria.
�inria-00525009�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50050338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00525009
https://hal.archives-ouvertes.fr

Abstract—This paper demonstrates the use of a
model driven design flow for Multiprocessor System on
chips (MPSoCs) such as those dedicated to intensive
signal processing applications. Due to the continuous
exponential rise in SoC's design complexity, there is a
critical need to find new seamless methodologies and
tools to handle the SoC co-design aspects. This paper
addresses this issue and proposes a novel SoC co-
design methodology based on Model Driven
Engineering (MDE) and the MARTE (Modeling and
Analysis of Real-Time and Embedded Systems) standard
proposed by OMG (Object Management Group), in
order to raise the design abstraction levels. Extensions
of this standard have enabled us to move from high
level specifications to execution platforms such as
reconfigurable FPGAs.

Key Words - Real-Time and Embedded Systems, SoC
Co-design, FPGAs, Partial Dynamic Reconfiguration,
ISP, Control, MDE, MARTE, UML

I.INTRODUCTION

The computing power requirements of intensive signal

processing applications such as video processing, voice
recognition, telecommunications, radar or sonar are
steadily increasing (several hundreds of GOPS (Giga
Operations per second) for low power embedded systems
in a few years). If the design productivity does not
increase dramatically, the limiting factor of the growth of
the semiconductor industry will not be the physical
limitations due to the thinness of the fabrication process
but the economy. Indeed, we ask the system design teams
to build more complex systems faster, cheaper, bug free
and to decrease the power consumption.

Model Driven Engineering [1] (MDE) is an emerging
domain and can be seen as a High Level Design Flow and
an effective solution for resolving the above mentioned
problems. The advantage of MDE is that the complete
system (both application and architecture) is modeled at a
high specification level allowing several abstraction
levels. A designer thus can focus on a particular domain
space related to an abstraction level. The UML (Unified
Modeling Language) graphical language allows to
increase comprehensibility of the system and permits

relations between concepts defined at different
abstraction levels. High abstraction level descriptions of
systems can be provided by the users and they can
identify the internal concepts (task/data parallelism, data
dependencies and hierarchy). The graphical nature of
these specifications allows for their reuse, modification,
maintenance and extension.

MARTE [1] (Modeling and Analysis of Real-Time and
Embedded Systems) is an industry standard proposal of
the Object Management Group (OMG) for model-driven
development of embedded systems. It add capabilities to
UML allowing to model software, hardware and their
relations, along with added extensions (for e.g.
performance and scheduling analysis). Although rich in
concepts, MARTE lacks a design flow to move from high
level modeling to execution platforms.

Gaspard [2],[3] is a MDE oriented MARTE compliant
SoC co-design environment dedicated specially towards
parallel hardware and software co-design allowing to
move from high level MARTE specifications to an
executable platform. It exploits the parallelism included
in repetitive constructions of hardware elements or
regular constructions such as application loops. Gaspard
proposes an environment starting at the highest level of
abstraction, namely the system modeling level. Automate
code production by the use of (semi)-automatic model
transformations is possible in our environment. The
environment currently focuses on a limited application
domain, that of intensive signal processing applications.

Our contribution is related to the RTL chain in
Gaspard which allows to convert the modeled application
at the high abstraction level, as a hardware functionality
which can be then implemented in a targeted FPGA. The
produced code is generated automatically using model to
model transformations.

The plan of this paper is as follows: section 2 gives a
brief overview of MDE, while section 3 relates to
Gaspard2 in general and the MARTE extensions. Section
4 briefly describes the RTL chain while section 5
presents a case study. Finally we finish with a conclusion.

1

MARTE based design approach for targeting Reconfigurable Architectures

Imran Rafiq Quadri, Samy Meftali and Jean-Luc Dekeyser
INRIA Lille Nord – Europe, USTL / LIFL / CNRS , Lille – France

{Imran.Quadri, Samy.Meftali, Jean-Luc.Dekeyser}@lifl.fr

II. MODEL DRIVEN ENGINEERING

MDE is centered around three focal concepts.
Models, Metamodels and Transformations. A model is
an abstraction of reality and composed of concepts and
relations. Concepts are “things” and relations are the
“links” between these things in reality. A model can be
observed from different point of views (views in MDE).
A metamodel is in fact a collection of concepts and
relations for describing a model. It defines the syntax of a
model as a language defines its grammar. Each model is
then said to conform to its metamodel.

Finally using model transformations, it is possible to
move from higher abstraction level models to low level
technology modes in order to generate executable models
(or source code). A model transformation is a
compilation process that transforms a source model into
a target model and allows to move from an abstract
model to a more detailed model. The source and target
models each conform to their respective metamodels. A
model transformation is based on a set of rules that help
to identify concepts in a source metamodel in order to
create enriched concepts in the target metamodel. This
separation allows to easily extend and maintain the
compilation process. New rules extend the compilation
process and each rule can be independently modified.
Model transformations carry out refinements moving
from high abstraction levels to low levels for code
generation. At each intermediate level, implementation
details are added to the compilation process. The
advantage of this approach is that it allows to define
several model transformations from the same abstraction
level but targeted to different lower levels, offering
opportunities to generate several implementations from a
specification.

III. GASPARD CO-DESIGN ENVIRONMENT

Gaspard is a MDE oriented SoC co-design
environment [2],[3]; which is compliant with the latest
OMG industry standard, MARTE [1]. MARTE allows
modeling of real-time embedded systems: the application,
architecture and the allocation between application and
architecture in the UML graphical language. Gaspard has
significantly contributed in the definition of the MARTE
standard, such as the RSM package which allows the
expression of repetitive structures of systems (application
loops and hardware repetitions) in a compact manner.
The RSM concepts were originally used in Gaspard to
implement intensive signal processing applications.

In the Gaspard design approach illustrated in fig.1, the
application and architecture are modeled using the
MARTE concepts. Afterwards, an allocation is carried
out: the application part is mapped onto the available
hardware resources, such as tasks on processing units
and data onto memory. Although MARTE is suitable for
modeling purposes, it lacks the means to move from high
level modeling specifications to execution platforms.
Gaspard2 bridges this gap by introducing the concept of
deployment.

In the deployment level, all the elementary components
or ECs, either of the application or the architecture, are
linked with an implementation facilitating IP (Intellectual
Property) reuse. An EC can have different
implementations, which depend on the abstraction levels
and execution platforms. The designer can choose an
implementation among the possible choices. Hence,
deployment allows one to move from platform
independent models to platform dependent ones.
Currently Gaspard targets different execution platforms
such as formal verification [5], high performance
computing [6], simulation [7],[8] and finally synthesis as
illustrated in figure 1.

 Fig.1 : The Gaspard co-design environment

2

IV. THE RTL TRANSFORMATION CHAIN

An application modeled at the MARTE specification
level using the underlying Gaspard semantics exhibits
parallelism, mainly task and data parallelism along with
data dependencies. The application can be converted into
a hardware functionality, i.e., a hardware accelerator,
however care should be taken to ensure that the inherit
parallelism remains true to its form after its conversion
into a hardware design.

The RTL (Register Transfer Level) model to model
transformation chain and its corresponding metamodel
have been constructed to remain true to the application
semantics modeled at the UML level, while providing
additional low level enriched concepts in order to generate
synthesizable HDL code for final FPGA implementation.
The RTL level is independent from any HDL language
(VHDL or Verilog for instance). The RTL metamodel
relies on a factorized expression of the parallelism
included in hardware accelerators. The RTL metamodel
also enables the description of FPGA according to
different views such as dedicated description of
resources contained in an FPGA (storage, computing,
etc.); another one focuses on FPGA topology (cell
organization) and the last one defines the FPGA
configuration zones.

Some concepts of the RTL metamodel are dedicated to
the mapping of a hardware accelerator onto FPGA. These
provide implementation characteristics of a hardware
accelerator for a given FPGA. Such information will
allow a fine topological placement of the hardware
accelerator onto the FPGA.

Using model to model transformations, automatic
Design Space Exploration (DSE) for an hardware
accelerator can also be performed. In our design flow,
the ECs can be synthesized independently to calculate the
consumed FPGA resources. This information can be then
incorporated into the model transformations, making it
possible to calculate the approximate number of
consumed FPGA resources of the overall application (at
the RTL model) before final code generation and eventual
synthesis.

Thus the designer is able to compare the resources
consumed by the modeled application and the total
resources available on the targeted FPGA resulting in an
effective DSE strategy. If the application is too big to be
placed on the FPGA, the designer can carry out a
refactoring of the application. It should be noted that a
refactored Gaspard application remains a Gaspard

application in terms of its functionality and safeguards
the parallelism.

In Figure 2 we present our MARTE based RTL design
flow. Initially the application is modeled via UML and
MARTE concepts; and is independent from any
implementation details. Afterwards, the UML2MARTE
model transformation allows to transform the UML
model into a MARTE model.

This model corresponds to the MARTE metamodel.
Afterwards this MARTE model is transformed into a
Gaspard model by the MARTE2GASPARD
transformation. Via GASPARD2RTL transformation, the
RTL model is created which corresponds to a low
abstraction level of an hardware accelerator (or several
accelerators in the case of PDR) able to execute the initial
modeled ISP application.

The RTL model provides a nearly accurate estimation
of the resources required for the resulting design
implementation. An exploration process (not illustrated in
the figure) is performed according to these estimations.
Finally, it is possible to convert the models to source
code.

Figure 2 : An overview of the design flow related to the
RTL chain

3

V. CASE STUDY

 Figure 4 : Modeling of the Multiplication step

In order to illustrate the capability of our design flow,
we present here a case study of a Finite Impulse
Response (FIR) digital filter modeled using the MARTE
concepts in the Gasapard Environment. These filters are
largely employed in DSP (digital signal processing) based
systems and offer a large applicability range such as
linear phase and stability. The disadvantage related to
these filters is that a high computational power is
required and may need a large number of coefficients to
reach the desired functionality. This could result in
utilization of a large number of slices in a targeted
FPGA. A FIR filter normally takes some input data
values and compute an output which is then multiplied by

by a set of coefficients. Afterwards the result of this
multiplication is added together to produce the final
output. While a software implementation can be utilized
for implementing the FIR functionality, the filter
functions will be sequentially executed. Where as a
hardware implementation allows the filter functions to be
executed in a parallel manner and thus increases the filter
processing speed.

Figure 3 illustrates the global model of the FIR filter
application. The two computing parts of the application,
mainly the multiplication and the addition parts are
further elaborated in detail subsequently.

The modeling of the modeling step is shown in figure
4 by means of two components. The component
TimeRepeatedMultiplication expresses the repetition in
time while RepeatedMultiplication expresses the
repetition in space

Figure 5 represents the component which realizes the
addition of 256 data elements. The input port
inAdditionTree of this tree has a dimension of 256 while
the output port outAdditionTree is a scalar: shape of {1}.
The addition computation has been decomposed in a tree,
with each stage of this tree carrying out partial additions.
The dimensions of the ports between each stage in this
pipeline of tasks reduce by a factor of 2 (256, 128 , 2,
1).

4

Figure 5 : Modeling of Addition Tree

Figure 3 : Modeling of the FIR filter

Figure 6 represents the seventh stage, which realizes a
partial addition of four elements on an input port and
produces two elements on its output port. The
computation task Addition is repeated 2 times and is
elementary in nature.

Figure 6 : Modeling of an addition step

Once the entire application is modeled, it is deployed.
Figure 7 shows the deployment of one of the elementary
components CoeffGen of the application.

Figure 7 : Deployment of an elementary component

Figure 8 : Overall model transformation flow

Once deployment is carried out, it is possible to create
the code via model to model transformations as shown in
figure 8. The produced code can then be synthesized and
implemented on a target FPGA.

VI. CONCLUSION

This paper presents the overall Gaspard environment
that is now compliant to the OMG standard MARTE
profile, which is dedicated to the design of embedded and
real-time systems. Our contribution allow to specify
complex intensive signal processing applications, which
via the RTL model to model transformation chain, allows
to implement the applications as hardware accelerators in
a targeted FPGA. The Gaspard environment is also
available as a Rich Client Platform (RCP) [4].

REFERENCES

[1] OMG. OMG MARTE Standard. http://www.omgmarte.org/ .
2007

 [2] A. Gamatié et al. A Model Driven Design Framework for
High Performance Embedded Systems. Research Report
INRIA, No 6614, August 2008.

[3] DaRT Team. Activity Report 2008. available at
http://www.lifl.fr/DaRT/pub/public/dart.pdf . 2009

[4] DaRT Team. Gaspard2 SoC Framework.

 http://www.gaspard2.org/. 2009

[5] H. Yu. A MARTE-based Reactive Model for Data-Parallel
Intensive Processing: Transformations towards the
Synchronous Model. PhD Thesis, LIFL - USTL, France,
November 2008.

[6] J. Taillard. Une approche orientée modèle pour la
parallélisation d'un code de calcul éléments finis. PhD Thesis
, Lille, France, February 2009.

[7] R.B. Atitallah. Modèles et simulation des systèmes sur puce
multiprocesseurs - Estimation des performances et de la
consommation d'énergie. PhD Thesis , LIFL - USTL, France,
March 2008.

[8] E. Piel. Ordonnancement de systèmes parallèles temps-réel,
De la modélisation à la mise en oeuvre par l'ingénierie
dirigée par les modèles. PhD Thesis, LIFL - USTL, France,
December 2007.

5

http://www.omgmarte.org/
http://www.gaspard2.org/
http://www.lifl.fr/DaRT/pub/public/dart.pdf

	I.INTRODUCTION
	II. MODEL DRIVEN ENGINEERING
	III. GASPARD CO-DESIGN ENVIRONMENT
	IV. THE RTL TRANSFORMATION CHAIN
	V. CASE STUDY
	VI. CONCLUSION

