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Abstract—This  paper  demonstrates  the  use  of  a 
model driven design flow for Multiprocessor System on  
chips  (MPSoCs)  such  as  those  dedicated  to  intensive 
signal  processing applications.  Due to the continuous  
exponential rise in SoC's design complexity, there is a  
critical  need to  find new seamless  methodologies  and 
tools to handle the SoC co-design aspects.  This paper  
addresses  this  issue  and  proposes  a  novel  SoC  co-
design  methodology  based  on  Model  Driven  
Engineering  (MDE)  and  the  MARTE  (Modeling  and 
Analysis of Real-Time and Embedded Systems) standard 
proposed  by  OMG (Object  Management  Group),   in  
order to raise the design abstraction levels. Extensions  
of  this  standard  have  enabled  us  to  move  from high 
level  specifications  to  execution  platforms  such  as  
reconfigurable FPGAs.

Key Words - Real-Time and Embedded Systems, SoC 
Co-design, FPGAs, Partial Dynamic Reconfiguration,  
ISP, Control, MDE, MARTE, UML

I.INTRODUCTION

 
The computing power requirements of intensive signal 

processing applications such as  video processing, voice 
recognition,  telecommunications,  radar  or  sonar  are 
steadily  increasing  (several  hundreds  of  GOPS  (Giga 
Operations per second) for low power embedded systems 
in  a  few  years).  If  the  design  productivity  does  not 
increase dramatically, the limiting factor of the growth of 
the  semiconductor  industry  will  not  be  the  physical 
limitations due to the thinness of the fabrication process 
but the economy. Indeed, we ask the system design teams 
to build more complex systems faster, cheaper, bug free 
and to decrease the power consumption.

Model Driven Engineering [1] (MDE) is an emerging 
domain and can be seen as a High Level Design Flow and 
an effective solution for resolving the above mentioned 
problems. The advantage of MDE is that  the complete 
system (both application and architecture) is modeled at a 
high  specification  level  allowing  several  abstraction 
levels. A designer thus can focus on a particular domain 
space related to an abstraction level. The UML (Unified 
Modeling  Language)  graphical  language  allows  to 
increase  comprehensibility  of  the  system  and  permits 

relations  between  concepts  defined  at  different 
abstraction levels. High abstraction level descriptions of 
systems  can  be  provided  by  the  users  and  they  can 
identify the internal concepts (task/data parallelism, data 
dependencies  and  hierarchy).  The  graphical  nature  of 
these specifications allows for their reuse, modification, 
maintenance and extension.

MARTE [1] (Modeling and Analysis of Real-Time and 
Embedded Systems) is an industry standard proposal of 
the Object Management Group (OMG) for model-driven 
development of embedded systems. It add capabilities to 
UML  allowing to  model software,  hardware  and  their 
relations,  along  with  added  extensions  (for  e.g. 
performance and scheduling analysis).  Although rich in 
concepts, MARTE lacks a design flow to move from high 
level modeling to execution platforms. 

Gaspard [2],[3]  is a MDE oriented MARTE compliant 
SoC co-design environment dedicated specially towards 
parallel  hardware  and  software  co-design  allowing  to 
move  from  high  level  MARTE  specifications  to  an 
executable platform. It exploits the parallelism included 
in  repetitive  constructions  of  hardware  elements  or 
regular constructions such as application loops. Gaspard 
proposes an environment starting at the highest level of 
abstraction, namely the system modeling level. Automate 
code production by the use  of  (semi)-automatic  model 
transformations  is  possible  in  our  environment.  The 
environment currently focuses  on a  limited application 
domain, that of intensive signal processing applications.

Our  contribution  is  related  to  the  RTL  chain  in 
Gaspard which allows to convert the modeled application 
at the high abstraction level, as a hardware functionality 
which can be then implemented in a targeted FPGA. The 
produced code is generated automatically using model to 
model transformations. 

The plan of this paper is as follows: section 2 gives a 
brief  overview  of  MDE,  while  section  3  relates  to 
Gaspard2 in general and the MARTE extensions. Section 
4  briefly  describes  the  RTL  chain  while  section  5 
presents a case study. Finally we finish with a conclusion.
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II. MODEL DRIVEN ENGINEERING

MDE  is  centered  around  three  focal  concepts. 
Models,  Metamodels and  Transformations.  A model is 
an abstraction of reality and composed of concepts and 
relations.  Concepts  are  “things”  and  relations  are  the 
“links” between these things in reality. A model can be 
observed from different point of views (views in MDE). 
A  metamodel  is  in  fact  a  collection  of  concepts  and 
relations for describing a model. It defines the syntax of a 
model as a language defines its grammar. Each model is 
then said to conform  to its metamodel. 

Finally using model transformations,  it is possible to 
move from higher abstraction level models to low level 
technology modes in order to generate executable models 
(or  source  code).   A  model  transformation  is  a 
compilation process that transforms a source  model into 
a  target   model and allows to  move from an  abstract 
model to a  more detailed model. The source and target 
models each conform to their respective metamodels. A 
model transformation is based on a set of rules  that help 
to identify concepts in a  source metamodel in order to 
create enriched concepts in the target  metamodel. This 
separation  allows  to  easily  extend  and  maintain  the 
compilation process.  New rules  extend the compilation 
process  and  each  rule  can  be  independently modified. 
Model  transformations  carry  out  refinements  moving 
from  high  abstraction  levels  to  low  levels  for  code 
generation.  At  each  intermediate  level,  implementation 
details  are  added  to  the  compilation  process.  The 
advantage of  this  approach  is  that  it  allows to  define 
several model transformations from the same abstraction 
level  but  targeted  to  different  lower  levels,  offering 
opportunities to generate several implementations from a 
specification.

III. GASPARD CO-DESIGN ENVIRONMENT

Gaspard  is  a  MDE  oriented  SoC  co-design 
environment  [2],[3];  which is  compliant  with the latest 
OMG industry standard,  MARTE [1].  MARTE allows 
modeling of real-time embedded systems: the application, 
architecture and the allocation between application and 
architecture in the UML graphical language. Gaspard has 
significantly contributed in the definition of the MARTE 
standard,  such as  the RSM  package which allows the 
expression of repetitive structures of systems (application 
loops and hardware repetitions)  in a  compact  manner. 
The RSM concepts were originally used in Gaspard to 
implement intensive signal processing applications.

In the Gaspard design approach illustrated in fig.1, the 
application  and  architecture  are  modeled  using  the 
MARTE concepts.  Afterwards,  an allocation is carried 
out:  the application part  is  mapped onto the available 
hardware  resources,  such  as  tasks  on processing units 
and data onto memory. Although MARTE is suitable for 
modeling purposes, it lacks the means to move from high 
level  modeling  specifications  to  execution  platforms. 
Gaspard2 bridges this gap by introducing the concept of 
deployment.   

In the deployment level, all the elementary components 
or ECs, either of the application or the architecture, are 
linked with an implementation facilitating IP (Intellectual 
Property)  reuse.  An  EC  can  have  different 
implementations, which depend on the abstraction levels 
and  execution platforms.  The  designer  can  choose  an 
implementation  among  the  possible  choices.  Hence, 
deployment  allows  one  to  move  from  platform 
independent  models  to  platform  dependent  ones. 
Currently Gaspard targets different execution platforms 
such  as  formal  verification  [5],  high  performance 
computing [6], simulation [7],[8] and finally synthesis as 
illustrated in figure 1.  

         Fig.1 : The Gaspard co-design environment
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IV. THE RTL TRANSFORMATION CHAIN

An application modeled at  the MARTE specification 
level using  the  underlying  Gaspard  semantics  exhibits 
parallelism, mainly task and data parallelism along with 
data dependencies. The application can be converted into 
a  hardware  functionality,  i.e.,  a  hardware  accelerator, 
however care should be taken to ensure that the inherit 
parallelism remains true to its form after its conversion 
into a hardware design. 

The RTL  (Register  Transfer  Level) model to  model 
transformation  chain  and  its  corresponding metamodel 
have been constructed to remain true to the application 
semantics  modeled at  the UML  level,  while providing 
additional low level enriched concepts in order to generate 
synthesizable HDL code for final FPGA implementation. 
The RTL level is independent from any HDL language 
(VHDL or Verilog for instance).  The RTL metamodel 
relies  on  a  factorized  expression  of  the  parallelism 
included in hardware accelerators.  The RTL metamodel 
also  enables  the  description  of  FPGA  according  to 
different  views   such  as   dedicated  description  of 
resources  contained in  an  FPGA  (storage,  computing, 
etc.);  another  one  focuses  on  FPGA  topology  (cell 
organization)  and  the  last  one  defines  the  FPGA 
configuration zones.

Some concepts of the RTL metamodel are dedicated to 
the mapping of a hardware accelerator onto FPGA. These 
provide  implementation  characteristics  of  a  hardware 
accelerator  for  a  given FPGA.  Such  information  will 
allow  a  fine  topological  placement  of  the  hardware 
accelerator onto the FPGA.

Using  model  to  model  transformations,  automatic 
Design  Space  Exploration  (DSE)  for  an  hardware 
accelerator can also be performed.  In our design flow, 
the ECs can be synthesized independently to calculate the 
consumed FPGA resources. This information can be then 
incorporated into the model transformations,  making it 
possible  to  calculate  the  approximate  number  of 
consumed FPGA resources of the overall application (at 
the RTL model) before final code generation and eventual 
synthesis. 

Thus  the  designer  is  able  to  compare  the resources 
consumed  by  the  modeled  application  and  the  total 
resources available on the targeted FPGA resulting in an 
effective DSE strategy. If the application is too big to be 
placed  on  the  FPGA,  the  designer  can  carry  out  a 
refactoring of the application. It should be noted that a 
refactored  Gaspard  application  remains  a  Gaspard 

application in terms of its  functionality and safeguards 
the parallelism. 

In Figure 2 we present our MARTE based RTL design 
flow. Initially the application is modeled via UML and 
MARTE  concepts;  and  is  independent  from  any 
implementation details.  Afterwards,  the UML2MARTE 
model  transformation  allows  to  transform  the  UML 
model into a MARTE model. 

This  model corresponds  to  the MARTE  metamodel. 
Afterwards  this  MARTE  model  is  transformed into  a 
Gaspard  model  by  the  MARTE2GASPARD 
transformation. Via GASPARD2RTL transformation, the 
RTL  model  is  created  which  corresponds  to  a  low 
abstraction level of an hardware accelerator (or several 
accelerators in the case of PDR) able to execute the initial 
modeled ISP application. 

The RTL model provides a nearly accurate estimation 
of  the  resources  required  for  the  resulting  design 
implementation. An exploration process (not illustrated in 
the figure) is performed according to these estimations. 
Finally,  it  is  possible to  convert  the models to  source 
code.

Figure 2 : An overview of the design flow related to the 
RTL chain
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V. CASE STUDY

 Figure 4 : Modeling of the Multiplication step

In order to illustrate the capability of our design flow, 
we  present  here  a  case  study  of  a  Finite  Impulse 
Response (FIR) digital filter modeled using the MARTE 
concepts in the Gasapard Environment.  These filters are 
largely employed in DSP (digital signal processing) based 
systems  and  offer  a  large  applicability  range  such  as 
linear  phase  and  stability.  The  disadvantage  related  to 
these  filters  is  that  a  high  computational  power  is 
required and may need a large number of coefficients to 
reach  the  desired  functionality.  This  could  result  in 
utilization  of  a  large  number  of  slices  in  a  targeted 
FPGA.  A  FIR  filter  normally  takes  some  input  data 
values and compute an output which is then multiplied by 

by  a  set  of  coefficients.  Afterwards  the  result  of  this 
multiplication  is  added  together  to  produce  the  final 
output. While a software implementation can be utilized 
for  implementing  the  FIR  functionality,  the  filter 
functions  will  be  sequentially  executed.  Where  as  a 
hardware implementation allows the filter functions to be 
executed in a parallel manner and thus increases the filter 
processing speed.

Figure 3 illustrates the global model of the FIR filter 
application. The two computing parts of the  application, 
mainly  the  multiplication  and  the  addition  parts  are 
further elaborated in detail subsequently.

The modeling of the modeling step is shown in  figure 
4  by  means  of  two  components.  The  component 
TimeRepeatedMultiplication expresses  the repetition in 
time  while  RepeatedMultiplication expresses  the 
repetition in space

Figure 5 represents the component which realizes the 
addition  of  256  data  elements.  The  input  port 
inAdditionTree of this tree has a dimension of 256 while 
the output port outAdditionTree is a scalar: shape of {1}.
The addition computation has been decomposed in a tree, 
with each stage of this tree carrying out partial additions. 
The dimensions of the ports between each stage in this 
pipeline of tasks reduce by a factor of 2 (256, 128 , .... 2, 
1). 
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Figure 5 : Modeling of Addition Tree

Figure 3 : Modeling of the FIR filter



Figure 6 represents the seventh stage, which realizes a 
partial  addition of four  elements on an  input  port  and 
produces  two  elements  on  its  output  port.  The 
computation  task  Addition is  repeated 2  times  and  is 
elementary in nature. 

Figure 6 : Modeling of an addition step

Once the entire application is modeled, it is deployed. 
Figure 7 shows the deployment of one of the elementary 
components CoeffGen of the application.

Figure 7 : Deployment of an elementary component

Figure 8 : Overall model transformation flow

Once deployment is carried out, it is possible to create 
the code via model to model transformations as shown in 
figure 8. The produced code can then be synthesized and 
implemented on a target FPGA.

VI. CONCLUSION

This paper presents the overall Gaspard environment
that  is  now compliant  to  the  OMG standard  MARTE 
profile, which is dedicated to the design of embedded and 
real-time  systems.  Our  contribution  allow  to  specify 
complex intensive signal processing applications,  which 
via the RTL model to model transformation chain, allows 
to implement the applications as hardware accelerators in 
a  targeted  FPGA.  The  Gaspard  environment  is  also 
available as a Rich Client Platform (RCP) [4]. 
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