
UNIVERSITY OF OSLO
Department of Informatics

MARTES 2006 at
MoDELS 2006
International workshop
on Modeling and
Analysis of Real-Time
and Embedded Systems

Research Report 343

S. Gerard, S. Graf,
Ø. Haugen, I. Ober,
B. Selic

ISBN 82-7368-299-4
ISSN 0806-3036

October 2006

MARTES 2006 at MoDELS 2006 in Genoa, Italy
09:30 - 09:40 Introduction

The organizers

Session I : Visions and standards (1h20)
09:40 - 10:30 Keynote talk: to be announced
10:30 - 11:00 Towards a UML-based Modeling Standard for Schedulability

Analysis of Real-time systems
H. Espinoza, J. Medina, H. Dubois, S. Gerard, F. Terrier

5

Session II : Validation and tools (1h30)
11:30 - 12:00 A3S method and tools for analysis of real time embedded

systems
S. Rouxel, G. Gogniat, J-P. Diguet, J-L. Philippe, C. Moy

15

12:00 - 12:20 Modeling with logical time in UML for real-time embedded
system design
Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet,
and JP. Talpin (work-in-progress)

27

12:20 - 12:40 Analysis and Modeling of Real-Time Systems with
Mechatronic UML taking Clock Drift into Account
H. Giese, S. Henkler, and M. Hirsch (work-in-progress)

41

12:40 - 13:00 Analyzing Robustness of UML State Machines
S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden
(work-in-progress)

61

Session III : New language ideas (1h30)
14:30 - 15:00 Time Exceptions in Sequence Diagrams

O. Halvorsen, R. K. Runde, Ø. Haugen
81

15:00 - 15:30 An Approach to Performance Modeling of Software Product
Lines
J. A. Street and H. Gomaa

101

15:30 - 16:00 Concurrency and Real time specifications in UML
K. Lano, K. Androutsopolous, D. Clark

117

Session IV : Experience reports (1h45)
16:30 - 16:50 Modeling WS-BPEL with RT-UML Diagrams

M.-E. Cambronero, J-J. Pardo, G. Diaz, and V. Valero
(work-in-progress)

137

16:50 - 17:10 Applying Model Intelligence Frameworks for Deployment
Problem in Real Time and Embedded Systems
A. Nechypurenko, E. Wuchner, J. White, D. C. Schmidt
(position paper)

151

17:10 - 17:40 An Experience in modeling real-time systems with SysML
P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisini
(work-in-progress)

157

17:40 – 18:15 Discussion

�������	�	
��
�����	��������	��������	���	
��������������	��������	��	����
����	�������	

�
������	�
���
���������������
��������	������������������
���	�	����
���	�
�������		��	�

�������	�
���
������������������������������������� !! �� " #�����$� �
�{huascar.espinoza, julio.medina, hubert.dubois, sebastien.gerard}@cea.fr

���������	
�

�%���&�& ��&� � $!����' $ ����()" 	�$'����(*)�+��)��
�& ���
�$'� �$�	
,�-	 �./��()" 	��)�� � �	�!�(� �
�! (�0�
�% ��$" �	
�$'�*)�+�*�������� "�)�!��$�!% ��)$! #!�)��!% �
�/�� �$�!��!�� � �)�� �!�$"��"�,�$'� �� ./�� &�)��	 � �)��
/)" 	�$'� �$"� �$�	
����)��
 �	���(� �$"� �(- "" "�
�
�! (��1/�
��2��*%��%�� &	�� ���$"� #! $"��!% �&�)��	 �
�)�� ��% "�	�-�	�!
�� � ��)�(�$� �� �$"� ��(� �& ������!�)$�
1���20� 3 � �)����)$� �)(� ���-�	�!
� �$"� �	 #�-�	�!
�
* �+$ �� ��)��!% �����()" 	�$'����(*)�+��$"�" ����- �
!% � �(&�)� ($!�� -�)�'%!�)��� �$� /�
��0� �% � ./��
 #! $��)$�� �$�	�" � $ *� �$�	
�����& ������ �)$� &!�� ��("�
!)� ��&&)�!� �� -�)�" �� ��$' �)�� 4��$!�!�!�� � �$�	
����
! �%$�4� �0��""�!�)$�		
��!% �()" 	�$'��&&�)��%��$�)	� ��
�� &� ��� � 	�$'��' � !)� �$�(-�'�)��	
� " �	�� � �$"�
�$$)!�! � $)$���$�!�)$�	� &�)& �!� �� *�!%� #! $" "� "�!��
!
& ��������-	 ����$"��)(&	 #� #&� ���)$�0�����		��!��!�)$��
* � �%)*� %)*� !%��� &�)��	 � ��� �� "� �$� !% � ����
�5./��
(!%)"))'
� !)� $�-	 � ��% "�	�-�	�!
� �$�	
����)��
�$$)!�! "�./��()" 	�0�
�
 !	"�����������	
�
� �� �	�����
� �!� "������ ��������� !�	� �	������#�� �
��
$��
������#���
��%���������&�%���
��	
��
��
%�"�� �����'%�
!�	� 	���(��"�� �%���"�� ��#����"�
�)� � �� ��' ��	� � �� ��
&�
���*��
� � �� 	���(��"�� �

������
�� �
�� � �� "�����
'�
�	��!����� ����� ���
'� � �� ��#����"�
�� �	������� � �� ���
�	�
� ��#�	�!������
��!�	��������
'��
��	�"�#�
'��		�	����
����
��
��� �
�� � �� �����	� � �� ����'
� �	����!!�� !�	� 	����	����
���������
� ����"�� +,,-)� .
������ � �� ������%� ��� �#�������
/�
(��
����
��� 0	���	����� 1/�0�2� ������ �
�
"�� �"�������%� ��	�#��� 	������� ���""�
'� !	�"� ����	����
"������ ��� !�	������	� � �
� 	��%�
'��3�����#��%��
� �
������
)�
� �� 	���(��"�� �%���"�� ��""�
��%� ��� �
#������ ��������
�!!�	����
��
��	��	���
'�� �������������������	������"���
����
�	���	����� *�� � �
��' � �3�	����#�� ��*�	�� * ���� ������
�	���	#�
'� � �� "�����
'� ����	�����
� ��#��� ����� �%�
�	�������
�	�)��

4�&�� �
� �� �	� ��!�*�	�� �
'�
��	�
'� ��"��
��� � ��

�������%� ��� 	����� � �� ��#��� �!� ����	�����
�� �
� �	��	� ���

������������������������������ �����������������������������
��0���(�����	����
��	
� ��)��	�������5�"������	���%����"���6�����
7
�#�	���������5�
���	��������
)�

�
�	����� ����'
�	�8� �	������#��%� �
�� ����� *�� �
��"���3��%�� ��� *���� ��� � �� !������%� � ��� ��� �	�
'�� ���
��""�
����������'
� �
��
��� �
�� '�
�	��������"�
�����
��
 �#�� �
���	�'��� � �� ���'�� �!� � �� 7
�!���� ������
'�
4�
'��'�� 17�42� +,9-� �
� � �� 	���(��"�� ��"��
)� :�� ��
���
��	��� ��� ����� ��
�"��	� �!� �� �	� *���(&
�*
�
��#�
��'��� � ��� "�&�� ��� �� �	�"�	%� "�����
'� ��
'��'��
���
'�� ����!�*�	����!���%���)���	��#�	��� ���������	�#�
�
��#����"�
�� ��	���'"�� �
�� ��	������	�%� � �� ������
�	�#�
� :	� ������	�� 1��:2� �
������#�� +,;-� * ����
"�����
'������	�� ��� �	�#������%�7�4�� ��������	�"���
'�
���	��� �!�	�	�����
'���"�(��("�	&����
���
	�� ���!�*�	��
�
'�
��	�
'��	����������%�"�#�
'�� ����#����"�
���	������
!	�"� ��
��(�!(����� ��� ���	��	('	��
��� �	� ������	���
���"�
��)�

��*�#�	��7�4���	���������"� �*��������"�	��������
��
� �	�!�	�� �
� "�
%� ������ �
��!!����
�� !�	� �
����
'�
$��
������#�� �
��%���� �!� 	���(��"�� �%���"�� +;-�� +9-�� +,<-)�
� �� $������
� �!� �*� ��� ���� 	���(��"�� "�����
'�
������������� ��� 7�4� ��� ���
� ���	������ �
� ��!!�	�
��
	����	� � �
�� �
����	���� ��
��3����"����%��%� � ����!�
����
�
�!� =�	�!����>�� * �� � ��� � �� �����(�
�"�� �
��"� ��� �3��
��
7�4������!!�	�
����������������"��
�)�� ����!�	��3�"�����
� �� ?�
�:� +,<-� �	�!���� �	�#����� �� �	������ !�	"���
��"�
����� ���������� ��� ��"��	��� ��������� 7�4(�:���
+,@-� ��
����	�� ��"�
'� �	���	����� �
�� �� ����������%�
�
��%���� !�	� ����	������� 	���(��"�� �%���"��� �
�� 	���
��%� ��
1�	�!�2� 7�4� �	�!���� !�	� � �� :#��
���� :	� ������	��
����	�����
� 4�
'��'�� 1::�42� ��� ���
� �	������� +,A-��
* �� � *����� ����*� ��� �����%� �
��'	���� ::�4� �
��%����
������ *�� � 7�4� 5:�
� �����)� 0	�!����� �	�� �� ��*�	!���
�3��
���
� "�� �
��"B� �*�#�	�� "���� �!� � ���� �	�!�����
��!!�	� �� ���&��!� ���
��	�������
)�� ��� ���#�	%��	����"�����
���� ��������!������
��	����
'��'��*�����'�������)�

���
��	�������
� �	�#����� ��""�
� ��"�
����� �
��

������
���* ����������
'� � ��������	�������� !�	�"�����
'�
	���(��"�� �%���"�)� ���
��	��� �	�� ����� �� ����� �!!����#��
�������
����
����
��	���	������%�����*�����
'���!!�	�
��������
�
� � �� ��"�� "������ �
�� �������� �!� � �� ��*�	� �#�	����
�	��
�
'������)�:������
���%�� � ��� ��������"�
�'��� ��	��&�
�
� � �� �#������
� �!� � �� ������ �	�#���	��"�	&���� 	�����
'�
� �� ����
��
�%� �
� �
�� ��
'��� ����)� :�� �
� �
����	����
���
��	�������
� ���	��� � �� ?�C���� ��
�'�"�
�� �	����
1?��2� ������
���		%�
'������"��	��
���!!�	�������	�#����

Towards a UML-based Modeling Standard for Schedulability Analysis of Real-time systems 5

MARTES 2006 at MoDELS 2006

7�4��3��
���
��!�	�"�����
'���"��	����	���	��������*����
����� �	�
�
(!�
����
������������!���"����	��%���"�)�

� �� 7�4� 0	�!���� !�	� =������
'� D�����%� �!� ��	#����
�
�� ������ ����	�
��� 5 �	����	������� �
�� ��� �
��"�>�
1D��E��2�+F-�"�&��������	���!�� �����!!�	��)�.����!�
�����
!	�"�*�	&������!�
���
���

������D����	���	������
�7�4�
"������ 1D��� ��� �	�� ����� ��� �� '�
�	��� ��	"� ��� ��
����
/�0�2)� � �� D��E��� �	�!���� �	�#����� �� !��3�����
"�� �
��"� ��� ��!�
�� "���� ��""�
� D��� � �	����	�������
!�	� ��!!�	�
�� ����������
� ��"��
��� �%� "��
�� �!� D���
������'�)� � �� D��E��� �

������
� "�� �
��"� ���
�����	���� �
� �� �*�(����� �	������ * �� � �"������ � ��
�	�����
� �!� �3�	�� ��C����� 	�$��	��� C���� !�	� �

������
�
��	�����)� � ��� �*�(����� �	������� �*�#�	�� 	�$��	��� ����
"�� � �!!�	�� !�	� � �� ���	�� �
�� "�%� �
�����
��� 	��������
"������+,G-)���	��#�	��D��E����'
�	�����"��
������	%�
�������� ��� "����� /�0� �����!������
�� �
� � �� 	���(��"��
��"��
�� ��� � ��� #�	������� �����!������
�� �
�� ��"���3�
�3�	�����
��1�)')����"���3�	�����
�2)�

� ��	���
���%��4���
'��'��+H-��������
'���
����	������
������������%�� ��?����������
'��'�����"�������"���3�
�%���"��� �
�����
'� ��!�*�	��� �	�*�	��� !����������� �
��
�	������ �������)� :�� ��' � ������ �
��!!����
�� !�	� � �� 	���(
��"����"��
���%��4��	�#�������"�����!���"�� �
��"�����
"����� � ��� &�
�� �!� ��
��	
�)� ��	� �
���
���� � �� =����&>�
"�����	� �
��� �	�#����� ������������� ��� �����!%� 	��������
="����(�	��
���� ��"��
�
��>�� ��!�
�
'� �� ���������
� �!�
!����	��� � ��� �
������� ��	�"���	��� ��
��	��
���� �
�� #�����
�����!������
��$����!�����%�"����	�"�
���
���)��

:� � �	�� ?��� ���
��	�� �
��
���� ��� �����	��
�
(
!�
����
��� �

������
�� ��� � �� 7�4� �	�!���� !�	�
�� ����������%��0�	!�	"�
����
����"�������!������
�1�0�2�
+,-)� .�� �	�#����� �� ��	��' �!�	*�	�� �

������
� "�� �
��"�
*�� � �� "�
�"��� ���� �!� ��""�
� �

������
�� ��� ��	!�	"�
#�	%� ������ $��
������#�� �
��%���� 1����
�����%� 6�:� �
��
$����
'�� ��	%��������
��%���2)�/�#�	� �������������	����	��
*���
��� !��3����� �
��' � ��� ����*� !�	�
�*� ���	(��!�
���
�

������
�� �	� !�	� ��!!�	�
�� �
��%���� ���
�$���)� �����
�3��	��
���� �!� � �� �	�!���� �#�� ���� ��� ��
�"��	� �!�
��'
�!���
����''�����
��!�	��"�	�#�"�
���
����
���������
�
+;�� 9-� ���"��� ���� ���	����#�� !�	� �� ��"���� 	�#����
)� � ���
�
������� �����
�*� 	�$��	�"�
��� !�	� �����!%�
'� ��� ��
��!�*�	��� �
�� �	�*�	�� ��������� ��:� ��"����
��� !�	�
��!�
�
'� ����	����%� � �� ����!�	"�� � �� ����������
� �
��
���������
�"������� �
��"�����
'� �!� �� �	� &�
��� �!�/�0��
��� ������*�	���
��"����
��	�"�"�	%�����)�

��
����� ��?����������!�	�� ����#����"�
���!���
�*�
7�4��	�!����!�	�� ��������
'��
��:
��%�����!�6���(��"��
�
��
"������� �%���"�� 1�:6�
2� +<-)� � �� 	�������
�	���
���� �
� � �������	�*�	����	!�	"����
� � ��!	�"�*�	&�
�!�� ��0	��:6�
�+;@-�*�	&�
'����"���
����"�	������"��
�!� ��	� �	�������� �
��'	����� �
� � �� ��!�
����
� �!� � ���
�*�
�	�!����+,H-)�I����	������	�%������*�� ��:6�
�"�����
'�
������������� ��� �
����� �	������#�� $��
������#�� �
��%�����

�"��%� �� ����������%)� I�� �
��	��	���� �
� �:6�
� ��

�"��	� �!� �������
��� !����	��� * ���� 	������� � �� �"�������
��"���3��%� �!� D��E��)� �:6�
� ����� �
�	������� ��
�	������ #����� �����!������
� ��
'��'�� � ��� �����	���
�%"������ #�	������� �
�� ��"���3� �3�	�����
�� !�	�
�����!%�
'�/�0�)� J���"��
�%�� � ��� !	�"�*�	&� �	�#����� ��
��""�
�"�����
'�!	�"�*�	&�!�	���!!�	�
���� ����������%�
�
��%���� ���
�$���� �%� !����	���
'� ���� ��
������ ����� �
�
��!!�	�
���
��%����"�����)�

� ������	�����	'�
��������!����*�)�.
�� ��
�3��������
��
*���	���
����$���&�#��*��!�� ���:6�
��	�!���)�������
�9�
����	����� ���� "�����
'� !	�"�*�	&� ��� �����!%� /�0�)�
������
� <� ����	����� � �� !	�"�*�	&� !�	� �� ����������%�
:
��%���� ������
'� 1�:�2)� .
� ������
� F�� *�� � �*� � ��
���'�� �!� � �� �	�!���� �%� "��
�� �!� �
� �3�"���� �
� � ��
!	�"�*�	&��!�� ��:55?6�K7�4�"�� �����'%�+G-)�
�
#!	���	
��	$������	���	����%	
�

7�4� ����� � �� "���"�����
'� ���
�$��� ��� ��!�
�� ����
����	�����%
��3)�����"��������!�
����
'��'����
����
'����
�3�	���� "�����)� � ��� "��
�� � ��� �� "���"����� ����	�����
� �� #�	����� &�
��� �!� ��
���
��� "����� ���"�
��� �
�� � ��
*�%� � �%� �	���		�
'���� 	��������
����
��	��
��)���
������
7�4�"�����������������)$�)�(��������"���"����)�

0	�!����� �����"���� 7�4� !�	� �� �����!��� ��"��
� �	�
��	����� ���
'� �3��
���
� "�� �
��"�� ����� ��� �
	�� � � ��
��"�
����� �
��
������
� �!� � �� "���"����� ���"�
��)� :�
�! �)!
& ����� ��������
����
�� �������*���3��
��
'�7�4)�
:� ���	���%��� ��
� ��� #��*��� ��� �� ��������� �!� �
� �3����
'�
7�4���
������* �� ��	�#������ �����������%��!�"�����
'�
��"��
(�����!��� ��
������ �	� �����	
�)� ���	���%���� "�%�
 �#�� �%���� �	���	����� ������� !�'� " ��$�!�)$��� * �� � "�%�
	��	���
�� ���	������� �	� 	������
�� *�� � �� �	� "���"�����
���"�
��)� 5�"���"�
��	%�� ���	���%���� ��
� ��� �����
�
!���
�����%�	���	�����
���3�	�������
��)$�!���$!�)�

� �� �:6�
� ���
��	�� ��"�	����� ��� � �� ��
��������
")(��$� ()" 	� �
�� � �� ��
�	����./�� #! $��)$� &�)��)�
� �� !�	��� �
�� ��!�
��� &�%� ��
������ �
�� 	������
� ����
���*��
� � �"� ����� !�	� ����	���
'� 	���(��"�� ��"����
'�
�%���"�)� � �� ����
�� �
�� ��� � �� �����!������
� �!� �*� � ��
���"�
��� �!� � �� ��"��
�"����� �	�� 	�������� �%�"��
�� �!�
���	���%������
�� �*�� �%��3��
��7�4�"����������)�

:�� ��'�	�� ,� � �*��� �:6�
� ��� ��	����	��� �	��
�� ��
��	�� ���&�'�� 1�56�2�� * �� � ����	����� "�����
'�
��
��	�����!�	���"���	����	�������
��		�
�%�����������
��
��
/�0��� �
�� �*��"��
�'	������!� ���������������&�'��� � ���
���� �
�� 	�!�
�� � �� ��	�� �
�)� ?
�� '	���� ��� "�����
��#����"�
��!����	����!� 	���(��"���
���"��������%���"��
16�
�2�� �
�� � ���� �	� �
�� ����

������ 	���(��"��"������
��������������	��$��
������#���
��%����1�D:�2)�

6�
���	�#�����"��
�������!�
������������
("�����
'�
�����	
��� �
�� 	�!�
��� "�����
'� ��
��	����� ��� "�����
 �	�*�	���
����!�*�	���3������
�����!�	"�)�

6 H. Espinoza, J. Medina, H. Dubois, S. Gerard, F. Terrier

MARTES 2006 at MoDELS 2006

?
� � �� �� �	� �
��� � �� �D:�� ���&�'�� �	�#����� ��
'�
�	��� ������ !�	� ��!!�	�
�� $��
������#�� �
��%���� ���(
��"��
�)� � �� �D:�� ���&�'�� �����	��� �*�� "��
� ���(
�	�!����� !�	� ��% "�	�-�	�!
� �$�	
���� ��� �	������ * �� �	� ��
���� �!� ��!�*�	�� ���&�� "����� ���� ��"�
'� ��
��	��
���� �
��
& ��)�(�$� ��$�	
���� �������	"�
�� �!��� �%���"�*�� �
�
(
����	"�
�������� �#��	���
��	�#�������$�������	!�	"�
��)�
:������
���%�� � �� �	�!���� ��	����	�� ����*�� !�	� ����
'�
!�	� �	� �
��%���� ��"��
��� ��� � ��� ��*�	� ��
��"����
��
"�"�	%������	�	���������%)�.������ ���
��
���
�����
���	�'��
"�����	����(�	�!�����!�	���� ���"��
�)�

��'�	�� ,� ����� ����	����� ��"�� �!� � �� "��
� ����
�����
����	�� � ��� "�%� ���� � ��� �����!������
)� � ���� ()" 	�
" ��'$ ��� �	�� ���������� ��� ��!�
�� � �� �	�*�	�� �
��
��!�*�	���	� ������	���!�	���(��"���%���"�)�/)" 	��$�	
�!��
�	��"�����	����
��	
���*�� ��

�����
'��%���"�"�������
�
�	��	� ��� ��	!�	"� �����!��� �
��%���� ���
�$���)�
3������
�
&	�!�)�(� &�)��" ��� �	�� ��#�����	�� �
�� #�
��	�� �!� 	�
(
��"�� ���
���'���� 1 �	�*�	�(� �	L�
�� ��!�*�	�(������
����!�	"�2� ��� � ��� 6���(��"�� 5?6J:�� 	���(��"��
���	���
'��%���"���
�������!��� �	�*�	����"��
�
��)�

�

�
&�����)�:	� ������	���!�� ���:6�
�0	�!����

�
.
� � �� ��
��3�� �!� 7�4(������ $��
������#�� �
��%�����

�

�����
'�/�0�� ����!�!�
��"�
����	���#�
����
���"������
��
�"��	� �!� "�����
'� "�� �
��"�� !�	� ��"���3��%�
"�
�'�"�
�� �
� � �� ��#����"�
�� �%����� ���� "��
�%�� !�	�
�����!%�
'���"���3�	�����
����"�
������%�*����!�	"��)�� ��
!����*�
'�������
�����	������ ��/�0�"�����
'����&�'�����
� �� ������ !	�"�*�	&� ��� "����� $��
������#�� �
��%����
�������)�

�
'!	���	(&)	��������	&�������*	
�

� �� "����� �!� �� ��"����
'� �%���"� ����	����� ����
�	� ������	�� �
�� �� �#��	� �%� "��
�� �!� "����� ���"�
���
1�)')�� 	����	����� 	����	���� ��	#������ �� �#��	� !����	����

��'����� ���	����
��� ��
!�'�	����
�� "������ "�����
'�
#��*�2�� �
�� � �� �	���	����� �!� � ����"����� ���"�
��)� .�� ���
��""�
����'	�������"�
���	���	������
����*������'�	���M�
!�
����
����	���	������* �� ��	���	�"�	��%���
��	
���*�� �
� �� ��	����� �!� �
� ����������
� 1�)�)�� * ��� ��� ����� ��� 	�
�
��"�2B� �
��
�
(!�
����
��� �	���	����� 1/�0�2�� * �� � �	��
"�	����
��	
���*�� �����!��
����!�	���	�����1�)�)�� �*�*����
��� ����� ��� �	� ��� ��� ��� ��� ��2� +,H-)� /�0�� �	�#�����
�
!�	"����
� ������ ��!!�	�
�� � �	����	�������� ��� !�	�
�3�"���� � 	��' ����� ����%��� �#�	 ������ �� �����
'�
������������		���
���������	��%��"�"�	%����'����
������
)�

� �� /�0� "�����
'� !	�"�*�	&� +,G-+,H-� ��� ���������%�
!��������
�!�	"�����
'��������!�"�����
'�7�4���
��	�����
��������!%�
�
(!�
����
����
!�	"����
��
����	������*�%)�.
�
!����� �
�� �!� � �� ��""�
� �	������"�� ��� � ���0���	�!���� ���
� ��#�	%�����	!��������"�
�����
!�	"����
�� �������	�#����B�
�
� ��	������	�� !�	� �	�"���
'� ��""�
� �
��	���
��
'� �!�
�����!������
� �
�� �3� �
'�� �!� �����!������
�� ���*��
�
��!!�	�
�������)�� ������!!�	�
���������	��
��%�������
�$����
������ ���� ��!!�	�
�� "��	���� !�	� � �� ��"�� ��
����)� ��	�
�
���
���� �� ���&� &��)��!
� ���	������� !	�"� �� �� �����
'�
��	������#��������!�
����
�� ����
��3���!���=�	��	��%>�������
*�� � ��� �	� �
�	����
'� �	� ����	
���#��%� ���	����
'�

�"�	����� #�����)� 7
����� *�� �	���	�%� $����!%� /�0���
��
��""�
� "��
�
'� *���� ��� ��������� 	�'�	������ �!� �*�
��������� �
�� �3�	����#�� �� �	���	�%�
�"�� "�' �� ��)� � ��
/�0� "�����
'� !	�"�*�	&� ����"���� ��� �#�	��"�� � ����
&�
����!��"��'������)�

��'�	�� ;� � �*�� �� ��	����� #��*� �!� � �� "���"����� � ���
�����	��� � ��� !	�"�*�	&)� � ��� "���"����� �	�#����� &�%�
��
��	����� !�	� "�����
'� � ��� &�
�� �!� �	���	����� ��� �*��
!�
��"�
���� ���'��M� �����	����
� �
�� �����!������
)� /�0�
�����	����
� ��� �
��
�������$����!%��
������'
��3��
���������
�%���� ��� /�0� #�����)� /�0� �����!������
� ����*�� ����	���
'�
#������ ��� ��
���
���� #�	�������� ��"���3� �3�	�����
��
1�
�����
'���"���3�	�����
�2��
������
��	����3�������
'��'�)�

�

�
&�����	#)�0�	�����#��*��!�� ��"���"�����!�	�/�0�

�

Towards a UML-based Modeling Standard for Schedulability Analysis of Real-time systems 7

MARTES 2006 at MoDELS 2006

/�0�� �	�� $����!���� �%� �*�� ������ ���	������� �
�� �%� ��
������%���16��7�
& 2)�J�� ����	��������!�/�0����!�!��!���	�
4��	��� ���
��"�� �!�)$�� �#�����
���������!	�"�� ��7�4�
�	�!���� !�	� D��E��� +F-)� :� ������������ $����!��	� �
��������
� ���%����!�=�����������>�"����	���!���'�#�
��	���	�%�1�)')��
"�3�"�"�� "�
�"�"�� 	�
'��� "��
�� #�	��
���� ��	��
������
����	������
2)� � �� "�� �!�)$� ���	������ 1�)�)�� �
�	����
'� �	�
���	����
'2���!�
���� ���%����!�$�����%��	��	�	������
��
�� ��
����*��� #����� ��"��
� �!� /�0�)� .
������ � ��� ����*��
"���������
���
�����!�/�0�#��������������"��	���*�� �� ��
	������
� = �' �	($�����%(� �
>� �
� �	��	� ��� ���
��!%� * ���
#�����	��	���
��� � �� �' �	�$�����%��	��"��	��
��)�?
�� ��
�� �	� �
��� /�0� �%���� ���� � �� ������%� ��� ��		%� ��
"����	�"�
���$�!�!�	�/�0�#�����������������*�� �� %������
��"�
���
� "����	��)� :������
���%�� *�� �	�#���� � ��
���������%��!� ��!�
�
'�
�*����	(�����!����
���� �
� ��	"���!�
�3����
'�������
������ 	��' ���'�#�
���
#�	���
�!����)�

��
��� �� 7�4� #��*���
��� /�0�� �	�� �"���"�
���� �
�
�:6�
� ��� !�'� " ��$�!�)$�� $����!���� �
�� �%���� ���/�0�)�
�:6�
� ��!�
��� �� ���� �!�/�0��%���� ��""�
�%� ����� �
�
� ��	���(��"���
���"��������%���"���"��
)�
3�"������!�
/�0��%���� �	������!�)$����!�����$�(����)$�
�! ����!��
��, �� �)* ��� ���*��
� �� �	�)� :�� ������	����
�� ��'�	�� 9�
� �*��� �������	����
��!�� ����	����
�/�0��%��)��

�

�
�

&�����	')�
3�"�����!������	����
��!�� ����	����
�/�0��%���
�
:� "����� �!� �� �%���"� 1* �� � ��� ��
����	��� ��� ���

�3�	������ �
� 7�42� ��
� ��� �

������� �%� �����!��� /�0�
#������� �3�	����
'� ��
������ !	�"� �� '�#�
� "�����
'�
��
��	
��	���"��
�#��*���
��1!�	��3�"������ ����������%�
:
��%���2)�:
��

�������"��������"�
������	�������	���
�
�!� ����
�
(!�
����
��� �������� �%� "��
�� �!� /�0�
�

������
�)� � ���� �

������
�� �	�� �����!���� �%� � ��
����'
�	� �
� � �� "������ �
�� ����� ��� ��� ��!!�	�
�� "�����
���"�
��)�
3�"������	�� � ��� �&)$� �!�(��!��� !��+�* �
�
�3�������� � ���!�	�,�!�)$��!���� �)���)�� ������6����)!�
�����!���� � ����
��

�������"��������"�
�� �����#������	�
#������ !�	� �� �����!��� /�0)� � �� #������ �
� �� ����� "����
��
!�	"� ��� � �� ��!�
�
'� /�0� �!� � �� ����� 1�
� �%����
"����������%�����)2)�/�0��������
������� �����	��������)��� �

��� $����!%� ��!!�	�
�� #����� #�	���
�� 1��� !�	� �3�"����
� 4��� "�� �!�(�! "�� �	� ��	��	�! "2�� �
� �����������
"����	�"�
���
���1�)')��"���NJL����J2�� ����#�	*	������ ��
��!����� #����������	��� �
� � ��/�0��%�����!�
����
���
����
$����!��	�!�	�����	���
'�� ��	�$��	����	��!!�	���
���	���!���
/�0�#�����1� 4��� �2)�

?
� � �� �� �	� �
��� 6��� 8�	� � �& ������!�)$� ��!�
���
� �� ��3����� �3�	�����
�� ����������� *�� � /�0� �����)� � ��
/�0�"�����
'�!	�"�*�	&��	�#������
�����	�����%
��3��
��
�� '	�""�	� !�	� �����!%�
'� � �� #������ �!� /�0�)� .
������
* ����/�0��#�������	���!��
�����"�����������"����#�������
� �	�� �	�� ��	���
� ������ * �	�� ��� "�%� ���
������	%� ���
�3�	������� �#�������
���"�	����"���3�*�%)���	��3�"�����
��� "�%� ��� 	�$��	��� !�	� �
�� /�0� #����� ��� ��� 	������� �
�
��"�� *�%� ��� �
�� �)� � ��� 	�$��	��� ��� � �� *�%� �!�
	�!�	�
��
'� � �� #����� �!� �
�� �	� �	���	�%� ��� *���� ��� � ��
������%� ��� ���� �3�	�����
��� ��� � ��� �	�� "����� �	� ��"��
�3�	�����
�)� � ���� ��� � #����� ��
� ��� �����!���� ��� ��
��
���
��� ��� ��#�	������� �������"���3��3�	�����
�#������ ��
����������	����
��	��
���
���3�	�����
���	�����
��
��	#����!�
#����������!������
�)�

������,�� �*���%�������3�"������!�� ��
������
�!�	�� ��
���%��!�#����������!������
�)�
�

NFP Value Specification Example

Real Number 1.2E-3

Variable $timeout

Ordered Collection (1, 2, 5, 88)

Interval [1..251]

DateTime 12/01/06 12:00:00

Duration (between two events) ($startEvent, $endEvent)

Duration (number of clock ticks) 5*t{refClock}

Constraints $deadline < $timeout + 5.0

Logical Expression $V1=(($clients<6)?(exp(6)))

	
�����)�
3�"������!�/�0�O����������!������
��

.
�������
�F��*��� �*���"���3�"�����!�	������!%�
'�/�0�
#�������
������� �
'�� �"����7�4����"�
����%�"��
���!�
��''���#�����)�
�
+!	��������	���	��������������	��������	
�

:����
��%����"�� ���������� ��"���!���L����	����#��*��!�
� ���%���"�����
��%����* �� �!��������
�� ������������� ���
�	��	���#�
������ ��������������
��%�������
�$��)�� ����� ��
�
��%���� "�����
'� ��
������ 	�	��%� "��� �
�(!�	(�
�� ���
����������
(��#��� "�����
'� ��
�����)� 0�	������	�%�� �
�
�� ����������%��
��%�������&�%�����	�����
����� ��
����
��!���
�
��� �!� ��
��		�
�%�� 	��	���
��
'� ��"�� �3������
� �
���%�
� ��� 	�$��	��� � �� �� �����
'� ��	#����� �!� � �� �%���"�
����!�	")� ��*�#�	�� ����������
� "������ �%������%� ���
���
� �*� � �� �
���� �!� �� �����
'� �3�������%)� .
������� � �%� �	��

8 H. Espinoza, J. Medina, H. Dubois, S. Gerard, F. Terrier

MARTES 2006 at MoDELS 2006

�"�������%�� ���	���
����!�"��������"�
������ ��������#��
��C������
����%
� 	�
����"����'��)�

� ���0���	�!������	���%��
������������������������
��!�
7�4� �3��
���
�� 	�$��	��� ��� ��!�
�� �
��%���� "�����
'�
#��*��� ��	������	�%� !�	� ��	!�	"�
��� �
�� �� ����������%�
�
��%���)� ��*�#�	�� ��� *��� �������%� ������� � ��� � �%�*�	��
�
��!!����
�� !�	� ��
�"��	� �!� �
��%���� ���
�$���� �
�� !�	�
��	���
� 	���(��"�� ��"����
'� �"���"�
�����
��� ��&��
����	������� �%���"��� �	� ��	�	� ����� �� �����
'� +9-)� :�� ��
��
��$��
����"����7�4(������ �
��%����"�� ��������
���
���L	�!�
��� ���0���	�!����������

�����
������� �%��	������
� ��	��*
�	�!�
���1
�
(���
��	�2��3��
���
��+,@-+,<-)�

��� �#�	��"�� � ���� �	����"��� � �� �:�� !	�"�*�	&�
����	����� �
� � ��� ������
���!�
��� �����������
��!��3��
����
"�����
'� ��
������� ��� *���� ��� �� ���� �!� '�
�	��� �
��
�3��
�����L	�����������/�0�� !�	� � �"�� �	��
���� ���"�����
	���(��"�� ��"����
'� �%���"�� !	�"� �� *���	� 	�
'�� �!�
�� ����������%� �
��%���� ���
�$���� ��	������#�)� �:6�
�
�	�#�������"�
�"��������!���""�
��

������
��!�	�"����(
������ �� ����������%� �
��%���)� � ���"�
�"��� ���� !�	
�� ���
�
��' � �
!�	"����
� ��� ��	!�	"� ��""�
� �� ����������%�
�
��%���)���*�#�	�� ��� �#�
��	� ��� �
���	�'��� ��� �����%�
������������/�0��

������
�� � ��� �3��
�� � ��� ���� �
��	��	�
�����	!�	"�"������
��%����� ������"�	���3��
��#�)�

�
+! 	,�����	�����	���	��������������	��������	�

�
� ���� ����������%�:
����%��������
'�1�:�2���"��
�

"���������	'�
���������
��0���
��	�� ����
������!���
 �	�
��(� ��!��!�)$)� �	�"� � �� �	������#�� ���
�� �!� #��*�
�� ����������%� �
��%���� "������ �	�� �
�	�
������%� �
���
��(
�����)� ��
���� �� 	���(��"�� ��������
� ��� ������ �� &�
�� �!�
�
��%������
��3�� � ��� 	��	���
����������!�����������
��!�� ��
�%���"�� *�	&�
'� �
� �� ��	������	�"���� �
�� ��
!�'�	����
��
�
��*�� ���
�	������"�������
��� 	����	���)�/�#�	� �������
 �' (��#�������	����	(������"��������
����������������� ���
���
'� � ��6�
�����(�	�!������ �
�� � �
���
�	���� �
��%����
"������"�%�����
���
�������!�	������!����
��%���)�

:� 	���(��"�� ��������
� ��������� � �� 	���#�
�� $��
������#��
�
!�	"����
�	�$��	��������	!�	"������!����
��%���)����	��
'�
*�� � � �� 	���(��"�� ��������
� �
�� ���� ���"�
���� �� ����� ��
�
!����*� � �� ��
&�� �!� � �� "����� ��� �3�	���� � �� �
!�	"����
�
� ��� ���
����� ��� ��	!�	"� � ��"����� �
��%���)� :� 	���(��"��
��������
��������	������%�����	�����"�����������������*�� �
� 	���'�
�	���"�����
'���
��	
��1��'�	��<2M�
(3)�+)�"� ��!��!�)$M� �� ��
���
�� ����� �!� �
�(��(�
��

	����
���� �	�''�	��� �%� �3��	
��� 1�)')�� �
#�	�
"�
����
�#�
��2��	��
��	
���1�)')������"�	2����"���)��

(9 %���)�� �# ��!�)$M� �� ����	�����
� �!� � �� �3�������
�����
��� ��
����	����
������� ��*�	&�������
�����
'�
����������� �	���	����	�����
��� ��	���	#����)�

(
 �)��� �� �	�!�)�(M� �� ��
�	���� �	� ������	�� �!�
 �	�*�	�� �
�� ��!�*�	�� ��"�������
��� 	����	����
����)�

� �������	����
��!�"�����
'���
��	
����	"��������	'�
����
� ����"��
�"������ �
�����"�	� �
��������	��)���	��#�	��
� ������
��	
��"�%���������������!�����'
����(#��*������ ��
���	� "�����
'� ��#���� � ��� ����*�
'� ��� 	������ � �
'�
'�
�"����� �
�� ��� !���������� �#������
� �
�� 	���������%)�
��*�#�	��� ������
�����"�
����	%����	("������	'�
������
)�
7��	��"�%��	�������!!�	�
��#��*����!�����	����*�� ��������
�
� ��!�
��"�
�����:����
�����)��

�

�
&�����	+)�� ��"�����
'���
��	
���!���6������"����������
�

+! ! 	 ���	 -��*����	 ������	 �����!� � ��� "�����
����	����� � �� ��
��	����� 	�$��	��� ��� �����!%� � ��
��"�������
� ����� �
� � �� �%���"� �
�� � �� �����������
$��
������#�� �
!�	"����
� ������ �
�(��(�
�� ���"�����
	����
������
����"��	���	�$��	�"�
��)�

:�*)�+)�"���!��!�)$��!���	���(��"���%���"�����%������%�
��!�
����%�� �������!����"�������	��
'���"�������
�)�.
�� ��
�:�� !	�"�*�	&��*�� 	�!�	� ��� �
� �
���
��� �!� �� ��	������	�
���"����� ��� �
� �#�
�� ����		�
��)� ��
��� � �� ���"����� ��
�
����	� 	��������%�� *�� 	�!�	� ��� 	���		�
��� �!� �#�
��� ��� ��
!��'' �)�

:���"�������
�� ��������	!�	"����������
��$��
����!���
�	�''�	� ��� 	�!�		��� ��� ��� � �� � �&)$� � ��� ���� �#�
��
����		�
���)�����
��
'� �
� � �� �"���"�
�����
�
���	���!�
	����
����� � �%� ������ ��� ��
�	������� �
� �� ��
'��� ���&�
�3�����
'� �
� �
�� �	������	� �	� �
� ����
��
�� ���&�� �
���
��
'��� �	�"�������� �	������	�)�I�� ���
��� �
������ �
� � ���
"������ ������������� �#��	��
#��#�
'���	����
���1*��������
�
�� ��J� �#��	�"����2)��

/������ � ��� � �� !��'' �� �
�� � �&)$� � ��
������ �����!%�
�
�%��
�(��(�
���� �#��	��������!�����%��� ��	�=�����>������
�
�� � ��	�=�!!���>�����)�� �����
��	��	� ���'	����� �����*��
��
�������
�������
'���"�����
'��
����*��������� ����
�����
�!� !��$���!�)$)� :� �	�
������
� ++,F--� 	�!�	�� ��� � �� �
��	��
�����(�!!���� �
�(��(�
�� �� �#��	� ����	���
'� �� ����	����
��"�������
� �
� � �� �%���")� ��
���� � �� ���� �!� ��	������	�
�	�
������
�� ��!�
�
'� �
�� ����� ���
�	��� !�	� �
��%����
��	������ ��"������ �� ��
'��� *�	&����� ��������
)� :�
*�	&����� ��������
�"�%� ��		����
�� ��� ��"���� �!� �%���"�
���	����
�1�)')� ���	��
'�"����� !����� 	���#�	�
'���	�
�	"���
���	����
2��	�����#����!��
��
���%��!��
#�	�
"�
���#�
��)�

Towards a UML-based Modeling Standard for Schedulability Analysis of Real-time systems 9

MARTES 2006 at MoDELS 2006

�
&�����	.)�� ��I�	&�������"��
�"�����

�
:������
���%�� � �� �	�
������
�� �	�''�	� �
�� 	����
���

��
������ �#�� �� ���� �!� /�0�� ����� !�	� ��	!�	"�
'�
$��
������#�� �
��%���)�I�� ��!�
��/�0�� ��� ��'� ��!�
����
��
����"��'������ �%� �� ������������ $����!��	� �
�� �� ��	�����
�
���	������ 1
��� � �*
� �	�� !�	� ������ 	����
�2)� ��!!�	�
��
�
��%���� ���
�$���� ��""�
�%� ���� �����"���	� /�0�)�
��*�#�	�� � �� �:��"����� ��!�
��� �� �	�(�����	��� ���� �!�
/�0�����!���!�	�"�����!�� ���
��%�������
�$���)�

��	� �
���
���� �� �	�''�	� ��� � �	����	����� �%� ���� ������	�
&�!! �$�� * �� � ��� �� ��	����	��� ����� �%��� ��
���
�
'�
��
�	���� ���	�������� ��� !�	� �3�"���� ������	� +�$"�� & ��)"��
(�$�(�(� ������	� !�(�� "��!��-�!�)$� ��$�!�)$�� �"�
'�
�� �	�)� ?
� � �� �� �	� �
��� 	����
���� �����!%� �� ���� �!�
����
�%� /�0�� ��
�	������� �%� �
�(��(�
�� ����%�� �	�
��"��	��� 	�$��	�"�
���� �)')�� $"�!)� $"� !�(�� " �"	�$ �)�
�	�
������
��"�%����������

�������*�� � ����� $�
�/�0���
��� !�	� �3�"���� �	��+� �	� �&�� � ��&���!
� �����
��� !	�"�
�� ����������%� �
��%���� �����)� ��"�
'� ��
��	��
��� �!�
�	�
������
���	���3�	�������
�� ��!�	"��!�/�0���
��	��
����
* �� � 	������� ��� ����	#�	�� 1�"���"�
���� �%� /�0�
#�	������2� � ��� "���� ��� ����� ��� ��� ��"�� ���
�� �
� � ��
��$��
�����!������
��� �������	����� ��	����
������
�	��)��

+! !#	 	 ���	 ����/���	 ������	 �����!	 ��'�	�� P�
��""�	����� � �� ��"��
� ��
������ !�	� ��!�
�
'� J� �#��	�
"�����
'� �������)� .
� � ���"������ � ��- %���)�� # ��!�)$�
��
����� ��	#��� ��� �������� ��������� ����	�����
�� �!� � ��
�� �#��	��!� 	����
�����* �� ��	����������
���	
�� �&)$� �
�� $���)�)� J%� 	����
��� ���
�	��� *�� "��
� � ��
�����!������
� �!� � �� �"����	� ��'"�
�� �!� ����� �3������
�
�
�� � ��	��	�����
����
����
��		�
���	������
� ���)�� ���
"�����
'�������������	��!�	�$��
������#���
��%�����
��	��	�
��� �#������� �*� � �� �3������
���'"�
�����
��
�� !�	�����
�!�� ������!�	"�	����	����!	�"�����"�
'�#��*���
�)	

.
� � ��� "�

�	�� � �� ��������� �� �#��	� �!� �� '�#�
�
	����
��� ��� 	��	���
���� �%� �
� �	��	��� ��	���� �!� �����

�3������
�� ������� �� �����
'� �����
�� 1���!�)$2)�
5�
����	�
'� �� �������� ���	��� � !�	� � �� �
��%����� �
� 6��
�����
� "�%� 	��	���
�� � �� ��"�� ��� ��&��� �� ������ �!� �����
�3������
� ���*���� ��� � �� ��
��
'��!� ��"����'�� � 	��' � ��

��*�	&)�� ���	��	�
'��!��:����
��!����*�����	��������	(
��������	� �����	
�� *�� � � �� ����������%� �!� "��������
��
��		�
�� ��������	�� �
�� �	��������	��� ���""�
'� !	�"�
��
��		�
�� � 	���� C��
�� �
�� !�	&�� 	�������#��%)� � ��
'	�
���	��%� �!� �� �:����
� ��� �!��
� ��"�����
'� � ����� � ���
����
��� �
� � �� ��#��� �!� ������� � ��� ��� ���
'� ��
����	��)�
��
���� �� �:����
� ��� �
�� ��#��� �!� ����	�����
� "�%� ���
����"������ !�	� �	� �
��� �� ���� �!� !�
�	('	��
����:����
�)�
6����
��� ���
�	���� ���� 	����	��� ��	#����� !�	� �3������
�
� 	��' �� �����������
��!��:����
�������% "�	�-	 � $!�!� ���
�
�� !�	� �� �	� ����!�	"� ��	#������ � 	��' � ������ ��� �%�� "�
� �)��� ��1��4��� ��
��� 	 �� ������
�2)�

�

�
�

&�����	0)�� ��J� �#��	���"��
�"�����
�
� ���:����
���
����������
�����
��*�� ��0����
�� �
���

������� �	����	������%�����"���	������!�/�0����
	�� ���*�� �
��"���� �	��
���3��
����������
�%��	���	�������&��������
��
�#�	�'��������3������
���"�)�

+! !'	 ���)�������	 ������	 �����!	 .
� � �� �:��
!	�"�*�	&��� ����
������!�� �)��� ��&	�!�)�(�"��� ������
� ��"������!��
'�
��	�
'�	����	�����
�	��������
�� ���0��
�	�!���� ++,--�� ++P--)� � ��� �
�������
��� �
�%� �	�*�	��
	����	���� 1507�� ��#������ ���&���
�� �������
��*�	&�
	����	���2�� ���� ����� ��!�*�	�� �
��� 1� 	������ ���&���
��!!�	�2)� ��'�	�� G� � �*�� �� !	�"�*�	&� ��� ����	���� � ��
����!�	"��!�	����	���)��

I�� � ���� �
� ����	������ #�	���
� �!� ��"�	�� ��	����	���
�
�� ��������� ����!�	"� "����� 1��!�*�	�� �
�� �	�*�	��
�3������
� �:6�
� ����!�	"� ���(�	�!����2�� * �� � ���
���������%� ���!��� !�	� �3�	����
'� /�0�� �	��
���� ���

10 H. Espinoza, J. Medina, H. Dubois, S. Gerard, F. Terrier

MARTES 2006 at MoDELS 2006

�� ����������%� �
��%���� �
��*�� ���������
'��� �
'� �"�
'�
��!!�	�
�� ����	�����
� ��#���� 1 �	�*�	��� 6�?�� �	�
"�����*�	�2)�

� ������!�	"�"�������
�������!��������!�	����	����*�� �
�3������� /�0�)� � ��� "����� �����
'��� ��� �*�� &�
��� �!�
�	������
'� �
'�
��M� # ��!�)$� $'�$ �� 1�)')�� �	������	���
���	������	�2��
���)((�$���!�)$� $'�$ ��1�)')�
��*�	&���
�����2)� ��	� ��� �� � �� �:�� !	�"�*�	&� ����'
�� '�
�	���
/�0�)������!�����%��!%�)�'%&�!��	���	������)')��&�)� ���$'�
��! � �	� !��$�(����)$� ��! �� ����� $�
� �	���	����� �)')��
�!�	�,�!�)$���	��+���
��)� �% �"��	���	��������!�	��3�"����
-)�+�$'�!�(����$! ���&!�)� �% �"�!�(�)�

��% "�	�-	 � $!�!
� ��� �� &�
�� �!� ����#�� �	��������
	����	��� � ��� ��� ����� ��� �3������ �:����
�� �	� ��"������
6����
������
�	���0�.
���6�?��� ������� ��"�� �
��"�� ���
	��	���
������
����!���
��		�
���3������
����� ���������&����
�	��������	���� 	���)�.
���
��*�	&�����	��	���
������ �

���
�	�"����'��"�
�'�"�
���
���� �����
����� �	����	������%�
��
�	���� �� �����
'� ��	�"���	�� 1��&�� � �� �	��	��%� !�	� ��
5:/����2)�

0	������
'� �
'�
��� �*
� �%�� "� � �)��� �� ��� !�	�
�3�"���� .L?� ��#��������:�� �

����� �	������� ������
���	�

��*�	&� ������	�)� � �	��� 	����	���� �	�� �%
�"�����%�
���������� ��� �� ��������� �
������� �%� "��
�� �!� �
� �������
�����%)�5�""�
������������������	��������&��)��!
�� �	�$'�
&�)!)�)	�� %�'% �!�)�+ ��� &��)��!
� 4� � �� �
�� &��)��!
�
�$% ��!�$� �&�)!)�))�

�

�
&�����	1)�� ��6����	������"��
�"�����

�

�� �����	�� ��
� ���%� �*�� 	����� �
� � ��� "������ �
�! (�
��% "�	 ��� 1�%������%� �� 6�?�� �� �����	2� � ��� �!!�	� � ��
* ���� �	������
'� �������%� �!� ���� ����������� �����
�	������	�� ��� ���������������� ����������
�������� �
���� �	�
� �)$"��
� ��% "�	 ��� � ��� �
�%� �	�#���� � �� �	������
'�
�������%� �!!�	��� �%� ���� ����
'� �� ��������� �
���%)� � ���
 ��	�	� �������	����	������%������%�������
�6���* �
����	��
�	�� �
��	������ �
� ����%�
'� �%
�"��� �� �����
'� �
� ���� �!�
��""�	����� 6�?�� �����	��
'� �
�%� ������� �� �����
')�
4�&�*�����
�#��� ��'�	�� "�� �3���� � ��� "�&�� ��������� ���
��	!�	"� 	���(��"�� �
��%���� �!� � ���� ��	�	� �����
��
!�'�	����
���!��� �����	��+,P-)�

�
.!	
����	���	���	���
$������	�

�
I��
�*��3�"�
�� �*�� ����"��
���
�������	�#�����%�

�	���
���� ��
� ��� 	��	���
���� 1"�����2� �
� � �� 7�4�
"�����
'� �����)�� ���

������
�� �#�����
�"�����#�	� ��
����� ����%� ����������
� !�	� � �� 	���(��"�� "�����
'� �
��
�
��%�����!�����"��������	��������%���"�!�	�� ���������	�����
��
�	��� �!� �� 	��������� ����� +,@-)� � ��� �3�"���� ��� ���
�
	�!�	"������� �
� � �� ��
��3�� �!� � �� :55?6�K7�4�
"�� �����'%�!�	���#�����
'�	���(��"���"��������%���"�)�
:55?6�K7�4� ��
������ �!� �� !���� ��:� ��#����"�
��
�	������ 1�
�� � �� �
��	�%�
'� "�����
'� �
�� �3������
�
����!�	"�2� ��#�	�
'� !	�"� 	�$��	�"�
��� "�����
'�� ��	�%�
$��
������#���
��%��������!�����"���"�
�����
)�

� ������������
��%���"������"�������!��*���	������	��
�
��	��

������� 	��' �����6�-��)�� ��!�	����	������	������
�������	����
�������
�1�!�!�)$2B���� ��������7.�����������
��
* �	�� � �� ���	���	� ��""�
��� � �� 	����� �
�� * �	��
�
!�	"����
� ������ � �� �%���"� ������� ��� ������%��)� � ��
����
�� �	������	� 1�)$!�)		 �2� ��� �
� �"�������
"��	��	������	�� ����"���"�
���� ����
�	����	��!�� ��	�����
��	#����
������������������
��	�"�
�����
)��

� ����!�*�	���	� ������	���������	������%�"��
���!�� ��
������ ���'	�"� � �*
� �
� ��'�	�� H)� � �� ��!�*�	�� �!� � ��
5�
�	����	� �	������	� ��
���
�� � 	��� ����#�� �������� 1�������
	���� ��"�� ��C���� Q6�?� �
� :55?6�K7�42� �
�� �� �����#��
�
��* �� � ��� ������%� � �� ����#�� �������� ��� ��""�
�����)�
� ��)��)$!�)		 �� �������	������6�?�� �������	�''�	����%���
���&�	� ��"�	� *�� � �� ��	���� �!� F� "�)� � ��
 &)�! �� 6�?�
��	��������%���$��	�����
��� �
�
���!������������ ����������!�
� ����
��	�)�.�����	�������,@@�"�)�� ���)((�$"�/�$�' ��
6�?� ��� ���	������ �
�� ��� ����#����� �%� � �� �		�#��� �!� ��
��""�
��"����'��!	�"�� ��5:/����)�

� �� ��!�*�	�� �!� �	������	� ������
� ��� � �� �%������
�	� ������	�� �!� �� �7.� ����������
)� � �� 5�""�
��
.
��	�	���	�6�?� �
����� � ���#�
��� � ����	��'�
�	������%�
� �����	���	����
'�� ���7.���
�	������"�
��)�� ��������%�
6�!	�� �	�6�?��������� � ���7.�������%� �
��	�	���
'� � ��
������� "����'��� � ��� ��� 	����#��� � 	��' � � �� 5:/� ���)�
������%R����� ��� �� �	�������� ��C���� � ��� �	�#����� � ��
�"���������������� ��6�?��
�����!��*�%)�J�� ��	������	��

Towards a UML-based Modeling Standard for Schedulability Analysis of Real-time systems 11

MARTES 2006 at MoDELS 2006

 �#�� �� �����!��� ��""�
������
� ��!�*�	�� ���	�	%� �
�� ��
���&'	��
�� ���&� !�	� "�
�'�
'� � �� ��""�
������
�
�	������)�

	

�
	

&�����	2)���!�*�	���	� ������	���!�� ���������	�����6�����
�

��� �	'�
���� � �� :55?6�K7�4� "������ �

������� !�	�
�� ����������%� �
��%����� *�� ������ � �� ��
����� �!� �� *���
* �� � 	��	���
�� � �� ��
��	
� "������ ��"����
'� � ��
�:�8���
��%������
��3����
����)�.
�� ���*�%��*���	�#����
����	����� ���'	�"�� !�	� �����!%�
'� � �� �:�� ��
������ �!�
*)�+)�"� ��!��!�)$�� - %���)�� # ��!�)$�� �
�� � �)��� ��
&	�!�)�()� /�3��� *�� � �*� ��"�� �3�"����� � ��� ������	����
� ����	'�
������
)�
�
.! %3��$��	��	-��*����	���������	�����	
�

� �� 6�R��������
� ��� ��� �
��%���� ��
���
�� � 	���
�	�
������
�� *�� � �	�� 	���(��"�� 	�$��	�"�
��)� � �%� ����
���� � �� �	������
'� 	����	���� ������
�� 5�
�	����	� �
��
5:/RJ����
���
��	�����%��������
'��	����������C����)��

� ���)$!�)	� � ��)�� �	�
������
� �3������� � �� 5�
�	���
	����
��� *�� � �� ��	���� �
�� �� ������
�� �!� F� "�)� � ��

 &)�!� ��)� ��� �	�
������
� �	�
�!�	�� � �� ��
��	�� �
��
��	#��� ������� ����� ��	���� � �� 5:/� ����� ��� 	�!	�� � � ��
������%�*�� �����	�����
��������
���!�,@@�"�)���
���%��� ��
�# ��! � �)((�$"� �	�
������
� ��� �� ���	����� �	�''�	�
'�

�����	
�� ���� ���� �
��	(�		�#��� ��"�� ���*��
� �#�
��� ���
���
�������,��)���

��'�	��A�� �������7�4�.
��	�����
�?#�	#��*����'	�"�
1.?�2�!�	�� ���������	�����6������3�"���)�� �������#��%�
���'	�"�	��	���
�����*)�+)�"���!��!�)$�"�������
�����
'�
�!� � �� � 	��� ���#�("�
���
��� �	�
������
�� � �	����	�����
�%�� ��	�!��'' ����
��� �&)$� �)�� ����� 	���!��$���!�)$��
�3�������%� �
�	������ � �� ��"�
���� �!� ��
��		�
�%� !�	� � ��
��!���!
� &��!�!�)$�)� ���'' ��� �
�	������ � �� ��"�
���� �!�
�#�
�� ��$��
��� �		�#���� !�	� � �� �3������
� �!� ��� �
�$! ���!�)$� �
#������
)� I�� ����� �
������ ��"�� /�0�
�

������
��!�	��	�''�	��
��	����
���)�
�

&�����	4)�
3�"�����!�I�	&�������������
�"�����
�
.!#			%3��$��	��	����/���	%3�������	�����	
�
� �� 9 %���)�� �# ��!�)$� ��
����� �3��
��� � �� 7�4�
"��������� �$! ���!�)$��* �� � ��
����"��������%��� �����!�
��$��
��� �	� ��""�
������
� ���'	�"�� �
� 7�4;)� .
� ��	�
�3�"����� *�� �������� ��� ��� ��$��
��� ���'	�"�)� � ����
!��'' ��� �3��
�� � �� "���������(���')� ���!�)$�� �3��
��
� �� 7�4;� ��
����� �!� # ��!�)$� �& ������!�)$)� ��
���%��
�%�� "� � �)��� �� �	�� 	�� 	�$ �� �!� � �� ��$��
��� ���'	�"�)�
� �� � ��
� �!� �����
�� 1��

������ �%� � �� ��������	(
�	��������	������	
�2��%"��������� ����
������!�� �&)$� �
�� $���))��
.
���'�	��,@��*���	���
���
���!�� ��� 	������
�	����!�	�� ��
6���	�� �	�
������
)�� ������
�	���	��	���
���� ���� �#��	�
����	�����
� �!� �� � �&)$� � �� $���))� � ���� � ��� 	����
���
���
�	��� ��� ��"������� *�� � 	���(��"�� ��
��	��
��� � ���
� ��������� ��&����
�� ��!�	� �	��� ����������%��
��%���)�

12 H. Espinoza, J. Medina, H. Dubois, S. Gerard, F. Terrier

MARTES 2006 at MoDELS 2006

	
&�����	 5)�
3�"�����!�J� �#��	�
3������
�"�����

�
.!'			%3��$��	��	���������)�������	�����	
�
.
� ��'�	�� ,,�� � �� =
3������
�

'�
�>� ��"��
� ��
�����
�3��
��� � ��"���������$)" ��� �
�� � ��"��������� �$�!�$� �
�& ������!�)$���	�� ����� ��� 	��	���
�� �� ��������� �
��������
� �	���	����	������
���#�
�����%��� �����	�)�
�
.!+			����	��������������	��������	�������	

�
������;�� �*��� ��"����	���#�
��	������������
���!	�"�

� ���:����� ����������%��
��%����������+,@-)�.
�� ����������
*�� �#�� ��"��	��� � �� �
�(��(�
�� ��"��� �!� ��� � �!� � ��
� 	��� �	�
������
�� �!� � �� 6���� ��"�� ��������
� *�� � � ��	�
�����������	����
���)�
�

Transaction/Response Slack EndToEndTime Deadline

Control_Servos

 Control

101.56%

3.05 ms 5 ms

Report_Process

 Report

189.84%

39.1 ms 100 ms

Execute_Command

 Command

186.72%

359 ms 1000 ms

�
�����	#)�6��������!��� ����������%�:
��%����*�� �� ���:��������
�

.
� �	��	� ��� '��� �� �����	� ����"����
� �!� �*� ������ � ��
�%���"� ��� !	�"� ���
'� �� ��������� 1�	�
��� �� ��������2��
� ���:�����������������������!��	�#���
'�� ���	�
������
�

�
�� �%���"� ����&�)� � ���� �	�� � �� ��	��
��'��� �%� * �� �
� ���3������
���"����!�� �����	����
���
����	�
������
���
�
����
�	������%���&����
'�� ���%���"��� ��������)�
�

	
&�����)�
3�"�����!�6����	����0���!�	"�"�����

�

Towards a UML-based Modeling Standard for Schedulability Analysis of Real-time systems 13

MARTES 2006 at MoDELS 2006

/������ � ��� "���� �
��%���� ������ ���	���� �
� �� ��"���!����
#��*� �!� �� �%���"�� ��� *��� ������	����� �
� � ��� �3�"���)�
��*�#�	�� � ��� �	�!���� ����*�� �

������
�� �
��
�
��	�	������
������������� ������� ����#����!������������	���
�%�� ������'
�)�.
�������#�
��!�� �������!������
���
���
��
�3�	�"���������� � ���

������
��"�%������
���%������������
����''	�'����)�� ��� ����
��#�		���
'�	����
� ���!�
������� �
��� �

������
�� � ��� 	�$��	�� �� "�
�"�"� �!� �!!�	��� *�� � ��
"�
�"�"��!��������
������ ������'
�"�������
��*�� �����	��

�
(!	�'"�
���������!������
���!�/�0�)�.��������������
�����
� ���/�0����
��������� ��������	������!�*�	������'
��	�� �	�
� �
� 	�$��	�
'� �� �������� #�	���
��!� ������'
� �	������ �
�%�
!�	��
��%���)�
�
0!	6����������	�

�
� ��� ����	� ����	����� � �� �:6�
� �� ����������%�

�
��%���� ���(�	�!���� !�	� �
����
'� ��"�
'� �	�������
�)�?
��
�!� � ��"��
� '����� �� �
�� � ��� ���(�	�!���� ��� ��� �	�#���� ��
��""�
� !	�"�*�	&�*�� �
�7�4� � ��� !���%� �
��"�������
� �� "���� ��""�
� �� ����������%� �
��%���� ���
�$���� ����
���������#����
��' �!��3������%�!�	���!!�	�
���������������
�)�

� �� ���	��� � ��� �����	���� �
� � �� /�0� "�����
'�
!	�"�*�	&)� .����!�
����������!�"�� �
��"����������	���
��
�����!%� /�0�� � ��� �	��
������	%� !�	� ��!!�	�
�� &�
��� �!�
$��
������#�� �
��%���)� � �� 	������
� ���� ���*��
� /�0��
�

������
�� �
��7�4�"�����
'� ���"�
��� ��� ���������� �
�
�	��	� ��� � �*� �*� ��������	����"��
(�����!���/�0����
��
 �*�����3�	����/�0�#����������� ������"��������"�
��)��

� �� �� ����������%� �
��%���� "�����
'� 1�:�2�
!	�"�*�	&� �	�#����� �� ��""�
� "�����
'� ������ !�	�
��!!�	�
�� �
��%���� ���
�$���� �%� !����	���
'� ��
������ � ���
�	�� ����� �%� � �� #�	����� �� ����������%� "�� ���)� � ���
!	�"�*�	&��3��
���� ���	�#������0�8���� ����������%����(
�	�!���� �
�� 	��	'�
����� ��� �
��� '�
�	��� �
�� ��
�����
��
"�����
'� ��
��	
�� 1*�	&������ �� �#��	� �
�� ����!�	"2)�
�:������"���� ��� �
 �
��� � �� �3�	����#����*�	��!�7�4�
"������ �
�� � �� �	�!���� ��������%� �%� ����
'� � ��
��"�	� �
���
��!�� ��'������!	�"�*�	&)�

� �����'���!�/�0��
���:��!	�"�*�	&���	��������	�����
�%�� ������������
��!�� ���	��������

������
���
����%������
����	������� 	���(��"������������
�� !�	"������� �
� � �� !	�"��
�!�� ��:55?6�K7�4�"�� �����'%)�� ���*�	&���
�������
�
��� �� !�	��� 	�!������
� �!� � �� 7�4� �:6�
� �	�!���8��
�� ����������%��
��%����������������)�

�
1!	����������	
�
+,- ?�C���� ��
�'�"�
�� �	���M� 7�4� 0	�!���� !�	�

�� ����������%�� 0�	!�	"�
���� �
�� ��"���O�	���
� ,),)� ;@@F)�
?�������"�
�M�!�	"��L@F(@,(@;)�

+;- ?�C���� ��
�'�"�
�� �	���M� 0�
��
'� .������ ��
�� ��� � ��
?��� ��
��������
� ���&� ��	��M� 7�4� �� ����������%��
0�	!�	"�
����
����"���	�!���)�

+9- �)� ��	�	�� 1������� �%2M� 6���	�� �
� �.O?
�8;@@<(�0��
I�	&� ����
�� �����'���!�� ��7�4��	�!����!�	��� �����
'��
0�	!�	"�
����
����"������;F� ��;@@<����	�
����5�
���)�

+<- ?�C������
�'�"�
���	���M�7�4�0	�!����!�	�������
'��
��
:
��%���� �!� 6���(��"�� �
��
"������� �%���"�� 1�:6�
2��
6�0)�;@@F)�?�������"�
�M�	�����"�L@F(@;(@P)�

+F- ?�C���� ��
�'�"�
�� �	���M� 7�4� 0	�!���� !�	� ������
'�
D�����%� �!� ��	#���� �
�� ������ ����	�
���5 �	����	������� �
��
��� �
��"�)�;@@<)�?�������"�
�����L@<(@A(@,)�

+P- J)� ������� :� ��
�	��� �	�"�*�	&� !�	� ������
'� 6����	����
*�� �7�4)� .

�5�"����	��O��)99��/)�P����)�P<(PA)� ��
���
;@@@)�

+G- �)� ��	�	�M� S�����������
� 7�4� �3��������� ���	� ����
�%��T"��� �"��	$���� ��� �U����"�����S�� 0 �� � ����)� ;@@@��

#	%��0�	��)�

+H- ?�C���� ��
�'�"�
�� �	���M� �%���"�� ������
'� 4�
'��'��
1�%��42������!������
��O�	���
�@)A)��	�!�)�;@@F)�

+A- �)� �)� 0 �
M� S:
��%��� �U�	��

�
��������� �U����������
��
��"��� 	����"���������� �
� 7�4S�� 0 �� � ����)� ;@@<��
#	%��
0�	��)�

+,@- �)4)�����
����)��)���	���	���
���)�)��	�&�M��:���6���(
��"�� O��*M� :� �	�� ��� 7�4� ����� !�	� ������
'� ?�C���(
?	��
����6���(��"���%���"�)� 0	��)� �!� � ��;;� � .

�6���(
��"���%���"���%"�����"����)�;<F(;FP)�����"��	�;@@,)�

+,,- 6)� 5 �
�� �)� �'	���� �)� ��	��
�� 4)� 4�#�'
��� :)� 4)�
��
'��#�

�(O�
��
������� �)�6����%M�7�4� !�	�6���M�����'
�
�!�
"������� 6���(��"�� �%���"���
������ �%� J)� ������� 4)�
4�#�'
��� �)� ��	��
�� ��)� ,HA(;G@�� N��*�	� :����"���
0����� �	�����%�;@@9)�

+,;- ?�C���� ��
�'�"�
�� �	���)� ��:� ������ O�	���
� ,)@),)�
;@@9)�

+,9- ?�C������
�'�"�
���	���)�7
�!�����������
'�4�
'��'�M�
����	��	����	�� O�	���
� ;)@)� ;@@<)� ?��� ����"�
�� ���L@<(
,@(@;)�

+,<- �)� �	�!�� .)� ?��	�� .)� ?��	M� :� 	���(��"�� �	�!���� !�	� 7�4)�
������ .
�)� ���	
��� �
� ��!�*�	�� ������ !�	� ���
���'%�
�	�
�!�	���	�
'�	�O�	��')�;@@<)�

+,F- N)� ��
����M� :���
'� ��"�(?!!����� ��� �� ����������%�
:
��%���M� ���
����� 6���	�� V5�� ;;,�� ����	�"�
�� �!�
5�"����	�����
����7
�#�	���%��!�V�	&����
��	%�,AA<)�

+,P- � ���4)��:������ �	���)��:	��
��N)��
)��5�	#�
��:)��J�&�	���)��
J�	
���:)��J����������)�� 5����"����)��4� ���&%�� �)����&��
:)�� N)M� 6���� ��"�� �� �����
'� � ��	%M� :� �����	�����
0�	������#�M� 6���(��"�� �%���"�� ���	
����O��)� ;H��/��� ;(9��
��)�,@,(,FF��.��/M@A;;(P<<9��/�#�"��	(����"��	�;@@<)�

+,G- �)�
���
������)����������)���	�	����)�����
����)5)�0��	����
�)� I��������� S:

�����
'� 7�4� ������� *�� � /�
(
��
����
��� 0	���	����� !�	� D��
������#�� :
��%���S�� 0	��)� �!�
���
4�U;@@F�����������
#�
����4����	��/����� �
�5�"����	�
����
������	�
'�	��;@@F)�

+,H- ?�C���� ��
�'�"�
�� �	���M� 7�4� 0	�!���� !�	� �������
'�
�
�� :
��%���� �!� 6���(��"�� �
��
"������� �%���"��
1�:6�
2�� .
������ ���"�����
M� 0	��:6�
� ���")� ;@@F)�
?�������"�
�M�	�����"�L@F(,,(@,)�

+,A-
)� 5����	��� S?#�	#��*� �!� � �� 7�4� 0	�!���� !�	� � �� �:
�
::�4S� 1�	���
�����
2M�
 ���MLL��)���)�"�)���L�����
!�����L::�40���������
�E0	���

�����
�) �"����:
�I�	���:#�����
�5�
'	����/�#�;@@<)�

+;@- � ��0	��:6�
� �"����'�M� ���MLL***)�	�"�	��)�	'�

14 H. Espinoza, J. Medina, H. Dubois, S. Gerard, F. Terrier

MARTES 2006 at MoDELS 2006

A3S method and tools for analysis of real time embedded systems

S. Rouxel, G. Gogniat, J-P. Diguet,
J-L. Philippe

LESTER. CNRS FRE 2734
University Research Laboratory

France
<rouxel, gogniat, diguet, philippe>@univ-

ubs.fr

C. Moy
SCEE Group, SUPELEC

Cesson-Sévigné
France

christophe.moy@rennes.supelec.fr

Abstract

This paper describes a fast prototyping tool
targeting software radio applications. It is based on the
Unified Modeling Language (UML) and combines a
Software Defined Radio UML profile to implement an
MDA approach within EDA tools for multi-level
verifications from type compatibility to schedulability
analysis and memory use rate over an heterogeneous
platform. Our approach relies on performance analysis
to improve architecture and application matching
thanks to non-functional criteria. The main
contributions of our work are the improvement of the
original meta-model of the Software Radio UML
profile and its integration within a unified design
framework. From a high abstraction level of a software
application we perform extensive verifications and
analysis to validate the designer hardware architecture
choice and the corresponding implementations.

1. Introduction

Complex System on Chip (SoC) challenge is now
achievable since both required hardware resources and
integration technologies correspond to reality. The
telecom domain is a great example where the SoC
paradigm already enables the design of multi-standard
chips (e.g. GSM, IEEE 802.11, IS-95). Such an
evolution promotes the Software Radio concept for the
management of multiple standards [1][2]. However, the
design of such systems based on heterogeneous
platforms (e.g. DSP, FPGA, GPP, memory) and
intensive-computation software applications (e.g.
encryption, scrambling algorithm, and service
management) cannot anymore be addressed with
traditional Electronic Design Automation (EDA) tools.
Actually higher levels of abstraction are required to
cope with the design complexity and to provide the
designers with an early feedback. Such co-design tools
partly exist and are based on scalable hardware and
software IP reuse. Some of these can already meet the

design constraints, like CoWare, that uses
SystemC/C++ hardware language specifications, or
CoFluent studio, that is based on the MCSE
methodology (Co-design Methodology for Electronic
Systems) [3][4]. However regarding the current
initiatives our approach is original in the way that we
combine a Software Defined Radio (SDR) UML
profile to implement an MDA approach within EDA
tools for multi-level verifications over an
heterogeneous platform. Furthermore we have defined
very precise models through the A3S profile to perform
accurate performance evaluations at the first stages of
the design flow. In this paper we present our unified
way to fill the gap between the specification and the
prototyping phases by using UML. Our work is
illustrated through an UMTS transceiver case study.

Major projects related to software radio are
described in UML which enables modeling systems
through a graphical approach. Furthermore UML
continuously evolves to consider new specific
characteristics from different activity domains thanks
to the development of new profiles. A profile extends
the UML language for a work context, which offers
scalability. It specifies all characteristics (e.g. elements
for real-time application) and relations between the
UML elements. It allows model-based a priori
verifications. A designer relies on the profile to
analyze, generate code and specify various application
and architecture constraints. Moreover, dependencies,
inheritance, or groupings between profiles can be
performed to promote the reuse of domain specific
needs. Regarding the software radio application, three
profiles are of interest: UML profile for Software
Radio [5], UML profile for Schedulability Performance
and Time [6] and UML profile QoS and Fault tolerance
[7]. Each profile brings out some specific
characteristics that are useful to perform the evaluation
of the system performances. Dealing with these
profiles, a system can theoretically be accurately
specified by integrating various constraint types (e.g.
power consumption, bounded execution time).

A3S method and tools for analysis of real time embedded systems 15

MARTES 2006 at MoDELS 2006

However these profiles partially address the
parameters required for SDR prototyping. Our work
proposes to extend their coverage through the
development of a new and specific one. Its purpose is
to highlight standard concepts required for system
prototyping and to add hardware attributes that are not
currently taken into account for Software Defined
Radio applications. Furthermore the goal of our A3S
project (System Application Architecture Adequacy) is
not limited to the definition of the A3S profile but also
targets its implementation within a rapid-prototyping
tool to evaluate the feasibility of complex applications
over heterogeneous platforms (with DSP, FPGA
components). Specification of dynamic reconfiguration
is also investigated since this feature will be mandatory
especially for Software Radio applications.

The remainder of this paper is the following. Section
2 presents various high level system specifications and
most relevant tools relying on the MDA approach.
Section 3 provides a global approach of system
modeling as promoted within our project. Section 4
details the A3S profile and the UML modeling by
giving the set of parameters required to compute
verifications and performance evaluation. Section 5
details the scheduling analysis technique and the
approach for design space exploration. Section 6 gives
an example of an UMTS application modeling. Section
7 concludes the paper and gives an overview of future
work.

2. Related Work

Many tools aim at modeling systems, performing
verifications, simulations, validations, and synthesis.
Different modeling styles with different granularities
are considered, different input specification languages
as C, SystemC, VHDL, are also used to validate,
verify, simulate or emulate a system [8][9]. First co-
design tools, like VULCAN are using simple and
limited hardware architecture models, others like
COSYMA are based on dedicated hardware co-
processors to speed up software execution [10][11].
COWARE and PTOLEMY consider heterogeneous
specifications to respectively design specific
applications (embedded telecom) and co-simulate
heterogeneous HW/SW systems [12]. However these
approaches are limited as they require the use of
different tools that must be kept updated. Actually the
goal is to perform both modeling and design
specification of hardware platform and software
application within a single tool and through a common
language to be less dependent of multiple software
update [13]. The SoC Environment (SCE) developed
within the University of California, Irvine provides
such an approach as the design specification within
each stage of the design flow is defined through a
SpecC code [14]. However, the use of a generic

language, common to different domains, that is enough
flexible to model all co-design aspects (architectural
and application specifications, component properties,
constraints specification) will be mandatory to
accelerate the design cycle and to promote the design
reuse. To target such a philosophy, the most recent
rapid prototyping tools integrate methodology of
hardware-software co-design into the concept of MDA
(Model Driven Architecture) through UML.

ZeligSoft proposes a code generator that produces
Software Communications Architecture (SCA) artifacts
for Corba compliant targets. This approach is sizable
regarding different aspects such as the SCA core
framework [15] but no SoC meta-model is provided. In
[16] the authors focus on the deployment design step
but the analysis method is limited to Interface
Definition Language (IDL), type compatibility and
pure software concerns. There is no analysis addressing
embedded systems issues such as memory, bus, real-
time, power.

The Prompt2Implementation targets an MDA for
SoC design. It is based on the ISP UML profile [17] for
parallelism expression at task and data levels and on
model to model engines. The main objective is to
produce a simulation code (e.g. SystemC TLM) based
on mapping rules. This is a very ambitious project
restricted to very intensive signal processing, but the
tools seem to be under development. Moreover, this
approach does not address the SDR concept. The
association between UML and SystemC is a promising
approach, which is also explored in [18]. In this work,
a UML SystemC profile is proposed and used to
generate SystemC code. An object-oriented HW/SW
synthesis flow based on an UML initial specification is
described in [19]. The MOCCA compiler implements
an MDA approach based on system, platform and
deployment models. The current implementation is
based on a processor/FPGA platform where SW and
HW components have been implemented. This work is
interesting but does not rely on SDR UML profile. In
[20] the authors present a framework for software
design space exploration based on performance and
power estimation issued from an UML specification.
The method is based on a pre-characterized platform
and enables the evaluation of software implementation
solutions specified by the designer. FZI is developing a
framework for the communication conflict analysis in a
SoC context. In this approach [21] UML and SysML
are combined to specify architectures when on the
other side a sequence diagram is used to specify the
application. After refinement and component mappings
a conflict graph is built to analyze communication
scheduling. Finally, the UML2.0 profile for SoC is
another initiative that reached the approval step in
September 2005. No tool is currently proving the
concepts that are located at a software level.

16 S. Rouxel, G. Gogniat, J-P. Diguet, J-L. Philippe, C. Moy

MARTES 2006 at MoDELS 2006

Compare to previous efforts our approach relies on
our UML A3S profile that inherits from other
standardized profiles and extends them. This profile
improves and offers more hardware specification
possibilities that are essential for software radio or
other electronic systems in order to specify hardware
and software architecture systems. In addition our high
abstraction level specification alleviates the modeling
and the validation of applications that belong to other
specific application domains. Moreover, as we consider
applications as a set of IPs, components are only
characterized by non-functional parameters instead of
source codes (which depend on their implementations
and need different tools).

3. A3S Design Approach

A3S approach proposes a UML software framework
where the designer can rapidly and easily prototype his
system and check if constraints are met in terms of
timing, memory, area, and power consumption [22].
The main steps of our design flow for virtual
prototyping are depicted in Figure 1.

Figure 1. A3S design flow

One important question is to know who the final
user of the tool will be. Two kinds of actors can take
benefit of the A3S framework:

• The component designers. They are concerned by
the components definition (HW and SW) which
takes place within the modelling and specification
tool. They will create the software and hardware
components libraries (IPs). For this kind of actors,
some ergonomic wizards included in the design tool
will help them to provide the correct values when
creating new hardware and software components.

• The software radio designers. Their goal is to design
and tune the software radio platform and waveform.
For this kind of actors, other ergonomic wizards
will help them to instantiate and place the A3S
software radio components with conformity to the
A3S profile. They will be able to manually perform

several HW/SW deployments in order to reach an
optimized solution.
The verifications performed by the tools are related

to the A3S profile (see Section 4). They allow the
designer to see in a simple glance the errors within his
design during each step of the A3S design flow. It is
always possible, in spite of the existence of the GUI,
that the designer gives values that are not coherent.
Thus, extensive verifications enable a faster and safer
design flow. Some errors can be related to the
architecture of a platform, or the connection between
the software application and the embedded platform.
The designer can perform the verifications for the main
points of a design (libraries of hardware components
and software components, hardware platform and
software application) or for a whole project.

Each step of the design flow is now detailed in the
next sections.

3.1. Application specification (1st step)
With the MDA approach, software application and

hardware architecture can be specified independently,
so 1st step and 2nd step (see Figure 1) can be
exchanged. To manage complexity, an application is
split into several functions that are represented by
independent generic software (SW) components. This
view corresponds to PIM (Platform Independent
Model) since each function can be potentially mapped
onto any hardware component. SW components have
specific non-functional parameters that correspond to
specification constraints coming from the application
or from some designer requests. An example of these
parameters is the periodicity of the SW component
which is independent from any implementation. More
information about these parameters is detailed in
Section 4. At this stage of the design flow SW
components can represent any function.

Figure 2. UMTS-FDD Receiver Activity
Diagram

The application is modeled through a functional
scheme based on the UML Activity Diagram which is
composed of a set of ActionStates (SW components)

A3S Project

HW/SW Components
Designers

UML
Components

Libraries

Software Radio
Designers

A3S
profile

A3S profile
(UML meta-model)

Objecteering UML tool

Application
Specification

(PIM)

Embedded
Platform

specification

HW / SW
Deployment

(PSM)

Verification Web Server
(XAPA tool)

Non-functional verifications
(Schedulability,

resources workload)

SW
Lib.

HW
Lib.

XML

schedulability
result

XMI

Architecture definition

1st step 2nd step

3rd step

A3S method and tools for analysis of real time embedded systems 17

MARTES 2006 at MoDELS 2006

and transitions. Transitions correspond to dependency
relations between functions and have specific
parameters related to the exchanged data (e.g. number,
size). For each component, the designer specifies the
corresponding parameters value. An Activity Diagram
has been considered since it enables the description of
the dynamicity of a system. Activity Diagrams allow
the modeling of the process described by activity
chains with information related to transmission,
connection management, and activity responsibility
description.

An activity diagram example for an UMTS-FDD
receiver is given Figure 2. This diagram also addresses
the links between the different SW components to
specify the system radio functionality. The black dot
represents the input of the application which takes
place at the propagation channel side. Each arrow
corresponds to an edge (transition) and represents a
data-flow dependency. The UMTS-FDD receiver is
mainly a data-flow application with periodic and
iterative functions (FrameProcessing, SlotProcessing,
RadioProcessing, TransportBloc). The black dot in the
circle is the output of the application; it corresponds to
the exchanged data between the physical layer and the
higher layers of the OSI model.

Through this model the designer can easily replace,
add, move/remove a SW component, or modify some
parameters to enhance the algorithm and thus test
various configurations. By this way, he can analyze the
impact of different reconfigurations, which is of major
importance in a software radio context. Once the
application model is completed, some coherency
constraints verifications are performed. Among them,
the tool verifies that all connections between SW
components have been correctly done, through
compatible data format and that all required parameters
have been settled. These verifications have been
implemented within the Objecteering case tool [23].

3.2. Embedded platform specification (2nd step)
This step deals with the platform specification. Each

hardware component is described in a hardware library
(DSP, FPGA, GPP, memory, interconnect and ASIC)
corresponding to an UML package. Each component
has specific attributes defined through its stereotypes
(this point is developed in Section 4). The designer
builds his platform by assembling hardware component
instantiation (in UML sense) through a UML
deployment diagram. Many hardware platforms can be
realized, especially heterogeneous platforms. This kind
of architecture is essential for telecom applications like
software radio that need flexibility (offered by FPGA
and DSP components for hardware and software
reconfiguration) and important computation resources
(multi-processor). A Deployment Diagram has been
considered since it enables the description of the

physical connections that exist between the hardware
devices located on the platform.

3.3. Hardware/Software deployment (3rd step)
After the software application and hardware

platform modeling steps, the designer chooses which
dedicated SW component is implemented onto which
hardware component. For each SW component, the
designer selects the corresponding function in the
software component library as a SW component
corresponds to a processing element that is not
dedicated to a specific target (PIM). Thus, the function
represents an implementation of the SW component
onto a processor (e.g. DSP, GPP, μC), a FPGA or an
ASIC. The target hardware component selected to
implement the SW component is obtained by defining
an instance of a hardware component within the
hardware platform in the UML deployment diagram.

Figure 3. Deployment diagram after mapping

When a SW component has been deployed onto an
hardware resource new attributes are highlighted which
represent the implementation details. This refinement
corresponds to the transition from a PIM to PSM
(Platform Specific Model) model where specific
parameters are requested to do a performance analysis.
A broad range of implementation solutions can be
tested for a specific platform due to all possible
combinations. The example in Figure 3 depicts an
hardware platform composed of two DSPs (DSP_A,
DSP_C) on which different software components are
implemented (e.g. scrambling function is implemented
on DSP_A). Thus the deployment diagram is refined
by a software component instantiation implemented
into a hardware component instantiation. This
partitioning is performed through links between the
software components from the UML activity diagram
and the hardware components from the UML

18 S. Rouxel, G. Gogniat, J-P. Diguet, J-L. Philippe, C. Moy

MARTES 2006 at MoDELS 2006

deployment diagram. For example, the DSP_A that is
connected to DSP_C via FIFO_AC handles four
functions (SCR, SUM, SPRdpcch, DPCCHctrl).

3.4. Non-functional verifications
During the specification steps, non-functional

verifications are automatically performed thanks to the
use of the A3S meta-model. Verifications within the
Objecteering case tool are stored in a tree which allows
the definition of priority levels for all non-functional
verifications. Methods related to the verification rules
are connected to the branches and the leaves of the tree.
Verifications can be simple numeric value checking
(attribute value different from zero) or more complex
techniques to verify specific properties (data
production and consumption coherency). All the
methods are coded using the J language which is
dynamic and interpreted. J language exploits the meta-
class, meta-associations and meta-attributes to get
access to the attributes which are stored as
taggedValues. The verification report is generated
while traveling through the tree and displayed to the
designer (Figure 4).

Figure 4. Checking procedure of a SW
application after deployment – first part (PIM)

– second part (PSM) for each HW platform

3.5. Schedulability analysis results (4th step)
Results are provided through a schematic view

defined in a UML sequence diagram which is close to a
Gantt diagram. The results emphasize the performances
achieved for a heterogeneous platform with multi-
processor resources to perform the application. For
example, execution time, resources use rate, system
evolution (scheduling), allocated memory resources are
exhibited. Scheduling information is very important as
if the system cannot be scheduled or if it does not reach
the required timing constraints, the solution is not
relevant.

If the solution does not satisfy the constraints, it is
easy to modify the implementation choices just by
modifying the links between software and hardware
components in the UML activity diagram without

modifying the diagram. As several applications and
platforms can be specified it enables testing an
application onto different platforms and with different
implementations for a same platform. It also promotes
testing different configurations and re-configurations of
the system. The design space exploration is performed
manually and iteratively in the current methodology. It
is also possible to modify some hardware
characteristics by changing hardware component
parameters value. Moreover, this tool returns results
that help designer to perform modifications according
to identified critical functions.

3.6. Ergonomics – wizard – GUI
To provide an intuitive verification tool, the

checking preserves the hierarchy of the elements within
a project (components, application/platform,
deployment) and indicates through a message the
possible errors or warnings. Thus, it is easy for the
designer to analyze where the problem comes from and
to further help him the tool points out the element
affected by the error when clicking on an error
message.

Figure 4 shows the consistency report as it is
provided to the designer. As we can see an error is
highlighted which enables the designer to change his
specification before going through the non-functional
verifications tool that analyzes the schedulability of the
system.

Figure 5. Relation between A3S profile and the
OMG standard profiles

4. A3S profile and UML Modeling

4.1. A3S Profile
One of the goals of A3S is to emphasize non-

functional characteristics on PIM and PSM and to
analyze them during the verification phases. Currently,
major software radio projects are described by UML
class diagrams for architectures and sequence diagrams
for applications. The UML profile for software radio
proposes a set of PIM and PSM stereotypes to describe
platform independent or dependent architectures of

A3S method and tools for analysis of real time embedded systems 19

MARTES 2006 at MoDELS 2006

radio systems from a functional point of view. To
allow the precise definition of signal processing
applications, it can be extended through the use of
stereotypes coming from the QoS profile and the Real
Time Scheduling and Performances profile on each of
the components addressed by the Software Radio
profile.

In order to address the DSP/FPGA specific domain,
it is possible to extend the software radio profile by
introducing specific DSP and FPGA stereotypes
representing DSP and FPGA components derived from
the processor stereotype of the software radio profile.
These new stereotypes will be tagged with stereotypes
extracted from the QoS profile to describe the quality
of service metric of the DSP and the FPGA.
Using standardized profiles and the components they
introduce, will allow the designer to reuse some legacy
components by wrapping them into a standard

component exhibiting the compliant interfaces. It will
enable the designer focusing on the architecture or the
system composition, instead of being compelled to
discover and/or create new components from scratch.
This method is already used for a long time by
software developers to de-couple from third-party
provided components. Such an approach is the only
way to enable a smooth transition from existing
methods to new ones. It also allows the integration of
non-compliant external component.

The A3S profile formalizes through a rigorous
semantic the elements that will be used to build the
software radio architecture models. Our formalization
enables the definition of the verification rules. These
elements extend or use some elements extracted from
the previously explained OMG standard profiles, as
illustrated in Figure 5.

Figure 6. A3S profile’s hardware meta-model

 A3S OMG

a3s-CommEquipement

a3s-Processor

a3s-SoftwareProcessor

a3s-GPP a3s-DSP

a3s-GPPvirtual a3s-DSPvirtual

a3s-ProgrammableLogicalDevice

a3s-FPGA

SoftwareProcessor

ProgrammableLogicalDevice

Processor

CommEquipement

Device

a3s-Memory

a3s-Memoryvirtual

a3s-OMAP

a3s-DigitalPort

a3s-Port

a3s-CommEquipementConnector

Port

DigitalPort

CommEquipementConnector

Connector

1

*

1

AggregationPrefixa3s-DigitalPort

* AggregationPrefixa3s-Port

1

*

*

*

*

*

AggregationPrefixDigitalPort

1

* AggregationPrefixPort

*
AggregationPrefixa3s-Processor

0..1

*
*

0..1

Internat Memory (composed)

20 S. Rouxel, G. Gogniat, J-P. Diguet, J-L. Philippe, C. Moy

MARTES 2006 at MoDELS 2006

This warranties the timelessness, the interchange

and the reusability of the A3S models. Since the
interfaces can be standardized by this way, it is then
possible to work and verify any A3S model assuming
that the tools have the A3S profile. This A3S profile
main interest resides in the fact that all the interfaces
may be standardized, and that all the elements are
redefined from the basic types, warranting an automatic
generation of interface specification through the IDL
syntax language.

Figure 6 illustrates the hardware meta-model of the
profile that defines the stereotypes that will be used to
design Software Radio platforms. It extends the OMG
software radio model (on the right part of the figure),
by defining new stereotypes prefixed by the “a3s-“
keyword. They inherit from each of the main
components of the OMG software radio profile and
provide some non-functional information (on the left
part of the figure). For instance, according to the OMG
software radio profile, each hardware component of a
software radio can be stereotyped by the
CommEquipment element and that the
CommEquipment are connected to each other through
some CommEquipmentConnectors linked to their
DigitalPort. A3S provides the same elements extended
with QoS characteristics, that may range from data size
and processing frequency to power consumption. Such
an inheritance is generic enough to envision the future
addition of new QoS characteristics to an element of
the A3S profile, without disturbing all the models of
the software radio platform.

The first step for QoS definition of software radio
elements is to specify the QoS language that will be
used during the modeling phase. For our purpose, it
will allow the specification of a particular kind of
software radio component, the fields that are relevant
to quality of service and that must be filled with
accurate values in the PSM model. The definition of
such a QoS language specific to the A3S issues is
performed using the QoSCharacteristic elements of the
QoS and Fault Tolerance profile. QoSCharacteritics
can be extracted directly from the catalog of well
known QoSCharacteristics of the QoSProfile, but can
also be defined from scratch, inherited from other
QoSCharacteristics or aggregated by others. The set of
QoSCharacteristics obtained by this way, is then stored
in a QoSCatalog dedicated to the A3S needs. At the
design time, these QoSCharacteristics will be
implemented into QoSValues which will be applied to
PSM software radio components. Figure 7 illustrates
the definition of the QoS characteristic of an FPGA,
and Figure 8 illustrates how it is possible to describe
the QoS offered by the platform specific FPGA-pentek-
3292.

Figure 7. Definition of the QoS characteristic
of a FPGA

Figure 8. Definition of the QoS value that a
specific FPGA may have

4.2. UML Modeling
During the application and platform specification

steps, the designer provides the values of the software
and the hardware component attributes to perform the
coherency verification and schedulability analysis of
the system. Each component (software and hardware)
can be characterized in three parts as described in
Figure 9. First part corresponds to the non-functional
characteristics (attributes) of the component.

Figure 9. Component Views

For software components it represents the temporal
aspects of the function (e.g. period) and the data
characteristics. The second part describes its interface
(its I/O port) with significant attributes relative to

A3S method and tools for analysis of real time embedded systems 21

MARTES 2006 at MoDELS 2006

exchanged signals. The third part is relative to the
functionality of the component. For hardware
components it corresponds to the clock frequency, the
type and quantity of internal/external memory. This
view mainly corresponds to specification constraints.
As our approach relies on IP cores, the internal view of
the component is not explicitly represented since we
assume that IP cores functional behavior (C, C++,
SystemC, VHDL) is validated through other means that
are not in the scope of this paper. In our case attributes
can be provided using the IP characteristics.

UML stereotypes permit to identify and characterize
any element by assigning different parameters called
“attributes”. So each element of UML can be
specialized by using different stereotypes that are used
to define the component parameters.

Generic SW components which are not yet
implemented have different attributes (e.g. a function is
periodic or not, it has an initialization part or not)
compared to a dedicated SW component which
represents one implementation choice of a generic SW
component. Each implementation choice adds some
specific constraints that are highlighted through the
non-functional attributes. They deal with function
periodicity, execution time, code size, priority level if a
RTOS is used, and other attributes like data/code
localization, and access memory types. HW
components have different stereotypes, which lead to
the difference between HW processing components
(DSP, ASIC, processor), memory components (FIFO,
RAM, ROM), reconfigurable components (FPGA) and
communication components (Bus, wire). Specific
performance parameters are considered according to
the hardware component (frequency, data/program
memory size, port type, data width, throughput).

All the parameters are required to perform the
performance analysis. They are used during the
scheduling analysis step (see Figure 1), to compute
resources use rates, to perform constraints verification
and to check the coherency of the system.

4.3. XAPA tool for schedulability analysis
Once specification and mapping have been

completed and coherency verifications have been
performed (i.e. no error about HW/SW connection, all
attribute settled), the A3S tool generates a XML file
gathering the information about the system. The file
contains the diagrams (activity, deployment), the
hardware/software component allocated, and the
attributes value. More precisely the UML activity
diagram that represents the functional application
scheme of the system is encompassed in the XML file.
Thanks to an XML parser this diagram is converted
into a task graph. Each ActionState becomes a task and
each Transition becomes an edge between tasks. The
underlying execution model of both the activity
diagram and the tasks graph is data flow. The parsing

of this file enables building a General Task Graph
(GTG) based on the Radha Ratan model since we
consider the corresponding method to perform period
derivation [24]. This method computes the period of
each task within the GTG even if some are previously
unknown. The GTG nodes represent tasks (functions),
and the GTG oriented edges are channels from
producers (tasks) to consumers (tasks). Each task can
be triggered by a data. Each edge contains producer
and consumer information corresponding to data to be
exchanged between functions. For applications
implemented onto multi-processor, functions
implementation can lead to additional communication
tasks (in case of two tasks connected to each other and
implemented on different hardware devices). The
period derivation step is performed to compute the
timing constraints (periods) that have not been settled
by the designer during the specification steps. This
point is important, since this kind of computation is
very error prone and can be efficiently done with our
tool.

The GTG obtained from the XML is then used with
the HW architecture characteristics within our real time
analysis tool RTDT [25]. This tool performs
automatically complex scheduling verification and
provides performance analysis results which help
designer to drive his choices. Such automatic bridges
and tools are essential to improve time to market and
quality designs.

5. Real time analysis tool (RTDT)

5.1. Real time scheduling strategy

5.1.1. Task classification
Usually, real-time embedded systems require a

simple and safe scheduler which can guarantee that
critical aperiodic or periodic tasks meet their deadlines.
For these reasons, a static HPF (High Priority First)
scheduling policy has been adopted, where the fixed
priorities are computed as the inverse of the task
period. The worst case response time is computed with
an exact analysis [26] or is provided from the library of
IPs.

In a first approach we consider two kinds of tasks.
The first category is composed of the periodic tasks
that are scheduled by means of hard real time
constraints (RTC), and sporadic tasks with hard RTC.
Like in [27], we consider the sporadic tasks as periodic
tasks with a period equals to the minimum delay
between two subsequent executions; this value can be
provided by the Radha Ratan tool [24]. Actually we
have implemented the techniques of this tool in our
UML framework in order to derive unspecified periods
from global I/O constraints. These period are specified
within the output XML file. The second category

22 S. Rouxel, G. Gogniat, J-P. Diguet, J-L. Philippe, C. Moy

MARTES 2006 at MoDELS 2006

includes the non critical sporadic tasks which are
handled by a task server with the lowest priority that
can be fixed by the designer. The task priority is
computed as the inverse of the task period.

The question of multi-rate dependencies is solved by
shifting the release time computation as detailed in
[28].

5.1.2. Response time computation
The exact response time is computed iteratively with

the following equation:

Where:
– HP(i): is the set of tasks with higher priority

compared to task i (Ti);
– Ri: is the worst case response time of task i;
– Di: is the execution deadline for task i,
– Ci: is the execution time of task i;
– Bi: is the longest time that task i can be delayed by

lower priority tasks,
– Pj: is the period of task j,
– Csw: is the context switching;

With:
– δ0: is the context switching overhead without any

coprocessor,
– δ(k): is the overhead due to the coprocessor k.

The context switching overhead is the delay
between the preemption of a given task and the
activation of another task.

5.2. RTOS overhead
The difficulty is that Csw depends not only on the

target processor and on the RTOS and its configuration
but also on the number of tasks in the system and on
the number of coprocessors. Without coprocessor, the
available overhead metric is usually an average value
estimated with different task sets. We have defined an
accurate model for the RTOS overhead which takes
into account the following parameters: initialization of
the RTOS, context switching, scheduler, task,
semaphore, mutex, mailbox, message queue and flag
creation, and post/pend of the previous mechanisms.
Many parameters influence the model and they must be
clearly defined by the designer to compute an accurate
value. As an example the overhead on a task execution
due to the RTOS compared to the execution of the task
without RTOS is defined by the equation below:

With

γ corresponds to the delay due to a scheduler
interrupt. The execution time of a task with an OS is
thus increased based on the period of the scheduler tick
and depends on the number of time a task has been
preempted by the scheduler. The influence of the
coprocessor is also related to the number of data and
status registers.

5.3. Design space exploration for HW/SW
partitioning

5.3.1. Cost function
The cost function takes into account the global area

of the SoC and its energy consumption. At a high level
of abstraction, only relative estimations can be used for
SW and HW IPs and the cost function is used to guide
the selection of a reduced set of solutions. In order to
eliminate solutions, relative costs are used to evaluate
the cost value for a given schedulable solution S:

with α + β = 1 and where MinArea is the
schedulable solution with the minimal area without any
power consideration and MinPw is the schedulable
solution with the minimal power without any area
consideration. Note that the area cost influences the
power consumption through the static power
evaluation. So, the α parameter also acts on the power
optimization.

5.3.2. Area Cost
The area cost includes the data and code memory

size for software implementations, the area of
coprocessors that can be shared by various tasks, the
area of hardware accelerators and finally the area of
memories added for communications.

5.3.3. Power Cost
The model for power evaluation is much more

complex. Firstly, the dynamic power consumption
depends on the SoC activity, which is strongly related
to the task scheduling and switching. Secondly, the
evolution of VLSI technology shows that static power
consumption [29], especially in FPGAs, can no more
be neglected. Finally, in mobile embedded systems the
important metric is the system life span. It means that
the energy used must be optimized. However, in our

() ()swj
iHPj j

i
iiiiij CC

P
RRCRDRiHPT +×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++=≤∃∈∀ ∑

∈)(

/),(

∑+=
k

sw kC)(0 δδ

MinPw
MinPwSPw

MinArea
MinAreaSAreaSCost −

+
−

=
)()()(βα

)4(+×⎥
⎦

⎥
⎢
⎣

⎢
+= γ

κ
κ

lertickschedu
ps P

T
exewithOS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎥
⎢
⎣

⎢
×+⎥

⎦

⎥
⎢
⎣

⎢
×= 14

lertickschedu

ps

lertickschedu

ps

P
T

P
T

SexewithouOSexewithouOγκ

A3S method and tools for analysis of real time embedded systems 23

MARTES 2006 at MoDELS 2006

context of periodic tasks the energy optimization is
equivalent to the average power minimization over the
hyper period. Our power model for an implementation
S is given by:

where: Pwd is the average dynamic power dissipated
during a hyper period TG and Pws is the average static
power. The details of the power model are out of the
scope of this paper and can be found in [28].

5.3.4. Scheduling analysis
The main difficulty during RT scheduling algorithm

is related to the iterative scheduling of tasks worst case
response time.

A solution is valid if all tasks meet their deadlines.
Contrary to the response time computation, the cost is
not iterative and must be evaluated first. Thus the
schedulability is computed in a three-step approach to
limit the computations of iterative response time. The
algorithm first tests if the processor rate is lower than
1. As a second test, the fast rate monotonic analysis
(RMA) is performed; it gives a sufficient but not
necessary condition for schedulability. Finally if the
first tests are valid an exact analysis is performed. Note
that the designer can specify the CPU ratio rs to be
guarantied for the server task.

Figure. 10. Schedulability test

6. UMTS FDD Case Study

The A3S profile has been created to specify the
software defined radio physical layer. An UMTS FDD
channel in uplink mode has been chosen as a first
reference to determine which software and hardware
components should be included in the software and
hardware components library. This application has also
been tested to validate the A3S tool. The UMTS

transmitter and receiver applications have been
modeled through two different activity diagrams
(UMTS receiver modeled in Figure 2). The chosen
hardware platform corresponds to a standard board
composed of multiple DSPs connected to FPGAs via
FIFO and SDRAM memories. The deployment
diagram represents the Pentek board (4290) described
thanks to the hardware components from the A3S
hardware components library (an overview is given in
Figure 3). The partitioning has been determined
manually by the designer. After specifying the
hardware components attributes (using the Pentek
board components characteristics), and the software
components attributes (using software IP core
characteristics), the validation and the schedulability
performance analysis steps are performed.

Non-functional attributes are first checked to verify
the system coherency. Then the A3S tool generates the
GTG file (.gtg) and provides the HW architecture
characteristics to perform the schedulability and the
power consumption analysis. Our real time analysis
tool has been first designed for mono-processor
architectures with hardware accelerators; it has been
modified to support schedulability analysis in the
context of multi-DSP/Processor architectures.

To prototype the UMTS FDD transmitter and
receiver we have considered a hardware platform
composed of four TMS320C6X DSP running at
300Mhz. Each DSP is connected to a XILINX Virtex
XC2V3000 FPGA running at 100Mhz. Each DSP is
also connected to an external shared SDRAM memory.
The two UMTS FDD software applications, transmitter
(SW 1) and receiver (SW 2) are implemented into the
hardware platform described above. SW 1 is composed
of 11 functions (pulse shaping, scrambling, coding,
spreading, integrating …) and SW 2 is composed of 14
functions (matched_filter, rake, descrambling,
despreading, decoding …).

Different implementations are considered to verify
and validate the efficiency of the A3S tool. These
experiments have been iteratively performed in order to
meet both architectural and application constraints. The
first experience consists in implementing all the
functions for SW 1 and SW 2 into the DSPs (software
solution), and then in modifying the data rate frequency
to see the limits of such a solution. The second
experience consists in partitioning the functions
implementation between DSPs (DSP_A, DSP_C) and
their respective associated FPGAs (FPGA_A,
FPGA_C). The critical functions within each
application are implemented into the FPGAs and the
remainder into the DSPs. For both experiences, the two
different data rates (117 kbits/s and 950 kbits/s) are
tested. The UMTS design under consideration is not a
complete fully realistic UMTS system but contains
enough processing element to evaluate the tool.

sd PwPwSPw +=)(

Boolean Schedulable (S)
{

U = ProcUseRate(S) // Processor use rate
If (U+rs > 1) // rs: task server CPU ratio

Return false;
Else if)12(

1

−×≤+ nnrsU
Return true;

Else {
For all Ti by Decreasing Priority Order

 Ri = ExactResponseTimeAnalysis(Ti);
 If Ri > Pi Return false;

Else Return true;
}

}

24 S. Rouxel, G. Gogniat, J-P. Diguet, J-L. Philippe, C. Moy

MARTES 2006 at MoDELS 2006

For each experience, a possible scheduling was
determined and the corresponding hardware
components utilization rates were computed. The
results for one radio frame are given in Table 1. An
overall 100% means that all the processing power of all
HW devices is necessary to run the application in real
time. Less than 100% means that real-time is also
reached. When the workload is more than 100% it
means that a single HW device (DSP or FPGA) is not
enough to run the application. In that case it is
necessary to provide a new partitioning to be able to
reach the constraints.

In the UMTS standard, a radio frame must be
computed every 10 ms. In this first experience, we only
consider the execution time issue. It shows that
software-only solution is adequate for SW 1 as the rate
is correct (<100%) for the two configurations
(117kbits/950kbits). Actually this solution is not
correct for the 950kbits configuration since the timing
constraint is not respected as the execution time
exceeds 10 ms (10.33>10). In the case of SW 2, the
software-only solution cannot be realized because of
the DSP overload (185%). Thus to respect both the
DSP workload and the timing constraint we have
defined a new implementation.

TABLE I. Hardware component utilization rate

The results help to identify function and/or data
exchanges that affect the global system performance.
Changing the implementation is straightforward with
the A3S tool since it just requires to modify some links
(corresponding to the critical functions) and not to
rebuild the whole system. Thus only two critical
functions (PSH for SW1, MFL for SW2) that were
previously implemented onto the DSPs are
implemented onto the FPGAs (hardware solution
corresponding to the 2nd experience). The remainder
functions are still implemented onto the same DSPs.
The new results show that for each case (SW 1, SW 2),
the DSP workload was reduced (e.g. from 96% to 11%
for SW 1 and from 185% to 17% for SW 2). This
implementation also reduces the execution time, and
the timing constraint (<10ms) is respected in each case.

Thanks to the tool, the designer performs a fast
analysis and is able to compare the most appropriate
implementations satisfying the application and
architecture constraints.

Figure 11 shows the Gantt diagram provided to the
designer to analyze the resources workloads.

Figure 11. Gantt diagram provided to enable
the analysis of the resources workloads

7. Conclusion

In this paper we have presented the UML compliant
rapid prototyping A3S framework based on the UML
A3S profile. It provides designers with a unified, fast
and easy method to specify software applications and
hardware architectures. Such an approach significantly
decreases the prototyping time and enhances system
reuse, which is a major concern for software radio
applications. It also enables a design space exploration
for rapidly testing various HW/SW mappings.
Furthermore, the A3S project proposes more than a
design framework. It also provides a design
methodology to validate complex systems with a step
by step design approach from PIM to PSM. This tool
simplifies designer job by handling automatic usually
heavy tasks, like coherency verifications, period task
and timing computations as well as scheduling
verifications. Two kinds of futur work would be
necessary in order to include the A3S tool within
commercial frameworks. The first on is located at the
top of the design flow, it consists in a bridge with
current simulation tools (SPW, matlab) from which
activity diagrams could be derived. The second one
deals with the link with HW and SW compilation tools,
once a solution has been cleary identified, it remains
necessary to automatically generate compilation and
scripts for selected environments.

A3S method and tools for analysis of real time embedded systems 25

MARTES 2006 at MoDELS 2006

References

[1] J. Mitola, "The Software Radio Architecture," IEEE
Communications Magazine, vol. 33, no. 5, pp. 26-38,
1995.

[2] [online] Software Defined Radio:
http://www.sdrforum.org

[3] I. Bolsen et al, "Hardware/software co-design of digital
telecommunication systems," Proceedings of IEEE,
vol. 85, no. 3, pp. 391-418, 1997.

[4] J.P Calvez, MCSE : Spécification et conception des
systèmes : une méthodologie, Masson, 1990.

[5] UML™ profile for Software Radio - OMG draft.
[6] UML™ profile for Schedulability, Performance and

Time Specification – ptc/02-03-02 OMG draft.
[7] UML™ profile for QoS and Fault Tolerance

Characteristics and Mechanisms- OMG revision
submission.

[8] S. K. Shula et al., “High Level Modeling and
Validation Methodologies for Embedded Systems:
Bridging the Productivity Gap,” 16th International
Conference on VLSI design, pp. 9-14, 2003.

[9] S. Edwards et al., “Design of Embedded Systems:
Formal Models, Validation and Synthesis,”
Proceedings of IEEE, Vol. 85, N°3, pp. 366-390, 1997.

[10] R. Gupta, G. De Micheli, ”Hardware-Software
Cosynthesis for Digital Systems,” IEEE Design and
Test of Computers, pp. 29-41, 1993.

[11] R. Ernst et al., ”Hardware-Software Cosynthesis for
Microcontrollers,” IEEE Journal Design and Test of
Computers, pp. 64-75, 1993.

[12] J. Davis et al., “Ptolemy II - Heterogeneous Concurrent
Modeling and Design in JAVA,” University of
California at Berkeley, September 2000.

[13] D. Araki et al., “Rapid prototyping with HW/SW
codesign tool,” Proceedings. Engineering of Computer-
Based Systems (ECBS), pp. 114-121, 1999.

[14] D. Gajski, "System-Level Design Methodology," ASP-
DAC 2004 Pacifico Yokohama, Yokohama, Japan,
January 27, 2004.

[15] [online] "Code Generation for SCA Components",
white paper, http://www.zeligsoft.com/, 2005.

[16] [online] "SCA Deployment Management", White
paper, http://www.zeligsoft.com/, 2005.

[17] P.Boulet, J-L.Dekeyser, C.Dumoulin and P.Marquet.
"MDA for soc design, intensive signal processing

experiment". FDL'03, Frankfurt, September 2003.
ECSI.

[18] E.Riccobene, P. Scandurra, A. Rosti, S. Bocchio, "A
SoC Design Methodology Involving a UML 2.0 Profile
for SystemC", Design, Automation & Test in Eur.
Conf. (DATE), 2005.

[19] B. Steinbach, Ch. Dorotska, D. Fröhlich "Hardware
Synthesis of UML-Models". Workshop on UML for
System-on-Chip Design (UML-SOC'05) at Design
Automation Conference (DAC'05), Anaheim, USA

[20] M.Oliveira, L.Brisolara, L.Carro, F.Wagner, "Embedded
SW Design Exploration Using UML-based Estimation
Tools", Workshop on UML for System-on-Chip
Design (UML-SOC'05) at Design Automation
Conference (DAC'05), Anaheim, USA

[21] A.Viehl, O. Bringmann, W.Rosenstiel, "Performance
Analysis of Sequence Diagrams for SoC Design",
Workshop on UML for System-on-Chip Design (UML-
SOC'05) at Design Automation Conference (DAC'05),
Anaheim, USA

[22] [online] A3S project home page: http://web.univ-
ubs.fr/lester/www-
lester/Projets/Codesign/A3S/English/A3Shome.htm

[23] [online] Objecteering software:
http://www.objecteering.com/

[24] A. Dasdan, “Timing Analysis of Embedded Real-Time
Systems,” Ph.D. dissertation, University of Illinois,
1999.

[25] Tmar H., Diguet J-P., Azzedine A., Abid M., Philippe
J-L., RTDT : a Static QoS Manager, RT Scheduling,
HW/SW Partitioning CAD Tool, ICM, 2004

[26] Joseph M., Pandya P., Finding response time in a real-
time system, IEEE Design and Test of Computers 29
(5) (1986) 390-395.

[27] Dave P., Jha N.K., Casper: Concurrent hardware-
software co-synthesis of hard real-time aperiodic
specification of embedded system architectures, in:
Design, Automation & Test in Europe Conf., Paris,
France, 1998.

[28] Azzedine A., Diguet J-P., Philippe J-L., Large
exploration for HW/SW partitioning of multirate and
aperiodic real-time systems, in 10th Int. Symp. on
HW/SW Codesign, Estes Park, USA, 2002.

[29] Butts J.A., Sohi G., A static power model for
architects, in: 33rd ACM/IEEE Int. Symp. on
Microarchitecture, 2000.

26 S. Rouxel, G. Gogniat, J-P. Diguet, J-L. Philippe, C. Moy

MARTES 2006 at MoDELS 2006

Modeling with logical time in UML for real-time
embedded system design

Charles André1, Arnaud Cuccuru2, Robert de Simone2,
Thierry Gautier3, Frédéric Mallet1, and Jean-Pierre Talpin3

1 I3S CNRS/UNSA Sophia-Antipolis, France
2 INRIA Sophia-Antipolis, France

3 IRISA Rennes, France

Abstract. Design of real-time embedded (RTE) systems requires particular at-
tention to the careful scheduling of application onto execution platform. Precise
cycle allocation is often requested to obtain full communication and computation
throughput.
Our objective is to provide a UML profile where events, actions, and objects can
be annotated by “logical” clocks. Initially, clocks are not necessarily related (or
even explicit). The goal of the scheduling process (and algorithms) is to regu-
late the data and control flows within predictable bounds. To this end it extracts
clock relations that result from mapping the application onto a desired execution
platform. Extra communication and buffering latencies can be introduced in the
process, due to the distribution of functions onto concurrent resources. “Clocks-
as-schedules” then act as activation conditions, driving these internal events and
actions according to the desired activation patterns.
In the paper we describe the domain view of multiple time and logical clocks.
We introduce a range of useful operations on them, and their use in various UML
views. Logical Time is part of an on-going proposal at OMG for a profile on
Modeling and Analysis of Real-Time Embedded systems (MARTE), that should
also subsume the former SPT profile for Schedulability, Performance, and Time.

1 Introduction

As embedded real-time systems have become pervasive and ubiquitous in contemporary
technologies, their development requires highly reliable approaches. To meet safety and
performance requirements, design has to be supported by trustable mathematical basis
that provides required formal concepts. A noteworthy example is the attention required
to the careful scheduling of functions and operations to be performed by the application
on the targeted execution platform, which demands precise cycle allocation to obtain
full communication and computation throughput.

However, precise cycle allocation is error-prone and tedious. A corpus of methods
has been proposed in recent years, where these precise relations are obtained by analy-
sis and optimization techniques from more relaxed high-level modeling of systems. In
other words, the final scheduling is compiled algorithmically from constraints on the
application, the target HW/SW execution platform, and the allocation mapping of func-
tions to resources. This can be done off- or on-line depending on the dynamicity and
the predictability of the system being modeled.

Modeling with logical time in UML for real-time embedded system design 27

MARTES 2006 at MoDELS 2006

Our current objective is to provide a UML modeling framework (profile) in which
to represent the ingredients of such an approach. Indeed, UML provides broad ways to
specify the different modeling views involved. But its largely “untimed” basis needs to
be augmented with proper semantical annotations on temporal aspects.

While akin to many previous attempts at time modeling in UML (UML-RT [16],
RT-UML [9], ACCORD/UML [10], SPT [14],. . .), our proposal still differs from them
in several ways. It is based on “logical” time bases (or clocks) that are introduced to
count/tick/trigger successive behaviors of signals, actions, objects (and so on). Clocks
that are mutually independent (or only loosely coupled) provide for models of asyn-
chronous tasks or processes. Clocks should act as generic activation conditions, driving
the internal events and actions according to the desired timing patterns.

Precise relations between clocks can be provided by users, or infered algorithmi-
cally from the scheduling constraints described in the model. In the latter case specific
optimization algorithms can take advantage from some usual limitations of RTE sys-
tems (predictability, determinism, static computation structure) to propose spatial and
temporal allocations that will best fit functional applications to execution platforms.
This has the effect of strenghtening the relations between clocks, constraining them to
a more rigid interdependency. Ultimately all clock flows may be expressed down to a
unique physical clock (but not always necessarily so). In a given methodological flow,
the approach should be used to adjust the various rates involved in different parts of the
application under design. Communications can be introduced by the spatial mapping of
functions onto concurrent resources. Extra latencies and buffering objects may also be
requested at places to regulate the data and control flows within predictable bounds.

Logical clocks associated with successive object or action behaviors are a conve-
nient way to represent explicit schedules as first-class citizens of the model. Such sched-
ules can then be named, visualized, and computed upon. Results can be displayed back
to the designer as a clock schemes refinement. It provides effective information on the
mapping decisions taken towards implementation.

We describe clock connectors, used to combine and compare them. Examples are
over- or down sampling, delay and resynchronizing operators, and so on. Sometimes
the connectors do not provide a unique transformation on tehir input clocks, but rather
introduce new constraints that allow a range of solutions (a given schedule is then ob-
tained by solving the set of aggregated solutions by a scheduling technique). Clocks
can be hierarchically organized, fully or partially. A clock can be a periodic subclock of
another (amongst other). Ultimately, a clock that upsamples all others in the system can
be thought of as “discrete physical time”, but the existence of a link to physical time is
not mandatory in our modeling framework.

The classical execution semantics of UML is asynchronous/untimed, which is just
fair as long as the timing constraint information is not specified in the model. In our
case an extended semantics should comply with the scheduling directives induced by
the logical clocks and their constraints.

The paper is organized as follows: section 2 describes the time model and its logical
clocks, their insertion in the application model and their allocation to an execution plat-
form model. Section 3 describes a case study that highlights the approach. We conclude
with perspectives.

28 Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet, and JP. Talpin

MARTES 2006 at MoDELS 2006

Related works Our approach should appeal to readers familiar with model-driven de-
sign based on mathematical Models of Computation [4, 11]. The notion of logical clocks
providing the schedule framework owes to the theory of tagged systems [13]. Syn-
chronous reactive formalisms [3] are examples of languages that handle (logical) time
as explicit mechanisms at the very heart of their semantic foundations. Schedule com-
putations from data-flow based application descriptions were developed in the theory
of Timed Event Graphs [5, 2]. It has found many usages, with some important develop-
ments for software pipelining [8] and hardware circuit timing [15]. It found some early
incarnation in the context of synchronous programming with the theory of affine clocks
[18]. The explicit representation of schedules in the discrete/periodic/regular case was
introduced in the theory of N-synchronous processes [6].

2 Modeling framework

Fig. 1. The various models and their package architecture

Our approach relies on the modeling framework displayed in figure 1. A functional
application is to be allocated onto a candidate architectural execution platform. The
application may exhibit potential concurrency and relative asynchrony between various
treatments, as well as subsystems running at various related speeds. The platform may
consist of mixed hardware and basic software parts. The allocation mapping consists
of both spatial distribution and temporal scheduling of functional operations onto plat-
form resources and services. Note that the words “functional” and “architectural” here
do not exactly match “behavioral” and “structural” notions. Functional applications
have a strong behavioral impact, but contain also hierarchical structure descriptions;
execution platforms, while providing the architectural block-diagram of resources and
connections, also describe some basic behavioral “service” aspects of the platform.

The allocation mapping between the application and the platform can be entirely
specified by the designer, or computed by analysis from a number of characterization
figures. It will result in a refinement of the time model of the application by the archi-
tecture constraints. This time refinement will be reflected in a tighter set of relations
between logical clock schedules. For instance relatively independent clocks can be in-
terleaved when functions are mapped to the same resource. The importance of schedule
descriptions as explicit model elements should fully appear here.

Modeling with logical time in UML for real-time embedded system design 29

MARTES 2006 at MoDELS 2006

2.1 Time Model

Our objective here is to introduce conceptual definitions related to our vision of Time.
The essential ones are represented in their domain view in figure 2.

MultipleTimeBase

TimeBase

Instant

{ ordered }
instants

base1

1..*

memberTB0..*

TimeStructureRelation
tsRelations

0..*

currentInstant1

MultipleTimeModels

TimeBaseRelation

CoincidenceRelation

2..* { union,ordered }
/relatedTB

2..*

coincidentInstants

0..*

0..1

subMTB

0..*

ownedTB
{ subsets memberTB }

Fig. 2. The time base model

The MultipleTimeModels package (Fig. 2) introduces a structural view of Time.
Time can be simple (totally ordered), or multiple (partially ordered in the form of sev-
eral, loosely coupled time bases). Precedence of instants can thus be defined as a partial
relation.

A clock attaches quantitative information (time values) to instants or set of instants
of time bases. A clock can be either logical or chronometric (the latter indicating that
time is supposed to be measured from physical devices, external to the model by defi-
nition). In the paper we shall concentrate on (more novel) logical time.

Even though time base and clock are two different concepts, in this paper, the word
clock will often be used in place of time base, this in accordance with standard usages.

Time can be discrete or dense. We shall stick here to discrete time, where Time
Bases can be seen as generated from clock ticking events. When modeling repetitive
tasks with discrete time it becomes possible to express explicit schedules relating the

30 Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet, and JP. Talpin

MARTES 2006 at MoDELS 2006

respective paces of clocks rather easily (which does not mean that it is always impossi-
ble in the dense case).

Establishing tighter relations between clocks shall be the main scheduling purpose
in the methodological system design activity associated with our modeling approach.
Coincidence of instants ticked by distinct clocks is allowed (simultaneity), so that syn-
chronous activities can be modeled.

Coincidence between instants of different clocks are expressed by time structure re-
lations. These relations are special UML constraints specified by predicates on clocks.
There are three main kinds of time structure relations: interleaving, decimation, and
rooted relations. Interleaving merges clocks while preserving each clock instant order-
ing. Decimation extracts subclocks: a clock A is finer than a clock B when A ticks at
least each time B does. Rooted relations combine clocks that share a common finer
clock called their root.

A non-exhaustive list of useful clock predicates can be provided (remember that
these predicates are often relational in the sense that they do not lead to a unique solu-
tion, and that a specific solution is provided only when a specific deterministic schedul-
ing is given). Equal(H,H’) states that two clocks are identical; conversely disjoint(H,H’)
states that they share no instant. Shift(H,n) starts with the nth tick of H . Coarser(H,H’)
states that H’ is a subclock of H; Finer(H’,H) stands for Coarser(H,H’). Faster(H,H’)
states that the nth tick of H occurs before the nth tick of H ′ ; Slower(H’,H) stands for
Faster(H,H’). Subsample(H,H’,Pattern) state that H ′ ticks only on those instants of H
selected by the pattern (usual patterns are periodic words on {0, 1} or affine expres-
sions ax + b); Oversample(H’,H,Pattern) stands for Subsample(H,H’,Pattern). SameR-
ate(H,H’) states that the two clocks have asymptotically the same rate. Furthermore,
MaxDrift(H,H’,d) means that the difference between the two clocks is bounded by d
ticks. SampleTo(H,H’) projects each tick of H onto the tick of H ′ that immediately
follows it; it is ill-defined if there are two successive ticks of H without a tick of H ′ in
between, possibly coincident with the first of the two ticks of H .

In the example of section 3 we shall use the decimation relation B = Periodic-
Decimation(A, 10, 0) stating that clock A is finer than clock B, and that each instant
of B coincides with every 10 instants of A (10 is the period, 0 is the offset). More
generally, a decimation is characterized by a strictly increasing sequence of integers
(indexes of coincident instants), or even more concretely by a sequence of bits, called a
filter pattern. If A is finer than B, then a ‘1’ at a given index position i in the sequence
indicates that clock B ticks at the ith tick of A.

Formal definitions for clock predicates are provided in a research report [1].

2.2 Application Modeling

Applications should be represented using the familiar UML modeling views for struc-
tural and behavioral aspects: state, activity and interaction diagrams, structured classes
and components. In the field of RTE systems it is often the case that activity and “com-
ponent blocks” diagrams play a particular role, as noticed through their emphasis in
SysML for instance.

To build our application model, the primary extension to these models shall be the
introduction of the logical clocking information available (or requested) as annotations.

Modeling with logical time in UML for real-time embedded system design 31

MARTES 2006 at MoDELS 2006

TimeValueSpecification TimedAction
0..1

duration

TimedEvent

when1

start
0..1

finish
0..1

Clock

on1

Fig. 3. Time entities

The objective is to provide schedules for elementary behavioral elements such as ac-
tions and events. Timed behaviors are tagged with two events denoting the start and
the finish of this behavior. Events, when timed, are annotated with a time value that
refers to a clock. The activation instants of behaviors on a given clock can be provided
as absolute values, but much more often as relative values introducing latencies and
durations. Such values are provided usually as TimeValueExpressions. For instance, if
the start event of a given activity is annotated with the expression “each tick on clock1”,
it means that this activity is triggered by the clock “clock1”. Hence, activities are syn-
chronous if there are all triggered by the same clock. When all actions within an activity
refer to synchronous activities (Call Behavior Action) the activity is stereotyped “sAc-
tivity” for synchronous Activity. The extension of relevant modeling elements to their
Timed versions is displayed in figure 3.

Timed semantics The operational semantics of UML is basically untimed (some would
call it asynchronous). When timing considerations are introduced, they are often added
as external “non-functional” constraints, and their satisfaction is not demanded explic-
itly in the “official semantics”. This is certainly fine to define a computational model
that works when these timing annotations are not provided, and we certainly do not
want to question this model in such case. But when explicit timing (logical or physical)
is specified in the model, the semantics should of course take it into account (or else
the UML semantics be discarded for modeling intentions that would only rely in its
diagrammatic views and discard its meaning). Following Bran Selic [17], we see two
places where this is important:

inter-object communications. Example questions here are: What is the time relation
between the send and receive actions on a signal event? How could one model
rendez-vous synchronization when modeling demands? The actual arriving time
can have a drastic impact on real-time scheduling techniques (and then on the or-
dering of behaviors in a faithful operational semantics).

32 Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet, and JP. Talpin

MARTES 2006 at MoDELS 2006

intra-object communications Actions are triggered by object/data flows and control
flows. But in the current state of UML 2.0 there is not much differences betwen the
two kinds of flows. Data-flow models are found very useful for abstract modeling,
but hardly used for real-life semantics. Instead they are usually transformed (by
classical scheduling) in a model where all information on cycle time activation is
carried by the control flow (it “provides” control), and the data-flow is weakened to
a data-path; indeed, control-flow design is supposed to ensure that the proper data
have arrived in the proper locations (here, at the input pins of the action), when it
is activated.

2.3 Execution Platform Modeling

Fig. 4. Execution platform metamodel, with examples of hardware specific resources refinement
(simplified diagram)

The purpose of the Execution Platform Model is to enable embedded systems de-
signers to specify and dimension the architectures meant to support the applications.
The actual allocation (of application to platform) can be specified entirely by the de-
signer, or sometimes, computed by analysis tools [12]. Such tools require basic infor-
mation on the computation and communication costs for basic functions, from which
they attempt to minimize the overall cost of well-chosen allocations. Algorithmic de-
tails are out of the scope of this paper. The result can be displayed as tighter clock
relations. Typically a new ground clock is introduced, on which existing clocks are syn-

Modeling with logical time in UML for real-time embedded system design 33

MARTES 2006 at MoDELS 2006

chrononized to the desired effect. For instance functions that share a resource must be
interleaved exclusively.

As illustrated in Fig. 4, the model mainly introduces two concepts: resources and
services. Structurally, an execution platform is a block-diagram of resources of several
natures: computing, storage, communication endpoints (performing send/receive ac-
tions), and interconnect media. Platform services use a predefined number of resources
in a way described as an interaction scenario. Generic services describe natural aspects
of the platform and can be used to introduce costs at a higher description level. Specific
services can be used to provide descriptions that come to the level of application func-
tions. This is used to bridge the possible gap in atomicity level to group the necessary
platform behaviors and resources so that it can realize the function directly.

No assumptions are made on the granularity of the resources considered in the spec-
ification of an execution platform. According to nature of the application, an execution
platform can be a coarse grain description of a basic software operating system offer-
ing services for thread and memory management, or very fine grain view point of a
hardware execution platform (down to ASICs). Note that the hierarchical aspect of the
metamodel (composition relation between resources in Fig. 4) enables all kinds of lay-
ering specifications. For example, the bottom layer of an execution platform (typically
specified as an assembly of fine grain hardware resources) can be abstracted by a higher
level software execution layer.

Resources timing and clocking information are often of a more physical nature as
those of the application. Time bases provide a specification of computing speeds for
hardware elements. Durations provide an account of computational complexity. For
example, in a hardware execution platform, physical relations typically exist between
the operating frequencies (clocks) of the various resources (e.g., a bus clock ticking one
time every ten ticks of the processor clock, i.e., the bus clock is ten times slower than
the processor clock but is synchronized with it).

2.4 Allocation modeling

The Allocation metamodel deals with the mapping of functional Application elements
ontoExecution Platform resources and services. The same concern exist in SysML (un-
der the same name), and in SPT (where it was called Realization). It is usually con-
sidered in connection with Abstraction/Refinement mechanisms. But while allocation
provides an “horizontal” mapping between previously independently described enti-
ties, abstraction/refinement provides “vertical” association notions inside each respec-
tive representation (Application or Execution Platform), respecting their global struc-
ture while allowing to lift it up or down to match the level of details of the other side.

With potentially clocked systems on each side, an important concern of the alloca-
tion process will be to associate the (more logical) clocks of the application to the (more
physical) clocks of the execution platform. In the simple case of untimed application, it
will mainly consist in assigning a time cost for executing that function on that resource
(or for executing that communication on that interconnect medium). More generally, we
want to provide contraint laws amongst clocks. Here again SysML “parametrics” (or
“contraints”) models could be used. Note that, while Allocation and Constraint mod-

34 Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet, and JP. Talpin

MARTES 2006 at MoDELS 2006

els are rather independent in SysML, here the temporal laws are an integral part of the
Timed Allocation process.

As already mentioned, a more accurate and tighter application schedule is usually
meant to be computed as a result of Timed Allocation, using the time constraints from
the execution platform to refine the time relations of the application. Ultimately, this
might assign physical clock cycles to the execution of the elementary actions. This is
shown in the example of section 3. Note that in case of code parallelization/vectorization,
or conversely of timesharing between distinct tasks, the clock scheme of the application
can get distorded by these additional constraints imposed by the mapping.

The Allocation metamodel offers different kinds of relationships (structure to struc-
ture, behavior to structure, behavior to behavior), that will not be described in details
in this paper. But ultimately, an action considered as atomic in the application must
be related (directly or indirectly through an analysis process) to the (possibly multi-
ple) execution of one or more services supported by one or several resources of the
targeted execution platform. This property is illustrated in Fig. 5, where Collaboration
and Behavior concepts have a similar semantics to homonymous UML 2 concepts (re-
spectively the set of structural elements, i.e., resources, that will collaborate to “realize”
the action, and the description of the interactions, i.e., service executions, between the
different parts of the collaboration).

Fig. 5. Allocation metamodel (partial)

3 An illustrative example

As an illustrative example, we consider the downscaling of a high definition (HD) video
image into a standard definition (SD) image. This example is primarily meant to show

Modeling with logical time in UML for real-time embedded system design 35

MARTES 2006 at MoDELS 2006

the use of Clocks-as-schedules. In that sense, it hardly uses Execution Platform and
Allocation modeling, and focuses on Timed models inside application instead.

The downscaling application has been modeled with Multi-Periodic Process Net-
works [7], a model influenced by Petri nets, data-flow graphs, and Kahn Process Net-
works. A HD image consists of 1080 lines, each made of 1920 pixels. A SD image has
720 lines with 480 pixels each. The transformation reduces the number of pixels per
line (ratio of 8:3), and the number of lines (ratio of 9:4). So, altogether the output pixel
rate is 3

8 × 4
9 = 1

6 of the input rate. Functionally, the transformation can be decomposed
in the horizontal filtering of each HD lines, followed by the vertical filtering of the re-
sulting lines. Filtering includes smoothing (each new pixel results from a weighted sum
of a neighborhood) and a decimation (discarding pixels). This transformation must be
done in real-time: the pixels of input HD image are received at a rate imposed by the
inClk clock, and the pixels of the output SD image have to be delivered at a rate im-
posed by the outClk clock. The two clock frequencies are specified in the standards. At
the implementation level, horizontal and vertical filterings are performed in a pipeline
mode, which calls for a precise schedule of elementary operations. For simplicity we
describe only the horizontal filtering.

Given the specification of the application and a target execution platform, we pro-
ceed as follows:

1. A static model of the main data structures handled by the application is designed. It
brings out dimensional data-flow aspects, closely related to repetitive processings.

2. The functionality of the application is expressed by activity diagrams or pseudo
algorithmic representations. Local logical clocks should be introduced at this step
to support scheduling.

3. Activities are allocated to services supported by an Execution Platform. Informa-
tion about the duration of the service executions is collected from the platform
model and integrated in the logical clocks.

4. A clock calculus determines the schedule of all actions. If the external timing con-
straints are not satisfied, then the activities or the local clocks have to be modified,
and the procedure is applied again from step 3.

HorizontalFilterHDLine SDLine
in
1

out
1

HDHoB SDHoBHorizontalBlockFilter

240 { ordered } 240 { ordered }

in
1

out
1

Pixel
8 { ordered } 3 { ordered }

SlidingWindow

8 { ordered }w
6 { ordered }

<<refine>>

swCk

hbCk

hlCk

Fig. 6. Static model

36 Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet, and JP. Talpin

MARTES 2006 at MoDELS 2006

Step 1 The static model is given in Fig. 6. A HD line consists of 240 HD Horizontal
Blocks (HDHoB), each made of 8 pixels. On the SD side, a line is also made of 240
SD Horizontal Blocks (SDHoB) of 3 pixels each. The filtering of a HD line can be
refined into 240 horizontal block filterings. The horizontal block filtering reduces the
line length in a ratio of 8:3.

Step 2 The logical clocks introduced for the HD line filtering are justified below and
their equations are gathered in Table 1.

clock name equation
1 pxInClk alternation(inClk, pxInClk)
2 HDHoBClk HDHoBClk = pxInClk|(1.07)∗

3 HDLineClk HDLineClk = HDHoBClk|(1.0239)∗
4 smoothClk smoothClk = HDHoBClk|(10100100)∗

Table 1. Clocks after step 2

The pxInClk clock samples the pixels received at the rate of inClk without loss or
repetition. This holds whenever ticks of the two clocks alternate. Alternation is a
special interleaving relation.

Since a HD horizontal block consists of 8 received pixels, the clock attached to the start
of a HDHoB filtering (HDHoBClk) must be 8 times slower than pxInClk. This is
expressed by Eq.2 using the clock downsampling relation, which is a decimation
relation with a periodic filter pattern, (1.07)∗ in this case.

Since a HD line contains 240 blocks, the clock attached to the start of a HDLine
filtering (HDLineClk) must be 240 times slower than HDHoBClk.

A block filtering consist of 8 smoothing operations on a window. But because of the
pixel decimation, only 3 out of the 8 are necessary. So, the 8 iterations making a
block filtering are not identical. The body of the loop does or does not compute a
smoothing function and generate a new pixel. This kind of variable iterations are
elegantly expressed by a clock expression. Let smoothClk be the clock starting a
body execution with smoothing and pixel generation. The filter pattern 10100100
preserves 3 results out of 8 computations. It reflects a design decision that fixes
which pixels must be discarded, in an evenly spread way.

The WindowFiltering activity triggered by smoothClk is

1. Get the incoming pixel.
2. Push it in the (sliding) window w (the oldest pixel is lost).
3. Compute a dot product: s =

∑k=5
k=0 w[k] ∗ a[k], where w[k] is the value of the kth

pixel in the window, and a is an array of weighting coefficients.
4. Create a pixel with value s and insert it in the SDHoB.

The complementary clock of smoothClk (i.e., HDHoBClk|(01011011)∗) triggers only
the first two actions of the above activity.

Modeling with logical time in UML for real-time embedded system design 37

MARTES 2006 at MoDELS 2006

The behavioral model of the application is specified by activity diagrams (Fig.7).
Standard UML activity diagrams are extended to support the concept of clocks. We have
introduced special pins, called clockPins used to trigger actions, and a new compartment
for clock relations. Note that some clocks (e.g., rCk) are local to an activity.

act: HorizontalFilter

HBFilter

[240 times]

[else]

hlCk = PeriodicDecimation (hbCk,240,0)

hbCk

hlCk hbCk

act: HBFilter

slidingWindow

[8 times]

[else]

hbCk = PeriodicDecimation (swCk,8,0)

swCk

act: slidingWindow

read push dotProd

write

in:Pixel

out :PixelrCk pCk dCk

wCk

swCk
swCK = PeriodicDecimation (prCk,10,0)
rCk = swCk; pCk = rCk >> 1 on prCk; sCk = rCk | (10100100)*
dCk = sCk >> 2 on prCk; wCk = sCk >> 10 on prCk

swCk

prCk

Fig. 7. Behavioral model

Step 3 In order to select an Execution Platform, we have to consider required perfor-
mance. 25 full images are sent every second. Each image has 1125 lines (1080 visible
lines + 45 service lines in the HDTV NHK standard). Each line has 1920 pixels. Thus,
the inClk has a frequency of 25 × 1125 × 1920 = 54.106 Hz, hence a period of 18.5
ns. So small an amount of time forbids the use of general purpose execution platform.
An ASIC solution is chosen. Coefficients for the dot product are negative power of 2 so
that the dot product consists of simple bit-shift followed by additions.

The resources are 2 registers, 1 shift-register, and a tailored ALU. Tab. 2 contains
pertinent information about the execution platform. prClk is the clock of the hardware.
Duration is expressed in number of cycles of this clock.

From Table 2 we extract new clock relations gathered in Table 3. The duration for
the execution of the WindowFiltering activity is 1 + 1 + 8 = 10 cycles of clock prClk
(note that the write action is performed concurrently with the next read action). So,
this clock should be 10 times faster than clock pxInClk (Eq. 5). In this case, we use a
clock upsampling relation, a special decimation relation. On the other hand, the sliding
window has to be filled-in before it can operate at its full speed. This needs a delay of 5
instants on the HDHoBClk clock (Eq. 6). The delay relation denoted by >> is another
instance of decimation relation, characterized by the filter pattern 0 d.1∗ for a delay of

38 Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet, and JP. Talpin

MARTES 2006 at MoDELS 2006

Resource Type Service Duration Clock
pxInBuf Register get():Pixel 1 prClk

slidingWindow Shift-Register push(p:Pixel) 1 prClk
get(i:integer): Pixel 1 prClk

filter ALU dotProduct():Pixel 8 prClk

pxOutBuf Register put(p:Pixel) 1 prClk
Table 2. Execution Platform

d. Now, a fine schedule of actions can be derived from the WindowFiltering activity
specification and the known durations of the actions. For instance, the get action on
pxInBuf has to be scheduled one instant of prClk after the sampling of a pixel. This
is expressed by Eq. 7. The push action in the sliding window has to be scheduled two
instants after the sampling of a pixel (Eq. 8), and so on.

clock name equation

5 prClk prClk = pxInClk|(1.09)∗

6 HDHoBClk′ HDHoBClk′ = HDHoBClk � 5
7 pxInBufGetClk pxInBufGetClk = (prClk � 1)|(1.09)∗
8 slidingWindowPushClk slidingWindowPushClk = (prClk � 2)|(1.09)∗

Table 3. Clocks after step 3

4 Conclusions and Future Directions

We have provided a modeling framework to represent time schedule informations in
Real-Time Embedded applications. The approach is model-based and relies fully on
existing UML modeling paradigms. Explicit schedules are represented as logical clocks
and clock relations. In the case of predictible periodic behaviors they can be computed
upon, but the modeling scope is not limited to this case; in the larger spectrum they can
be kept as relations. We focused on discrete clocks, but rational clocks could be defined
as well.

The approach relies on time refinement, by which a set of loosely related clocks
can be inter-scheduled to one that encompasses them all. Execution platform models
provide mandatory duration values for computations, and allocation mappings associate
these constraints to the application demands. Defining ad-hoc platform services brings
the platflorm closer to the application.

Further work should be conducted to demonstrate the use of explicit logical clock
scheduling in broader scope. Real case studies on execution platform models would also
lead to a better understanding of the approach. We are currently implementing these
concepts into UML profile modelers, and presenting them at the OMG in the frame-
work of the MARTE profile proposal (Modeling and Analysis of Real-Time Embedded
systems).

Our graphical representations should be refined so as time schedules and clock re-
lations can be precisely represented on UML diagrams in the most practical way.

Modeling with logical time in UML for real-time embedded system design 39

MARTES 2006 at MoDELS 2006

References

1. Charles André, Arnaud Cuccuru, Robert de Simone, and Jean-Pierre Talpin. Modeling with
logical time in uml for real-time embedded system design. Technical report, Sophia Antipo-
lis, 2006. Rapport de Recherche INRIA/RR–5895.

2. F. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat. Synchronization and Linearity. Wiley,
1992.

3. Benveniste, Caspi, Edwards, Hallbwachs, Le Guernic, and de Simone. The synchronous
languages twelve years later. Proceedings of the IEEE, 91(1), 2003.

4. J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: A framework for simulat-
ing and prototyping heterogeneous systems. International Journal of Computer Simulation,
special issue on “Simulation Software Development”, 4:155–182, April 1994.

5. J. Carlier Ph. Chrétienne. Problème d’ordonnancement: modélisation, complexité, algo-
rithmes. Masson, Paris, 1988.

6. Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and
Marc Pouzet. N-synchronous kahn networks. In POPL 2006 Proceedings, January 2006.

7. Albert Cohen, Daniela Genius, Abdesselem Kortebi, Zbigniew Chamski, Marc Duranton,
and Paul Feautrier. Multi-periodic process networks: Prototyping and verifying stream-
processing systems. In Euro-Par ’02: Proceedings of the 8th International Euro-Par Con-
ference on Parallel Processing, pages 137–146, London, UK, 2002. Springer-Verlag.

8. Vincent H. Van Dongen, Guang R. Gao, and Qi Ning. A polynomial time method for optimal
software pipelining. In Proceedings of the Second Joint International Conference on Vector
and Parallel Processing: Parallel Processing, volume 634 of LNCS, pages p613–624, 1992.

9. Bruce Powell Douglass. Doing Hard Time: Developping Real Time Systems with UML,
Objects, Frameworks, and Patterns. Addison-Wesley, 1999.

10. S. Gérard, F. Terrier, and Y. Tanguy. Using the model paradigm for real-time systems de-
velopment: Accord/uml. In OOIS’02-MDSD, volume 2426 of LNCS, Montpellier (F), 2002.
Springer-Verlag.

11. Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency and Time in Models of
Computation. Morgan Kaufman, 2003.

12. C. Lavarenne, O. Seghrouchni, Y. Sorel, and M. Sorine. The SynDEx software environment
for real-time distributed systems, design and implementation. In Proceedings of European
Control Conference, ECC’91, Grenoble, France, July 1991.

13. E. A. Lee and A. L. Sangiovanni-Vincentelli. A framework for comparing models of com-
putation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17(12):1217–1229, December 1998.

14. OMG. UML Profile for Schedulability, Performance, and Time Specification. Object Man-
agement Group, Inc., 492 Old Connecticut Path, Framing-ham, MA 01701., January 2005.
OMG document number: formal/05-01-02 (v1.1).

15. François R.Boyer, El Mostapha Aboulhamid, Yvon Savaria, and Michel Boyer. Optimal
design of synchronous circuits using software pipelining. In Proceedings of the ICCD’98,
1998.

16. Bran Selic and James Rumbaugh. Using UML for Modeling Complex Real Time Systems.
Technical report, ObjecTime, 1998. http://www.objectime.com.

17. Bran Selic. On the semantic foundations of standard uml 2.0. In SFM-RT 2004, volume
3185 of LNCS, pages 181–199. Springer-Verlag, 2004.

18. Irina Smarandache. Transformations affines d’horloges: application au codesign de systèmes
temps-réel en utilisant les langages signal et alpha. In Thèse de l’Université de Rennes, 1998.

40 Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet, and JP. Talpin

MARTES 2006 at MoDELS 2006

Analysis and Modeling of Real-Time Systems with
Mechatronic UML taking Clock Drift into Account�

Holger Giese, Stefan Henkler, and Martin Hirsch��

Software Engineering Group,

University of Paderborn,

Warburger Str. 100,

D-33098 Paderborn,

Germany

[hg|shenkler|mahirsch]@uni-paderborn.de

Abstract. A number of approaches for the modeling and automatic verification

of UML models of real-time systems exists. These approaches make the strong

assumption that the clocks employed in the models are perfect. In practice, how-

ever, clocks on different nodes usually show different values and speed. In real-

time systems, the related clock characteristics of clock drift, rate, offset, and pre-

cision must thus be considered during modeling and verification. In this paper,

we present an approach based on our MECHATRONIC UML approach which at

first captures information about clock drift and precision at the platform indepen-

dent level, in the platform model, and at the platform specific level. Secondly, we

present an emulation scheme which considers the effects of clock drift and per-

mits the compositional verification of ATCTL properties and deadlock freedom

for a known precision.

1 Introduction

A number of approaches for the modeling and automatic verification of UML models

of real-time systems exists [1, 2]. These approaches make the strong assumption that

the clocks employed in the models are perfect. In practice, however, clocks on different

nodes usually show slightly different behavior due to clock drift (cf. [3, 4]).

The difference between clocks can be restricted to very low values in tightly cou-

pled networks, but may also be considerably large or even unbounded in the long run

for independently operating subsystems. In most cases, at least the precision (the max-

imal offset between different clocks) is known. The FlexRay bus system, for example,

guarantees a precision of 3μs [5].

While approaches exists which use Timed Automata verification to verify a certain

precision for a given clock synchronization protocol [6] or which take clock drift into

account by adjusting the model manually in a problem specific manner [7], to the best

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing

Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-

lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.
�� Supported by the University of Paderborn.

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 41

MARTES 2006 at MoDELS 2006

of our knowledge no general applicable approach which can thus be automated has been

proposed yet.

Even in the case that the specific clock synchronization protocol is known and can

be modelled with Timed Automata (cf. [6]), it seems that to encode the application

specific time constraints on top of the explicit modeled time, Timed Automata with ad-

ditive clock constraints are required. However, Timed Automata with addition of clock

values in the time constraints cannot be checked as their emptiness problem is undecid-

able (cf. [8]). Therefore, we propose to look for a pessimistic emulation of the timed

behavior with clock drift rather than a precise one, as otherwise automatic verification

seems not feasible.

In this paper, we present an approach which, at first, captures information about

clock drift and precision at the model level and extends our MECHATRONIC UML

approach [9–11] for the compositional modeling and verification of real-time systems

with embedded control functionality. Secondly, we present an emulation scheme which

pessimistically considers the effects of clock drift and therefore permits to composition-

ally verify ATCTL properties and deadlock freedom for the system, taking the effects

of clock drift into account.

The paper is structured as follows: We first precisely define the problem of clock

differences and clock drift in Section 3. Then, we outline in Section 4 how the required

or known bounds on clock differences and clock drift have to be taken into account in

platform independent and platform dependent UML models. In Section 5, the underly-

ing techniques for the verification of UML models with real-time and their extension

for the case of clock differences and clock drifts is outlined. The validity of the chosen

verification scheme is demonstrated in Section 6 by showing that the emulation is a

pessimistic abstraction and thus ATCTL formulas and deadlock freedom checked for

the emulation can also be guaranteed for the real-time behavior of the system with the

known clock difference and clock drift. The paper closes with a discussion of related

work in Section 7, a conclusion, and an outlook on planned future work.

2 Example

To outline our approach, we employ as running example the air gap optimization system

for a linear drive, which has been developed within the collaborative research center

6141 of the German National Science Foundation (DFG) and applied concretely to the

RailCab research project.2 The RailCab project uses a passive track system with shuttles

that operate individually. The shuttles use a linear drive actuation techniques similar

to the Transrapid.3 In contrast to the Transrapid, the existing railway tracks will be

reused and just need to be extended by adding a stator in the middle of the tracks. The

counterpart, the rotor, is in the shuttle itself. The infrastructure of the system is based

on a satellite supported positioning network and wireless communication network for

the communication between shuttles and stationary installations.

1 http://www.sfb614.de
2 http://www-nbp.upb.de/en/index.html
3 http://www.transrapid.de/en/index.html

42 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

The idea of the air gap optimization system is to minimize the air gap between a

shuttle and a track to enable the optimization of the energy consumption. As shown in

Figure 1, the distance between the rotor and stator needs to be minimized to reduce the

energy needed for transmitting the power through the magnetic field. But if the distance

is too close, the gravity between rotor and stator will be too strong and hence the rotor

and stator are pressed together. Thus the control becomes a critical aspect and has to

be addressed in an appropriate manner (e.g. fail-safe behavior). Our proposed modeling

approach will address this aspect. To enable the adaption of the distance between a track

and a shuttle, the two rotors of a shuttle can be manipulated in their height. As the track

changes permanently due to abrasion and tiny movements of the track foundation as

well as temporarily ones due to the weather conditions, the a priori regulation of the

distance between rotor and stator by considering the optimization of the energy would

require a large distance and thus would be very inefficient.

Therefore, the distance must be regulated dynamically. The first idea is to use sen-

sors to measure the distance between rotor and stator. Based on these measurements, the

air gap can be regulated. As the measurements could not be directly, in zero time, used

for the control of the air gap, the data of the measurements are recorded and commu-

nicated to a control point, which has still enough time for using the data for regulation.

Considering Figure 1, the measured air gap at a specific point at the track of the front of

the leading shuttle can be communicated to the back of the shuttle itself and, perhaps,

can be used to adapt the air gap based on the measured data at the front. Furthermore,

the data can be communicated to the last shuttle and used for optimization of the air

gap.

Fig. 1. The air gap module

In the next section, we review some fundamental definitions and discuss the param-

eters that characterize the behavior and the quality of clocks in distributed systems.

3 Foundations

In principle, each component of a system has access to information about the time

through a clock implemented on the system. However, there is an unavoidable drift

of local clocks, i.e. a local clock always proceeds faster or slower than the real time.

Considering a number of cooperating components, this implies that in the course of

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 43

MARTES 2006 at MoDELS 2006

time, their respective local clocks will deviate more and more from the real-time and

from each other. Thus, as long as no correction action is performed, clocks on different

nodes tend to drift apart. In this section, the parameters that characterize the behavior

and the quality of clocks are discussed in accordance with [3].

Definition 1. We have to distinguish between physical clocks (pci) and a reference

clock (z). With t we denote a point of real time and with pci(t) the value of the physical
clock pci on time t (the same holds for the reference clock z). In more detail a physi-
cal clocks runs locally on a system component. In contrast to the physical clocks, the
reference clock is in perfect agreement with the international standard of time, e.g. the
International Atomic Time (TAI).

Definition 2. The clock drift of a physical clock pck between two points t and t′ of real
time where t′ > t is the frequency ratio between clock pck and the reference clock z at
point of time t:

driftkt,t′ =
pck(t′) − pck(t)

z(t′) − z(t)
.

Definition 3. For describing the effects of the clock drift, we introduce the term drift

rate, which gives a value showing how the physical clock behaves with respect to real
time:

ρk
t,t′ =

∣
∣
∣
∣
pck(t′) − pck(t)

z(t′) − z(t)
− 1

∣
∣
∣
∣ .

A perfect clock will have a drift rate of 0, hence the clock drift will be 1.

Definition 4. The maximum drift rate ρk
max of a clocks k is defined as the maximum

drift rate which can be observed

ρk
max = max

∀t<t′
{ρk

t,t′}.

Typical maximum drift rates ρk
max are in the range of 10−2 to 10−7 sec/sec, or better.

Another parameter to characterize the behavior of two clocks is the offset.

Definition 5. The offset at a point of time t between two clocks pcj and pck is defined
as

offsetj,kt = |pcj(t) − pck(t)| .
Definition 6. The precision of a set of clocks {pc1 . . . pcn} is defined as the maximum
offset between any two clocks

Π = max
∀1≤j,k≤n,t

{offsetj,kt }

To stress that the drift can be bounded by the difference of two clock values, we can

conclude from Definition 2, Definition 3, Definition 5, and Definition 6 that follows

ρk
t,t′ =

∣
∣
∣
∣
pck(t′) − pck(t)

z(t′) − z(t)
− 1

∣
∣
∣
∣

tz :=z(t′)−z(t),tz>0
=

|(pck(t′) − pck(t)) − tz|
tz

44 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

⇒ tz ρk
t,t′ = |(pck(t′) − pck(t)) − tz| ∧ tz(1 + ρk

t,t′) = |(pck(t′) − pck(t))|

⇒
{

tz(1 + ρk
t,t′) = (pck(t′) − pck(t)) , (pck(t′) − pck(t)) ≥ tz

tz(1 − ρk
t,t′) = (pck(t′) − pck(t)) , (pck(t′) − pck(t)) < tz

(1)

We first, for simplification, substitute the denominator which is the difference be-

tween two points of time t and t′ of the reference clock by the constant tz and assume,

that the difference is always positive. From this equation we can conclude, that the

clock rate, multiplied with the differenz tz , is still bounded by the absoulte value of the

difference of two physical clocks. Finally, to be correct, we distinguish the two cases

where (pck(t′) − pck(t)) ≥ tz and (pck(t′) − pck(t)) < tz . This result is later used in

the justification of our approach.

In the following section, we discuss how the phenomenon of clock drift is addressed

when modeling real-time systems with MECHATRONIC UML.

4 Modeling

In this section we describe MECHATRONIC UML, our modeling approach for the de-

sign and analysis of mechatronic systems. First we introduce the basic concepts of

MECHATRONIC UML. Then, we consider the platform independent model (PIM) (Sec-

tion 4.1) and platform specific model (PSM) (Section 4.2) and assign our modeling

approaches to both levels. Afterwards we describe which information is necessary to

consider systems with a bounded precision (Section 4.3).

4.1 Platform Independent Model of MECHATRONIC UML

Aspects of a platform independent model are valid for a class of platforms. E. g., dead-

lines are platform independent, as these are requirements of the system and not of the

specific platform. In the following, we describe the concepts of MECHATRONIC UML

by considering the PIM.

For the structural view, MECHATRONIC UML supports components, which are

based on UML 2.0 components, and patterns, which are adapted to the domain of hard

real-time component-based systems. We differentiate between discrete, continuous, and

hybrid components. In general, if we say component, we mean discrete component.

Figure 2 shows the structure of the air gap example (cf. Section 2). The hybrid Monitor
component embeds and controls the continuous Storage component, continuous Sen-
sor component and hybrid AirGap component. Besides the aforementioned coordination

aspects of the Monitor, the communication with the Registry is realized by the Monitor,
too.

Every shuttle needs to log in to a track section via the Registry. Furthermore, the

Registry is used to store the information generated by a shuttle. This information can be

used by following shuttles to optimize the energy consumption by optimization of the

air gap. Therefore, the Monitor component sends information about a track section to

the Registry and tries to get information of prior shuttles. To get the information about

the track, the Sensor component is used. To store the information of prior shuttles, the

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 45

MARTES 2006 at MoDELS 2006

Storage component is used. The information of both, the Sensor component and Stor-
age component, is transmitted to the AirGap component, which uses this information

for the optimization of the air gap.

For the interaction between the Monitor and Registry component, the MonitorReg-
istry pattern is used. The introduced patterns of MECHATRONIC UML consist, in the

structural view, of roles and a connector between two roles. The MonitorRegistry pattern

consists of MonitorRole and RegistryRole, which are applied by the Monitor component

and Registry component.

:AirGap

:Monitor
Monitor−

Registration

Monitor
Role

Registry
Role

:Sensor

:Storage

:Registry

Fig. 2. Monitor and registration component and pattern

Besides the introduced structural view of MECHATRONIC UML, we now introduce

the behavioral view of MECHATRONIC UML. Therefore, we first look at the patterns

of MECHATRONIC UML. The behavior of a pattern role is specified by real-time state-

charts. Real-time statecharts are syntactically based on statecharts. To enable the model-

ing of real-time systems, the syntax extensions of real-time statecharts consist of timing

constraints in form of deadlines, WCET, time invariants and time guards. The semantics

of real-time statecharts are based on the semantics of Timed Automata [12]. The lower

and-state in Figure 3 shows the MonitorRole behavior. If the registry has no information,

the MonitorRole sends requests to the RegistryRole every 20 ms. If MonitorRole gets in-

formation, these are added to the storage. Furthermore MonitorRole sends experience to

the Registry.

The behavior of components is specified by hybrid statecharts. These are real-time

statecharts with the possibility of embedding hybrid components where ports can be

continuous, discrete or hybrid. Figure 3 shows the behavior of the hybrid Monitor com-

ponent. The lower and-state is the applied MonitorRole behavior. The upper and-state

specifies the so called synchronous and-state. There, all applied pattern roles are syn-

chronized with each other to enable a valid overall behavior. Within the four states of

the upper and-state, AllAvailable, AbsAvailable, NoneAvailable, and RefAvailable, contin-

uous components are embedded. Thus, a switch to another state yields a reconfiguration,

as another configuration of controllers is used. To consider the fading, we introduce a

fading function. The fading function abstracts from the needed continuous fading states

and specifies just the time needed for fading, as this is the important information for

switching to another state.

46 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

:Sensor[Off]:AirGap[Robust]

:Sensor[On]

:AirGap[Robust] :Sensor[Off]

storage:Storage

:Sensor[On]:AirGap[Reference] :AirGap[Absolute]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

when(nextSegment)
data(Vector zRef)? /

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailable

registry.experience
noData! /

after(20) /
registry.requestInfo

AirGapNot
Available

sensor.ok

bc.switchToRobust

when(nextSegment)
data(Vector zRef)? /

AllAvailable

sensor.failure

registry.sendInfo(zRef) / storage.add(zRef)

when(storage.isEmpty())

AirGap
Available

/ registry.experience
data(Vector zRef)!
!storage.isEmpty())
when(

da

t = 0

t ≥ threshold

de

db

dc

dd

Fig. 3. Monitor behavior with embedding

To complete our example, we need a periodic interaction behavior for passing the

air gap informations from one rotor to another. This can be local or distributed, as

shown in Section 2. Safe periodic (time triggered) information passing is important, as

an omission could lead to a failure. E. g., if a shuttle is in the RefAvailable state and

omits an air gap information or omits the timeliness of the air gap information passing,

the minimized air gap could lead to an unsafe behavior, as the shuttle did not recognize

in time that it should switch to a safe NoneAvailable state. Figure 4 and Figure 5 specify

a periodic, safe passing of the air gap information.

Wait SendData
/ rearRole.frontRoleAirGapData

after (10 msec)

Fig. 4. Periodic information passing

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 47

MARTES 2006 at MoDELS 2006

Wait

Incoming

frontRole.frontRoleAirGapData /

Emergency

after (15 msec)

after ([1, ∞]msec)

Fig. 5. Watchdog for getting periodic information

4.2 Platform Specific Model of MECHATRONIC UML

Platform specific aspects are only valid for one specific platform. E. g., the worst case

execution time of a system is computed by considering the architecture of the platform

and therefore is often not valid for another platform. In contrast to Section 4.1, where

WCETs are specified in form of requirements, in this section WCETs are specified in

form of the concrete WCETs of the generated code for a specific platform.

To determine platform specific information, we first deploy the PIM components to

the given hardware infrastructure. Concrete component instances are assigned to ded-

icated nodes and cross node links are assigned to networks. Afterwards we use this

deployment to get platform specific information, which are specified in a so called plat-

form model (PM) [13]. In a platform model, relevant characteristics such as CPU type

and operating system are described. Knowing all relevant elements of a platform, we

can employ WCET techniques as described in [14]. These values can be taken for ele-

mentary instructions. Furthermore, the determined WCET of elementary elements can

than be taken to determine the WCET of complex methods of the real-time statecharts

by summing up this elementary instructions.

To get the final platform specific model, we have to take into account the aforemen-

tioned information and map the components and links to threads and network links.

4.3 Modeling with Clock Drift

In the introduced time dependent interaction behavior (cf. Section 4.1), a precision

(cf. Definition 6) or clock drift is not considered. This could lead to malfunction. Con-

sider the following example: If the offset between the shuttles or components is 6 ms,

then the specified communication behavior in Figure 5 switches to state Emergency.

As mentioned in Section 3, a realistic clock rate is 10−5. This clock rate implies a

clock drift of 9999/10000 to 10001/10000. Therefore, for an arbitrary large interval,

two clocks drift infinity also if the clock drift is bounded. Considering clock drifts

for modeling, we need a bounded precision in addition to the clock rate. As only the

bounded precision and not clock drifts are take into account for the system analysis, we

cannot simply apply the UML Profile for Schedulability, Performance, and Time [15]

here as it only consider the drift. Therefore, we capture instead the information about

the precision of the system Π during modeling, which enables the verification of the

system considering this precision as outlined later in Section 5.

48 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

To enable the a priori detection of failures, which are based on different clock drifts

yielding large offsets, we add modeling constructs for the offsets to our behavior mod-

els. We differ between the PIM and PSM level.

On the PIM level, a maximal assumed precision Π can be added to our pattern

behavior (cf. Figure 6). Then, the pattern, with the maximal assumed precision, can be

verified by model checking (cf. Section 5).

Fig. 6. Adding precision to MECHATRONIC UML

At the PSM level, the concrete clock drifts are derived for the applied pattern con-

sidering the concrete platform. Therefore, the maximal offsets are specified in the de-

ployment model (cf. Figure 7).

Fig. 7. Deployment with offset

If the derived offset for a pattern instance is smaller than the precision specified

at PIM level, the platform independent verification of the behavior at the PIM level

also holds for the PSM level. If, for example, offsetNode1
S1,Node2

S1
t ≤ Π , all properties

verified for the pattern also hold for the concrete pattern instance, as a better precision

does not invalidate them. Otherwise, if the precision in the PSM is lower than assumed

in the PIM, we need to verify the pattern with a precision Π ≥ offset. For example,

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 49

MARTES 2006 at MoDELS 2006

offsetNode2
S1,Node1

S2
t ≥ Π and therefore the pattern needs to be verified with a Π ≥

offsetNode2
S1,Node1

S2
t .

5 Verification

In the last section, we outlined our design approach for real-time systems using

MECHATRONIC UML. As mentioned, compositional verification is one distinguishing

capability in the approach. The following subsection deals with the existing verification

approach [11, 10], and the limitations concerning the problem of clock drifts are dis-

cussed (cf. Section 5.1). Taking into account these limitations, we extend our existing

verification techniques such that the known upper bound clock precision is taken into

account (cf. Section 5.2).

5.1 Verification without Clock Drift

Our modeling approach supports components and patterns as structural modeling con-

cepts. All behavioral aspects are modeled with real-time statecharts or their hybrid ex-

tension hybrid reconfiguration charts [9, 11].

Due to the compositional nature of our approach (cf. [9]), each pattern and compo-

nent can be verified separately. Thus, after designing each pattern, these can be verified

for themselves. At the same time, for each component can be verified whether it fulfills

all roles needed. For the composition of the system, it is not necessary to conduct an-

other verification step as the correct behavior can be inferred from the other verification

steps.

For the verification which does not take into account the effects of clock drifts, the

statecharts models and their time related extensions are mapped to the formal model of

Timed Automata [8, 10] and the real-time model checker UPPAAL is called upon for the

verification task. In this mapping, all timing annotations from the real-time statecharts

are mapped without any loss of information to the Timed Automata model. For this

reason, we will later argue at the formal model of Timed Automata directly rather than

taking the syntactical more complex real-time statechart syntax into account.

When checking a single pattern, the parallel composition of all Timed Automata for

the role behavior as well as the connectors results in a closed model which is verified.

The situation is slightly more complex for components. The orthogonal states in the

real-time statecharts of the component result in parallel Timed Automata which include

the refined role behaviors as well as a synchronization part which contains unconnected

external events and is thus open (environment operates non-deterministically).

To ensure that the component refines each of the role protocols associated to its

ports, we propose either to use syntactical refinement rules which ensure this when

checking the component model for the absence of deadlocks or alternatively model

checking can be employed to also fully automate this task (cf. [11, 16]).

This straight forward application of time automata verification technology of our

model without taking into account clock drifts does only answer the questions whether

the model executed on a perfect hardware without clock drift fulfill the checked condi-

tions. While this is a reasonable first step and very often their are good arguments the

50 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

effects of clock drift can be neglected for a specific system. However, in many cases it is

not clear whether the behavior cannot have adverse effects not present in the idealized

model due to clock drift.

Following the modeling of clock drift effects for the platform model and the

PIM/PSM models as outlined in Section 4, a really accurate verification on the dif-

ferent model levels requires that we are taking the known upper bound for the clock

precision into account.

5.2 Verification with Clock Precision

To eliminate the limitations of the verification without considering clock drifts we dis-

cuss verification including clock drifts in this section. Due to our domain of mechatronic

systems we have reactive behavior which is modeled using real-time statecharts. Each

real-time statechart has a predefined start state. From this it follows that we have to

distinguish the following two cases. First the initial phase and second the clock drift

during runtime.

Controlling initialization of clocks

The first obvious reason for clock drifts in distributed systems is that clocks usually do

not start at the same point of time on each node. This is because the clocks on each node

do not have any reference to a global clock and hence each other. Discussing this on

the model level, each parallel state chart decides non-deterministically when to start. A

priori this effects an unbounded clock drift. Due to the use of coordination patterns in

our MECHATRONIC UML approach (cf. Section 4), we are able to control the critical

initial phase.

In [17] we introduce an technique integrated in the MECHATRONIC UML approach

for this concept. Here it is possible to control the point of initialization of the pattern

and specify rules which the corresponding pattern has to fulfill. E. g. if an upper bound

for the overall inital phase is specified hence we know die initial difference between

all involved clocks. Furthermore if the counterpart does not preserve this upper bound,

fail-safe behavior is guaranteed by the protocol of the coordination pattern.

Clock precision during runtime

As mentioned before, clocks can drift away from each other during runtime. To take

this into account on the model level, e. g. when verification is performed, we have to

emulate the behavior of drifts in the corresponding model. Therefore we first have to

identify all timing elements in the model. In our formal model of Timed Automata,

timeguards and invariants as all the relevant elements (cf. Definition 7).

To emulate clock drift, we propose to map the original model to a Timed Automaton

model where we take the precision into account by realizing the best and worst-case

offset ±Delta of the timeguards and invariants in a non-deterministic manner. Such an

encoding results in a pessimistic abstraction from the concrete offsets between clocks.

In general, for the mapping of a timeguard tgi of a transition transi, the precision

+Delta or −Delta is added (in more detail: clock ≤ constlower − Delta or clock ≥

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 51

MARTES 2006 at MoDELS 2006

constupper + Delta). The same applies for invariants. To model the required non-

deterministic choice in a compact manner, we use a variable sign with domain {−1, 1}
as a random coin. In each transition entering a location with a clock invariant or an

outgoing transition with time guard, we non-deterministically chose whether the setting

of the offset Delta is positive or negative (Delta := −Delta or Delta := +Delta).

State21State20

clock1 <= 10

State19 clock1 > 5 and clock1 <= 10

(a) Timed Automaton

State21State20

clock1 <= 10 - Delta

State19 sign:int[-1,1]

clock1 > 5 + Delta and clock1 <= 10 - Delta

i:=sign,Delta:=i*Deltasign:int[-1,1]

i:=sign,Delta:=i*Delta

(b) Corresponding Timed Automaton including clock drift

Fig. 8. Example for taking clock drift into account

In the following we will explain the integration of clock drift in the model on the

basis of an example. In Figure 8(a) a simple Timed Automaton is shown. The Timed

Automaton consists of three locations (State19, State20, and State21) and a local clock

clock1. State20 ist associated with a clock invariant clock ≤ 10 and the transition

State20 → State21 is associated with a timeguard clock1 > 5 and clock1 ≤ 10. Since

the local clock diverges, we have to model the offset Delta by extending the model when

e. g. verification is performed. The corresponding model which is used for e. g. verifi-

cation is depicted in Figure 8(b). As explained above we have to extend all invariants

and timeguards in this model.

Due to the pessimistic nature of the proposed emulation, we can conclude that the

behavior with clock drift behaves correct if we have proven this for the proposed ab-

straction. However, the pessimistic abstraction can also result in problems encountered

in the abstraction which cannot happen if the exact clock behavior would have been

taken into account (thus results are often named false negatives).

One particular case of such false negatives can be already detected when extending

the guards: If the offset is too large in comparison to the timeguard bounds, the pes-

simistic abstraction in fact results in empty timeguards which cannot be fulfilled. For

the timeguards clock <= const−Delta and clock => const′ +Delta this is the case

when const − const′ �≥ 2Delta.

We further assume that the clock precision is at least twice as good as the expected

accuracy for the activation (which equals const − const′) and further not discussed in

this paper those cases where this condition is not fulfilled (e.g., when exact timing has

been specified: const = const′).

5.3 Evaluation

An evaluation of our approach for the verification of models containing clock drifts

is given in this subsection. As an evaluation example we use the air gap transmission

52 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

example displayed in Figure 4 and Figure 5. We check the ATCTL properties A[] not
deadlock (1) and A<> Emergency (2).

First, we verified both properties for our model without taking drifts into account

explicitly. With each the verification for property (1) and (2) took about 1 second and

at maximum about 4000 KB were allocated by the verifier4.

Afterwards we performed the mapping from the model without clock drift to the

model with clock drift. As expected, both properties are fulfilled again. Due to the en-

riched model with variables, the verification took about 1 second again and a maximum

of about 7050 KB were allocated by the verifier.

6 Justification

In this section, we justify that the emulation scheme informally outlined in Section 5.2

is indeed sufficient to verify the correctness of a Timed Automaton model where clock

drift and clock precision is taken into account. In addition, we proof that a check for

an emulation with lower precision always imply that the same ATCTL properties also

hold for the model with higher precision, which is exploited when we reuse verification

steps for pattern witch have been done with the required precision to conclude that

concrete pattern instances are correct for a given precision derived from the platform

model which is higher than the required one.

For this purpose, we first introduce a simpler Timed Automaton model in Section

6.1 and define related semantic without clock drift (Section 6.2) and with clock drift

(Section 6.3). Then, we provide the proofs for the step from the one without clock drift

to the one with clock drift (Section 6.4) as well as between emulation version with

higher and lower precision (Section 6.5).

6.1 A Simplified Timed Automata Model

For simplification and for a better readability of the proof, we introduce a simplified

model of Timed Automata:

Definition 7. A timed automaton is described by a 7-tuple (L, V c, I, O, T, C, S0) with
L a finite set of locations, V c a set of clocks, I a finite set of input signals, O a finite
set of output signals, T a finite set of transitions, C : L → [[V c → R] → {true, false}]
a clock constraint, and a set of initial states S0 ⊆ {(l, x)|l ∈ L ∧ x ∈ [V c →
R] : (C(l))(x)}. For any transition (l, g, g′, a, l′) ∈ T holds that l ∈ L is the
source-location, g ∈ COND(V c) the time guard, g′ ∈ ℘(I ∪ O) the I/O-guard,
a ∈ [[V c → R] → [V c → R]] the clock update, and l′ ∈ L the target-location.

Based on this simplification, we will define a related semantics without clock drift

(Section 6.2) and with clock drift (Section 6.3).

4 The verification was done on a Pentium 4, 2.4 GHz, 1 GB memory, OS Linux Redhat.

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 53

MARTES 2006 at MoDELS 2006

6.2 Idealized Standard Semantics

To model the state of an abstract Timed Automaton, we use an element x of the set of

possible clock variable bindings Xc = [V c ⇀ R] and a discrete state l (named location)

of the set of all possible location L. The state of a system can then be described by a

pair (l, x) ∈ L × Xc.

For Xc = [V c ⇀ R] the set of possible clock variable bindings, the inner state of

a Timed Automaton can be described by a pair (l, x) ∈ L × Xc with x ∈ [V c → R].
There are two possible ways of state modifications: Either by firing an instantaneous

transition t ∈ T changing the location as well as the state variables or by residing in the

current location which consumes time and just increases the clock variables.

When staying in state (l, x) firing an instantaneous transition t = (l′, g, gi, a, l′′)
is done iff l = l′ (the transitions source location equals the current location) and the

clock guard is fulfilled (g(x) = true), the I/O-guard is true for the chosen input and

output signal sets i ⊆ I and o ⊆ O (i ∪ o = gi), and a(x) ∈ C(l′′). The resulting state

will be (l′′, a(x)) and we note this firing by (l, x) →(i∪o) (l′′, a(x)).
If no instantaneous transition can fire, the Timed Automaton resides in the current

location l for a non-negative and non-zero time delay δ > 0. In state (l, x) such a time

consuming transition may result in (l, x ⊕ δ) if all δ′ ∈ [0, δ] holds C(x ⊕ δ).5

The trace of a timed behavior is a possibly infinite execution sequences

(l0, x0, δ0) →a0 (l1, x1, δ1) . . . where all (li, xi ⊕ δi) →ai
(li+1, xi+1) are valid in-

stantaneous transition of the system state and (li, xi ⊕ δ′i) are valid for all δ′i ∈ [0, δi].
To abstract from the concrete abstract Timed Automaton state, we can consider

only the externally visible timed path π = (δ0); a0; . . . ; (δn); an such that we write

(l0, x0(0)) →π (ln, xn(δn)) iff (l0, x0, δ0) →a0 (l1, x1, δ1) . . . (ln, xn, δn). The of-

fered interactions for a state (l, x) are further denoted by the set offer(M, (l, x)) which

is defined as {a|∃(l′, x′) : (l, x) →a (l′, x′)}.

Each abstract Timed Automaton Mi thus is related to a unique timed transition

system Mi by the state space Li × Xi and timed path between these states denoted

by [[M]]. An appropriate notion of real-time refinement can then be defined for timed

transition systems as follows:

Definition 8. For two timed transition systems MI and MR holds that MR is a re-

finement of MI denoted by MR
RT MI iff for every initial state c of MR an initial
state c′′ of MI exists with

∀c ⇒π c′ ∃c′′ ⇒π c′′′ (2)

∀c ⇒π c′ ∃c′′ ⇒π c′′′ : offer(MR, c′) ⊇ offer(MI , c
′′′). (3)

As refinement is a precongruence for ‖, we can exclude time-stopping deadlocks

etc. by looking only into more abstract behavior (MI) instead of their refinements. In

addition, refinement ensures that all traces possible in the refining behavior (MR) are

also possible in the the refined one (MI).

5 The clock assignment x ∈ X continuously increases and we denote an increment δ by the

assignment x ⊕ δ.

54 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

6.3 Semantics with Clock Precision

In accordance with Definition 1, we can assume that each Timed Automaton Mk has

a physical clock pck rather than the reference clock z as basis. To model the state of

an Timed Automaton when the clock drift and offset implied by the physical is taken

into account, we can use clock variable bindings Xc and the discrete states (locations)

L like in the idealized case. However, the traces have to be different, as we do not make

the assumption that the clock values evolve perfectly synchronized with z. Therefore,

we have to employ explicit trajectories ρ : [0, δ] → [V x → R] for a time period δ and

only have to restrict these trajectories such that for all t ≥ 0 with t ≤ δ the precision Π
is respected.

A trace for a timed behavior M with a a given precision Π (cf. Definition 6

and Equation 1) is thus a possibly infinite execution sequences (l0, ρ0, δ0) →a0

(l1, ρ1, δ1) →a1 (u2, l2, ρ
2
u2

, θ2
u2

, δ2) . . . of M .

To abstract from the concrete Timed Automaton state, we can again use the con-

cept of a timed path π = (δ0); a0; . . . ; (δn); an such that we write (l0, ρ0(0)) →π

(ln, ρn(δn)) iff (l0, ρ0, δ0) →a0 (l1, ρ1, δ1) . . . (ln, ρn, δn).
Each abstract Timed Automaton Mi with precision Π is thus is also related to a

unique timed transition system with the state space Li ×Xi and all timed path between

these states denoted by [[M]]Πcd by taking also the possible clock drift into account.

Therefore we can also employ the refinement notion of Definition 8 to compare timed

behaviors. Most importantly for our considerations, we are also able to compare timed

behavior without clock drift with timed behavior with clock drift by referring to the

timed path only.

6.4 Emulation Theorem

In general, for an abstract Timed Automaton M holds that the behavior [[M]] can be

quite different from [[M]]Πcd. The clock drift rate can result in additional traces as well

as time-stopping deadlocks.

For the Timed Automaton construction which emulates the effects of drifts and

offsets introduced in Section 5, we have claimed that the constructed automata can be

considered to exclude errors in its realization on a system with known upper bounds for

the clock drift rates. We will prove in the following that the emulating behavior without

clock drift and offset is refined by the original behavior with bounded clock drift and

offset as defined in the last subsection and thus can be studied as a valid abstraction to

identify erroneous behavior.

Theorem 1. For an abstract Timed Automaton M and its emulation version E(M,Π)
for precision Π holds that [[M]]Πcd is a refinement of [[E(M,Π)]]

[[M]]Πcd
RT [[E(M,Π)]].

Proof. We can prove that condition 2 is fulfilled for a state (l, x) in M and (lE , xE) of
E(M,Π), by induction over the length of any path.

For length zero, trivially the condition is fulfilled. Furthermore, the precision Π is
true for M and E(M,Π).

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 55

MARTES 2006 at MoDELS 2006

When extending a trace of length n by another step, we have to consider either a
instantaneous or a timed step.

In the first case for any transition via event e0 the construction of the emulation
ensures that a related state in [[E(M,Π)]] can be reached via a positive sign step which
offers the related transition (same clock update and leads to the related state) as for the
time guards v ≤ c a time guard v′ ≤ c ± Π exists which must be enabled if v ≤ c
is enabled. As the transition and its related transitions have the same clock resets, the
precision Π is also true for the reached state.

In the second case, the construction of the emulation ensures that a state in
[[E(M,Π)]] exists which invariant permits to stay δ0 time within the related state (same
transitions) as for the time invariant v ≤ c a time invariant v′ ≤ c ± Π exists which
must be true if v ≤ c is true. After a time step δ0, it follows directly from applying
Equation 1 that the precision Π must be true for the reached state, too.

To also show that condition 3 always holds for a state and its emulated counterpart,
we can use the fact that a time guard v ≤ c is only blocked if also a related state is
reached via the negative sign case where the time guard v′ ≤ c ± Π is also blocked.

Therefore, we have shown that our approach to consider clock drift by emulating

it ensures that the idealized semantics of the emulation model is refined by the non

idealized semantics with clock drift and offset of the original model. This refinement

relation ensures that all possible traces of [[M]]Πcd are also possible in [[E(M)]] and that

all deadlocks possible in [[M]]Πcd are also possible in [[E(M)]]. Therefore, we can check

[[E(M)]] with a standard model checker for Timed Automata as described in Section 5

and conclude that the verified ATCTL properties as well as deadlock freedom also hold

for [[M]]Πcd which could not be checked directly.

6.5 Precision Theorem

As outlined in the Section 4 for modeling, it is only necessary to verify concrete pattern

instances if the concrete precision is worse than the one assumed at the PIM level. To

justify this obvious rule, we will prove in the following that an emulating behavior with-

out lower precision Π is always refined by an emulating behavior with higher precision

Π ′ (Π ≥ Π ′).

Theorem 2. For an abstract timed automaton M and its emulation versions E(M,Π)
with precision Π and its emulation version E(M,Π ′) with precision Π ′ holds for Π ≥
Π ′ that [[MEE(M,Π ′)]] is a refinement of [[E(M,Π)]]:

Π ≥ Π ′ ⇒ [[E(M,Π ′)]]
RT [[E(M,Π)]].

Proof. We can analogously to Theorem 1 prove that condition 2 is fulfilled by induction
over the length of any path showing that the lower precision will include all traces of
the emulation with higher precision.

To also prove condition 3, we can use the fact that a time guards is only blocked
in the version with less precision, if it may also be blocked in the model with higher
precision.

56 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

This second theorem permits to safely skip verification tasks if they have been suc-

cessfully done for a model with lower precision than the concrete precision present in

the model by exploiting the fact that the emulation scheme for a higher precision is a

refinement of one with a lower one.

7 Related Work

To the best of our knowledge no work on the systematic and automated consideration

of clock drift during the verification of Timed Automata exists.

There are cases such as [7] where the verification of a specific problem took clock

drift into account exploiting the specific characteristics of the problem into account. In

the presented work in contrast, the model remains unchanged and the required extension

of the timed model reelecting the effects of clock drift are woven into it automatically.

In [6] Timed Automata are employed to prove that a specific periodic clock syn-

chronization protocol for a CAN bus guarantees a given precision under certain fault

assumptions. In contrast, the presented approach verifies whether application specific

correctness criteria hold given an upper bound for the precision without making any

assumptions about the specific clock synchronization approach. Even in the case that

the specific clock synchronization protocol is known, it seems that to encode the appli-

cation specific time constraints on top of the explicit modeled time, Timed Automata

with additive clock constraints are required. However, Timed Automata with addition

of clock values in the time constraints cannot be checked as their emptiness problem is

undecidable (cf. [8]).

There exist a few approaches which discuss the problem of clock drift on the level

of model based development. We first discuss some approaches which take clock drift

into account on the model level. In the second part we discuss some tools which abstract

from clock drift for some reason.

In the UML Profile for Schedulability, Performance, and Time [15], the integration

of clock drift is introduced. This profile allows the explicit modeling of drift and skew.

In the following, the to ours most similar approach, is discussed. In [18], an ap-

proach for real-time modeling in UML, focusing on analysis and verification of time

and scheduling related properties is introduced. To reach this aim, a concrete UML

profile, called the OMEGA-RT profile, is defined, dedicated to real-time modeling by

identifying a set of relevant concepts for real-time modeling, which can be considered

as a refinement of the standard [15] profile. In [18], the existence of a global reference

time is supposed. As proposed in the standard profile, local time can be defined by

means of local clocks, for which a maximal drift and/or offset with respect to global

time can be defined [18].

Both approaches, the UML Profile for Schedulability, Performance, and Time and

the MEGA-RT profile, do not take into account the problem of clock drift in the verifi-

cation task and thus the PSM level is not addressed adequately.

The de facto industry standard for modeling of mechatronic systems with hy-

brid behavior is MATLAB/Simulink and Stateflow6. Formal verification of MAT-

LAB/Simulink and Stateflow models can be performed by using the model checker

6 http://www.mathworks.com

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 57

MARTES 2006 at MoDELS 2006

CheckMate. Besides MATLAB/Simulink, there exists a number of tools which also in-

tegrate model checking. CHARON [19] and UPPAAL [20] provide, on the one hand,

support for the modeling of real-time systems. On the other hand, the verification using

model checking does not take into account clock drifts in all mentioned tools.

Finally, Henzinger et al. introduce in [21] the formalism of robust Timed Automata,

which are Timed Automata that accept all trajectories robustly. Basically, in this ap-

proach other problems are mainly discussed. However, they stated that it is possible

to set the used ε on a minimum as required and therefore the concept of robust Timed

Automata can be used in this context.

8 Conclusion and Future Work

In our paper we present an approach for the verification of real-time systems using the

MECHATRONIC UML, taking the problem of clock drift and clock offsets into account.

The paper at first presents an extension of the MECHATRONIC UML approach which

supports capturing the required platform characteristics in the different UML model

elements. Secondly, a scheme for the emulation of the clock drift effects has been pre-

sented and justified, showing that the emulation results in a valid abstraction and thus

permits to prove required safety properties.

The considered example and the first verification results indicate that the additional

effort required for a verification which takes clock drift into account is often feasi-

ble. Also the case that the pessimistic abstraction results false negatives such as time-

stopping deadlocks due to the modifications of the clock constraints which applies only

for very small time intervals which are smaller than the precision seem to occur only

in rare cases. However, we plan as future work to more systematically study for which

model characteristics the proposed emulation scheme can be effectively applied and

which alternative encoding schemes might be applicable when the rewriting of the time

constraints cannot be done without introducing obvious false-negatives. In addition,

a more complete analysis of the complexity of the underlying verification problem is

planned.

References

1. Sven Burmester, Holger Giese, Martin Hirsch, Daniela Schilling, and Matthias Tichy. The

Fujaba Real-Time Tool Suite: Model-Driven Development of Safety-Critical, Real-Time

Systems. In Proc. of the 27th International Conference on Software Engineering (ICSE),
St. Louis, Missouri, USA, pages 670–671. ACM Press, May 2005.

2. Iulian Ober, Susanne Graf, and Ileana Ober. Validation of UML models via a mapping to

communicating extended timed automata. In Model Checking Software: Proceedings of the
11th International SPIN Workshop, volume 2989 of Lecture Notes in Computer Science,

Barcelona, Spain, 2004. Springer Verlag.

3. Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

4. Hermann Kopetz, Astrit Ademaj, and Alexander Hanzlik. Combination of clock-state and

clock-rate correction in fault-tolerant distributed systems. Real-Time Syst., 33(1-3):139–173,

2006.

58 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

5. Alexander Hanzlik. A case study of clock synchronization in flexray. Research Report

31/2006, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-

1, 1040 Vienna, Austria, 2006.
6. Guillermo Rodriguez-Navas, Julian Proenza, and Hans Hansson. An uppaal model for formal

verification of master/slave clock. In 6th IEEE Int’l Workshop on Factory Communication
Systems (WFCS), Torino, Italy, June 2006. IEEE Electronics Society.

7. Henrik Lönn and Paul Pettersson. Formal Verification of a TDMA Protocol Startup Mech-

anism. In Proc. of the Pacific Rim Int. Symp. on Fault-Tolerant Systems, pages 235–242,

December 1997.
8. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, 1994.
9. Holger Giese, Matthias Tichy, Sven Burmester, Wilhelm Schäfer, and Stephan Flake. To-

wards the Compositional Verification of Real-Time UML Designs. In Proc. of the Eu-
ropean Software Engineering Conference (ESEC), Helsinki, Finland, pages 38–47. ACM

Press, September 2003.
10. Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling. Incremental design

and formal verification with UML/RT in the FUJABA real-time tool suite. In Proceedings
of the International Workshop on Specification and vaildation of UML models for Real Time
and embedded Systems, SVERTS2004, Satellite Event of the 7th International Conference on
the Unified Modeling Language, UML2004, October 2004.

11. Holger Giese and Martin Hirsch. Modular verificaton of safe online-reconfiguration for

proactive components in mechatronic uml. In Jean-Michel Bruel, editor, Satellite Events
at the MoDELS 2005 Conference: MoDELS 2005 International Workshops, Montego Bay,
Jamaica, October 2-7, 2005, volume 3844 of Lecture Notes in Computer Science (LNCS),
pages 67–78. Springer Verlag, 2006.

12. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on UPPAAL. In Marco

Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Sys-
tems: 4th International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236.

Springer–Verlag, September 2004.
13. Sven Burmester, Holger Giese, and Wilhelm Schäfer. Model-driven architecture for hard

real-time systems: From platform independent models to code. In Proc. of the European
Conference on Model Driven Architecture - Foundations and Applications (ECMDA-FA’05),
Nürnberg, Germany, Lecture Notes in Computer Science (LNCS), pages 25–40. Springer

Verlag, November 2005.
14. Edwin Erpenbach. Compilation, Worst-Case Execution Times and Scheduability Analysis of

Statechart Models. Ph.D.-thesis, University of Paderborn, Department of Mathematics and

Computer Science, February 2000.
15. Object Management Group. UML Profile for Schedulability, Performance, and Time, v1.1,

2005.
16. Holger Giese and Martin Hirsch. Checking and Automatic Abstraction for Timed and Hybrid

Refinement in Mechtronic UML. Technical Report tr-ri-03-266, University of Paderborn,

Paderborn, Germany, December 2005.
17. Holger Giese, Sven Burmester, Florian Klein, Daniela Schilling, and Matthias Tichy. Multi-

Agent System Design for Safety-Critical Self-Optimizing Mechatronic Systems with UML.

In B Henderson-Sellers and J Debenham, editors, OOPSLA 2003 - Second International
Workshop on Agent-Oriented Methodologies, pages 21–32, Anaheim, CA, USA, Center for

Object Technology Applications and Research (COTAR), University of Technology, Sydney,

Australia, October 2003.
18. Susanne Graf, Ileana Ober, and Iulian Ober. A real-time profile for UML. International

Journal on Software Tools for Technology Transfer (STTT), 8(2):113–127, August 2004.

Analysis and Modeling of Real-Time Systems with Mechatronic UML taking Clock Drift into Account 59

MARTES 2006 at MoDELS 2006

19. Franjo Ivancic. Modeling and Analysis of Hybrid Systems. PhD thesis, University of Penn-

sylvania, 2003.

20. K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Springer International Journal
of Software Tools for Technology, 1(1), 1997.

21. Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Robust timed automata. In

HART ’97: Proceedings of the International Workshop on Hybrid and Real-Time Systems,

pages 331–345, London, UK, 1997. Springer-Verlag.

60 H. Giese, S. Henkler, and M. Hirsch

MARTES 2006 at MoDELS 2006

Analyzing Robustness of UML State Machines

Steffen Prochnow, Gunnar Schaefer, Ken Bell, and Reinhard von Hanxleden

{spr,gsc,kbe,rvh}@informatik.uni-kiel.de
Real-Time and Embedded Systems Group, Department of Computer Science

Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24118 Kiel, Germany

Abstract. State Machines constitute an integral part of software behav-
ior specification within the UML. The development of realistic software
applications often results in complex and distributed models. Potential
errors can be very subtle and hard to locate for the developer. Thus, we
present a set of robustness rules that seek to avoid common types of er-
rors by ruling out certain modeling constructs. Furthermore, adherence
to these rules can improve model readability and maintainability. The
robustness rules constitute a general Statechart style guide for different
dialects, such as UML State Machines, Statemate, and Esterel Studio.
Based on this style guide, an automated checking framework has been
implemented as a plug-in for the prototypical Statechart modeling tool
KIEL. Simple structural checks can be formulated in a compact, abstract
manner in the OCL. The framework can also incorporate checks that go
beyond the expressiveness of OCL by implementing them directly in
Java, which can also serve as a gateway to formal verification tools; we
have exploited this to incorporate a theorem prover for more advanced
checks. As a case study, we have adopted the UML well-formedness rules;
this confirms that individual rules are easily incorporated into the frame-
work.

1 Introduction

Statecharts [1] constitute a widely accepted formalism for the specification of
reactive real-time systems. They extend the classical formalism of finite-state
machines and state transition diagrams by incorporating notions of hierarchy,
orthogonality, compound events, and a broadcast mechanism for communication
between concurrent components. Statecharts provide an effective graphical no-
tation, not only for the specification and design of reactive systems, but also
for the simulation of the modeled system behavior. They have been incorpo-
rated into the Unified Modeling Language (UML) (as object-based State Ma-
chines) [2] and are supported by several commercial tools, e. g., Esterel Studio1,
Matlab/Simulink/Stateflow2, and UML CASE tools, such as Rhapsody3 and
ArgoUML4.
1 http://www.esterel-technologies.com/products/esterel-studio/
2 http://www.mathworks.com/products/stateflow/
3 http://www.ilogix.com/
4 http://argouml.tigris.org/

Analyzing Robustness of UML State Machines 61

MARTES 2006 at MoDELS 2006

The assurance of quality, i. e., ensuring readability and avoiding error-prone
constructs, is one of the most essential aspects in the development of safety-
critical reactive systems, since the failure of such systems—often attributable to
programming flaws—can cause loss of property or even human life. As Parnas
has observed, human code reviews are time-consuming and highly undependable
in revealing errors [3]. Taking part of the burden off the reviewers, as well as off
the designers, is the rationale for automated error prevention, where a computer
performs preliminary checks. Hence, this paper is a contribution to ensure certain
aspects of safety in developing Statecharts. We achieve this by applying methods
of automated error-source detection.

We propose a rule set that forms a fundamental Statechart style guide. Based
on this well-structured set of robustness rules, both syntactic and semantic, an
automated checking framework has been implemented as a plug-in for the Kiel
Integrated Environment for Layout Statechart modeling tool5. A key objective in
devising the rule set and in designing the checking framework was to not restrict
the modelers’ creativity, but to achieve more explicit, easy to comprehend, and
less error-prone models. Our approach, therefore, was developed adhering to the
following requirements:

Modularity and Configurability: All robustness checks are independently
implemented, individually selectable, and parametrizable via a preferences
management.

Extendability of the rule set: The set of checks is easily extendable by either
adding a constraint, specified in the Object Constraint Language (OCL) [4],
or by implementing a new Java class.

Automatic conformance checking: Compliance with the robustness rules
can be checked very rapidly—a key quality, imperative for end-user accep-
tance. Due to the uncoupling of the checking process from the modeling
process, the checks may be applied at all stages of system development, even
to partial system models.

Even though a wide range of applications for Statechart verification already
exists, none fulfills all needs. They are either highly specialized and therefore not
extendable or they are extendable but do not provide the possibility to check
complex problems. In contrast, we present a general approach to style checking in
Statecharts. It is easily extendable and incorporates a theorem prover to provide
for complex semantic checks. The main contributions of this paper are:

– An inspection and classification of error prevention methods for software in
general as well as with a focus on style checking in Statecharts (Section 3),

– a comparison of existing style guides and applications for textual program-
ming languages and Statecharts (Section 3.3),

– a collection of robustness rules for less error-prone Statecharts (Section 4),
– a checking framework, which automatically and quickly evaluates rules de-

fined in OCL; additionally, checks based on theorem proving are evaluated
(Section 5), and

5 http://www.informatik.uni-kiel.de/~rt-kiel/

62 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

– an experimental evaluation, based on the aforementioned checking rules,
showing the applicability and efficiency of our robustness rules (Section 7).

2 Related Work

Error prevention in software development is as old as the field of software de-
velopment itself. Therefore, many style guides for classical textual programming
languages have been developed, dealing not only with code layout, but also
with robustness aspects; e. g., MISRA proposed a C programming style [5], Sun
proposed a Java programming style6. Style guides have been developed for the
Statecharts modeling paradigm as well, e. g., by the MathWorks Automotive
Advisory Board (MAAB)7 and by Ford Motor Company8, both exclusively for
Simulink/Stateflow . Scaife et al. [6] propose the development of a safe subset of
the Stateflow language, which is considered to be less error-prone. Furthermore,
Kreppold [7] has presented a style guide for Statemate.

In the context of UML State Machines, the well-formedness rules defined
within the UML specification clarify the semantics of Statechart elements. Be-
sides the well-formedness rules, other rules for UML State Machines were for-
mulated, e. g., by Mutz [8]. For our style guide we pick up some of these rules;
furthermore, we specify dialect independent as well as dependent rules inspired
by different sources and add rules based on our own experience.

Automatically checking robustness (or soundness) of UML State Machines is
an active field of research. Pap et al. [9] have investigated applicable approaches.
The presented techniques include checks based on the OCL, graph transforma-
tion, special programs and finally reachability analysis driven tests. Richters [10]
has investigated different frameworks that can be used when it comes to working
with OCL.

A wide range of available CASE tools provide OCL support, which is gen-
erally limited to gathering constraints. Beyond, Mutz and Huhn [8, 11] have
developed the Rule Checker for the automated analysis of user-defined design
rules on UML State Machines. They pursue an interpreter-based analysis for the
evaluation of OCL. However, an interpretative approach is generally considered
less flexible and slower than an executive. Additionally, simple syntactic checks
are executed by Java programs. No sophisticated checks involving a theorem
prover are performed.

Another approach to check the style guide conformance of Statecharts is
Mint9 by Ricardo which is focused on the MAAB style guide. The checker pri-
marily aims at achieving a consistent look-and-feel, enhancing readability, and
avoiding common modeling errors. The Guideline-Checker [12], coded in Matlab,
is a no-cost/academic alternative to Mint. The range of the Guideline-Checker

6 http://java.sun.com/docs/codeconv/
7 http://www.mathworks.com/industries/auto/maab.html
8 http://vehicle.berkeley.edu/mobies/papers/stylev242.pdf
9 http://www.ricardo.com/engineeringservices/controlelectronics.aspx?

page=mint

Analyzing Robustness of UML State Machines 63

MARTES 2006 at MoDELS 2006

is currently constricted to the most trivial checks, e. g., “A [state] name does
not include a blank,” or “A [state] name consists of [at least] 3 characters” [12,
page 26].

Moreover, special programs for the detection of specific problems have been
developed. Here, the State Analyzer [13], developed within DaimlerChrysler’s
R&D, is a prototypical software tool to check the “determinism” of Statemate
Statecharts. Performing an automated robustness analysis of requirements spec-
ifications, the tool verifies that for every state, the predicates (trigger and con-
dition) of multiple outgoing transitions are pairwise disjoint. The approach for
detecting non-determinism employs automated theorem proving (cf. Section 5),
i. e., proving the satisfiability of a formula consisting of the conjunction of each
pair of transition predicates. Approaches analyzing requirements specifications
are introduced by, e. g., Heitmeyer et al. [14] for the Software Cost Reduction
(SCR) formalism; Heimdahl and Leveson [15] present a similar approach for the
Requirements State Machine Language (RSML).

In summary, none of the discussed methods and tools fulfill all of our needs.
Therefore, we present a Statechart robustness analysis approach, based on the
execution of Java code synthesized from OCL rules, that combines the usabil-
ity and flexibility of OCL and—beyond the approach of Mutz and Huhn—the
mightiness of a theorem prover.

3 Errors and Error Prevention in the Modeling of
Statecharts

To support the early detection and elimination of modeling errors, a design
methodology must provide effective communication among the various design
stages of the product. This section gives an overview of common error sources
in developing Statecharts and how these may be avoided.

3.1 Sources of Errors

Errors in development of graphical models like Statecharts have a large diversity
of types and reasons. A paramount cause of producing erroneous Statecharts is
apparently a misunderstanding of the utilized modeling tools and their simula-
tion behavior. This may have its source in counterintuitive specifications of the
model semantics (e. g., unbound behavior) and a lacking comprehension of the
modeler.

Errors also originate from the often large size of graphical models: Because
of the extensive requirements in software design technology, the dimensions of
graphical models can increase enormously. Moreover, Statecharts often are of
great complexity : Because of the discrete nature of Statecharts, small changes
not always have small effects. Beyond, Statecharts represent interactive and dis-
tributed systems: large collections of interconnected components usually involve
interactive and concurrent processes. Therefore, potential errors can be very
subtle and hard to locate for human developers.

64 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

3.2 Error Prevention

The approaches to error prevention in textual and visual languages face essen-
tially the same problems. Due to this, we propose a common error prevention
taxonomy and refine it in the following for Statecharts. Software error preven-
tion in general encompasses a number of different techniques designed to identify
programming flaws. As outlined in Figure 1a, we can basically distinguish be-
tween automated error prevention and human code review. As already pointed
out, human code reviews are exceedingly time-consuming and often undepend-
able in revealing errors. However, they may find conceptual problems that are
impossible to detect automatically.

Software Error Prevention

Automated
Error Prevention

Human
Code Review

Dynamic
Testing

Static
Code Analysis

Style Checking Model Checking

Layout
Style

Robustness
Analysis

Syntactic
Robustness

Semantic
Robustness

(a) Software Error Prevention in General
and its Taxonomy.

Static Analysis of Statecharts

Correctness Style Checking
in Statecharts

Syntactic
Analysis

Semantic
Robustness

Readability Efficiency Syntactic
Robustness

(b) Taxonomy for Style Checking in
Statecharts as a Refinement of Gen-
eral Software Error Prevention.

Fig. 1: Classification of Software Error Prevention.

Automated error prevention is commonly separated into dynamic and static
methods. Dynamic testing performs code evaluation while executing the program
and attempts to detect deviations from expected behavior: Static code analysis,
on the other hand, performs an analysis of computer software without actual
execution of programs, but by assessing source or binary files to identify potential
defects. While dynamic testing requires executable code, static methods can be
applied much earlier in the development process. Static code analysis covers
aspects ranging from the behavior of individual statements and declarations to
the complete source code of a program. Use of the information obtained from the
analysis varies from highlighting possible coding errors to formal methods that

Analyzing Robustness of UML State Machines 65

MARTES 2006 at MoDELS 2006

mathematically prove properties about a given program, e. g., that its behavior
matches that of its specification, commonly known as model checking.

Style checking, another aspect of static code analysis, is concerned with layout
style, i. e., common appearance, as well as syntactic and semantic style. The
latter two are often collectively referred to as robustness analysis (see below).
Style checking always requires the syntactic and semantic correctness of the
code. Robustness analysis refers to the objective of eliminating certain types
of errors and enforcing sound engineering practices. Robustness rules limit the
general range of a given modeling/programming language, as they are entirely
independent of what is being designed.

In the general context of static code analysis, one must distinguish syntactic
and semantic correctness on the one hand and style checking on the other hand.
On this foundation, as a first step toward systematically devising an extensive
style guide for Statecharts, the following taxonomy, depicted in Figure 1b, was
laid down:

Syntactic Analysis: The enforcement of syntax-related rules does, in general,
not necessitate knowledge of model semantics.
Readability (or layout style) aims at a graphical normal form, e. g., tran-

sitions connect states in a clockwise direction, charts contain a limited
number of states, etc.

Efficiency (or compactness, simplicity) emphasizes superfluous and redun-
dant elements from the Statechart model.

Syntactic Robustness aims at reducing errors due to inadvertence and en-
hancing maintainability.

Semantic Robustness: Deriving and enforcing semantic robustness rules re-
quires knowledge of specific aspects of the model semantics. Exact analysis
typically requires the use of formal verification tools.

3.3 Existing Style Guides and Applications

Style checking is based upon style guides. They constitute a set of design rules,
concerning textual programming, respectively the modeling of Statecharts. Style
guides provide general instructions on how to use languages. They are commonly
provided as (in-)formal specifications, containing lists of rules. Style guides con-
cern human languages, textual programming languages, as well as visual pro-
gramming languages, such as Statecharts. They define a subset of usable ele-
ments. The informal as well as the formal specifications are primarily opera-
tional instructions for humans. These affect the programmed or modeled result.
Beyond, formal style guides act as the configuration for automated style check-
ing, i. e., style checkers.

Since programming style often depends on the programming language, dif-
ferent coding standards and related code checking tools exist for different pro-
gramming languages. Akin to coding standards, most code checking tools are
programming language-specific. Available code checkers for C are e. g., Lint [16],

66 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

LCLint (aka. Splint) [17] and QA MISRA10; code checkers for Java are Jlint11

and Checkstyle12. Figure 2a roughly classifies these code checkers according to
their emphasis on layout style vs. robustness—a major distinction within style
checking (see Section 3.2).

Checkstyle

Lint/Splint

QA MISRA

Jlint

Layout Style

Robustness

��

��

(a) Checking Tools for Textual Pro-
gramming Languages.

KIEL Checking

Guideline-Checker

Mint

State Analyzer

Rule Checker

Layout Style

Robustness

��

��

(b) Checking Tools for Statecharts.

Fig. 2: Classification of Checking Tools according to their Emphasis of Layout Style vs.
Robustness.

Statechart style checking is much less developed and less sophisticated as
compared to style checking in textual computer programming. Nevertheless,
when analyzing the dynamics of reactive systems, it is all the more impor-
tant that models are designed according to approved rules. Therefore, several
Statechart modeling tools, e. g., Stateflow and Statemate, have been supple-
mented with a number of checks. Four representative checking tools—Mint and
the Guideline-Checker related to Stateflow , the State Analyzer related to State-
mate, and the Rule Checker—as well as our own robustness checker (see Sec-
tion 5), are roughly classified according to their emphasis of layout style vs.
robustness in Figure 2b.

The Guideline-Checker and the State Analyzer as well as Ricardo’s Mint all
address only a single Statechart dialect. Mint, the Guideline-Checker, and the
Rule Checker merely perform graphical and—partly trivial—syntactic checks,
but not profound semantic checks which require automated theorem proving
as realized in the State Analyzer. However, semantic checks are particularly
important since they eliminate possible non-trivial sources of error, which are
very hard to discern for humans. The rules put forth in the next section aspire
to fill this gap.

10 http://www.programmingresearch.com/
11 http://jlint.sourceforge.net/
12 http://checkstyle.sourceforge.net/

Analyzing Robustness of UML State Machines 67

MARTES 2006 at MoDELS 2006

4 Statechart Style Guide

Building on the aforementioned theoretical foundation, practical experience, and
available prototypes, this section outlines a comprehensive Statechart style guide,
striving for general applicability to Statechart dialects, within the limits of the
UML State Machines specification. The rules presented below were formulated
following the advice of Buck and Rau [18]: Clarity, Minimality, Consistency,
Consensus, Flexibility, Adaptability, Stability and Testability.

As mentioned above (cf. Section 3.2), style guides for Statecharts can roughly
be divided into two parts, namely syntactical analysis on the one hand and se-
mantical analysis on the other hand. Syntactical analysis addresses the syntacti-
cal structure of Statecharts, such as layout, possible optimizations, and robust-
ness problems. Therefore, in the context of syntactical rules, one basically has to
focus on problems that deal with the relations of individual Statechart elements
to each other. Furthermore, syntactical analysis opens up two fields of possible
applications. One field analyses whether the syntactical relation of the elements
used corresponds to the rules specified by a certain dialect (i. e., syntactical cor-
rectness). Within the UML these kind of rules are called well-formedness rules.
The well-formedness rules “[. . .] specify constraints over attributes and associa-
tions defined [with]in the [Statechart] meta model” [19, Section 2.3.2.2].

Nevertheless, locating problems from the part of syntactical correctness and
syntactical robustness works the same way. Since Statecharts are directed graphs,
one can use pattern matching here. If used for locating problems one would create
a pattern that captures the problem.

In the following, we present the rules incorporated into our Statechart style
guide. Following the proposed taxonomy (see Figure 1b), the rules are grouped in
different sections. First of all, the rules dealing with the syntactical correctness,
the well-formedness rules, are presented. On that foundation, we extend the style
guide by afterwards presenting the rules for syntactical robustness. Finally, the
rules for semantical robustness are presented.

UML Well-formedness Rules

As mentioned above, syntactical correctness is mandatory for robustness. There-
fore, it is necessary to check, whether a Statechart is syntactically correct or not.
For most Statechart dialects, this is done within a dialect dependent modeling
tool. But when dealing with UML State Machines, one has to manually make
sure that the above mentioned well-formedness rules are preserved as some UML
tools do not check those rules at all. Within the UML, the well-formedness rules
themselves are described using OCL. Given a context of application and the
constraint itself, problems are detected fairly easy. In the following, we present
some examples for violations of the well-formedness rules. Section 5 elaborates
on the OCL implementation of the presented examples.

The rule CompositeState-1 denotes that “a composite can have at most one
initial vertex” [19, Section 2.12.3.1]. Detecting violations of this rule, as presented
in Figure 3a (left-hand side), is done by a two-part pattern. One part contains

68 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

a composite state with no initial vertex and the other part contains a composite
state with one initial vertex. If neither part matches the composite state is known
to have more than one initial vertex. Fixing problems detected by this check has
to be done with great care because the intended behavior has to be carefully
remodeled as Statecharts can include parts in which it is not clear what to do
as depicted in Figure 3a (right-hand side). The rule Transition-5 denotes that
“Transitions outgoing pseudostates may not have a trigger” [19, Section 2.12.3.8].
The violation detection pattern may just contain a transition with the type of
the source set to pseudostate and no trigger specified (see Figure 3b).

(a) Violations of Rule CompositeState-1. (b) Violation of Rule Transition-5.

Fig. 3: Violations of well-formedness Rules.

Syntactical Robustness Rules

The style guide for Statecharts proposed in this paper aims at covering a wide
range of dialects. Therefore, we extracted syntactical rules from various other
style guides (cf. Section 2) that are applicable to different dialects. Furthermore,
we formulated rules based on our own experience in Statechart modeling.

The rules presented below were adopted from Mutz [8, p. 144f]. All of them
apply to the area of syntactical robustness and are dialect-independent.

MiracleStates: All states except the root state and the initial states must have
at least one incoming transition. Figure 4a depicts the violation of this rule.

IsolatedStates: An even stronger version of MiracleStates is the check for iso-
lated states. A state is isolated when it has neither incoming nor outgoing
transitions.

EqualNames: Ensuring that all states are named differently simplifies the main-
tenance of a Statechart.

InitialState: Demanding that all regions respectively non-concurrent composite
states contain one initial state greatly simplifies the understanding of the
model. This rule should also be checked on dialects in which a region or
non-concurrent composite state can be entered by an interlevel transition.

OrStateCount: Checking if all non-concurrent composite states contain more
than one state delivers valuable hints for possible optimizations. Composite
states that contain only one state can be subject to dialect independent
optimizations and should be avoided from the beginning.

Analyzing Robustness of UML State Machines 69

MARTES 2006 at MoDELS 2006

RegionStateCount: Closely related to OrStateCount this rule checks the number
of states within a region of a concurrent composite state. Such regions can
also be optimized and should be avoided for simplicity.

(a) Violation of the Rule MiracleStates. (b) Violation of the Rule Connectivity.

Fig. 4: Violation of Syntactical Robustness Rules.

From the Ford style guide the following rule was extracted as it is also applicable
to dialects other than Stateflow .

DefaultFromJunction: When using connective junctions to model decisions one
shall always add an outgoing transition with no label. The unlabeled transi-
tion is then the default transition. The default transition is provided so the
control flow does not stop when the other conditions do not hold.

From our own experience in modeling with Statecharts the following rules were
formulated.

TransitionLabels: Ensuring that all transitions are specified with a label makes
the understanding of the model easier. This is especially important for di-
alects in which a default signal exists as it would be assigned invisibly to an
unlabeled transition.

InterlevelTransitions: A Statechart should not contain interlevel transitions, i. e.,
transitions bypassing level borders. The benefit is that understanding a
Statechart without interlevel transitions is easier; especially novices tend to
misunderstand the so expressed behavior, e. g., the order of executed (entry)
activities and the activation of parallel areas of execution.

Connectivity : Another aspect closely related to MiracleStates are states not
connected by a sequence of transitions outgoing from any initial state. Such
States are superfluous as they will never be entered while simulation. See
Figure 4b where no path from the initial state to C1 or C2 exists. This rule
extends the already mentioned MiracleStates as it also detects states that
have incoming transitions and are still never entered as depicted in Figure 4b.

As mentioned above, locating a problem is fairly easy. However, resolving
a found problem from the field of syntactic analysis can be more difficult. De-
pending on the context in which the problem is found and the problem itself, a

70 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

different approach has to be used for each problem. Essentially, one can say that
there is no general pattern applicable to all problems. Resolving found problems
has two benefits. One benefit is that syntactical correctness of a Statechart will
be achieved. This applies especially to the well-formedness rules of the UML. The
more important benefit is, however, that the maintainability and the readability
will increase enormously.

Semantic Robustness Rules

In line with the taxonomy presented in Figure 1b, we now turn to semantic ro-
bustness rules, addressing the model’s behavior. As opposed to model checking,
however, semantic robustness analysis is concerned with the behavior of indi-
vidual statements and their interactions at a local level, e. g., determinism and
race-conditions. As, for the three rules presented below, transitions are consid-
ered pairwise, let trans1 and trans2 be the two transitions under investigation.
The label of transi is li, which consists of the predicates ei (event expression)
and ci (condition expressions) as well as an action expression ai, where i ∈ {1, 2}.

(a) State with Overlapping Transitions. (b) “Indirectly” Overlapping Transitions.

(c) Dwelling Violation. (d) Write/Write Race Condition.

Fig. 5: Application Examples of the Semantic Robustness Rules.

Transition Overlap: All transitions (directly or indirectly) outgoing from a state
should have semantically disjoint predicates [20]. Ensuring this warrants that
at most one transition is enabled at any time, i. e., no transition shadowing
can occur, leading to guaranteed deterministic behavior, independent of po-
tential transition priorities. Figure 5a depicts a basic case of two transitions

Analyzing Robustness of UML State Machines 71

MARTES 2006 at MoDELS 2006

departing from a simple state. A Transition Overlap violation exists if e1 and
c1 are not disjoint from e2 and c2. Such a violation may be eliminated by,
e. g., adding ¬e2 and ¬c2 to the predicates of trans1, yielding (e1 ∧¬e2) for
the event expression and (c1 ∧¬c2) for the condition expression. In addition
to transitions departing directly from a state, transitions departing from an
enclosing state may also be enabled (see Figure 5b). Overlaps are, however,
resolved by transition priorities or hierarchy. Hence, this rule is primarily
intended for Statechart dialects that do not provide a priority mechanism,
such as Statemate.

Dwelling : The predicates of all incoming and outgoing transitions of a state
should be pairwise disjoint or at least not completely overlapping [20]. This
rule ensures that the system pauses at every state it reaches. A state in
which the system cannot pause contradicts the concept of a system state.
Careless use of Esterel Studio’s immediate flag, denoted by #, may lead to a
Dwelling violation (see Figure 5c for an example). An immediate transition
is evaluated in the same instant, in which its source state is reached; a non-
immediate transition is not evaluated until the following instant.

Race Conditions: Concurrent writing or concurrent reading and writing of a
variable should not exist in parallel states (cf. Figure 5d). Since race condi-
tions are generally not detectable, we have chosen a conservative approxima-
tion. We detect a race condition in concurrent threads, if a variable is written
in one thread and read or written in another. This rule, and the previous
rule are aimed primarily at Safe State Machines used in Esterel Studio.

5 The KIEL Modeling Environment

The Kiel Integrated Environment for Layout (KIEL) is a prototypical modeling
environment that has been developed for the exploration of complex reactive
system design [21]. As the name suggests, a central capability of KIEL is the au-
tomatic layout of graphical models. One can use KIEL to easily perform a layout
of a given Statechart. However, the tool’s main goal is to enhance the intuitive
comprehension of the behavior of the System Under Development (SUD). While
traditional Statechart development tools merely offer a static view of the SUD
during simulation, in contrast, KIEL provides a simulation based on dynamic
focus-and-context [21]. It employs a generic concept of Statecharts which can
be adapted to specific notations and semantics, and it can import Statecharts
that were created using other modeling tools. The currently supported dialects
are those of Esterel Studio, Stateflow , and the UML via the XMI format, as,
e. g., generated by ArgoUML. KIEL further provides a structure-based editor
to create Statecharts from scratch or to modify imported charts. A simulator
is also part of the tool. The robustness checker, comprising checks for the rules
presented above, has been integrated into KIEL. Figure 6 shows a screen-shot
of KIEL as it checks particularly semantic robustness rules.

72 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

Fig. 6: Screen-shot of KIEL Checking Robustness of a Statechart.

The Checking Plug-in

The checking plug-in of KIEL was designed to be very flexible in usage. All
checks have been implemented independently. Via an user interface it is easily
possible to manually select which checks to apply. It is further possible to define
Statechart dialect-specific profiles containing different sets of rules. Depending
on the model loaded into KIEL, the plug-in automatically decides which profile
to apply.

The plug-in was developed to be easily extendable. The user can extend the
rule set by either adding an appropriate OCL constraint for a syntactical check or
by adding a new Java class for semantical checks. Depending on the seriousness
of a detected problem, the robustness checker delivers two kinds of messages.
(1) Errors in modeling are violations of rules that have to be addressed because
further actions such as simulating the model is impossible. (2) Warnings indicate
that a problem was found which does not need to be fixed immediately for simu-
lation, i. e., possible sources of errors or ambiguous constructs. In the following,
an overview of the implementation of the aforementioned rules is presented.

We have chosen the OCL because, as stated by Mutz, it allows to formu-
late checks on a high level of abstraction, and neither knowledge of a program-
ming language nor of the underlying data structure is needed [8]. The executive
approach towards the evaluation of OCL is preferable to an interpretative ap-
proach as the former one proved to be more flexible and faster in execution time.

Analyzing Robustness of UML State Machines 73

MARTES 2006 at MoDELS 2006

Therefore, we chose to use the Dresden OCL Toolkit version 1.313 discussed by
Richters [10] to transform OCL constraints to Java.

Our approach for the checking framework contains the possibility of returning
customized messages when a violation is found. Therefore, the OCL constraint
is wrapped by additional information as Java code snippets. The union of OCL
and Java code snippets we named KIEL wrapped OCL (KOCL). The developed
KOCL to Java translator utilizes the Dresden OCL Toolkit which is supplied
with the according meta model of the KIEL data structure. Figure 7 basically
shows how the different parts of the KOCL files are processed. The workflow
and the specified rules were described in detail elsewhere [22].

Java Code Snippet

Java Code
for Checking

OCL Constraint

Dresden
OCL-Toolkit

KIEL Datastructure
Meta-model

Fig. 7: Processing KOCL with KIEL.

As the framework is designed to handle rules formulated as OCL-constraints
we have implemented the rules elaborated above (cf. Section 4). Most of the
well-formedness rules were specified in KOCL. The rules not specified in KOCL
deal partly with features of UML diagrams. As the KIEL project so far is focused
on simulating and modifying Statecharts only, the representations of classes and
packages was left out for the sake of simplicity. Therefore, e. g., rule StateMachine
number 1 which states that “a State Machine is aggregated within either a
classifier or a behavioral feature” from the UML specification was left out.

We will not present all of the transfered rules in detail. The example presented
in the following gives an overview about how the additional information is cap-
suled within KOCL files. A relatively simple example is Rule CompositeState-1
(cf. Section 4) as specified in Figure 8a. The OCL constraint states that the set
subvertex of a composite state can contain at most one pseudostate of kind
#initial. The Dot notation is used to access members of a class. An arrow
(“->”) is used to access properties or functions on sets.

The rule specified in KOCL is presented in Figure 8b. The separation of the
message declaration, the constraint definition and the specification of the return-
ing message is clearly seen in this example. The declarations part (lines 2–4)
is designed to hold more than one message. The fails part (line 10) specifies

13 http://dresden-ocl.sourceforge.net/

74 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

which message to return if a violation of the constraint is found. It is even pos-
sible to return different messages (if defined) depending on the context in the
fails part by simply using a common if-then-else-statement. Due to the
meta model the constraint itself (lines 7–9) is even shorter than specified in the
UML.

1 self.subvertex->select(
2 v| v.oclIsKindOf(Pseudostate))->
3 select(
4 p:Pseudostate| p.kind = #initial)->
5 size <= 1

(a) The OCL Representation.

1 rule UML13CompositeStateRule1 {
2 declarations {
3 message "A composite state can have
4 at most one initial vertex.";}
5 constraint {
6 context ORState or Region;
7 "self.subnodes->select(
8 v| v.oclIsTypeOf(InitialState))->
9 size <= 1";}

10 fails {message;}
11 }

(b) The KOCL Representation.

Fig. 8: The Rule CompositeState-1.

As mentioned before, syntactic analysis is not the only field for which an
automated checking framework for Statecharts is beneficial. The presented se-
mantic rules can also be checked automatically. Although OCL is of great ben-
efit in specifying and implementing robustness checks regarding the syntax of
Statecharts, semantic analyses are generally beyond its scope because checking
a Statechart with respect to these rules typically requires extensive knowledge
of the model semantics. The Transition Overlap rule, the Dwelling rule, and the
Race Conditions rule (see Section 4) cannot be specified using OCL constraints.
Our framework still allows to incorporate such checks; for this purpose Java code
is needed to formulate theorem-proving queries and sending them to an outside
tool for analysis.

To perform the semantic robustness checks, a satisfiability modulo theories
(SMT)14 solver is needed. SMT problems are a variation of automated theorem
proving [23], which in turn is part of automated reasoning. After an evaluation of
available SMT solvers [24], CVC Lite [25] was chosen. Here, in order to determine
whether, e. g., two transitions trans1 and trans2 (cf. Section 4) have overlapping
labels, satisfiability of the formula

(
(e1 ∧ c1) ∧ (e2 ∧ c2)

)

must be decided. Unsatisfiability implies that the predicates of trans1 and trans2

are disjoint. Such SMT problems are generally decidable as long as they contain
only addition but no multiplication of variables.

14 http://combination.cs.uiowa.edu/smtlib/

Analyzing Robustness of UML State Machines 75

MARTES 2006 at MoDELS 2006

Further, the Simplified Wrapper and Interface Generator (SWIG) [26] was
employed to generate wrappers and interface files for CVC Lite, enabling its
immediate use from within Java. Here, the Java and C++ JNI wrappers are
produced from CVC Lite’s annotated C++ header files, as shown in Figure 9.

wrapped CVCL
libraray, JNI enabled

CVCL .h files
SWIG interface
definition file

manual
annotation

Java wrapper classes
for CVCL

communication
through JNI

SWIG
C++ wapper for
CVCL library

SWIG

gcc

CVCL
C++ library

KIEL Checking
Plug-In

uses

(a) Outline of the SWIG Workflow, Including
the Link-Up of the CVC Lite Library to the
KIEL Checking Plug-In.

Java Wrapper Classes

Java Native Interface (JNI)

C++ Wrapper Classes

CVCL C++ library

(b) Conceptual Diagram of the Hi-
erarchical Composition of Wrap-
per Layers around the CVC Lite
Library.

Fig. 9: Interfacing of KIEL and the CVC Lite Library via JNI and SWIG.

6 Experimental Results

Finally, we show the application of the checking framework on a well known ex-
ample, the wristwatch presented by Harel [1]. As this example is well-established
we did not expect to detect real modeling errors; our focus was to quantitatively
asses the efficiency of our checking mechanism. We remodeled the wristwatch
with ArgoUML which imposed some restrictions. E. g., some transitions per-
form indexing over multiple states, which was replaced by according conditional
constructs. However, the final model retains the originally modeled behavior. So
far, the final model contains 120 transitions and 108 states.

The results from benchmarking are presented in Table 1. The number of re-
turned hints and the run-time of each check are presented. The checking times
were measured on a PC with GNU/Linux OS, a 2.6 GHz AMD Athlon 64 pro-
cessor and 2 GB of RAM.

The application of the well-formedness rules consumed the least time of all
parts. Roughly 20 milli-seconds were needed to check those rules on the chart.
Except for the check EqualNames the syntactical robustness checks roughly take
twice as much time as the well-formedness rules. The check EqualNames has a
quadratic complexity in the number of states. This is caused by limitations of the
OCL—all states have to be compared to the currently handled state. In compar-
ison to the checks dealing with syntactical robustness, except EqualNames, the
checks for semantical robustness take about 400 milli-seconds. Here, the check

76 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

Table 1: Experimental Results of Checking the Wristwatch Example.

Checks Hints Time [ms]

well-formedness checks (total) 0 20

InterlevelTransition 17 14
Connectivity 7 2
EqualNames 33 587
InitialStateCount 7 1
TransitionLabels 6 9
IsolatedStates 1 4

syntactical checks (total) 71 617

Transition Overlap 598 352
Dwelling 0 2
Race Conditions 0 1

semantical checks (total) 598 355

total 669 992

Transition Overlap returns an enormous number of hints compared to the to-
tal number of transitions. This is due to the fact that almost no transition was
designed with an opposing predicate of another outgoing transition.

As another example, the application of the framework on the Statechart
presented in Figure 10a delivered the hint that violations of the rule Dwelling
are present. Especially novices tend to produce unnecessarily large models with
needless states, for example by splitting trigger and effect into separate transi-
tions. Figure 10b shows a possible way how the violation can be fixed. Because
the Statechart is rather small, all checks were applied in about 3 milli-seconds.

(a) A Statechart with Unnecessary, Transient
States.

(b) Statechart after Removing the
Transient States b, d, and f.

Fig. 10: Example for Removing Transient States.

Analyzing Robustness of UML State Machines 77

MARTES 2006 at MoDELS 2006

7 Assessment

We gained the following results during the work with the framework. Not sur-
prisingly, the time needed for specifying rules differs significantly depending on
the complexity of the problem. The fairly simple well-formedness rules from the
UML were specified in KOCL in a rather short amount of time. All in all, it
took less than one hour to specify them. The more sophisticated rules regard-
ing problems from the field of syntactical robustness took not much longer, as
the OCL proved to be an easy to apply language for these kind of problems,
too. The time needed for specifying those rules varies between two minutes and
half an hour per rule. The semantic robustness rules turned out to be the most
demanding. Roughly two weeks were needed altogether for the implementation
of the three rules presented. The main aspect of this task was to extract the
needed data and afterwards to transform the data from the Statechart to the
input language of the theorem prover.

The well-formedness rules do not necessarily improve the quality of State-
charts in the sense of robustness. Those rules apply to the field of syntactical
correctness only. Nevertheless, these rules are needed before any further checking
can be applied to a Statechart, because the robustness checks rely on the correct
syntax.

Syntactical robustness rules, however, focus on more intricate problems, but
not as sophisticated as the rules dealing with the semantical robustness. Nev-
ertheless, the information gained by applying the checks is worth it. The infor-
mation delivers sources for possible optimizations that lead to a better under-
standing of the checked Statechart. E.g., the readability of charts significantly
improves if all states are labeled with different names. Furthermore, the tests
for Connectivity and for MiracleStates may detect design flaws that may lead
to misbehavior of the modeled system. Therefore these problems should always
be corrected to fix the model and also to increase the maintainability.

The Transition Overlap and Dwelling rules certainly improve the structural
clarity of Statecharts, as all behavior is diagrammed explicitly. Especially in a
non-deterministic dialect such as Statemate, the introduction of determinism
greatly eases model comprehension. The Race Conditions rule, on the other
hand, might be too restrictive in real life. If applied, though, it leads to immense
structural improvements as potential race conditions in far apart regions of a
Statechart are eliminated a priori.

Finally, there is a trade-off between semantic robustness and minimality of
Statecharts. E. g., eliminating a Transition Overlap or Dwelling violation by
adding the negation of the predicates of one transition to the predicates of the
other transition, as suggested above, constitutes an infringement of the write
things once principle of modeling [27].

In summary, on the one hand one can say that evaluating OCL statements
as specified by the well-formedness rules turned out to be a task very fast done.
On the other hand one has to say that for statements of greater complexity the
evaluation of OCL—as in rule EqualNames—can be much more time consuming.

78 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

8 Conclusion and Further Work

As the failure of safety-critical systems can have severe consequences, error pre-
vention in the model-driven system development of such systems is vital. We
have outlined an approach to make the model-driven system development with
Statecharts less error prone, and have presented a general Statechart style guide
that is not restricted to a single dialect. We implemented a flexible robustness
checking framework within the KIEL modeling tool. The hints returned by our
checking framework do not necessarily indicate errors; this typically still requires
application-specific knowledge. However, as has been observed in earlier work,
adhering to the robustness rules reduces the chance for errors. Beyond that, they
serve to improve the readability and maintainability of a system.

Our framework permits to express robustness rules directly with the well-
established OCL formalism, which facilitates an abstract rule formulation and
allows to directly incorporate existing OCL rule sets. Our transformative ap-
proach for the evaluation of OCL statements has turned out superior to earlier,
interpretative approaches, and the expressiveness of the OCL has been suffi-
cient for most of our checks. However, the framework also allows to implement
complex semantic checks in Java directly, which we have used to incorporate an
off-the-shelf theorem prover. Our framework has been practically validated for
the checking of UML State Machines; however, the framework could easily be
adapted to other commercial Statechart modeling tools as well; provided that
an appropriate import functionality exists.

Beyond the experimental results presented in this paper, we intend to utilize
the KIEL checking framework to perform a systematic study of the effectiveness
of robustness checking, both for novice users and experienced modelers. Further-
more, we plan to implement support for the recently published version 2.0 of the
OCL, and to incorporate further rules into our checking framework.

References

[1] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3) (1987) 231–274

[2] Object Management Group: Unified Modeling Language: Superstructure, Version
2.0 (2005)

[3] Parnas, D.L.: Some theorems we should prove. In: HUG ’93: Proceedings of
the 6th International Workshop on Higher Order Logic Theorem Proving and its
Applications, London, UK, Springer-Verlag (1994) 155–162

[4] Object Management Group: (Unified Modeling Lanugage—UML Resource Page)
http://www.uml.org.

[5] Motor Industry Software Reliability Association (MISRA): MISRA-C:2004.
Guidelines for the Use of the C Language in Critical Systems. Motor Industry
Research Association (MIRA), Nuneaton CV10 0TU, UK (2004)

[6] Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Maraninchi, F.: Defining and
translating a “safe” subset of simulink/stateflow into lustre. Technical Report
2004-16, Verimag, Centre Équation, 38610 Gières (2004)

Analyzing Robustness of UML State Machines 79

MARTES 2006 at MoDELS 2006

[7] Kreppold, T.: Modellierung mit Statemate MAGNUM und Rhapsody in Micro C.
Berner & Mattner Systemtechnik GmbH, Otto-Hahn-Str. 34, 85521 Ottobrunn,
Germany, Dok.-Nr.: BMS/QM/RL/STM, Version 1.4 (2001)

[8] Mutz, M.: Eine durchgängige modellbasierte Entwurfsmethodik für eingebettete
Systeme im Automobilbereich. Dissertation, Technische Universität Braunschweig
(2005)

[9] Pap, Z., Majzik, I., Pataricza, A.: Checking general safety criteria on UML stat-
echarts. Lecture Notes in Computer Science 2187 (2001)

[10] Richters, M.: A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, University of Bremen (2001)

[11] Mutz, M., Huhn, M.: Automated statechart analysis for user-defined design rules.
Technical report, Technische Universität Braunschweig (2003)

[12] Moutos, M., Korn, A., Fisel, C.: Guideline-Checker. Studienarbeit, University of
Applied Sciences in Esslingen (2000)

[13] Scheidler, C.: Systems Engineering for Time Triggered Architectures. SETTA
Consortium (2002) Deliverable D7.3 – Final Document.

[14] Heitmeyer, C., Jeffords, R., Labaw, B.: Automated Consistency Checking of
Requirements Specifications. ACM Transactions on Software Engineering and
Methodology 5(3) (1996) 231–261

[15] Heimdahl, M.P.E., Leveson, N.G.: Completeness and Consistency in Hierarchical
State-Based Requirements. Software Engineering 22(6) (1996) 363–377

[16] Johnson, S.C.: Lint, a C program checker. In Thompson, K., Ritchie, D.M., eds.:
UNIX Programmer’s Manual. Seventh edn. Bell Laboratories (1979)

[17] Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19(1) (2002) 42–51

[18] Buck, D., Rau, A.: On Modelling Guidelines: Flowchart Patterns for STATE-
FLOW. Softwaretechnik-Trends 21(2) (2001) 7–12

[19] Object Management Group: Unified Modeling Language (UML) 1.3 specification
(2000) http://www.omg.org/cgi-bin/apps/doc?formal/00-03-01.pdf.

[20] Kossowan, K.: Automatisierte überprüfung semantischer modellierungsrichtlinien
für statecharts. Diplomarbeit, Technische Universität Berlin (2000)

[21] Prochnow, S., von Hanxleden, R.: Comfortable Modeling of Complex Reactive
Systems. In: Proceedings of Design, Automation and Test in Europe (DATE’06),
Munich (2006)

[22] Bell, K.: Überprüfung der Syntaktischen Robustheit von Statecharts auf der Basis
von OCL. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Institut für
Informatik und Praktische Mathematik (2006) unpublished.

[23] Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem
Proving. Revised On-Line Version (2003), Philadelphia, PA (2003)

[24] Schaefer, G.: Statechart Style Checking – Automated Semantic Robustness Anal-
ysis of Statecharts. Diploma thesis, Christian-Albrechts-Universität zu Kiel, In-
stitut für Informatik (2006)

[25] Barrett, C.W., Berezin, S.: CVC Lite: A new implementation of the Cooperat-
ing Validity Checker Category B. In Alur, R., Peled, D.A., eds.: Proceedings of
Computer Aided Verification: 16th International Conference, CAV 2004, Boston.
Volume 3114 of Lecture Notes in Computer Science., Springer (2004) 515–518

[26] Beazley, D.M.: SWIG: An easy to use tool for integrating scripting languages with
C and C++. In: Proceedings of the Fourth Annual USENIX Tcl/Tk Workshop.
(1996) 129–139

[27] Berry, G.: The Foundations of Esterel. Proof, Language and Interaction: Essays
in Honour of Robin Milner (2000) Editors: G. Plotkin, C. Stirling and M. Tofte.

80 S. Prochnow, G. Schaefer, K. Bell, and R. von Hanxleden

MARTES 2006 at MoDELS 2006

Time Exceptions in Sequence Diagrams

Oddleif Halvorsen1, Ragnhild Kobro Runde2, Øystein Haugen2

1 Software Innovation
2 University of Oslo

{oddleif|ragnhilk|oysteinh}@ifi.uio.no

Abstract. UML sequence diagrams partially describe a system. In this
paper we show how the description may be augmented with exceptions
triggered by the violation of timing constraints. We compare our ap-
proach to those of the UML 2 simple time model, the UML Testing
Profile and the UML profile for Scheduling, Time and Performance. We
give a formal definition of time exceptions in sequence diagrams and
show that the concepts are compositional. An ATM example is used to
explain and motivate the concepts.

1 Introduction

UML sequence diagrams [8] are a useful vehicle for specifying communication
between different parts of the system (e.g. components or objects). A sequence
diagram specifies a set of positive traces, and a set of negative traces. A trace
is a sequence of events, representing a system run. The positive traces represent
legal behaviors that the system may exhibit, while the negative traces represent
illegal behaviors that the system should not exhibit.

Timing information may be included in the diagram as constraints. These
constraints may refer to either absolute time points (e.g. the timing of single
events) or durations (e.g. the time between two events). The described behavior
is negative if one or more time constraints are violated.

In practice, it may often be impossible to ensure that a time constraint is
never violated, for instance when the constrained behavior involves communica-
tion with the environment. Usually, a sequence diagram does not describe what
should happen in these exceptional cases. In this paper we demonstrate how the
specification may be made more complete by augmenting the sequence diagram
with exceptions that handle the violation of time constraints. The ideas behind
our approach originate from [1], which treats exceptions triggered by wrong or
missing data values in the messages.

Time violations are exceptional situations that are not supposed to happen
very often. Modeling violation of time constraints as exceptions rather than using
the alt-operator for specifying alternative behaviors, has the advantage that

– specifying the exceptional behavior separately from ordinary/expected be-
havior simplifies the diagrams and increases the readability,

– after having specified the normal behavior, exceptional behavior can easily
be added in separate exception diagrams.

Time Exceptions in Sequence Diagrams 81

MARTES 2006 at MoDELS 2006

A single event may violate a time constraint in three different ways:

1. The event occurs too early.

2. The event occurs too late.

3. The event does not occur at all.

All three situations will result in an exception, but the exact exception han-
dling to be performed will typically be very different depending on the nature
of the violation. In this paper we focus on the last case, where an event has not
occurred within the given time limit and we therefore assume that it will not
occur at all. If the event for some reason occurs at some later point it should be
treated as another exception.

2 Background

In this section we motivate our work by presenting state of the art regarding
timing constraints in UML. The main conclusion may be summarized as fol-
lows: Both the UML 2.1 simple time model (Section 2.1) and the UML profile
for Schedulability, Performance and Time (Section 2.2) introduce concepts and
notations for defining time constraints, but do not consider what should happen
in case of violations. TimedSTAIRS (Section 2.3) distinguishes between the re-
ception and the consumption of a message, but as it is based on UML 2.1 simple
time model, TimedSTAIRS does not consider violations either. The default con-
cept of UML Testing Profile (Section 2.4) and our previous work on exception
handling (Section 2.5) consider violation of constraints, but mainly regarding
wrong or missing data values, and not time constraint violations.

2.1 The UML 2.1 Simple Time Model

UML 2.1 [8] includes a simple time model intended to define a number of concepts
relating to timing constraints. In general the semantics of the timing constraints
follow the general interpretation of constraints in UML: “A Constraint repre-
sents additional semantic information attached to the constrained elements. A
constraint is an assertion that indicates a restriction that must be satisfied by a
correct design of the system.”

Furthermore the timing constraints always refer to a range of values, an
interval. The concept IntervalConstraint is defined by: “The semantics of an
IntervalConstraint is inherited from Constraint. All traces where the constraints
are violated are negative traces (i.e., if they occur in practice the system has
failed).” Some notation is introduced to define these IntervalConstraints shown
by the example in Fig. 1.

We notice that UML 2.1 only states that when the constraints are violated
the system is in error. Exceptions triggered by time constraint violations are not
considered.

82 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

Figure 13.15 - DurationConstraint and other time-related concepts

sd UserAccepted

:User :ACSystem

Code

CardOut {0..13}

OK
Unlock

{d..3*d}

@t

{t..t+3}

&d

DurationObservation (of Code)

DurationConstraint (of CardOut)

DurationConstraint

TimeConstraint

TimeObservation

Fig. 1. UML 2.1 Timing constraints example

2.2 UML Profile for Schedulability, Performance and Time

The UML profile for Schedulability, Performance and Time Specification [6] is
a profile based on UML 1.4 [5] describing in great detail concepts relating to
timely matters. The profile, hereafter referred to as SPT, is a profile based on
UML 1.4 and therefore a profile that will have to be updated to UML 2.0. There
is now ongoing work to upgrade the realtime profile under the name MARTE.

SPT introduces a large number of concepts. They represent most often prop-
erties of behavioral units needed to schedule these units and to analyze their
performance.

Exceptions are not mentioned at all, but the following are some notes on the
time mechanisms.

By introducing concepts that allow to define “timing marks”, it is possible to
describe constraints on these timing marks, and in principle express time and
duration constraints similar to what is the case with UML 2 simple time model.

SPT goes no longer than the simple time model when it comes to constraints.
Of course SPT allows constraints to be expressed on a large number of properties
having been declared on behavioral units, but it never considers what happens
if the constraint is not met. Implicitly this means that if the constraint is not
met, the system is in complete failure.

In Fig. 2 we show an example of a fairly crowded diagram with a number of
constraints on properties that go beyond pure UML.

2.3 TimedSTAIRS

TimedSTAIRS [3] is an approach to the compositional development of timed
sequence diagrams. With time constraints, it is important to know whether a
given constraint applies to the reception or the consumption of the message.

Time Exceptions in Sequence Diagrams 83

MARTES 2006 at MoDELS 2006

Figure 7-8 Sequence diagram of web video application with performance annotations (partial
set)

b : Browser ws : WebServer vs : VideoServer vp : VideoPlayer vw : VideoWindow

processSelection

initialPlayout initializePlayer

sendFrame

showFrame

terminalPlayout

confirm

*[$N]

«PAclosedLoad»
{PApopulation=$NUsers,
PAextDelay=('mean','asgn',20,'ms')}}

«PAcontext»

«PAstep»
{PArespTime=
('req','percentile',95,500,'ms')}}

«PAstep»
{PAdemand=
('est','mean',1,'ms')}}

«PAstep»
{PAdemand=
(('est','mean',15,'ms'),
('est','sigma',10))}

«PAstep»
{PArep=$N,
PAdemand=('est','mean',10,'ms'),
PAextOp=('filesys',12),('network',65)}

«PAstep»
{PAinterval=
('req','percentile',99,30,'ms')}}

Fig. 2. SPT diagram with constraints

Hence, in [3] we argued for a three-event semantics of timed sequence diagrams.
The example given is reproduced here in Fig 3.

Customer Kitchen

main dish please

main dish:sirloin

{0..10}

sd Dish

Fig. 3. Timing constraint as presented in [3]

Here, the time constraint specifies that the kitchen should not use more than
ten time units from it receives an order until it is served. However, does the
time constraint apply to when the order is placed in the kitchen’s order-queue,
or from when the chef actually reads the order and starts working on it? In this
case, the customer probably wants the time constraint to apply to the kitchen
receiving the message, while in other situations the constraint will apply to the
consumption. In order to make a graphical distinction between reception and
consumption, [3] uses a double arrow for reception, and the standard single

84 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

arrow for consumption. We will follow this convention in our examples later in
this paper. If only the consumption event is present in the diagram, the reception
event is taken implicitly, while if only the reception event is present, the implicit
consumption event may or may not take place.

In TimedSTAIRS, the semantics of a diagram like the one in Fig. 3 is a set
of positive (i.e. legal) behaviors and a set of negative (i.e. illegal) behaviors. In
Fig. 3, the positive traces are all traces where the customer asks for main dish,
and the kitchen serves sirloin within ten time units. The negative traces are all
traces where the customer asks for main dish, and the kitchen uses more than ten
minutes before serving sirloin. All traces that are not described in the diagram
(e.g. if the customer asks for dessert, or if the kitchen serves chicken instead
of sirloin, regardless of the time it takes) are referred to as inconclusive. These
may later be supplemented (i.e. added) to the specification as either positive or
negative, in order to make the specification more complete.

2.4 UML Testing Profile — default concept

The U2TP (UML Testing Profile) [7] introduces the notion of Defaults that aims
to define additional behavior when a constraint is broken.

We will go through an example found in the standard, and present here the
semantics of defaults in sequence diagrams (Interactions) quoted from the U2TP
standard:

For defaults that are described on Interactions, the semantics is given
as an algorithm that combines the traces of the default behavior with
the traces of the main description:

Assume that there is a main description of an interaction fragment.
Its semantics can be calculated as a set of traces. This set of traces is
projected onto the test component with the default by removing all event
occurrences of other lifelines from the traces. The result is a set of traces
only involving event occurrences of the test component. This is called
the main description. Every trace in this set can be split in three parts:
a head, a trigger, and a tail. The trigger is normally a receiving event
occurrence. One particular trace can therefore be constructed in parts in
several ways. The default is a behavior and is therefore also a set of traces,
each of which can be divided in two parts: a trigger and a tail. For every
trace in the main description, construct more traces by concatenating
main-head with every default trace provided that main-trigger is different
from default-trigger. Retain the information on a trigger that it was
originally a default-trigger by a flag. Finally filter out all traces starting
with main-head+trigger-with-default-flag if there is another trace in the
set starting with main-head+main-trigger and the main-trigger is equal
to the trigger-with-default-flag. This makes up the set of traces for the
interaction fragment with associated default.

Fig. 4 presents a very small example based on an excerpt of one of the
diagrams given in the standard.

Time Exceptions in Sequence Diagrams 85

MARTES 2006 at MoDELS 2006

wireMoney(amount, targetBank, targetAccount)

wireMoney : true

acceptMoney()

amount = acceptMoney

display(”Transaction Accepted”)

selectOperation : true

default

DisplayDefault
default

DisplayDefault

«validationAction»

pass

Fig. 4. U2TP default example (from Figure 6.29 of the U2TP standard)

Disregarding the default (exception) we have the following traces:
{〈!cam, ?cam, !ram, ?ram, !cwM, ?cwM, !rwM, ?rwM, !di(T), ?di(T), !rsO,
?rsO, pass〉, 〈!cam, ?cam, !ram, ?ram, !cwM, ?cwM, !rwM, ?rwM, !di(T), !rsO,
?di(T), ?rsO, pass〉} where ! represents call or send event and ? represent the
reception event. The default applies to lifeline hwe (the leftmost lifeline in
Fig. 4) and the projection of the main traces onto this lifeline gives the trace
{〈?cam, !ram, ?di(T), ?rsO, pass〉} which can easily be seen from the diagram.
If we consider only the DisplayDefault as the exception, the only possible main-
trigger is ?di(T) and we have for the single trace of the projected set: main-head:
〈?cam, !ram〉 main-trigger: 〈?di(T)〉 main-tail: 〈?rsO, pass〉.

In Fig. 5 we look at the definition of DisplayDefault.

Figure 6.30 - Default for individual message reception

sd DisplayDefault

self

determAlt
display(*)

*

«validationAction»
inconc

«validationAction»
fail

sd DisplayDefault

self

determAlt
display(*)

*

«validationAction»
inconc

«validationAction»
fail

Fig. 5. U2TP default definition

86 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

The semantics for DisplayDefault is {〈?di(∗), inconc〉, 〈?∗, fail〉} where the *
is the wildcard and denotes a range of values. The first one is any string other
than T and the second asterisk is any signal other than di. The first event on
either trace is their default-trigger and the second event is the default-tail.

The resulting set of event traces for hwe after applying the transformation
described above, is the following: {〈?cam, !ram, ?di(T), ?rsO, pass〉,
〈?cam, !ram, ?di(∗), inconc〉, 〈?cam, !ram, ?∗, fail〉} This is reasonable and what
we wanted. To get the total set of traces the projections on all lifelines must be
combined in a parallel combination.

U2TP says little about the semantics of defaults triggered by the violation
of time constraints. The idea behind the defaults on different levels is that even
the notoriously partial interactions are made complete and actually describing
all behaviors. But the U2TP definition is not adequately precise in this matter
and there are no convincing examples given to explain what happens when a
time constraint is violated.

2.5 Proposed notation for exceptions in sequence diagrams

In [1] we introduce notation for exceptions in sequence diagrams. The constraints
that are violated are always on data values at the event associated with the
exception. Violation of time constraints is not considered.

The semantics of the behavior including the exceptions are again given by a
transformation procedure quite similar to that of U2TP. The idea is again that
supplementing traces are defined in the exception starting from the prefix of
traces leading up to a triggering event.

The other novelty of our approach in [1] is that it suggests a scheme of
dynamic gate matching that makes it possible to define exceptions independently.
That idea is orthogonal to what we try to convey in this paper.

3 Time exceptions in the ATM example

In this section we shall through an example with an Automatic Teller Machine
(ATM) show how time exceptions supplement the description and make the spec-
ification more complete and comprehensive without losing sight of the normal
scenarios. The ATM example is based upon the case from [1].

We will start by introducing what we call the normal flow for the ATM. The
normal flow refers to a happy day scenario or what we would like to see the
system do. The normal flow is in this paper not the most important part, while
the exceptions are, and hence this introduction will be brief.

3.1 The normal flow

As our example, we will show the use of an ATM to withdraw money. Fig. 6
shows how the ATM interacts with users and banks.

Time Exceptions in Sequence Diagrams 87

MARTES 2006 at MoDELS 2006

ATMContext

:User :ATM :Bank

EnterPinsdWithdrawalsd

Fig. 6. The ATM context

The context has not specified any cardinality, but intuitively we know that
one ATM only serves one user at a time, and that with a given card this user
can only withdraw money from one single bank.

Withdrawal in Fig 7 specifies that the user is expected to insert a card, and
enter a four digit Personal Identification Number (PIN) whereas the ATM is to
send the pin to the bank for validation. While the bank is validating the pin,
the user is asked to enter the amount to withdraw. When a valid pin is given,
the bank will return OK. Then the ATM withdraws the money from the account
and gives it to the user together with the card.

sd Withdrawal

:Bank:User :ATM

Code(cid, pin)

OK

ref EnterPin

Cardid(cid)

msg(”Select amount”)

Amount(selectedAmount)

Withdraw(selectedAmount)

Money(selectedAmount)

card

Fig. 7. Specification of withdrawal

88 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

EnterPin in Fig. 8 specifies how the user is to give the ATM the four digit
PIN. It is here very important not to interpret an interaction use (here: referring
EnterPin) as a method call like for example in Java. An interaction use is not a
method call, but rather an inclusion of a fragment equal to the referred sequence
diagram.

sd EnterPin

:User :ATM

msg(”Enter PIN”)

Digit
loop(4) {0..5}

Fig. 8. Specification of entering a PIN

When you perform a method call in Java a new stack frame is added to the
call stack. This means that there is a difference between keeping all the code in
one method and splitting it into several methods. Sequence diagrams have no
call stack, and hence there is no difference between adding an interaction use
and including the traces for it directly in the sequence diagram.

What we have shown so far is the normal flow of control, which is what we
want the system to do most of the time. On the other hand this specification is
not very robust, and cannot serve as a complete specification for implementation.
What may go wrong is that the user enters a wrong PIN, the ATM is out of
money, the user’s account is empty or the ATM loses contact with the bank.

These are just some of the more important exceptions one needs to handle to
make a robust specification. What we need is some way to describe the possible
exceptions for this specification.

Although we have stated that one needs to handle exceptions, sequence di-
agrams are still partial description. By that we mean that sequence diagrams
are not supposed to cover every possible trace. What we aim to do is to make
them more complete, in relation to the important parts of the system. Another
goal is to make a clearer separation of what’s normal and what’s exceptional in
sequence diagrams. This in turn should increase readability.

3.2 Applying time exceptions to the ATM

Sequence diagrams are often filled with various constraints, but they seldom say
much about what to do if a constraint breaks. Hence the system has completely
failed if a constraint is broken. In most situations this is inadequate.

In order to make the specification more robust, we will add time exceptions
to the ATM case.

Time Exceptions in Sequence Diagrams 89

MARTES 2006 at MoDELS 2006

In the ATM case a possible time exception may be that the user for some
reason had to run before completing the transaction, or that the bank uses too
long time to validate the given PIN. These are both exceptions that have their
basis in time as the ATM needs some perception of time to decide whether or
not it has gone too long time since the last input.

When it comes to violations of time constraints we have three possible sce-
narios regarding events. The event may happen:

1. too early
2. too late
3. never

As explained in the introduction, in this paper we focus on the last case. By
that we mean that if an event has not occurred within the specified constraint
we assume it to never happen. If the event for some reason occurs after the
constraint was violated it should be treated as another exception.

When it comes to the evaluation of time constraints we are building the se-
mantics upon timestamps, whereas we assume that the running system performs
some kind of surveillance of the system, in order to evaluate the constraints. In-
tuitively, this means that we consider time constraints to conceptually work
like alarm clocks. If the associated event is too late the alarm goes off and the
exception handler is triggered.

3.3 Time exceptions in EnterPin

We will start to present the notation by applying a time exception to the Enter-
Pin diagram. A possible exception is that the user enters less than four digits or
that the digits for some reason is not received by the ATM. If we don’t handle
this, the ATM will not be ready for use when the next user arrives.

In order to handle this, we need a way to assert that the user has really left,
and if so we need to take the card from the card reader and store it some place
safe before canceling the user’s session.

This is shown in Fig. 9. We have added a time constraint stating that if
the ATM has not received all the digits within the specified time, the exception
UserLeftCard will fire.

The time constraint itself is initialized on the send event on msg, and attached
on the bottom of the loop fragment. Attaching it to the bottom of the loop
fragment indicates that the time constraint is to hold for the last message, and
hence all the preceding ones as well. Notice that the exception is attached to
the end of the time constraint, since the possible exceptions are to fire upon a
broken time constraint.

Fig. 10 shows how the UserLeftCard exception is handled. In the case that
the user leaves the ATM before proper completion of the service, the ATM sends
a message stating that the service was canceled and then specifies that we are to
terminate the service. By stating terminate we mean that the service, withdrawal
of money, is to terminate — not the whole ATM. We will elaborate more on that
in the next section, but for now interpret terminate as the termination of the
overall service.

90 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

sd EnterPin

:User :ATM

msg(”Enter PIN”)

Digit
loop(4) {0..5}

Exception
UserLeftCard

Fig. 9. EnterPIN with time exception

sd UserLeftCard

:User :ATM

msg(”Service canceled.”)

terminate

Fig. 10. Handling of left user

3.4 Time exceptions in Withdrawal

As shown we may attach possible exceptions to the constraint, in order to make
it fire if the time constraint breaks. In Fig. 11 we apply this to a more complex
example in order to highlight some challenging situations.

The exception that is of interest to us is the PIN validation timeout for the
ATM. Notice that the AMTPinValidation exception uses three event semantics
as described in TimedSTAIRS (see Section 2.3). This means that we accept that
the message only needs to be received in the message buffer within the specified
time constraint. We do not need to consume the message within the specified
constraint. The reason for this time constraint is mainly to make sure that we
don’t lose contact with the bank during the request.

Fig. 12 specifies how an ATMPinValidationTimout exception is to be handled
by the ATM and the Bank. The exception is triggered if the ATM doesn’t receive
the result of the PIN validation within the specified time. Our first exceptional
reaction is to repeat the request to the Bank. If the response from the bank
again fails to be delivered within the three time units, the ATMCancel exception
specified in Fig. 12 is triggered.

Time Exceptions in Sequence Diagrams 91

MARTES 2006 at MoDELS 2006

:Bank:User :ATM

Code(cid, pin)

ref EnterPin

Cardid(cid)

msg(”Select amount”)

Withdraw(selectedAmount)

{0..3}

Exception
ATMPinValidationTimeout

Card
Money(selectedAmount)

OK(maxAmount)
Amount(selectedAmount)

sd Withdrawal catch

Fig. 11. Withdrawal with time exception

sd ATMPinValidationTimeout

:ATM :Bank

Code(cid, pin)

{0..3}Exception
ATMCancel OK(maxAmount)

return

Fig. 12. Handling of PIN validation timeout on the ATM

Fig. 12 and Fig. 13 illustrate that an exception may end with return or with
terminate. While returning means a perfect recovery back to the original flow
of events, termination means that the service should be terminated gracefully.
Termination concludes the closest invoker declaring catch as shown in Fig. 11.
This means that if you declare an exception you must have a catch declaration
as well.

We have so far said nothing about how exceptions behave in relation to the
diagram that raised the exception. The basis for our exception handling notation
is that we have some events that lead up to a possible exception. These are events

92 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

card

sd ATMCancel

:User :ATM

Msg(”Bank timeout”)

terminate

Fig. 13. The ATMCancel exception that terminates the Withdrawal

that must occur before a possible exception. Then we have events that can occur
after a possible exception, and then we have the events enabled before a possible
exception. These enabled events run in parallel with the exception handling.

If we apply this to Withdrawal, Fig. 11, we notice that the ATM must at
least send a code for validation to the bank before the timeout event may occur.
Actually the exception may only occur 3 time units after the sending of the
validation request. That is, before the ATMPinValidationTimeout may occur
the user must have given a card, entered the pin, the ATM must have sent the
PIN for validation and 3 time units must have elapsed. After a possible recovery
from the ATMPinValidationTimeout exception we can continue on with sending
the withdrawal message and returning the card and money.

The tricky part is how to handle the selection of amount if an exception
occurs. And as said, this will be done in parallel. That is because the user is
outside of the ATMs sphere of control. We have in the ATM case 3 separate
lifelines (User, ATM and Bank) that each communicate to the others through
messages. Each lifeline in this distributed environment is totally autonomous
meaning that one can not know which states the other lifelines are in. They
are separate processes. We must therefore run the exception handling in parallel
with other enabled events.

By enabled events we mean events that are triggered before the exception
occurs. In the ATM example, an enabled event may be the sending of msg(“Select
amount”), and all events triggered by that. These events are outside the control
of the exception handling, and must be allowed to continue. An example of a
non-enabled event is the sending of Money from the ATM. This event can never
be sent before the OK message is received.

Compared to for example Java’s exceptions handling, Java’s exception han-
dling is stack oriented. That means that exceptions may only occur inside a
single thread of execution. Since sequence diagrams have several independent
processes, we are unable to use the same approach.

Time Exceptions in Sequence Diagrams 93

MARTES 2006 at MoDELS 2006

We will continue to elaborate more on how exceptional traces are constructed
in the following sections, keeping in mind that there are events that may occur
in parallel with the exception handling.

4 The formal semantic domain of sequence diagrams

In this section we briefly recount the main parts of the semantics of timed se-
quence diagrams as defined in [3]. In the next section we give our proposal for
how this semantics may be extended to handle time exceptions.

Formally, we use denotational trace semantics in order to capture the meaning
of sequence diagrams. A trace is a sequence of events, representing one run of the
system. As explained in Section 2.3, we have three kinds of events: the sending,
reception and consumption of a message, denoted by !, ∼ and ? respectively. A
message is a triple (s, tr, re) consisting of a signal s (the content of the message),
a transmitter tr and a receiver re. The transmitter and receiver are lifelines, or
possibly gates3.

Each event in the sequence diagram has a unique timestamp tag to which real
timestamps will be assigned. Time constraints are expressed as logical formulas
with these timestamp tags as free variables. Formally, an event is a triple (k, m, t)
of a kind k (sending, reception or consumption), a message m and a timestamp
tag t.

As an example, Fig. 9 consists of six events: (!, (m,ATM ,User), t1),
(∼, (m, (ATM ,User), t2), (?, (m,ATM ,User), t3), (!, (d,User ,ATM), t4),
(∼, (d,User ,ATM), t5) and (?, (d,User ,ATM), t6) where m stands for the mes-
sage msg(“Enter PIN”) and d stands for Digit. Notice that the reception events
are implicit, meaning that they may happen at any time between the correspond-
ing send and receive events. The given time constraint may now be written as
t6 ≤ t1 + 5.

H denotes the set of all well-formed traces. For a trace to be well-formed, it
is required that

– for each message, the send event occurs before the receive event if both events
are present in the trace.

– for each message, the receive event occurs before the consumption event if
both events are present in the trace.

– the events in the trace are ordered by time.

E denotes the set of all syntactic events, and [[E]] is the set of all corre-
sponding semantical events where real timestamps have been assigned to the
timestamp tags:

[[E]] def= {(k, m, t �→ r) | (k, m, t) ∈ E ∧ r ∈ R} (1)

Informally, parallel composition s1 ‖ s2 of two trace-sets s1 and s2 is the set
of all traces such that

3 For a formal treatment of gates, see [4].

94 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

– all events from one trace in s1 and one trace in s2 are included (and no other
events),

– the ordering of events from each of the traces is preserved.

Formally:

s1 ‖ s2
def= {h ∈ H | ∃p ∈ {1, 2}∞ :

π2(({1} × [[E]]) T© (p, h)) ∈ s1 ∧ (2)

π2(({2} × [[E]]) T© (p, h)) ∈ s2}

The definition makes use of an oracle, the infinite sequence p, to resolve the
non-determinism in the interleaving. It determines the order in which events
from traces in s1 and s2 are sequenced. π2 is a projection operator returning the
second element of a pair, and T© is an operator filtering pairs of sequences with
respect to pairs of elements.

Weak sequencing, s1 � s2, is the set of all traces obtained by selecting one
trace h1 from s1 and one trace h2 from s2 such that on each lifeline, the events
from h1 are ordered before the events from h2:

s1 � s2
def= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : h� l = h1 � l � h2 � l} (3)

where L is the set of all lifelines, � is the concatenation operator on sequences,
and h� l is the trace h with all events not taking place on the lifeline l removed.

Time constraint on a trace set filters away all traces that are not in accordance
with the constraint:

s � C
def= {h ∈ s | h |= C} (4)

where h |= C holds if the timestamps assigned to timestamps tags in h does not
violate C.

The semantics [[d]] of a sequence diagram d is given as a pair (p, n), where
p is the set of positive and n the set of negative traces. Parallel composition,
weak sequencing and time constraint are overloaded to such pairs as follows:

(p1, n1) ‖ (p2, n2)
def= (p1 ‖ p2, (n1 ‖ (p2 ∪ n2)) ∪ (n2 ‖ p1)) (5)

(p1, n1) � (p2, n2)
def= (p1 � p2, (n1 � (n2 ∪ p2)) ∪ (p1 � n2)) (6)

(p, n) � C def= (p � C, n ∪ (p � ¬C)) (7)

Two other operators, inner union (�) and looping (μn) are also defined:

(p1, n1) � (p2, n2)
def= (p1 ∪ p2, n1 ∪ n2) (8)

μn (p, n) def=
{

(p, n) if n = 1
(μn−1 (p, n)) � (p, n) otherwise

(9)

Time Exceptions in Sequence Diagrams 95

MARTES 2006 at MoDELS 2006

Finally, the semantics of the sequence diagram operators of interest in this
paper, is defined by:

[[d1 alt d2]] def= [[d1]] � [[d2]] (10)

[[d1 par d2]] def= [[d1]] ‖ [[d2]] (11)

[[d1 seq d2]] def= [[d1]] � [[d2]] (12)

[[d1 tc C]] def= [[d]] � C (13)

[[loop (n) [d]]] def= μn [[d]] (14)

Definitions of other operators may be found in e.g. [4].

5 The formal semantics of time exceptions

In Section 3 we informally explained the semantics of time exceptions. In this
section we define the semantics formally, based on the formalism introduced
in Section 4. Furthermore we show some desirable properties of our exception
mechanisms.

5.1 Definitions

An exception diagram is mainly specified using the same operators as ordinary
sequence diagrams, and its semantics may be calculated using the definitions
given in Section 4. As explained in Section 3, the additional constructs used in
exception diagrams is that the exception handling always ends with either return

or terminate. Formally, the semantics of an exception (sub-)diagram marked with
either return or terminate is defined by:

[[d return]] def= [[d]] (15)

[[d terminate]] def= appendTT ([[d]]) (16)

where appendTT is a function appending a special termination event TT to
every trace in its operand (i.e. all the positive and negative traces described by
d).

With this new termination event, weak sequencing of trace sets must be
redefined so that traces that end with termination are not continued:

s1 � s2
def= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 :

(term(h1) ∧ h = h1) ∨ (17)

(¬term(h1) ∧ ∀l ∈ L : h� l = h1 � l � h2 � l)}

where term(h1) is a boolean function that returns true if h1 ends with the
termination event TT , and false otherwise.

96 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

For parallel composition of trace sets, the traces may be calculated as before
and then removing all events that occur after TT from the trace:

s1 ‖ s2
def= {h ∈ H | ∃h′ ∈ s1 ‖′ s2 : h = chopTT (h′)} (18)

where ‖′ is parallel composition as defined by definition 2 and chopTT is a
function removing all events after TT in the trace (if it exists).

A sequence diagram d marked as catching termination events then has the
semantic effect that the termination mark is removed from the trace, meaning
that the trace continues as specified by the diagram that is enclosing d:

[[d catch]] def= removeTT ([[d]]) (19)

where removeTT is a function removing the special termination event TT from
all traces in its operand.

Finally, we need to define the semantics of a sequence diagram which contains
exceptions. The kind of exceptions considered in this paper is always connected
to an event with a time constraint. Syntactically, we write q tc C exception e
to specify that C is a time constraint associated with the event q, and that
the sequence diagram e specifies the exception handling in case C is violated.
Obviously, a trace is negative if the exception handling starts before the time
constraint is actually violated.

As an example, consider the sequence diagram in Fig. 9. Here, we have the
constraint t6 ≤ t1 + 5 as explained in Section 4. Letting t7 be the timestamp of
the sending of the message in Fig. 10, we then intuitively have the corresponding
constraint t7 > t1 + 5.

Formally, we let frst(e) be the set of all events that may be the first event in a
trace in the semantics of e. (These events should all be send-events on the same
lifeline as q, as this is the lifeline that discovers the time constraint violation
and then initiates the exception handling.) We then define eq,C as the exception
diagram e where every event q′ in frst(e) is replaced by q′ tc ¬C[tt(q′)/tt(q)]
where tt is a function returning the timestamp tag of an event and C[x/y] is the
constraint C with x substituted for y. In other words, eq,C is the exception dia-
gram where the time constraint C on q has been transformed into corresponding
time constraints for the first events in the exception handling.

The semantics of a sequence diagram with an exception is then defined by:

[[d1 seq (q tc C exception e) seq d2]] def=
[[d1 seq (q tc C) seq d2]] � (20)

[[(d1 seq d2) par eq,C]] S© {h ∈ H | h� ll(q) ∈ [[d1 seq eq,C seq d2]]� ll(q)}

where ll is a function returning the lifeline of an event (the sender in the case of
a send event, the receiver in the case of a reception or a consumption event), S©

is a filtering operator such that (p, n) S©S is the pair (p, n) where all traces that
are not in the set S are removed, h ∈ (p, n) is a short-hand for h ∈ p ∨ h ∈ n,
and � is overloaded from traces to pairs of sets of traces in standard pointwise
manner.

Time Exceptions in Sequence Diagrams 97

MARTES 2006 at MoDELS 2006

In definition 20, the first part corresponds to the semantics without the ex-
ception. In essence, this gives as positive the traces of [[d1 seq q seq d2]] where
q has a timestamp that is valid according to C, and as negative the traces where
the timestamp of q is invalid. The second part is all traces where q has not oc-
curred, and the exception handling is performed instead. The use of par means
that the exception handling may be performed in parallel with the system trying
to continue its ordinary behavior. This is natural for all other lifelines than the
one where the exception occurred, as they are not aware of the exception. All
events that may happen without involving the lifeline with the exception, may
still happen after the exception is triggered.

The lifeline where the exception occurred is the lifeline of q, written ll(q).
For this lifeline, it is necessary that the exception handling should be performed
before it continues with the ordinary behavior. Hence, the effect of the filtering
operator is to remove all traces where this is not the case.

Looking again at the sequence diagram in Fig. 9, one possible scenario would
be that the ATM sends the message msg(“Enter Pin”), but the user for some
reason never receives this messages. After having waited five time units, the
ATM then sends the message msg(“Service cancelled”), the user receives and
consumes the message, and the trace terminates. This corresponds to the trace
〈!msg(EP), !msg(SC),∼ msg(SC), ?msg(SC)〉. If the timestamp of !msg(SC)
is more than five time units greater that the timestamp of !msg(EP) the trace
is positive, otherwise the trace is negative. However, a scenario where the ATM
sends the message msg(“Service Cancelled”) before it sends msg(“Enter Pin”) is
not described by the diagram, and all such traces would be inconclusive.

Theorem 1. Assuming that no event occurs more than once in the sequence

diagrams, we have associativity with respect to exceptions, i.e.

[[d1 seq (q1 tc C1 exception e1) seq (d2 seq (q2 tc C2 exception e2) seq d3)]]
= [[(d1 seq (q1 tc C1 exception e1) seq d2) seq (q2 tc C2 exception e2) seq d3]]

This is proved in [2].
�

5.2 Refinement

TimedSTAIRS [3] defines supplementing and narrowing as two special cases of
refinement. Supplementing means to add more traces as positive or negative
to the sequence diagram, while narrowing means to redefine earlier inconclusive
traces as negative. Formally, a sequence diagram d′ with semantics (p′, n′) is said
to be a refinement of another sequence diagram d with semantics (p, n), written
d � d′, iff

n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (21)

It should be clear from our explanations in Section 3 that adding exception
handling to a sequence diagram constitutes a refinement. Adding a time con-
straint is an example of narrowing, as traces with invalid timestamps are moved

98 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

from positive to negative when introducing the time constraint. More generally,
we have the following theorem:

Theorem 2. Assuming that the exception diagram e is not equivalent to the

triggering event q, i.e. [[e]] �= ({〈q〉}, ∅), we have that

1. d1 seq q seq d2 � d1 seq (q tc C) seq d2

2. d1 seq (q tc C) seq d2 � d1 seq (q tc C exception e) seq d2

3. d1 seq q seq d2 � d1 seq (q tc C exception e) seq d2

Proof.

1. Straightforward from definition 13 of time constraint, which ensures that all
traces of the original diagram are also traces of the diagram with the time
constraint added.

2. Straightforward from definition 20 of an exception, as the semantics of the
original diagram is included as the first part of the definition.

3. Follows directly from the two previous facts using that refinement is transi-
tive (proved in [4]).

�

Finally, the following theorem demonstrates that for a diagram containing
exceptions, the normal and exceptional behavior may be refined separately:

Theorem 3. Refinement is monotonic with respect to exceptions as defined by

definition 20, i.e.:

d1 � d′1 ∧ d2 � d′2 ∧ e � e′ ⇒

d1 seq (q tc C exception e) seq d2 � d′1 seq (q tc C exception e′) seq d′2

This is proved in [2].

�

6 Conclusions

We have shown that introducing time exceptions improve the completeness of se-
quence diagram descriptions while keeping the readability of the main specifica-
tion. We have defined concrete notation for exceptions built on existing symbols
of UML 2 and the simple time notation. Finally, we have given a precise formal
definition of time exceptions and shown that our concepts are compositional
since refinement is monotonic with respect to exceptions.

Time Exceptions in Sequence Diagrams 99

MARTES 2006 at MoDELS 2006

References

1. Oddleif Halvorsen and Øystein Haugen. Proposed notation for exception han-
dling in UML 2 sequence diagrams. In Australian Software Engineering Conference
(ASWEC), pages 29–40. IEEE Computer Society, 2006.

2. Oddleif Halvorsen, Ragnhild Kobro Runde, and Øystein Haugen. Time exceptions
in sequence diagrams. Technical Report 344, Department of Informatics, University
of Oslo, September 2006.

3. Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. Why
timed sequence diagrams require three-event semantics. In Scenarios: Models,
Transformations and Tools, volume 3466 of LNCS, pages 1–25. Springer, 2005.

4. Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. Why
timed sequence diagrams require three-event semantics. Technical Report 309, De-
partment of Informatics, University of Oslo, 2005.

5. Object Management Group. OMG Unified Modeling Language 1.4, 2000.
6. Object Management Group. UML profile for Schedulability, Performance and Time

Specification, document: ptc/05-01-02 edition, 2005.
7. Object Management Group. UML Testing Profile, document: ptc/05-07-07 edition,

2005.
8. Object Management Group. UML 2.1 Superstructure Specification, document:

ptc/06-04-02 edition, 2006.

100 O. Halvorsen, R. K. Runde, Ø. Haugen

MARTES 2006 at MoDELS 2006

An Approach to Performance Modeling of Software
Product Lines

Julie A. Street1and Hassan Gomaa2

1 The Aerospace Corporation,
Chantilly, Virginia 22151 (USA)

julie.a.street@aero.org
 2 George Mason University

Fairfax, Virginia 22030 (USA)
hgomaa@gmu.edu

Abstract: It is often the case that software performance
requirements are not addressed until after development and
sometimes even after deployment. This usually leads to late changes
to the software, which can impact schedule, cost, and quality, or
necessitate the acquisition of high performance more expensive
hardware. However, if the performance requirements are properly
captured and analyzed during design, areas where the system does
not meet its performance requirements can be identified and
remedied early, which results in less costly changes. Performance is
especially important in software product lines because one design is
used for many software applications. The goal of this paper is to
develop an approach for capturing software performance
characteristics in software product line (SPL) requirements,
analysis, and design models. The approach extends the Object-
Oriented Analysis and Design for Product Lines (PLUS) method to
use the UML Profile for Schedulability, Performance and Time
(SPT). This paper discusses the necessary extensions, which include
changes to use case descriptions, feature models, interaction
diagrams, and deployment diagrams. These changes are illustrated
using a cruise control and monitoring software product line case
study.

1 Introduction

Software performance is a complex issue that depends on many aspects of a software
system. Some performance measures for a system include, “resource utilization,
waiting times, execution demands (for CPU cycles or seconds), and response time,
(the actual or wall-clock time to execute a scenario step or scenario)” [1]. It is often
the case that performance requirements are not addressed until after the application is
developed and sometimes even after it is deployed. This usually results in changes to
the software or the acquisition of high performance hardware, both of which can
impact cost, schedule, and quality. For example, National Aeronautics and Space

An Approach to Performance Modeling of Software Product Lines 101

MARTES 2006 at MoDELS 2006

Association’s (NASA) found performance issues in its Flight Operations Segment
(FOS), which was designed for many functions including commanding, planning, and
scheduling. It was reported that the FOS failed performance requirements on
response times for developing satellite schedules and analyzing satellite status and
telemetry data, which led to a costly eight-month delay in launch of the program [2].
Another real world example is from the London Ambulance Service Automated
Vehicle Locating System (AVLS) deployed in 1993. During deployment, the
software performance degraded because of a large number of exception messages and
repeat calls from customers [3]. The two examples discussed demonstrate the costly
real world impacts of not addressing software performance requirements until after
development and deployment.

To address the problems discussed in the examples, researchers developed
performance modeling and analysis techniques for addressing performance
requirements early in the software lifecycle. Performance modeling and analysis
techniques model the software before development and predict the software’s
performance. The predicted performance data is analyzed to determine if the software
will meet the performance requirements. If it does not meet the performance
requirements, then changes are made to the design, architecture, or performance
requirements. Changes made early in the software lifecycle are typically less costly
because they do not require code or infrastructure changes. After the changes are
made, the design is reanalyzed. The process of changing and reanalyzing is repeated
until the performance requirements are met. Once the performance requirements are
met, development can begin on the optimized design.

Addressing performance requirements is even more critical in software product lines
because one software product line (SPL) design will result in multiple individual
systems called SPL members. A software product line (SPL) is a family of software
systems that share a set of common features, and each system can have additional
functionality. The purpose of designing a SPL is to reuse software and design
models, which ultimately saves time and effort in building the individual systems.

When compared to single systems, SPLs have additional complexities with respect to
functional and performance requirements. First, functionality and performance
requirements may vary from SPL member to SPL member; therefore, this variability
must also be taken into account. Secondly, the amount of performance analysis
increases because of all the potential SPL member and deployment environment
combinations that can result from a single SPL design. This is because performance
modeling is platform dependent; therefore, each configuration is analyzed separately.
In the case of SPL, this can quickly lead to a combinatorial explosion and
significantly increase the amount of performance analysis required. To avoid
combinatorial explosion, analysis can be conducted on a SPL member-by-SPL
member bases or on common configurations. While conducting quantitative analysis
to optimize a SPL is a crucial step, it is not the focus of this paper. The focus of this
paper is to outline how to capture performance requirements in design in order to
conduct quantitative analysis on the design. This paper proposes an approach to
effectively capture performance requirements and data in SPL requirements, analysis,

102 J. A. Street and H. Gomaa

MARTES 2006 at MoDELS 2006

and design models. This paper discusses the necessary extensions, which include
changes to use case descriptions, feature models, interaction diagrams, and
deployment diagrams.

This paper’s contribution is to fill the gap between software performance modeling
and software product lines. The structure of the paper is as follows; Section 2
discusses related work to this paper. Section 3 discusses the extensions to PLUS for
modeling performance requirements in SPL requirements, analysis, and design
models. Section 4 discusses the main conclusions of the paper.

2 Related Work

Many approaches have been developed to model software performance directly in
software designs. Extensions have been created for the Unified Modeling Language
(UML), a standard modeling language for object oriented applications, to address
performance. This is because UML by itself lacks the concepts to properly capture
performance requirements. Some performance-related extensions include UML
Profile for Schedulability, Performance and Time (SPT) [1], UML-Real Time (RT)
[4], Hard Read Time (HRT)-UML [5], Embedded UML [6], ACCORD/UML [7] and
more. However none of these approaches address the complexities and variability
associated with software product lines.

Performance techniques outside of UML have also been developed. The Hard Real-
Time Hierarchal Object Oriented Design (HRT HOOD) was developed by the
European Space Agency for designing hard real-time applications. It uses five
predefined object types with various privileges and constraints on the objects. This
makes it possible to conduct timing analysis on the system [8]. Wu et al have
proposed a reusable component-based approach in which components with known
performance characteristics can be reused. This way the software performance can be
more easily predicted [9], [10]. While both these approaches have their advantages
and promote reuse, they do not directly address software product lines and software
product line complexities.

3 Performance Modeling Method for SPLs

The approach taken in this paper is to extend the Object-Oriented Analysis and
Design method for Product Lines (PLUS) [11] with the Performance subprofile of the
UML Profile for Schedulability, Performance and Time (SPT). The novelty of this
approach is the ability to support performance modeling, while maintaining the
variability necessary for creating SPL designs. PLUS [11] is a method used for
designing software product lines that utilizes Unified Modeling Language (UML) 2.0.
It is divided into the four phases; Requirements Modeling, Analysis Design,
Architectural Design, and Application Engineering. This method is extended with the
SPT profile to enable the modeling and analysis of performance requirements. The

An Approach to Performance Modeling of Software Product Lines 103

MARTES 2006 at MoDELS 2006

SPT profile is an extension of UML 1.4 that defines a standard paradigm for modeling
time, schedulability, and performance-related aspects of real-time systems [1]. In the
proposed method, UML 2.0 terminology is used, even though the UML SPT Profile is
an extension of UML 1.4. This is because UML 2.0 is the latest standard, and any
future extensions of this work will utilize UML 2.0. The following subsections
describe in detail the major extensions to PLUS in the requirements and design
modeling phases of SPL development, and in application engineering, when an
application is derived from the SPL models.

3.1 PLUS with SPT Requirements Modeling Extensions

The first phase of the PLUS with SPT method is requirements modeling. The goal of
requirements modeling is to capture the functional and performance requirements of
the system. In order to effectively capture software performance requirements in SPL
requirement models extensions were needed to the use case descriptions, and feature
models. The subsequent paragraphs describe the details of these changes.

The first extension is to the use case descriptions. Use cases diagrams and
descriptions are used to capture the SPL’s common and variable functionality. SPL
requirements are different from single system requirements because not all the
requirements will be implemented in all SPL members [11]. When conducting
software performance modeling, software performance requirements, which are
requirements that focus on system performance measures such as resource utilization
and response times, also need to be documented in the use case descriptions. It is
reasonable to assume that not all SPL members are subject to the same performance
requirements. Therefore, performance requirements are also subject to variability. To
capture software performance requirements and their variability, a performance
requirement section is added to the use case descriptions. This section contains the
performance requirement name, description, variability, and reference to the use case
it applies to.

To see illustrate the use case description extension, consider a cruise control and
monitoring SPL system that will be used on multiple cars as shown in Figure 1.
Common functionality required by all SPL members is denoted with PLUS’s
<<kernel>> reuse category, and variable functionality is marked with the
<<optional>> or <<alternative>> reuse category [11]. Use case descriptions are
created to clarify the use case diagram and are extended to document performance
requirements. In the cruise control and monitoring SPL, there is a performance
requirement for the system’s response time to the driver actions. This is captured in
the performance requirement section of use case description, as seen in Figure 2 lines
6-11. This particular performance requirement has variability because high
performance cars need to respond faster than standard cars. This is modeled as a
performance requirement variation point called ‘High Performance Response Time’
as shown in Figure 2 lines 12-17. It is marked with the optional alternative reuse
category, meaning that either the standard or high performance response time will be
used, but not both.

104 J. A. Street and H. Gomaa

MARTES 2006 at MoDELS 2006

Driver

Technician

Timer

System

<<optional>>
Reset Oil Maintenance

<<optional>>
Check Oil Maintenance

<<kernel>>
Determine Distance and Speed

<<optional>>
Perform Calibration

<<kernel>>
Control Speed

Fig. 1. Cruise Control and Monitoring System Use Case Model

Fig. 2. Section of Control Speed Use Case Description

The other extension to the requirements modeling phase to support software
performance modeling is to the feature model. A feature is a characteristic of the
software that one or more of the SPL members will provide. The feature model
consists of a feature-use case traceability table and a feature dependency diagram
[11]. The feature-use case traceability table captures features and their characteristics
in a tabular format. A feature dependency diagram is created using a class diagram.
Features are modeled as metaclasses, and associations are added to identify the

1 Use Case Name: Control Speed
2 Reuse Category: kernel
3 Description: This use case is described in terms of a typical scenario consisting
4 of the following sequence of external events.
5 1. During any event change initialed by driver actions, …
6 Performance Requirements
7 Name: Standard Performance Driver Response Time
8 Type of requirement: default
9 Line number(s): 5
10 Description: The system must respond to the driver’s actions within 500msec
11 for standard cars.
12 Performance Requirement Variation Points
13 Name: High Performance Driver Response Time
14 Type of requirement: optional alternative
15 Line number(s): 5
16 Description of functionality: On high performance cars, the system must
17 respond to the driver’s actions within 250msec.

An Approach to Performance Modeling of Software Product Lines 105

MARTES 2006 at MoDELS 2006

relationships between the various features. Associations are used instead of
dependencies because they offer greater modeling capabilities [11]. In order to
support software performance modeling, performance features, which are timing
characteristics of the system, also need to be considered in the feature model. This
will help designers identify the relationships between features and performance
features to understand the performance impacts of including different functionality.

In PLUS [11], functional features for a product line can be <<common>>,
<<optional>>, <<alternative>>, or <<default>>. In addition, a feature group
represents a group of features with a particular constraint on their usage in a SPL
member, e.g., to represent mutually exclusive features. To distinguish performance
features from functional features, additional feature group and feature stereotypes are
needed. Additionally, performance features are subject to variability, therefore the
stereotypes also must reflect this variability. To help distinguish performance features
from functional features and capture their variability, the following stereotypes are
added; <<common performance feature>>, <<optional performance feature>>,
<<alternative performance feature>>, <<default performance feature>> and
<<parameterized performance feature>>. These stereotypes are an extension of the
UML metaclass and stereotype notation for features used in the PLUS method.

To illustrate the extensions to feature modeling, consider the cruise control and
monitoring SPL. The features that are part of all SPL members are captured in one
common feature called ‘Cruise Control System Kernel,’ as shown in Table 1 row one.

Table 1. Selected Portion of Feature/Use Case Traceability Table

No. Feature Name
Feature

Category
Use Case

Name

Use Case
Category/

VP
VP Name

1
Cruise Control
System Kernel

common Control Speed kernel

2
Calculate
Calibration

optional Perform
Calibration

optional

3
Record Start/Stop
Response Time

optional
performance

Perform
Calibration

optional

4
Compute
Calibration
Execution Time

optional
performance

Perform
Calibration

optional

5
Standard Response
Time

default
performance

Control Speed vp Cruise Control
Response Time

6
High Performance
Response Time

alternative
performance

Control Speed vp Cruise Control
Response Time

The use case ‘Perform Calibration’ has two performances needs: response time and
execution time. Therefore two performance features, ‘Compute Calibration
Execution Time’ and ‘Record Start/Stop Response Time,’ are added to the table.
‘Perform Calibration’ is an optional use case; therefore, the performance features are

106 J. A. Street and H. Gomaa

MARTES 2006 at MoDELS 2006

also optional, and they are marked with the new <<optional performance feature>>
stereotype as shown in the ‘Feature Category’ column of Table 1 rows three and four.
The ‘Control Speed’ use case contains two alternative performance requirements for
the system’s response time to a driver’s actions. This type of variation can be
captured with the new <<default performance feature>> and <<alternative
performance feature>>, as shown in the ‘Feature Category’ column of Table 1 rows
five and six.

After all the features are identified in the traceability table, the feature dependency
diagram is created. In the case study, the ‘Calculate Calibration’ optional feature, if
implemented must meet the two optional performance requirements. Therefore, there
is a mutually inclusive relationship between ‘Calculate Calibration’ and ‘Record
Start/Stop Response Time’ and ‘Compute Calibration Execution Time’, as shown in
Figure 3. This dependency is not obvious by just looking at the traceability table,
which is the motivation for building the feature dependency model.

mutually includesmutually includes
1

<<optional performance feature>>
Compute Calibration

Execution Time

<<common feature>>
Cruise Control System Kernel

<<optional performance feature>>
Record Start/Stop
Response Time

1

1
1

requires

requires

1
1

1
1

<<default performance feature>>
Standard Response Time

<<alternate performance feature>>
High Performance
Response Time

<<exactly-one-of>>
Cruise Control Response Time

<<optional feature>>
Calculate Calibration

Fig. 3. Examples of Feature Dependency Modeling

The ‘Cruise Control Response Time’ feature group, seen in the ‘VP column’ of Table
1 rows five and six, contains two alternative performance features. The feature group
is modeled with the composition relationship, as shown in Figure 3. In this feature
group, only one of the features can be selected to implement, therefore it is given the
<<exactly-one-of>> PLUS stereotype.

An Approach to Performance Modeling of Software Product Lines 107

MARTES 2006 at MoDELS 2006

3.2 PLUS with SPT Design Modeling Extensions

The architectural design phase of the PLUS with SPT method consists of defining the
software architecture. This phase involves creating the concurrent communication
diagrams, subsystem structure, and establishing the component interfaces [11]. To
support software performance modeling, the concurrent communication diagrams and
deployment diagrams are extended to support capturing of platform independent
performance data and in some cases platform specific performance data. The
subsequent paragraphs describe the se extensions in detail.

First, concurrent communication diagrams, which place an emphasis on concurrent
behavior, are extended to include platform independent performance data. Concurrent
communication diagrams are different from standard communication diagrams
because they must explicitly show the concurrent behavior using UML 2.0 active
objects, passive objects, synchronous messages and asynchronous messages [11].
Then platform independent performance data is added using the UML SPT
performance subprofile stereotypes.

Platform independent performance data is added by first marking all concurrent
communication diagrams that will have performance characteristics with the
performance context stereotype of <<PAcontext>>. All diagrams must maintain their
reuse categories to maintain the SPL variability. Some concurrent communication
diagrams may cover multiple scenarios. In these situations, the scenarios must be
separated in to individual diagrams based on SPT constraints. Next, the steps (e.g.
message exchanges, processing actions, etc) in the scenario are tagged with step
stereotypes corresponding to their behavior. The first step defines the scenario and
outlines how requests for the scenario will occur. This first step is always marked
with either a <<PAopenLoad>> or <<PAclosedLoad>> stereotype. The
<<PAopenLoad>> stereotype is used when there is a stream of new inputs at a known
rate, and the <<PAclosedLoad>> is used for when there are fixed number of inputs
that cycle through the system with a delay between each cycle. In addition to the
stereotype, the first step should also contain the requirement data in the stereotypes
attribute tags. It should be captured in the <attribute-tag>::= <source-
modifier><type-modifier><time-value> format. The source-modifier must be set to
‘req’ to denote a requirement, the type modifier contains the statistical information (if
any), and the time value contains the value and units [1]. After the first step, all
subsequent steps are annotated with the <<PAstep>> stereotype. Once all the steps
are tagged, the platform independent performance data is complete.

To illustrate adding platform independent data, consider the concurrent
communication diagram for the system’s response to the driver’s actions from the
cruise control and monitoring SPL. This scenario has two performance requirements
on the systems response; therefore it is marked with the <<PAcontext>> to identify it
as a performance scenario. All SPL members require this scenario, therefore it is also
marked with the <<kernel>> reuse category, as shown in Figure 4.

108 J. A. Street and H. Gomaa

MARTES 2006 at MoDELS 2006

C1: Accel Input

C1.1 Accel

<<kernel>>
<<asynchronous input

device interface>>
CruiseControlLeverInterface

<<kernel>>
<<control>>

CruiseControl

<<kernel>>
<<external input device>>

CruiseControlLever

<<default>>
<<PAclosedLoad>>
{PArespTime=('req', '250', 'ms')}

<<alternative>>
<<PAclosedLoad>>
{PArespTime=('req', '150', 'ms')}

<<kernel>>
<<PAstep>>

Fig. 4. Portion of Concurrent Communication Diagram with Platform Independent Data

The first step in this scenario is the driver using the cruise control lever. This input is
modeled with the <<PAclosedLoad>> stereotype because there is only one potential
input that comes from the lever and a delay between each input. It has two potential
performance requirements associated with it. Therefore two sets of stereotypes are
added to show the default and alternative requirements as shown in Figure 4. The
performance requirements are on the response time; therefore the PArespTime tag is
used with the source-modifier set to ‘req’. All subsequent steps are modeled using
the <<PAstep>> stereotype and <<kernel>> reuse category since all systems must
perform this scenario. After all steps in the scenario have performance and reuse
stereotypes, the platform independent modeling is complete.

The second major extension to the architectural modeling phase is to capture platform
specific performance information for common or known SPL member configurations.
Each configuration requires a deployment diagram and a set of concurrent
communication diagrams because software performance can vary significantly on
different configurations. The deployment diagram describes the configuration, shows
a mapping of objects to hardware, and captures hardware performance information.
The concurrent communication diagram captures software performance data in the
context of a scenario. The subsequent paragraphs describe the process for create these
platform specific diagrams.

Creating platform specific deployment diagrams involves tagging the deployment
diagram with UML SPT performance subprofile stereotypes. First, any deployment
diagram that contains performance data should be marked with the <<PAcontext>>
stereotype and appropriate reuse category. Next, all the resources are tagged with the
appropriate reuse category and SPT stereotypes and attributes. Processing resources,
which are devices or interface devices with processing steps associated with them, are
tagged with the <<PAhost>> stereotype. Then, platform specific performance data,
such as throughput rate, and scheduling policy are added in the <<PAhost>>’s
attribute tags. Passive resources, which are protected devices or entities that may be

An Approach to Performance Modeling of Software Product Lines 109

MARTES 2006 at MoDELS 2006

shared by concurrent operations, are denoted with the <<PAresource>> stereotype.
Then performance data such as scheduling policy, capacity, waiting time, and more
are captured in the attribute tags. After all the system resources are marked with the
appropriate stereotype and performance data, the mapping between hardware and
software is defined. This can be captured through the <<GRMdeploys>> association
between a node and a component instance on the deployment diagram [1]. After all
the mappings between hardware and software are modeled, the deployment diagram
with platform specific performance data is complete.

To illustrate the process of creating deployment diagram with platform specific
performance data consider the cruise control and monitoring SPL system. Figure 5
shows a portion deployment diagram with platform specific performance data, which
is identified by the <<PAcontext>> stereotype. Since all SPL members will not use
this deployment, it is also marked with the <<optional>> reuse category.

Auto Control
Node

Auto
Measurement

Node

<<optional>>
<<PAhost>>
{PAschedulePolicy=PreemptResume,
PArate=1,
PActxtSwT= ('est', 'mean', 0.5, 'ms')}

<<optional>>
<<PAhost>>
{PAschedulePolicy=FIFO,
PArate=0.9,
PActxtSwT= ('est', 'mean', 0.5, 'ms')}

Automobile LAN

ACM:
AutoMeasurementComponent

<<GRMdeploys>>

ACC: AutoControlComponent

<<GRMdeploys>>

<<PAcontext>>
<<optional>>

<<optional>>
<<PAResource>>
{PAcapacity = ('est', 'mean', '100' 'mpbs')
PAwaitTime=('est', 'mean' 2, 'ms')}

Fig. 5. Portion of a Deployment Diagram with Platform Specific Performance Data

This diagram has two nodes that are processing resources, and it will not be used in
all SPL members. Therefore they are marked with the <<PAhost>> and
<<optional>> stereotypes. The performance characteristic for each of these nodes is
captured using the stereotype’s tags. For example, the Auto Measurement node uses
the PAschedulePolicy=’FIFO’ tag to show this node processes in first in first out
fashion. The PArate represents relative speed expressed as a percentage of some
standard processor, and is 0.9 in this deployment. Finally, the context switching time
is captured for this node using the PActxtTime tag. The Automobile LAN is a

110 J. A. Street and H. Gomaa

MARTES 2006 at MoDELS 2006

resource that is shared among concurrent operations, and it will not be used in all SPL
members. Therefore, it is marked with the <<PAresource>> and <<optional>>
stereotypes. Its performance characteristics are wait times and capacity, which are
captured in PAwaitTimes and PAcapacity respectively.

Next, the mappings between hardware and software are defined. The Auto Control
Component will be deployed on the Auto Control Node, therefore an association is
drawn between them and marked with the <<GRMdeploys>> stereotype as shown in
Figure 5. After all the mappings are modeled the platform specific performance
modeling on the deployment diagrams is compete.

The second part of creating the platform specific performance models is creating a set
of platform specific performance concurrent communication diagrams. The process
for adding platform specific performance data is to create a new set of diagrams from
the platform independent concurrent communication diagrams. Then, platform
specific performance data is added to the SPT stereotype’s attribute tags. Developing
estimates for the software performance of each potential platform configuration is not
a trivial task. Techniques to help in the estimation process can be found in [12] and
[13]. All of the attribute tags do not need to be used, only the attribute tags that will
be used in the corresponding quantitative analysis are needed. The platform specific
data should be captured in attribute tags data type. A frequently used format is
<attribute-tag>::=<source-modifier><type-modifier><time-value>. The source-
modifier contains how the value was determined, such as predicted or measured. The
type-modifier is used to define the statistical meaning, for example percentile.
Finally, the time-value is the actual value [1].

To illustrate modeling platform specific performance data, consider the concurrent
communication diagram with platform independent data from Figure 4, running on
the deployment configuration in Figure 5. This scenario will be analyzed using event
sequence analysis to determine the performance requirement is met. Therefore the
required platform specific performance data is the closed workload’s PApopulation
for the number of users and PAextDelay for the delay between inputs. Additionally,
each step will need the PAdemand for the CPU time, PAdelay for any delay time, and
PAexOp for any external operation time. In this scenario, the closed workload is the
cruise control lever. There is only one lever on a car; therefore PApopulation is set to
one on the <<PAclosedLoad>> stereotype. The frequency with which the lever is
pushed is estimated and captured in the PAextDelay, as shown in Figure 6. The
source-modifier is set to ‘est’ since the rate is an estimated value.

Next, performance data is added to each of the steps. The required time for each
subsequent step is estimated and captured in the PAdemand, PAdelay, and PAexOp
attribute tags in the <attribute-tag>::=<source-modifier><type-modifier><time-value>
format. The step shown in Figure 6 does not have any associated delays or external
operations; therefore the attribute tags are omitted. Once all the steps have their
associated performance data, the platform specific modeling is complete.

An Approach to Performance Modeling of Software Product Lines 111

MARTES 2006 at MoDELS 2006

C1: Accel Input

C1.1 Accel

<<kernel>>
<<asynchronous input

device interface>>
CruiseControlLeverInterface

<<kernel>>
<<control>>

CruiseControl

<<kernel>>
<<external input device>>

CruiseControlLever

<<default>>
<<PAclosedLoad>>
{PApopulation = 1,
PAextDelay=('est', 'mean', '10', 'ms'),
PArespTime=('req', '250', 'ms')}

<<alternative>>
<<PAclosedLoad>>
{PApopulation = 1,
PAextDelay=('est', 'mean', '10', 'ms'),
PArespTime=('req', '150', 'ms')}

<<kernel>>
<<PAstep>>
{PAdemand=('est', '1.5', 'ms')}

Fig. 6. Portion of Concurrent Communication Diagram with Platform Specific Data

3.3 PLUS with SPT Application Engineering

The final phase in PLUS with SPT method is the application engineering, which is the
process for determining a SPL member. This phase utilizes the SPL artifacts to derive
the individual SPL member. If a SPL member is using a common or known
configuration that already has the platform specific diagrams captured in the SPL
design, those diagrams can be reused and tailored to the specific SPL member. An
advantage to using a common configuration is that as the SPL members using the
common configuration are developed, the diagrams can be updated with actual
performance metrics to help improve the accuracy of future quantitative analysis. If a
SPL member is not using a common configuration, then new platform specific
diagrams must be created.

After the platform specific diagrams are completed, quantitative analysis can be
conducted on the model to determine if the performance requirements can be met. To
illustrate how the data can be pulled from the platform specific models and used in
quantitative analysis, consider the case study in Figure 5 and Figure 6 using the
default performance requirement.

In the example discussed above, event sequence analysis will be used to determine if
the system’s response time will meet the performance requirement. Event sequence
analysis states that the total CPU time for the tasks in the event sequence (Ce) is the
sum of CPU time for all the tasks and the context-switching overhead. Additionally,
it is also important to consider the tasks that could be executing during the time when
the system responds to the lever (Ca). The total CPU time required is calculated by Ct

= Ce + Ca[12].

112 J. A. Street and H. Gomaa

MARTES 2006 at MoDELS 2006

In the case study, Ce is computed by summing the times for each step captured in the
platform specific performance concurrent communication diagram, a portion of which
is shown in Figure 6. The total time for each step is the sum of its PAdemand,
PAdelay, and PAexOp. A complete listing of all the steps is shown in Table 2 rows
one though nine. Additionally, there are four possible tasks that support the
acceleration event; therefore, there is a minimum of four context switches used in the
calculation. The context switching information can be gathered from the
<<PAhost>>’s PActxtSwT tag in the deployment diagrams. In this example, all the
tasks occur on the Auto Control Node so all context switching will take 1.0
milliseconds and it is multiplied by four, as shown in Table 2 row ten. All then values
are then summed and the total Ce is shown in Table 2 row 11.

Table 2. CPU Time for Accelerating Event

Event Sequence (Ce)
No. Step Name Stereotype/Tag Value

1 Cruise Control Interrupt <<PAstep>>/PAdemand 1.5ms
2 Cruise Control Lever Interface reads

input
<<PAstep>>/PAdemand 3ms

3 Cruise control request sent <<PAstep>>/PAdemand 1ms
4 Cruise Control receives message &

changes state
<<PAstep>>/PAdemand 6.5ms

5 Cruise control command <<PAstep>>/PAdemand 1ms
6 Speed Adjust executes command <<PAstep>>/PAdemand 14ms
7 Speed Adjust sends throttle value <<PAstep>>/PAdemand 1ms
8 Throttle Interface computes new

position
<<PAstep>>/PAdemand 6ms

9 Throttle outputs throttle position to
throttle

<<PAstep>>/PAdemand 1ms

10 Auto Control Node Context Switching <<PAhost>>/PActxtSwT 1 ms*4
11 Total Ce 39ms

Next, Ca is computed for any overhead processing associated with this event. In this
example, the events that can interrupt the accelerating event are the periodic auto
sensors event and the periodic shaft rotation event. The auto activates every 100
milliseconds, which is captured on its communication diagram in the
<<PAopenload>> tag. This task could therefore occur two times during the 250
milliseconds requirement; therefore the CPU time is multiplied by two as shown in
Table 3 row one. Additionally, the context switching time also needs to be taken in
account. This information can again be taken from the <<PAhost>>’s PActxtSwT tag
from the deployment diagram, and it is shown in Table 3 row two. The second
potential interrupt is the shaft rotation event that occurs every five milliseconds, and
therefore it could potentially occur 50 times during the 250 milliseconds requirement
period. So in the overhead and CPU time associated with a shaft rotation event are
multiplied by 50 [11] as shown Table 3 rows three and four. All the times are them
summed to get the total Ca for this scenario.

An Approach to Performance Modeling of Software Product Lines 113

MARTES 2006 at MoDELS 2006

Table 3. Potential Interrupts for Accelerating Event

Other Task Executing (Ca)
No. Task Stereotype/Tag Value
1 Auto Sensors <<PAstep>>/PArespTime 15ms*2
2 Auto Sensors context switch <<PAhost>>/PActxtSwT 1ms *2*2
3 Shaft Interface <<PAstep>>/PArespTime 1.75ms*50
4 Shaft Interface context switch <<PAhost>>/PActxtSwT 1ms *2*50
5 Total Ca 221.5ms

After Ce and Ca are calculated, they are then summed to get the total time of 260.5
milliseconds. In this case, the performance requirement of 250 milliseconds is not
met; therefore, changes must be made to the design, architecture, or performance
requirements. This particular problem could be resolved by simply using a more
powerful host on the Auto Control Node. A more powerful machine with a context
switch delay of 0.5milliseconds can reduce the total time to 206.5milliseconds, which
meets the performance requirement. However, in an economical car the additional
cost of the powerful hardware may make the return on investment for meeting this
requirement too low. Therefore other solutions such as, deploying the shaft interface
on another node to reduce the processing load, could be explored to find a more
economical solution. By successfully identifying the problem during design, the
appropriate changes can be implemented more easily than during later in the
implementation phase.

This example only illustrates how the proposed method is used for event sequence
analysis. However, the proposed method can be easily used for conducting rate
monotonic analysis (RMA). This is accomplished by using the UML SPT
schedulability subprofile, which caters toward schedulability analysis and following
the RMA approach described in [12].

4 Conclusion

Software performance is a complex issue that is a dependent on many aspects of a
software system. Too often performance requirements are not addressed until after
the application is developed and sometimes even after it is deployed. Failure to meet
performance requirements can result in catastrophic failures and negatively impact
schedule, budget, and software quality. These problems can be greatly reduced if
performance requirements are modeled, analyzed, addressed, and resolved early in the
software development lifecycle.

Ensuring that software product line performance needs are met is particularly
important since one SPL design will potentially result in many SPL members. The
approach and guidelines outlined in this paper provide a practical approach to solving
this problem in SPL. The Object-Oriented Analysis and Design for Product Lines
(PLUS) method provides a sound basis for modeling SPL. PLUS combined with the
benefits of the UML Profile for Schedulability, Performance, and, Time (SPT), is an

114 J. A. Street and H. Gomaa

MARTES 2006 at MoDELS 2006

integrated method for capturing performance requirements in a structured manner that
can later be analyzed. The performance requirements and variability can be captured
in the requirements model through use cases and feature modeling. The performance
requirements can then be carried through the architectural modeling by exploiting the
concurrent communication diagrams to create performance contexts for the various
performance scenarios. A set of common SPL member configurations can be
captured and analyzed in the SPL design.

Performance analysis can be carried out on a kernel system design, consisting of
kernel SPL components and any default components. However, performance analysis
also needs to be carried out on each product line member design executing on a given
hardware configuration, before deployment. Platform specific diagrams can be created
during application engineering on a SPL member-by-SPL member basis, where they
can be properly tagged with the resource information. The completed platform
specific performance model can then be quantitatively analyzed to assess if it is
meeting the performance requirements. If the performance requirements are not met,
then changes can be made to the design, architecture, or requirements if necessary.

The entire process helps provide confidence in the design and its ability to meet
performance requirements. By following the performance modeling approach taken
in this paper, future software product line developments can avoid the costly problems
associated with poor performance found in development and deployment.

5 References

[1] "The UML Profile for Schedulability, Performance and Time," Object
Management Group (OMG) Version 1.1, January 2005.

[2] H. Harreld, "NASA Delays Satellite Launch After Finding Bugs in Software
Program," vol. 2005: Federal Computer Week, 1998, pp.
http://www.fcw.com/fcw/articles/1998/FCW_042098_338.asp.

[3] Finkelstein and J. Dowel, "A Comedy of Errors: the London Ambulance
Service case study," presented at 8th International Workshop on Software
Specification and Design (IWSSD '96), 1996.

[4] W. He and S. Goddard, "Capturing an Application’s Temporal Properties
with UML for Real-Time," Lincoln, Nebraska 2000.

[5] "Introduction to HRT UML," Intecs Brainware Company October 20 2004.
[6] G. Martin, L. Lavagno, and J. Louis-Guerin, "Embedded UML: a merger of

real-time UML and co-design," ACM, 2001.
[7] S. Gerard, N. Voros, C. Koulamas, and F. Terrier, "Efficient System

Modeling of Complex Real-Time Industrial Networks Using the
ACCORD/UML Methodology," presented at IFIP
WG10.3/WG10.4/WG10.5 International Workshop on Distributed and
Parallel Embedded Systems, 2000.

[8] A. Burns and A. J. Wellings, "HRT-HOOD: A Structured Design Method for
Hard Real-time Systems," Real-time Systems Journal.

An Approach to Performance Modeling of Software Product Lines 115

MARTES 2006 at MoDELS 2006

[9] X. Wu, D. McMullan, and M. Woodside, "Component Based Performance
Prediction," presented at 6th ICSE Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction, Portland, Oregon, 2003.

[10] X. Wu and M. Woodside, "Performance modeling from software
components," presented at Proceedings of the 4th international workshop on
Software and performance, Redwood Shores, California, 2004.

[11] H. Gomaa, Designing Software Product Lines with UML: From Use Cases
to Pattern-Based Software Architectures, Addison-Wesley Object
Technology Series, 2005.

[12] H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML. Boston: Addison-Wesley Object Technology Series, 2000.

[13] C. Smith and L. Williams, Performance Solutions A Practical Guide to
Creating Responsive, Scalable Software. Boston: Addison-Wesley, 2002.

116 J. A. Street and H. Gomaa

MARTES 2006 at MoDELS 2006

Concurrency and Real-time Specification in

UML

K. Lano, K. Androutsopolous, D. Clark

Dept. of Computer Science, King’s College London, Strand, London, WC2R 2LS, UK

Abstract. This paper describes techniques for the specification of con-
current, real-time and distributed object systems in UML, using exten-
sions of the OCL language.

1 Introduction

UML contains some mechanisms for real-time and concurrency modelling, such
as time triggers for state machines, and the OCL OclMessage type. However
these mechanisms are not complete. For example whilst OclMessage represents
messages sent from an object, there is no specification facility within OCL to
represent or express properties of messages received by an object or the temporal
and synchronisation properties of the operations invoked by these messages.

In this paper we describe a coherent set of concurrency and real-time speci-
fication mechanisms for the UML-RSDS subset of UML. UML-RSDS (Reactive
System Design Support) is a precise subset of UML, which provides a tool-
supported process for MDD and the MDA. The emphasis in UML-RSDS is
on the abstract declarative specification of systems, using platform-independent
models (PIMs) which consist of class diagrams, constraints and statecharts. The
declarative specifications can be used to guide and determine a choice of im-
plementation which satisfies, by construction, the specification. System analysis
can be performed at the PIM level by means of translations to the B [1] and
SMV [5] notations, and the use of tools for these languages. Figure 1 shows the
UML-RSDS development process.

For the specification of systems which involve concurrent execution of op-
erations, the same UML notations can be used, together with notational ex-
tensions to specify particular concurrency constraints such as mutual exclusion,
one-writer, many-readers, etc.

For the specification of real-time properties such as maximum possible de-
lays in requested operations initiating execution, and the duration of operation
executions, we propose the use of real-time logic [10] as an extension of OCL 2.0
[18].

Specification of distributed object systems and distributed computations can
also be supported, using a declarative non-distributed specification of the effect
of the computation, eg, by means of a pre and post-condition, and then applying
a pattern for the coordination of distributed computations [8].

Concurrency and Real time specifications in UML 117

MARTES 2006 at MoDELS 2006

UML−RSDS
Specifications
PIM level

UML−RSDS
Specifications
PSM level

Refinement
transformations Quality improvement

transformations

Consistency, Completeness
checking
Restructuring, modularisation

B Specification

B Synthesis

SMV
 Synthesis

SMV
Specification

Java
Code

Synthesis of Java
Testing

Fig. 1. UML-RSDS Process Steps

2 UML-RSDS Specifications

UML-RSDS was introduced in [14, 15] as a means of defining complex reactive
systems in a concise and abstract manner [11]. It has since been extended for use
with general software systems, including internet systems, for which a specialised
code generator, UML2Web [16] is provided.

An example of such a specification for a lift system is shown in Figure 2.
For each lift there are sensors (marked with the stereotype ?) dest indicating the

Lift

? fps : 1..n
? dest : 1..n
? dos : State
? dcs : State
! lm : LMState
! dm : DMState

State <<enumeration>>
Off On

LMState <<enumeration>>
Off Up Down

DMState <<enumeration>>
Off Opening Closing

LightSet

Light
number : 1..n

n+1 1

1 allLightSets

bulbs

n

! lit : Boolean

C1, C2, C3, C4, C5, C6

C7 {readOnly}

Fig. 2. Lift Control System Generic Class Diagram

target floor, fps giving the current lift position, dcs indicating if the lift doors are

118 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

closed, and dos indicating if the doors are open. There are actuators (stereotype
!) lm, the lift motor, and dm, the door motor. If there are n floors, there are
n +1 light sets indicating the position of the lift: one on each floor and one inside
the lift. Each light set has n lights.

The constraints for the control system are:

C1 “If the door is open, or not closed, the lift motor is off”:

dos = On ⇒ lm = Off

dcs = Off ⇒ lm = Off

C2 “If the destination is below the current floor, and the doors are closed, the
lift motor is in the Down state”:

dest < fps & dos = Off & dcs = On ⇒ lm = Down

C3 “If the destination is above the current floor, and the doors are closed, the
lift motor is in the Up state”:

dest > fps & dos = Off & dcs = On ⇒ lm = Up

C4 “If the lift is at the target floor, its motor is off”:

dest = fps ⇒ lm = Off

C5 “If the lift is at the target floor, the door opens”:

dest = fps & dos = Off ⇒ dm = Opening

dest = fps & dos = On ⇒ dm = Off

C6 “If the lift is not at the target floor, the door closes”:

dest / = fps & dcs = Off ⇒ dm = Closing

dest / = fps & dcs = On ⇒ dm = Off

C7 “The lights corresponding to the current floor are lit”:

fps = number ⇒ lit = true

fps / = number ⇒ lit = false

C1, ..., C6 are local invariants of the Lift class, C7 is a constraint attached to
the Lift LightSet and LightSet Light associations.

Constraints can also be attached to operations as pre and post conditions.
From such specifications, the UML-RSDS tools can be used to:

1. Check the consistency and completeness of the specification (eg, that two
constraints do not contradict each other).

2. Automatically generate executable Java code together with an API for its
use as a component in an application. The code is constructed using the
constraints of the system to derive the definition of operations.

Concurrency and Real time specifications in UML 119

MARTES 2006 at MoDELS 2006

3. Automatically generate B AMN [1] or SMV specifications, which can be used
to carry out semantic analysis and proof on the specification, and to animate
it.

An extract of the generated Java code for the Lift class above is:

public void setfps(int fpsx)

{ if (dest < fpsx && dos == Off && dcs == On) { lm = Down; }

if (dest > fpsx && dos == Off && dcs == On) { lm = Up; }

if (dest == fpsx) { lm = Off; }

if (dest == fpsx && dos == Off) { dm = Opening; }

if (dest == fpsx && dos == On) { dm = Off; }

if (dest != fpsx && dcs == Off) { dm = Closing; }

if (dest != fpsx && dcs == On) { dm = Off; }

}

This shows how the Lift constraints concerning fps are enforced.
A validation property for the lift system is:

lm = On ⇒ dm = Off

This can be proved true as an assertion in the B model derived from the Lift

class.
Scheduling can be added to the lift system in a modular manner: requirements

of the form

setreq(f) ⇒ AF (fps = f & dos = On)

“if the lift is requested to visit floor f then eventually it will be at that floor
with its door open” can be ensured by the definition of a global Schedular class,
which intercepts setreq events, maintains a queue of waiting requests, and sends
a command (in this case setdest(f)) to the lift controller when a request is due to
be processed. A standard strategy for construction of Schedular can be used [7],
with variations in the scheduling strategy expressed in the definitions of queing
and dequeing operations. The controller definition is completely independent of
the schedular.

3 State Machines

State machines are the key means of specifying the dynamic behaviour of objects
in UML. In UML and in UML-RSDS, state machines are of two kinds:

– Protocol state machines, used to express the intended permissable sequences
of operation executions which an object can undergo.

– Behaviour state machines, used to express detailed behaviour, such as the
execution steps of an operation.

120 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

For state machines describing the classifierBehavior of (objects of) a class, the
class invariants should be true in every state. For behaviour state machines
attached to an operation, only the initial and terminal states need to satisfy
the class invariant, unless the operation permits interruption by other opera-
tion invocations on the same object, in which case every state must satisfy the
invariant.

From a protocol state machine we can:

– Check the completeness and consistency of the state machine. Completeness

is the property that all cases of behaviour are explicitly specified on the state
machine: for each state, and for each operation that the object can execute,
the disjunction of guards on the transitions for that operation from the
state is equivalent to true. Consistency is the property that no conflicting
behaviours are specified: no two transitions from the same state for the
same operation have overlapping guards. Transition actions should also be
consistent with their target state invariants.

– Generate Java or B code for the operations of the class, additional to the
effects of each operation specified in its postcondition.

– Check that temporal properties, expressed in CTL, are valid for the state
machine [2].

– Verify behavioural compatibility of a subclass against its superclass.

3.1 Behavioural Compatibility

Behavioural compatibility refers to the requirement that the protocol defined for
a superclass object should not be violated by a subclass object. Informally this
consists of two conditions on the subclass state machine C and the superclass
state machine A [12, 13]:

1. Refinement: For every state s of C , there is a state σ(s) of A, and for every
transition tr of C there is a transition σ(tr) of A such that:
(a) σ(s) is initial in A if s is initial in C .
(b) σ(tr) : σ(s) → σ(t) in A if tr : s → t in C .
(c) tr and σ(tr) have the same trigger event.
This means that any behaviour of C must also be one of A.

2. Adequacy: For each state s of A there is at least one state s ′ of C such that
σ(s ′) = s . The disjunction of the state invariants of all such s ′ is equivalent
to the state invariant of s .
For each transition tr : s → t in A there are transitions tr ′ : s ′ → t ′ of C

such that σ(tr ′) = tr , for every state s ′ such that σ(s ′) = s . The disjunction
of guards of the tr ′ should be equivalent to the guard of tr .
This means that behaviour defined in the superclass must also be defined in
the subclass.

Conditions 1 and 2 can be formally deduced from the requirement that the
semantics of C , as a temporal logic theory ΓC , is a theory extension of the
theory ΓA of A [12].

Concurrency and Real time specifications in UML 121

MARTES 2006 at MoDELS 2006

An example of behavioural compatibility is when a class is formed as an
amalgamation of two other classes (Figure 3). If A and B have no common
operations, and there are no new constraints on behaviour in C , then C is
behaviourally compatible with A and B . This corresponds to the case of UML

A

C

B

Fig. 3. Amalgamation of classes

state redefinition where a composite state is extended by adding a region ([19],
page 534).

The UML-RSDS tool automatically tries to construct a refinement mapping
σ from a subclass state machine C to a superclass state machine A. If such a
mapping exists it will then check it for the adequacy condition.

3.2 Operation Behaviour Specification

The detailed execution steps of an operation m can be specified by a behaviour
state machine in which all of the transitions have completion event triggers.
Figure 4 shows a simple example of bubblesort, for three elements a, b and c.
The class invariant should hold at all initial and terminal states of the state
machine, the precondition of the operation should hold at the initial state and
the postcondition at all terminal states. If the operation may be interrupted
by executions of other operation invocations on the same object then the class
invariant should hold in all states.

These diagrams are used to:

– Synthesise sequential Java code of the operation.
– Synthesise the B implementation code of the operation, given suitable loop

invariants and variants. This enables verification of the correctness of the
loop with respect to an abstract pre-post specification.

122 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

[a > b]/swapab()

 [b > c]/swapbc()

[a <= b & b <= c]
Sorting

Sorted

Fig. 4. Example behaviour state machine diagram

– If the class is stereotyped as � active �, to synthesise the thread run

method for a concurrent Java implementation of the operation. For simplic-
ity, we consider that active classes only have a single thread of control per
object [21].

Process algebra expressions of an operation could also be derived from such state
machines.

In the first case the behaviour state machine SC attached to an operation op

of a class C is used to define an explicit sequential algorithm for op as follows:

1. The set of states is represented as a new enumerated type StateSC .
2. A new attribute op state of this type is added to C , together with the

initialisation op state = initialSC of this attribute to the initial state of SC .
3. Any attribute of the state machine becomes a local variable of the operation.
4. The state machine yields the operational definition

public void op(PT p)
{ Codeop }

where Codeop is:

entryinitialSC
;

op state = initialSC ;
while (op state ! = terms1 && ... &&

op state ! = termsm)
{ if (op state == ss1 && G ′

1)
then

{ actl1; entryts1 ; op state = ts1; }
else if ...

else if (op state == ssk && G ′

k)
then

{ actlk ; entrytsk ; op state = tsk ; }
}

Concurrency and Real time specifications in UML 123

MARTES 2006 at MoDELS 2006

where the termsi are all the terminal states of SC (ie, states with no out-
going transitions), and the transitions of SC are ss1 →[G1]/act1 ts1 upto
ssk →[Gk]/actk tsk . actli expresses acti in Java, using ; as the connector
between individual actions.

For the bubblesort specification, the generated Java is therefore:

public void bsort()

{ bsort_state = sorting;

while (bsort_state != sorted)

{ if (bsort_state == sorting && a > b)

{ swapab(); }

else if (bsort_state == sorting && b > c)

{ swapbc(); }

else if (bsort_state == sorting && a <= b && b <= c)

{ bsort_state = sorted; }

}

}

The UML-RSDS tool can also refactor and simplify code, when the program
structure is relatively simple (no nested loops or unstructured code).

In the third case the state machine is being treated as an action system in
the sense of [3]. The transitions define the individual sequential steps which an
object can take, ie, the level of granularity of the object. In contrast to [21], we
assume that the transition actions cannot be interrupted, the reason for this is
that states in the state machine are considered to be the only points at which
the state of the object can be safely observed – ie, at which the class invariant
necessarily holds.

The thread code of a behaviour state machine SC attached to an operation
run of an active class C is generated as follows:

1. The set of states is represented as a new enumerated type StateSC .
2. A new attribute run state of this type is added to C , together with the

initialisation run state = initialSC of this attribute to the initial state of
SC .

3. Any attribute of the state machine becomes a new attribute of the class.
4. The state machine yields the definition

private synchronized void run step()

{ if (run state == ss1 && G ′

1)
{ actl1; entryts1 ; run state = ts1; }
else if ...

else if (run state == ssk && G ′

k)
{ actlk ; entrytsk ; run state = tsk ; }

}

where the transitions of SC are ss1 →[G1]/act1 ts1 upto ssk →[Gk]/actk tsk .
actli expresses acti in Java, using ; as the connector between individual
actions.

124 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

The run method itself is defined as:

public void run()
{ entryinitialSC

;
run state = initialSC ;
while (run state ! = terms1 && ... && run state ! = termsm)
{ run step(); }

}

where the termsi are all the terminal states of SC .

4 Case Study: Sudoku Solver

We give an example of the generation of concurrent code from a behavioural state
machine, using a simple application which fills in a partially completed Sudoku
board until it is complete. The algorithm is distributed, with each individual
square on the board independently checking to see if it is forced to be a particular
value (ie, the list of possible values placable on the square has size one). Figure 5
shows the specification of the system. We use a variant concrete syntax of OCL,
which makes constraints more concise. For example set→select(P) in OCL is
written as set | P in UML-RSDS.

Sudoku SubGame
x: 0..2
y: 0..2
filled: Boolean

sgs
9

11
complete: Boolean

column(i: Integer):
Set

row(i: Integer): Set
subgameOf(i,j): Set
poss(i,j): Set

sqs.value = {1,2,3,4,5,6,7,8,9} => filled = truesgs.filled = true => complete = true

<<active>>
Square

xx: 0..8
yy: 0..8
value: 0..9

run()

9

sqs

x = xx/3 & y = yy/3 result = (sgs.sqs | xx = i)
post:

result = (sgs.sqs | yy = i)
post:

post:
result = (sgs | x = i/3 &
 y = j/3)

Fig. 5. Specification of Sudoku solver

The set poss(i , j) of possible values for square i , j is

{1, 2, 3, 4, 5, 6, 7, 8, 9}− row(j).value − column(i).value − subgameOf (i , j).sqs .value

The set 1..9 minus the set of values already on the subgame containing i , j , and
minus the set of values already on row j and column i .

Figure 6 shows the specification of the squares behaviour as active objects.
The corresponding Java code in the Square class is:

Concurrency and Real time specifications in UML 125

MARTES 2006 at MoDELS 2006

alreadyfilled

foundvalue

t: Set = {}

[value = 0 & t.size > 1]/sleep(500)

entry: t = Sudoku.poss(xx,yy)

state0 [value > 0]

[value = 0 & t.size = 1]/setvalue(t[1])

Fig. 6. Statechart of run method of Square

private synchronized void run_step() {

if (value > 0 && run_state == state0)

{ run_state = alreadyfilled; }

else if (value == 0 && t.size() == 1 && run_state == state0)

{ Controller.inst().setvalue(this,

((Integer) t.get(0)).intValue());

run_state = foundvalue;

}

else if (value == 0 && t.size() > 1 && run_state == state0)

{ try { Thread.sleep(500); } catch (Exception e) { }

t = Sudoku.poss(xx,yy);

run_state = state0;

}

}

public void run()

{ t = Sudoku.poss(xx,yy);

run_state = state0;

while (run_state != Square.foundvalue &&

run_state != Square.alreadyfilled)

{ run_step(); }

}

In common with OCL, normal class invariants in UML-RSDS are required
to be true only at time points where the class state is observable: it is permitted
to temporarily break an invariant during operation execution, for example, pro-
vided the invariant is re-established at termination of the operation. However,
in objects which permit concurrent execution of operations, object state may be
observed at points during an operation execution, and stronger restrictions are
needed to ensure that invariants are always true at each observable time point.
The following strategy is used to manage multiple threads in the concurrent
implementation of an operation:

126 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

– If an action obj .op(p) requires additional actions acts to occur, to maintain
invariants, then these actions must be carried out without interruption by
other threads, in the same atomic step as the update obj .op(p).
In the above example, the constraints defining the values of filled and complete

need to be maintained by the Controller component when any value changes
– the update code which does this is performed indivisibly, as part of the
same transition action, with the update of value.

– If an attribute is shared for reading or writing between several threads,
then its get and set operations must be atomic and uninterruptible, ie,
synchronized in Java.

5 Concurrency Specification Notations

In order to specify properties such as mutual exclusion between operations, we
adopt the event counters of VDM++, which are given a formal semantics in [10]:

1. #req(m) – the number of requests received up to and including the present
time for operation m

2. #act(m) – the number of execution initiations of m so far
3. #fin(m) – the number of execution terminations of m so far.

Thus

#waiting(m) = #req(m) − #act(m)

denotes the number of waiting executions of m, and

#active(m) = #act(m) − #fin(m)

is the number of currently executing instances of m. All of these event counters
act like integer-valued instance-scope attributes of the classes in which m is
defined. They relate directly to the informal semantics of UML, for example
#waiting(m) is the number of call event instances of m in the input pool of the
object [19].

To specify that an operation is purely sequential and cannot be executed
concurrently with itself on the same object, we can write:

#active(m) ≤ 1

as an invariant of the class. This could be ensured by implementing m as a
synchronized method in Java. To express the stronger property that no two
invocations of the operation can be concurrently executing, even on different
objects, we can write:

C .allInstances().#active(m).sum ≤ 0

To express mutual exclusion between two operations m and n, the invariant

#active(m) + #active(n) ≤ 1

Concurrency and Real time specifications in UML 127

MARTES 2006 at MoDELS 2006

can be written.
Another form of concurrency specification is the permission predicate of

VDM++. This defines a guard on an operation, a condition which must be true
for the operation to execute. For example:

get() ⇒ buffer .size > 0

for a shared buffer. Such a condition is stronger than a precondition, implying
blocking semantics if a caller attempts to execute the operation when the con-
dition is false. It is usually preferable to express guards using event counters
instead of instance variables, for greater abstraction. For the buffer, we could
write:

get() ⇒ #fin(put) > #act(get)

In general a wide range of concurrency properties can be expressed using
event counters. However in some cases, eg, to specify that the waiting operation
instance with the highest priority (measured on the basis of its parameters or its
arrival time) should execute before any other instance of the operation, a more
elaborate semantic model and constraint language is necessary. In UML, each
operation is also a class [19], and its instances represent individual executions of
the operation (Figure 7). For each such instance, say mx , we can consider that
there are attribute values mx .p for each formal input parameter p of m. For
real-time specification we will also consider that the start, end and request time
of the execution are recorded as attibutes of mx , together with the time that the
request which caused this execution occurred, and the invoker of the behaviour.
Instances of M come into existence at the point where an execution of m is
requested via an operation call action. This model provides similar facilities to
the OclMessage type in OCL [18]. The OCL operators � and �� on messages
can be defined in terms of the model.

The event counters and other simple forms of property can be considered
as convenient abbreviations for constraints expressed using the model of Figure
7. Table 1 shows how event counters are defined in the extended model. M is
the class corresponding to operation m, and the host role of M is the object on
which m is executing or which is the intended executor (target) of m.

Abbreviated formula Meaning

#req(m) (M | req time ≤ now & host = self).size
#act(m) (M | act time ≤ now & host = self).size
#fin(m) (M | fin time ≤ now & host = self).size
#active(m) #act(m) - #fin(m)
#waiting(m) #req(m) - #act(m)

Table 1. Semantics of event counters

Implementation of concurrency properties in a specific platform such as Java
can be carried out by the definition of variables implementing event counters, and

128 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

*

0..1

context

Classifier Class

Behavior

ownedBehavior

Parameter

0..1

*
parameter

M: Behavior

p1: T1
...
pn: Tn
result_m: T

act_time: Integer
req_time: Integer
fin_time: Integer
send_time: Integer

BehavioredClassifier

C: BehavioredClassifier context

host
1

*

Fig. 7. Conceptual execution semantics model

the use of guard expressions preventing operation execution if a required prop-
erty would be violated. Only certain properties can be ensured in this manner,
however. In particular, since the request queue for methods cannot be manipu-
lated directly in Java, constraints involving #req(m) and #waiting(m) cannot
always be ensured.

6 Code Generation for Concurrency Specifications

The UML-RSDS development process uses automated generation of code from
high-level models, using various strategies to generate code which satisfies, by
construction, the constraints of the specification, without the need of further
verification. This approach can also be applied for systems involving specification
of concurrency properties.

The benefits of automated code generation are particularly significant when
applications must use a complex platform such as J2EE, or complex program-
ming mechanisms such as multi-threading. By using a systematic automated
process for the implementation of constraints in code, code generation removes
the possibility of human errors caused by insufficient understanding of the plat-
form or programming mechanisms.

Three patterns [6] are used for the automated implementation of particular
forms of concurrency constraints in Java:

– Mutex objects

– Guarded methods

– Synchroniser objects

Concurrency and Real time specifications in UML 129

MARTES 2006 at MoDELS 2006

Mutex objects are objects in which every operation is synchronized. Classes
with the stereotype ‘sequential’ are translated into such classes.

If there are permission constraints of the form

op(pars) ⇒ G

then op can be defined as a guarded operation, for example:

class GBuffer

{ ArrayList buffer = new ArrayList();

...

synchronized String get()

{ while (buffer.size() == 0)

{ try { wait(); } /* Wait until buffer.size() > 0 */

catch(InterruptedException e) { } }

return (String) buffer.get(0);

}

}

in the case of a buffer.
Synchroniser objects are used to implement general invariants involving event

counters. Variables recording the values of the counters are defined in the syn-
chroniser object, and the operations of this object are invoked by the objects
whose concurrency is being managed by the synchroniser. It can therefore en-
force invariants involving event counters, by preventing executions of operations
which would violate the invariants. Figure 8 shows the general structure of the
pattern. It is a generalisation of the concept of a semaphore.

<<sequential>>

op() startOp()

{ sync.startOp();

* 1 * 1

sync

Supplier

endOp()

 sync.endOp(); }
... code of Op ...

SynchroniserClient

Fig. 8. Class Diagram of Synchroniser Object Pattern

Given a set of invariants Inv for the concurrent behaviour of class C , ex-
pressed in terms of event counters for the operations of C , we:

– Identify the ‘preconditions’ [act(op)]Inv and [fin(op)]Inv of each of the ini-
tiation and termination events of the operations of C with respect to Inv . If
a precondition is not implied by Inv , then a guard condition must be placed

130 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

on the corresponding startOp or endOp operation of the synchroniser object,
to block this operation (and the caller) until the precondition is true.
If an event may make a precondition true, then the corresponding start or
end operation should have a notify invocation at its termination, to release
any callers which are waiting on the precondition.

For example, consider a specification of a readers/writers protocol on an
object:

class RW implements Runnable

{ int data;

int read1()

{ return data; }

void write1()

{ data = data*5; }

}

with the invariants Inv :

#active(write1) ≤ 1
#active(write1) > 0 ⇒ #active(read1) = 0

A suitable synchroniser object is:

class RWSynchroniser

{ int writers = 0; /* Sum of #active(w) for all writers w */

int readers = 0; /* Sum of #active(r) for all readers r */

/* Invariant: (writers > 0 => readers = 0) & */

/* writers <= 1 */

synchronized public void startRead()

{ while (writers > 0)

{ try { wait(); } catch (InterruptedException e) {} }

readers++;

}

synchronized public void startWrite()

{ while (writers > 0 || readers > 0)

{ try { wait(); } catch (InterruptedException e) {} }

writers++;

}

synchronized public void endRead()

{ readers--;

notifyAll();

}

synchronized public void endWrite()

{ writers--;

Concurrency and Real time specifications in UML 131

MARTES 2006 at MoDELS 2006

notifyAll();

}

}

The operations are derived mechanically, using the precondition calculation

[act(read1)]Inv

to compute the guard

[readers + +](writers > 0 ⇒ readers = 0) ≡
(writers > 0 ⇒ false) ≡
writers = 0

of startRead and likewise for startWrite.
The RW class with the synchronisation object is:

class RW implements Runnable

{ int data;

RWSynchroniser rwsync;

int read1()

{ rwsync.startRead();

int local = data;

rwsync.endRead();

return local;

}

void write1()

{ rwsync.startWrite();

data = data*5;

rwsync.endWrite();

}

}

endOp operations should also be invoked if op terminates abnormally because of
an exception, ie, these should be in the finally clause of a suitable try statement
within the code of op.

A single synchroniser object can be shared between several objects, to re-
strict inter-object concurrency as well as intra-object concurrency. The formal
correctness of this implementation strategy is shown in [10].

7 Real-time Specification

The UML profile for schedulability, performance and time [20] uses the key
concept of a stimulus to tie together a request for a supplier object service, the
reception of this request and its processing.

We will use the following notations of Real-time action logic (RAL) [10] for
specific times in the history of a stimulus:

132 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

– ←(i) – the time of the stimulus generation event which is the cause of the
stimulus i .

– →(i) – the time of the stimulus reception event whose cause is i . This time
might not be defined (its value is OclInvalid) if the stimulus is lost in transit.
In terms of the UML 2.0 superstructure ([19], page 420), this corresponds
to the time that “an event occurrence is recognized by an object that is an
instance of a behaviored classifier”. The event occurrence i may be placed
in an input pool/queue for later processing, or immediately processed

– ↑(i) – time of the ScenarioStartEvent for the scenario execution whose cause
is the stimulus reception of i . Typically this is the start of an execution of
an operation m with parameters pars on a target object. This time may be
undefined if the request is never scheduled for execution. It is the time that
“a behavior is invoked as determined by the event” ([19], page 420).

– ↓(i) – time of the ScenarioEndEvent for the execution triggered by i .

In a sequence diagram these can be graphically represented as shown in
Figure 9.

ax bx

−−>mx
<−−mx

\/mx

/\mx

Execution of m instance
mx on bx

request for m to execute

Fig. 9. Example sequence diagram

Using these notations we can specify properties such as the maximum per-
mitted delay t in responding to a request:

↑(m) −→(m) ≤ t

and the maximum allowed duration T of execution of m:

↓(m) − ↑(m) ≤ T

Concurrency and Real time specifications in UML 133

MARTES 2006 at MoDELS 2006

In the semantic model (Figure 7), these constraints are interpreted as in-
variants of the M classes, since the times of operation events are expressed as
attributes of this class, whose objects represent execution instances of m (Table
2).

Abbreviated formula Semantics

↑mx mx .act time

→mx mx .req time

delay(mx) mx .act time − mx .req time

↓mx mx .fin time

duration(mx) mx .fin time − mx .act time

periodic(m, τ, δ) ∀ i : N · ∃mx : M · τ ∗ i − δ ≤ mx .act time &
mx .act time ≤ τ ∗ i + δ

FIFO(m) ∀mx1, mx2 : M · mx1.req time < mx2.req time ⇒
mx1.act time ≤ mx2.act time

SJF (m, f) ∀mx1, mx2 : M · mx1.f < mx2.f &
mx1.req time < mx2.act time ⇒
mx1.act time ≤ mx2.act time

Table 2. Semantics of real-time specification notations

periodic(m, τ, δ) means that m executes periodically, every τ time units, with
a maximum permitted delay of δ. FIFO(m) means that execution instances are
scheduled for execution in the same order that their requests arrived at the host
object. SJF (m, f) means that the schedule order instead depends on the function
f of the execution instances.

Ideally, constraints concerning requirements on the duration of operations
could be used to guide the choice of implementation, for example, by applications
of patterns such as Half-Sync/Half-Async [22] or Active Object [17]. At present
however, the real-time notation described here is purely for the purposes of
specification, and is not used to guide code generation.

Other forms of temporal constraints concern the duration of states: duration(P)
for a predicate P is the maximum length of any time interval in which P is con-
tinuously true. For example, in the lift system, we might specify that a door only
attempts to open without success for at most 10 seconds:

duration(dm = Opening & dos = Off) ≤ 10000

These constraints can be ensured by using timers, if they involve at least one
actuator attribute. Otherwise they represent environmental assumptions for nor-
mal behaviour of the system.

Further real-time specification capabilities, such as the time variables and
continuous to discrete refinements of [9] could also be incorporated into UML-
RSDS.

134 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

8 Verification of Concurrency and Real-time Properties

In cases where automated generation of code to satisfy concurrency and real-
time constraints is not available, verification techniques to prove the correctness
of the code are necessary.

In UML-RSDS, the B and SMV notations are used to provide semantic anal-
ysis of specifications. B and SMV are tools which are designed for analysis of
sequential systems, where all operation executions are atomic. We can however
adapt them for the analysis of concurrency and real-time properties by intro-
ducing atomic actions act(m), fin(m) and req(m) for each update operation m,
which respectively represent the activation, termination and request of m. These
actions increment the corresponding counters #act(m), etc. Event counters and
time attributes of the operation classes are represented as attributes in the cor-
responding B or SMV modules: each class C is represented by a set cs of existing
objects of the class, and each operation m of C is represented by a set ms of
execution instances of m, as in Figure 7.

Properties such as

AG(act(m) ⇒ AF (fin(m)))

“m always terminates” can be expressed and verified in SMV using this encoding
of behaviour. Liveness and absence of deadlock properties can also be expressed
and verified using the SMV formalism.

9 Related Work

Extensions of the VDM++ language to specify and analyse real-time distributed
systems are proposed in [23]. This supports the modelling of distributed resources
and communication. An operational semantics for UML state machines is defined
in [21]. Our approach to UML development is similar to that of [4], which carries
out performance analysis of a system specified in UML, by means of a translation
to a process algebra and analysis tools for this algebra.

10 Conclusion

We have shown how the UML-RSDS method and notation can be extended to
represent concurrency and real-time properties of a system. The UML-RSDS
approach, of automated system generation from high-level declarative specifi-
cations, is still relevant for such extended properties, and we have described
strategies for code generation to implement a range of concurrency specifica-
tions. Representation in B or SMV of concurrency and real-time properties al-
lows reasoning about such properties, and animation of specifications.

Concurrency and Real time specifications in UML 135

MARTES 2006 at MoDELS 2006

References

1. J-R Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. Androutsopoulos, K., Verification of Reactive System Specifications using Model

Checking, PhD thesis, King’s College, 2004.
3. R. Back, K. Sere, Stepwise Refinement of Action Systems, MPC 1989, pp. 115–138.
4. A. Bennett, A. Field, Performance Engineering with the UML Profile for Schedu-

lability, Performance and Time: A Case Study, Proc. IEEE/ACM International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), Volendam, Netherlands, October 2004.

5. B. Berard et al, Systems and Software Verification: Model-Checking Techniques

and Tools, Springer-Verlag, 1999.
6. Grand, M., Patterns in Java, Vol. 1, Wiley, 1998.
7. Kan, P., Specification of Reactive Systems using RSDS, PhD thesis, King’s College

London, 2006.
8. K. Lano and S. Goldsack, Refinement of Distributed Object Systems, FMOODS

‘96, Paris, 1996. Proceedings published by Chapman and Hall.
9. S. Goldsack, K. Lano and A. Sanchez, Transforming Continuous into Discrete

Specifications with VDM++, IEE C8 Colloquium Digest on Hybrid Control for
real-time Systems, 1996.

10. Lano, K., Logical Specification of Reactive and Real-Time Systems, Journal of Logic

and Computation, Vol. 8, No. 5, pp 679–711, 1998.
11. K. Lano, J. Bicarregui, P. Kan, Experiences of using Formal Methods for Chemical

Process Control Specification, Control Engineering Practice 8 (2000), pp 71–79.
12. K. Lano, D. Clark, K. Androutsopoulos, P. Kan, Invariant-based Synthesis of Fault-

tolerant Systems, FTRTFT 2000.
13. Lano, K., Clark, D., Androutsopoulos, K., From Implicit Specifications to Explicit

Designs in Reactive System Development, IFM 2002.
14. Lano, K., Clark, D., Androutsopoulos, K., Formal Specification and Verification of

Railway Systems using UML, FORMS 2003.
15. Lano, K., Clark, D., Androutsopoulos, K., UML to B: Formal Verification of

Object-oriented Models, IFM 2004.
16. Lano, K., Advanced System Design with Java, UML and MDA, Elsevier, 2005.
17. R. Lavender, D. Schmidt, Active Object: an Object Behavioral Pattern for Concur-

rent Programming, Pattern Languages of Programming, 1995.
18. OMG, UML OCL 2.0 Specification, ptc/2005-06-06, http://www.omg.org/uml/,

2005.
19. OMG, UML 2.0 Superstructure, OMG Document formal/05-07-04, 2005.
20. OMG, UML Profile for Schedulability, Performance and Time, Version 1.1,

http://www.omg.org/, 2005.
21. G. Reggio, E. Astesiano, C. Choppy, H. Hussmann, Analysing UML Active Classes

and Associated State Machines – A Lightweight Formal Approach, FASE 2000,
LNCS 1783, Springer-Verlag, 2000.

22. D. Schmidt, C. Cranor, Half-Sync/Half-Async: An architectural pattern for efficient

and well-structured concurrent I/O, Pattern Languages of Programming, 1995.
23. Verhoef, M., Larsen, P., Hooman, J., Modelling and Validating Distributed Embed-

ded Systems with VDM++, Engineering College of Aarhus, Denmark, 2006.

136 K. Lano, K. Androutsopolous, D. Clark

MARTES 2006 at MoDELS 2006

Modeling WS-BPEL with RT-UML Diagrams �

M.Emilia Cambronero J.José Pardo Gregorio Dı́az Valent́ın Valero

Departamento de Sistemas Informáticos
Universidad de Castilla-La Mancha

Escuela Politécnica Superior de Albacete. 02071 - SPAIN
{emicp,jpardo,gregorio,valentin}@info-ab.uclm.es

Abstract. RT-UML is a UML Profile for modeling Real Time Systems,
which can be used in particular to describe Web Services Orchestration
with time constraints. For that purpose, we can use two classical UML
diagrams, namely, the sequence and activity diagrams. Our goal in this
paper is the design of Web Services with time restriction by using RT-
UML. We introduce a translation of the main elements of RT-UML into
Web Services Business Process Execution Language. In a previous works
we presented a translation from WS-CDL and WS-BPEL into Timed
Automata, which allows us to apply verification techniques and thus, to
check some properties of interest.

1 Introduction

In the last few years some new techniques and languages for developing dis-
tributed applications have appeared, such as the Extensible Markup Language,
XML [1], and some new Web Services frameworks [2,3,4] for describing interoper-
able data and platform neutral business interfaces, enabling more open business
transactions to be developed.

Web Services are a key component of the emerging, loosely coupled, Web-
based computing architecture. A Web Service is an autonomous, standards-based
component whose public interfaces are defined and described using XML [5,6].
Other systems may interact with a Web Service in a manner prescribed by its
definition, using XML based messages conveyed by Internet protocols.

The context in which this work is situated is the development of a methodol-
ogy for the generation and verification of “correct” Web Services. This metodol-
ogy [7] establishes a top-down design for developing web services. The analysis
phase is performed by a goal-model that specifies the properties that this kind
of Real-Time systems must satisfy. Then, in the design phase we consider UML
sequence and activity diagrams, in which we can capture the system time con-
straints. Between design and implementation we use a model-checking technique
for discovering some errors and in this way, we improve the quality of design.

� This work has been supported by the CICYT project “Description and Evaluation of
Distributed Systems and Application to Multimedia Systems”,TIC2003-07848-C02-
02, with partial FEDER support and UCLM Project ”Aplicacin de Mtodos Formales
al Desarrollo y Verificacin de Web Services

Modeling WS-BPEL with RT-UML Diagrams 137

MARTES 2006 at MoDELS 2006

The source document for the implementation phase is a WS-BPEL document.
Figure 1 shows this generation process. In this figure the RT-UML diagrams are
translated into Web Services documents, which in their turn are also translated
into Timed Automata in order to perform model checking on them.

Choreography Layer

WS-CDL

Orchestration Layer

WS-BPEL

DIRECTOR

WS-CDL

DOC

WIND

WS-BPEL

DOC

PERCUSSION

WS-BPEL

DOC

STRINGS

WS-BPEL

DOC

ORCHESTRA

TIMED

AUTOMATA
XSLT XSLT

RT-UML

Sequence & Activity
XMI

Time Restrictions
& Model Checking

XSLTXSLT

Fig. 1. The generation of correct Web Services

In [8,9,10] we have translated Web Services with time restrictions described
by WS-CDL and WS-BPEL into timed automata, in order to simulate their
behavior and verify some properties of interest. For that purpose, we used a well
known tool that supports this formalism, UPPAAL [11] to simulate and analyze
the system behavior.

We can find some related works in the literature: Mantell [12] proposes a
methodology for translating UML activity diagrams into bpel4ws 1.0 Specifi-
cation, and Skogan et al [13] propose another approach based on bpel4ws 1.1.
In this paper we present a different vision, focusing our attention on the timed
aspects of the systems. Hence, we are mainly concerned with Web Services with
time constraints. It is important to highlight that we use both Activity diagrams
and Sequence Diagrams, as well as the RT-UML Profile in order to model the
time constraints of Real Time Web Services.

Most of the proposed composition languages for Web Services are based on
XML [1], and although XML-based representations have their advantages as
universal representations and exchange formats, they can be difficult to under-
stand and to write for non-XML experts. Thus, the use of a graphical modeling
language can be very useful to understand the behavior of Systems.

138 M.-E. Cambronero, J-J. Pardo, G. Diaz, and V. Valero

MARTES 2006 at MoDELS 2006

The motivation of this paper is the use of the Unified Modeling Language
(UML) [14], and more specifically the RT-UML profile, as graphical modeling
language for XML Real-Timed Web Services composition and the verification
of these systems by using Model Checking techniques on Timed Automata. In
other words, in this paper we focus our attention on the right part of Fig. 1, that
is to say, the translation from RT-UML into WS-BPEL and from WS-BPEL into
Timed Automata, this last part being shown in [8].

UML has been defined by the Object Management Group (OMG), the leading
organization for object-oriented programming. RT-UML [15] allows us to see
graphically the description of a Web Service business process, which helps us
to understand the behavior of the participants in a business interaction; for
that purpose the RT-UML diagrams are very useful, since they allow us to
see this behavior in a clear way. More specifically, we use the sequence and
activity diagrams for the description, since these diagrams can capture the main
elements of a Web Services Business Process Execution Language and their time
constraints. Afterwards, we then translate these diagrams into Web Services.

We have implemented transformation rules that can transform RT-UML
models into WS-BPEL documents and these documents into Timed Automata,
capturing, in every case, the time constraints. The method we propose uses
RT-UML Sequence and Activity Diagrams to design Web Service compositions,
and OMG’s Model Driven Architecture (MDA [16]) to generate specifications in
WS-BPEL and in Timed Automata.

As an illustration of this methodology, we use a particular case study, an Ef-
ficient Power Production Management System, whose description contains some
time constraints.

The paper is structured as follows. In Section 2 we describe the main features
of WS-BPEL. In Section 3 we present a brief description of the UML Profile
for Real-time Systems, RT-UML, and we introduce the key elements of this
profile, which is used in our translation to capture the System time constraints.
The translation of RT-UML Sequence and Activity diagrams into WS-BPEL
documents is presented in Section 4. In Section 5 we apply this methodology to
the case study. Finally, the conclusions and future work are presented in Section
6.

2 WS-BPEL Description

The aim of the Web Services Business Execution Language, also known as Web
Services Orchestration specification is to be able to describe precisely the be-
havior of any type of party and the collaboration with other parties, regardless
of the supporting platform or programming model used by the implementation
of the hosting environment. Using the Web Services Orchestration specification,
a behavior is produced that contains a “specific” definition of the detailed or-
dering conditions and constraints under which behavior is performed, and which
describes the specific internal behavior of the exchanged messages with all the
parties involved.

Modeling WS-BPEL with RT-UML Diagrams 139

MARTES 2006 at MoDELS 2006

In real-world scenarios, corporate entities are often unwilling to delegate con-
trol of their business processes to their integration partners. Orchestration offers
a means by which the rules of participation within a collaboration can be clearly
defined and agreed to, jointly. Each entity may then implement its processes as
determined by the behavior described in the Orchestration document.

We will now introduce the reader to WS-BPEL. This is an interface descrip-
tion language that describes the observable behavior of a service by defining
business processes consisting of stateful long-running interactions, in which each
interaction has a beginning, a defined behavior and an end, all of this being
modeled by a flow, which consists of a sequence of activities. The behavior con-
text of each activity is defined by a scope, which provides fault handlers, event
handlers, compensation handlers, a set of data variables and correlation sets.

Let us now see a brief description of these components:

– Events, which describe the flow execution in an event driven manner.
– Variables, which are defined by using WSDL schemes, for internal or ex-

ternal purposes, and are used in the message flow.
– Correlations, which identify processes interacting by means of messages.
– Fault handling, defining the behavior when an exception has been thrown.
– Event handling, defining the behavior when an event occurs.
– Activities, which represent the basic unit of behavior of a Web Service.

In essence, WS-BPEL describes the behavior of a Web Service in terms of
choreographed activities.

3 UML Profile for Schedulability, Performance, and Time

In this section, we introduce the key elements of the profile that we have used in
our translation, but first it is important to use this profile to model Real-time
Systems.

The use of this profile [15] is justified because UML is lacking in some key
areas that are of particular concern to real-time system designers and develop-
ers. In particular, the lack of a quantifiable notion of time and resources was an
impediment to its broader use in the real-time and embedded domain. It was dis-
covered that UML had all the requisite mechanisms for addressing these issues,
in particular through its extensibility faculties. The UML Profile for Schedula-
bility, Performance, and Time is a standard way of using these capabilities to
represent concepts and practices from the real-time domain.

One of the main guiding principles is that modelers, as far as possible, should
not be hindered in the way they use UML to represent their systems in order to
be able to do model analysis. That is, rather than enforcing a specific approach
or modeling style for real-time systems, the profile should allow modelers to
choose the style and modeling constructs that they feel are the best fit for their
needs of the moment.

In this paper we have chosen the ”General Time Modeling” viewpoint to
model Real-time Systems, because this model describes a general framework for

140 M.-E. Cambronero, J-J. Pardo, G. Diaz, and V. Valero

MARTES 2006 at MoDELS 2006

representing time and time-related mechanisms that are appropriate for model-
ing real-time software systems. It is quite general, but a given application only
needs to use a subset of the concepts and semantics required. We have then cho-
sen a set of the concepts of this viewpoint to model our real-time Web Services.

The concepts of RT-UML that we have used in this paper to capture the
time constraints of Web Services are the following:

– TimedAction: This very general and very useful concept is modeled by ap-
plying the <<RTaction>> stereotype to any model element that specifies an
action execution or its specification (which is a way of defining defaults for
instances of those specifications). This includes action executions, methods,
actions (including entry and exit actions of state machines), action states,
subactivity states, states, and transitions. It can also be applied to stimuli
that take time to arrive at their destination.

Timed Actions have associated the following tagged values:

duration: The time interval in which the action occurs.
start : The time of the event occurrence when the action started.
end : The time of the event occurrence when the action was completed.

The start and end times of the action are specified by appropriate tagged
values (RTstart and RTend respectively). Alternatively, they may be tagged
with the RTduration tag. The two forms are mutually exclusive.

– Delay: A kind of timed action execution that represents a null operation for
a pre-specified time interval. This action has no side-effects except to delay
the action execution that follows it. This is modeled by a model element
that is stereotyped as <<RTdelay>>. It can only have an RTduration tag
associated with it. Delays can be placed on the same model elements as
timed actions.

– TimedEvent: This very general and very useful concept is modeled by ap-
plying the <<RTevent>> stereotype to any model element that implies an
event occurrence, and it models any event that occurs at a known time in-
stant.
The TimedEvent only uses the tag value ”RTat”, indicating the instant at
which the event occurs.

– Clock: A Clock is a kind of timing mechanism that generates a clock in-
terrupt periodically, where a TimingMechanism is an abstract concept that
captures the common features of resources that specialize in performing time
measurement and timing-related functions.
Clocks are modeled by model elements that are stereotyped as <<RTclock>>.
An instance of a clock can be identified using the ”RTclockId” tag.

– reset(): An operation that stops the timing mechanism and sets it back into
its initial state. The stereotype <<RTreset>> models the reset() operation
on a timing mechanism.

Modeling WS-BPEL with RT-UML Diagrams 141

MARTES 2006 at MoDELS 2006

Object −→Process

Messages −→Partnerlinktypes + portTypes + message +
singleMessage

singleMessage −→receive | request| reply

Variables −→Variables

Expressions −→Xpath expresions | Assign activity

Activities −→Ordering structure Sequence+ | Activity

Decision Points and
Merge Construct −→Structured activity if

Concurrent Activities−→wait activity + Structured activity Flow +
wait activity

Guards −→Condition of Activity if

Swimlane −→Ordering structure Sequence+

RTaction −→Activity with scope definition

RTevent −→wait activity + activity

RTdelay −→wait activity

RTclock −→Variable (clock)

RTreset −→assign activity

Where the symbols +, | are BNF notation, and & is used to

join information

Fig. 2. Schematic view of translation

4 Translation from RT-UML Diagrams into WS-BPEL

In this section we show the translation of the RT-UML sequence and activity
diagrams into WS-BPEL XML format. The first subsection explains the trans-
lation for Sequence Diagrams, the second one shows the translation of activity
diagram elements and the third one explains the tranlation of real-time elements.
These translations have been developed with XSLT [17], XML Stylesheets Lan-
guage for Transformation, which is a language for transforming XML into other
XML documents. In the market we can find some tools that allow us to model
the RT-UML diagrams and to obtain the corresponding XMI document, as Ar-
tisan 6.0 tool [18], this document can be easily translated to the WS-BPEL
XML documents by using XSLT. In Table 2 we can see a schematic view of the
translation.

4.1 Translation from RT-UML Sequence Diagrams into WS-BPEL

The system is designed by using RT-UML activity and sequence diagrams. But
notice that we just need to use a single sequence diagrams, representing the
whole system.

The translation of the main elements of RT-UML sequence diagrams into
WS-BPEL is as follows:

– Messages : The messages in RT-UML Sequence diagrams correspond to the
following entities of WS-BPEL:

142 M.-E. Cambronero, J-J. Pardo, G. Diaz, and V. Valero

MARTES 2006 at MoDELS 2006

• PartnerLinkTypes: The partnerLinkTypes represent the interaction be-
tween a service and each of the parties with which it interacts. The main
utility of PartnerLinkType is to characterize the relationship between
two services, this is possible by defining the roles played by each of the
services that participate in the conversation and specifying the port-
Type provided by each service to receive messages.
Each role specifies exactly one WSDL portType.

– Objects : The objects in UML Sequence diagrams can be represented by
the following entities in WS-BPEL:

• Processes: In WS-BPEL we can find two types of processes, the exe-
cution process, and the abstract processes. Execution processes model
the behavior of each particular participant in the interaction, while ab-
stract processes are meant to couple Web Service interface definitions
with behavioral specifications that can be used both to constrain the
implementation of business roles and to define in precise terms the be-
havior that each party in a business protocol can expect from the others.
Then, the translation of the RT-UML objects is made only by using the
execution processes, since they allow us to model the behavior of each
particular participant in an interaction.
From the RT-UML description we obtain the needed elements to com-
plete the WS-BPEL process definition; more precisely:

1. Variables section: here the variables identified in the RT-UML doc-
ument must be declared.

2. PartnerLinks section: in this section the different parties that interact
with this particular business process are declared. This information
can be easily extracted from the RT-UML document. Notice that
each partnerlink must have a partnerlinktype (that models the in-
teraction between the parties) and a role name, which is the other
participant in the interaction.

3. FaultHandlers section: where the activities that must be performed
in response to faults resulting from the invocation of the assessment
and aproval services. The information contained in this section is ex-
tracted from RT-UML frames, and more specifically, with the ”opt”
and ”alt” labels.

4. EventHandlers section: here the activities that must be performed
in response to events or alarms are described, and this information
is taken from the RTevent of RT-UML.

– Expressions :
RT-UML expressions are immediately translated into WS-BPEL expressions,
but the needed variables must be first declared in WS-BPEL. Notice that
we should use XPath 1.0 to introduce the expressions in WS-BPEL.
Concening with assignments, we can use the assign activities of WS-BPEL
to copy data from one variable to another, to construct and insert new data
using expressions.

Modeling WS-BPEL with RT-UML Diagrams 143

MARTES 2006 at MoDELS 2006

4.2 Translation from UML Activity Diagrams into WS-BPEL

Let us now see the translation of the main elements of RT-UML activity diagrams
into WS-BPEL.

– Activities : An activity on a UML activity diagram typically represents the
invocation of an operation, a step in a business process, or an entire business
process.
Single activities are immediately translated into basic activities of WS-
BPEL. More complex activities of RT-UML will be sequential (in fact, there
will be an initial and a final activity), and they will be translated by using
the sequence structured activity of WS-BPEL.

– Decision points and Merge construct : in RT-UML they are modeled by
using diamonds. They are translated into WS-BPEL if structured activities.
In fact, we can have an “elseif” element, and an “else” element.

– Guards : The guards of RT-UML are translated by using the condition part
of the “if” activities in WS-BPEL.

– Concurrent activities and synchronization:
In RT-UML Activity Diagrams the starting point of these parallel activities
is represented by a horizontal split, which is called a fork, and it has one
transition entering it and two or more transitions leaving it. There is also
another horizontal line that represents the end of the parallel activities, with
two or more transitions entering it and only one leaving it. In WS-BPEL the
concurrency and synchronization between activities is provided by the flow

Structured Activity. Within the flow structured activity we must indicate
the activities that are made in parallel.
To capture the initial synchronization among the involved activities we use
a wait basic activity, as well as to synchronize the end of all these activities.

– Swimlane guidelines : This is a way to group activities performed by the
same actor on an activity diagram.
In WS-BPEL we can use the Ordering structure Sequence to represent the

Swimlane guidelines of RT-UML Activity Diagrams.

4.3 Translation of Real-Time elements of RT-UML diagrams

RT-UML introduces three new elements in the Sequence diagrams to capture
some important elements of real-time systems such as delays, events and actions.

The translation of these elements works as follows:

– RTDelay represents a delay for some units of time. In WS-BPEL we can
use the wait activity to indicate this delay.

– RTEvent is used to indicate an event which occurs at a known time instant.
To translate this element to WS-BPEL we use again a wait activity followed
with the activity associated with RTEvent.

– RTAction is a timed action having a duration (alternatively you can indi-
cate a starting and finishing time).

144 M.-E. Cambronero, J-J. Pardo, G. Diaz, and V. Valero

MARTES 2006 at MoDELS 2006

Power
Management

System
(PMS)

Nuclear Plant

Renewable Power

Oil & Gas Resources

SUPPLY
DEMAND

Local
ResourceNorth

Area

South
Area

East
Area

West
Area

Central
Area

Fig. 3. The power supply versus the customer demand.

We use a scope element to translate this kind of action. In this scope we
define an onalarm event, we translate the duration of the activity by using
the for part within onalarm, which allows us to establish this duration.

– RTreset changes a clock value to zero, then it is immediately translated in
WS-BPEL by using an assing activity.

– RTclock is a clock in RT-UML, and it is translated by using XPath vari-
ables.

5 Case Study: Efficient Power Production Management
System

This example defines the general characteristics for an efficient power production
management system with the basic restriction that the electric power is non-

storable. This restriction implies that the power supply must be adapted to the
demand. This example is based on the management system of the Spanish power
lines.

In this system, we have considered three different types of electric power re-
sources: Renewable power, pollution power and high-risk power. The renewable
power plants are wind turbines, solar plants and hydroelectric plants. The pol-
lution power plants are oil and natural gas plants. And the high-risk resources
are nuclear plants.

Furthermore, the power demand is divided into areas: Central, north, south,
east and west. The central area is a location where a set of resources is settled,
whereas, the neighboring areas are not directly connected with electric power
resources.

This system is depicted in Figures 3 and 4. The power management system
described in Fig. 4 shows a pyramidal system for attending and managing the
demand versus the supply. The restrictions of this system consist of two types
of general restrictions and time restrictions, and are defined as follows:

– General Restrictions
1. Hierarchical demand . Two levels for managing the demands, firstly local

and secondly central.
2. Environmental restrictions. If pollution environmental sensors are acti-

vated, then only renewal and high-risk power resources are available.

Modeling WS-BPEL with RT-UML Diagrams 145

MARTES 2006 at MoDELS 2006

Central
Management

Local
Management

1 Local
Management

N

Local
Demand

Environment
Sensors

Local
Resources

Fig. 4. The power management system (PMS).

Furthermore, these sensors inform of the amount of power that the re-
newal resources could supply.

3. Hierarchical supply. The priority for selecting the resources is: firstly
renewable resources, secondly pollution resources and thirdly high-risk
resources.

– Time Restrictions
1. The demand is calculated 12 hours before.
2. The local management takes an average of one hour to process a demand.
3. Renewable resources take two hours in order to supply the power, pol-

lution resources take one hour and high-risk resource take five hours.
4. The supply for adjacent areas takes one hour over the above times.
5. The central management takes one hour to process a demand, as the

local management.

Figure 5 shows a particular RT-UML sequence scene of this system. This
scene captures the situation for attending the demand of a specific area. This
request is performed by a “demand” message, which indicates the area in which
the source of the demand has been generated and the total power amount that
will be necessary in 12 hours. The destination of this request is the local manage-
ment, which has one hour to decide if the “local resources” have enough power
to attend the demand (depicted in Fig. 5 with the labeled frame “choice1”) or
to send the demand to the “central management” (depicted in Fig. 5 with the
labeled frame “choice2”). This decision is performed by dealing with two fac-
tors: environmental factors and resources availability, as mentioned previously
in the restrictions. If the decision is to perform “choice1”, then the “local man-
agement” sends “supply” messages to the corresponding local resources, which
indicate the type and amount of power that must be generated in order to attend
this demand. However, if the decision is “choice2”, then the “local management”
informs the “central management” by sending a “demand” message with the re-
quested amount. The “central management” has one hour to deliver this request
to another “local management”, in which there are available resources to at-
tend the demand or part of this demand. Note that this information is available
due to the “local management” informing the “central management” with “sup-
ply” messages, which contain information about the availability of resources and

146 M.-E. Cambronero, J-J. Pardo, G. Diaz, and V. Valero

MARTES 2006 at MoDELS 2006

Fig. 5. Sequence diagram for the PMS.

the amount of power that is going to be generated. Figure 6 shows an activity
diagram for the “local management” described in this sequence scene.

Figure 7 shows a part of the WS-BPEL specification for a “local manage-
ment” process, which has been obtained by applying the transformation rules
from the previous section. This piece of the specification corresponds to the sit-
uation in which the “local management” receives a “demand” request from the
“local demand”. For instance, in this specification, we can see how the RT-Event
“demand” is transformed into a wait-until structure in which a receive message
is specified and the decision performed between “choice1” and “choice2” is trans-
formed into an if control structure. For a better readability, we have replaced
some Xpath expressions, which are too complex and large, with natural language
sentences.

6 Conclusions and Future Work

In this paper we have presented a translation of RT-UML Sequence and Activity
diagrams into WS-BPEL documents. Sequence diagrams precisely describe the
collaboration and message flow between the parties involved in a choreography,
and also capture the time windows in which the conversations can take place.
On the other hand, activity diagrams describe in detail the way in which the
different actions are done, by means of sequence, choice, parallelism and time
outs.

The descriptions of Web Services by WS-BPEL documents, written in XML
format, can be very difficult to understand for non-experts, so we use RT-UML
in order to design these Real Time Web Services.

Modeling WS-BPEL with RT-UML Diagrams 147

MARTES 2006 at MoDELS 2006

Fig. 6. Activity diagram for a “Local Management”.

Our methodology can exploit some previous works, in which both WS-CDL
and WS-BPEL descriptions are translated into timed automata, thus allowing us
to simulate and analyze the system behavior, for instance by using the UPPAAL
tool.

Observe that the automatic generation of WS-BPEL documents, which are
very close to an implementation, provides us with a correct design, at least with
respect to the RT-UML Diagrams of reference.

The translation presented is therefore a powerful tool for obtaining correct
Web Services. We have established the equivalence between the different elements
of the RT-UML sequence and activity diagrams with the elements of the WS-
BPEL specifications, as a design method, and the translation of these WS-BPEL
documents to Timed Automata, in order to perform Model Checking on them.
Furthermore, these translations have been illustrated with an example.

Our future work addresses the issue of developing a tool capturing all these
capabilities: RT-UML modeling, translation to WS-BPEL and WS-CDL, as well
as the generation of timed automata XML files. We have a preliminary version of
the tool that can be found in the URL http://www.info-ab.uclm.es/fmc/tools/WS-
CDLUppaal.rar.

148 M.-E. Cambronero, J-J. Pardo, G. Diaz, and V. Valero

MARTES 2006 at MoDELS 2006

Fig. 7. WS-BPEL process specification of a Local Management party.

References

1. Jean Paoli, Eve Maler, and et. al. Tim Bray. Extensible markup language (xml)
1.0 (third edition), 2004. http://www.w3.org/TR/2004/REC-xml-20040204.

2. Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. Uddi version
3.0.2, 2004. http://uddi.org/pubs/uddi v3.htm.

3. Marc Hadley, Noah Mendelsohn, and et. al Jean-Jacques Moreau. Soap version 1.2
part 1: Messaging framework, 2003. http://www.w3.org/TR/soap12-part1.

4. Sanjiva Weerawarana, Roberto Chinnici, and et. al. Martin Gudgin. Web Ser-
vices Description Language (WSDL) Version 2.0 Part 1: Core Language, 2004.
http://www.w3.org/TR/2004/WD-wsdl20.

5. Assaf Arkin, Sid Askary, and et. al. Ben Bloch. Web Services Business Pro-
cess Execution Language Version 2.0, December 2004. http://www.oasis-
open.org/committees/download.php/10347/wsbpel-specification-draft-
120204.htm.

6. Nickolas Kavantzas et al. Web Service Choreography Description Language
(WSCDL) 1.0. http://www.w3.org/TR/ws-cdl-10/.

7. G. Diaz, M. E. Cambronero, M.LL. Tobrarra, V. Valero, and F. Cuartero. Analysis
and Verification of Time Requirements Applied to the Web Services Composition.
In Proceedings of WS-FM, Viena, Lecture Notes in Computer Science, pages 178–
192. Springer, September 2006.

Modeling WS-BPEL with RT-UML Diagrams 149

MARTES 2006 at MoDELS 2006

8. G. Diaz, M. E. Cambronero, J. J. Pardo, V. Valero, and F. Cuartero. Auto-
matic Generation of Correct Web Services Choreographies and Orchestrations with
Model Checking Techniques. In Proceedings of International Conference on Inter-

net and Web Applications and Services ICIW’06. IEEE Press.
9. G. Diaz, J. J. Pardo, M. E. Cambronero, V. Valero, and F. Cuartero. Verification

of Web Services with Timed Automata. In Proceedings of First International

Workshop on Automated Specification and Verification of Web Sites, Electronic
Notes in Theoretical Computer Science.

10. G. Diaz, J. J. Pardo, M. E. Cambronero, V. Valero, and F. Cuartero. Automatic
Translation of WS-CDL Choreographies to Timed Automata. In Proceedings of

WS-FM, Versalles, Lecture Notes in Computer Science, pages 230–242. Springer,
September 2005.

11. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134–152,
1997.

12. Keith Mantell. From UML to BPEL, September 2003. http://www-
106.ibm.com/developerworks/webservices/library/ws-uml2bpel.

13. David Skogan, Roy Grønmo, and Ida Solheim. Web service composition in uml.
In EDOC, pages 47–57, 2004.

14. OMG. UML 2.0 Superstructure proposal v.2.0., January 2003.
15. UML Profile for Schedulability, Performance, and Time Specification, Version 1.1.

In http://www.omg.org/docs/smsc/04-12-05.pdf.
16. David Frankel. Model Driven Architecture: Applying MDA to Enterprise Comput-

ing. John Wiley & Sons, Inc., New York, NY, USA, 2002.
17. James Clark. XSL Transformations (XSLT) Version 1.0. Technical Report REC-

xml-19980210, W3C, 1998. http://www.w3.org/TR/xslt.
18. Artisan tool 6.0. Artisan Real Time Studio, 2001.

150 M.-E. Cambronero, J-J. Pardo, G. Diaz, and V. Valero

MARTES 2006 at MoDELS 2006

Applying Model Intelligence Frameworks for Deployment
Problem in Real-Time and Embedded Systems

Andrey Nechypurenko,
Egon Wuchner

Siemens AG,
Corporate Technology (SE 2)

Otto-Hahn-Ring 6
81739 Munich, Germany

{andrey.nechypurenko,
egon.wuchner}@siemens.com

Jules White,
Douglas C. Schmidt

Vanderbilt University,
Department of Electrical Engineering and

Computer Science
Box 1679 Station B

Nashville, TN, 37235, USA

{jules, schmidt}@dre.vanderbilt.edu

ABSTRACT
There are many application domains, such as distributed
real-time and embedded (DRE) systems, where the domain
constraints are so restrictive and the solution spaces so large
that it is infeasible for modelers to produce correct solution
manually using a conventional graphical model-based ap-
proach. In DRE systems the available resources, such as
memory, CPU, and bandwidth, must be managed carefully
to ensure a certain level of quality of service. This paper
provides three contributions to simplify modeling of complex
application domains: (1) we present our approach of com-
bining model intelligence and domain-specific solvers with
model-driven engineering (MDE) environments, (2) we show
techniques for automatically guiding modelers to correct so-
lutions and how to support the specification of large and
complex systems using intelligent mechanisms to complete
partially specified models, and (3) we present the results
of applying an MDE tool that maps software components
to Electronic Control Units (ECUs) using the AUTOSAR
automotive modeling and middleware standard.

1. INTRODUCTION
Graphical modeling languages, such as UML, can help to
visualise certain aspects of the system and automate partic-
ular development steps via code-generation. Model-driven
engineering (MDE) tools and domain-specific modeling lan-
guages (DSMLs) [7] are graphical modeling technologies that
combine high-level visual abstractions that are specific to
a domain with constraint checking and code-generation to
simplify the development of certain types of systems. In
many application domains, however, the domain constraints
are so restrictive and the solution spaces so large that it is
infeasible for modelers to produce correct solutions manu-
ally. In these domains, MDE tools that simply provide so-
lution correctness checking via constraints provide few ben-

MODELS06WS6 ’06 Genova, Italy

efits over conventional approaches that use third-generation
languages.

Regardless of the modeling language and notation used,
the inherent complexity in many application domains is the
combinatorial nature of the constraints, and not the code
construction per se. For example, specifying the deploy-
ment of software components to hardware units in a car in
the face of configuration and resource constraints can eas-
ily generate solution spaces with millions or more possible
deployments and few correct ones, even when only scores of
model entities are present. For these combinatorially com-
plex modeling problems, it is impractical, if not impossible,
to create a complete and valid model manually. Even con-
necting hundreds of components to scores of nodes by point-
ing and clicking via a GUI is tedious and error-prone. As the
number of modeling elements increases into the thousands,
manual approaches become infeasible.

To address the challenges of modeling combinatorially com-
plex domains, therefore, we need techniques to reduce the
cost of integrating a graphical modeling environment with
Model Intelligence Guides (MIGs), which are automated
MDE tools that help guide users from partially specified
models, such as a model that specifies components and the
nodes they need to be deployed to but not how they are de-
ployed, to complete and correct ones, such as a model that
not only specifies the components to be deployed but what
node hosts each one. This paper describes techniques for
creating and maintaining a Domain Intelligence Generator

(DIG), which is an MDE that helps modelers solve combi-
natorially challenging modeling problems, such as resource
assignment, configuration matching, and path finding.

The rest of the paper is organised as follows: Section 2 dis-
cusses challenges of creating deployment models in the con-
text of the AUTOSAR[3] middleware and modeling stan-
dard, which we use as a motivating example; Section 3 de-
scribes key concepts used to create and customize MIGs;
Section 4 shows the results of applying MIGs to AUTOSAR
component deployments; and Section 5 presents concluding
remarks and outlines future work.

2. MOTIVATING EXAMPLE

Applying Model Intelligence Frameworks for Deployment Problem in Real Time and Embedded Systems 151

MARTES 2006 at MoDELS 2006

AUTOSAR is a new standard for automotive middleware
and software development modeling [3]. The goal of AU-
TOSAR is to standardize solutions to many problems that
arise when developing large-scale, distributed real-time and
embedded (DRE) systems for the automotive domain. For
instance, concert efforts is required to relocate components
between Electronic Control Units (ECUs), i.e., computers
and micro-controllers running software components within
a car. Key complexities of relocation include: (1) compo-
nents often have a many constraints that need to be met
by the target ECU and (2) there are many possible deploy-
ments of components to ECUs in a car and it is hard to find
the optimal one.

For example, it is hard to manually find a set of inter-
connected nodes able to run a group of components that
communicate via a bus. Modelers must determine whether
the available communication channels between the target
ECUs meet the bandwidth, latency, and framing constraints
of the components that communicate through them. In
the automotive domain—as with other embedded systems
domains— it is also important to reduce the overall cost
of the solution, which necessitates optimizations, such as
finding deployments that use as few ECUs as possible or
minimize bandwidth to allow cheaper buses. It is infeasible
to find these solutions manually for a production systems.

To illustrate the practical benefits of generating and inte-
grating MIGs with a DSML, we describe an MDE tool we
developed to solve AUTOSAR constraints for validly deploy-
ing software components to ECUs. There are two primary
architectural views in AUTOSAR systems:

• The logical collaboration structure that specifies which
components that should communicate with each other
via which interfaces, and

• The physical deployment structure that captures the
capabilities of each ECU, their interconnecting buses,
and their available resources.

Historically, AUTOSAR developers have manually specified
the mapping from components in the logical view to ECUs
in the physical view via MDE deployment tools, as shown in
Figure 1. This approach worked relatively when when there
were a small number of components and ECU. Modern cars,
however, can be equipped with 80 or more ECUs and several
hundred or more software components. Simply drawing ar-
rows from 160 components to 80 ECUs is tedious. Moreover,
many requirements constrain which ECUs that can host cer-
tain components, including the amount of memory required
to run, CPU power, programming language, operating sys-
tem type and version, etc. These constraints must be con-
sidered carefully when deciding where to deploy a particu-
lar component. The problem is further exacerbated when
developers consider the physical communication paths and
aspects, such as available bandwidth in conjunction with
periodical real-time messaging.

The remainder of this paper how the AUTOSAR MDE tool
we developed helps automate the mapping of software com-
ponents to ECUs in AUTOSAR models without violating

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

AUTOSAR
SW Component1

RTE

AUTOSAR
SW Component1

RTE

Basic Software

RTE

Basic Software Basic Software

ECU1 ECU2 ECU3

Gateway

...

Virtual Function Bus

Tool Supporting Deployment of Software Components

Mapping

logical
structure

physical structure

Figure 1: Mapping from the logical collaboration to
the physical deployment structure

the known constraints. The following sections describe our
approach and show how MIGs can significantly reduce the
complexity of creating AUTOSAR deployment models.

3. DOMAIN-SPECIFIC MODEL INTELLI-
GENCE

Based on the challenges related to the AUTOSAR example
presented in Section 2, the goals of our work on MIGs are
to (1) specify an approach for guiding modelers from par-
tially specified models to complete and coorrect ones and (2)
automate the completion of partially specified models using
information extracted from domain constraints.

In previous work [9, 8], we showed how MDE tools and
DSMLs can improve the modeling experience and bridge the
gap between the problem and solution domain by introduc-
ing domain-specific abstractions. At the heart of these ef-
forts is the Generic Eclipse Modeling System (GEMS), which
provides a convenient way to define the metamodel, i.e., the
visual syntax of the DSML. Given a metamodel, GEMS au-
tomatically generates a graphical editor that enforces the
grammar specified in the DSML. GEMS provides convenient
infrastructure (such as built-in support for the Visitor pat-
tern[5]) to simplify model traversal and code generation. We
used GEMS as the basis for our MIGs AUTOSAR deploy-
ment modeling tool and our work on domain-specific model
intelligence.

3.1 Domain Constraints as the Basis for Auto-
matic Suggestions

A key research challenge was determining how to specify the
set of model constraints so they could be used by MIGs not

only to check the correctness of the model, but also to guide

users through a series of model modifications to bring it to

a state that satisfies the domain constraints. We considered
various approaches for constraint specification language, in-

152 A. Nechypurenko, E. Wuchner, J. White, D. C. Schmidt

MARTES 2006 at MoDELS 2006

cluding Java, the Object Constraint Language (OCL), and
Prolog. To evaluate the pros and cons of each approach,
we implemented our AUTOSAR deployment constraints in
each of the three languages.

As a result of this evaluation, we selected Prolog since it pro-
vided both constraint checking and model suggestions. In
particular, Prolog can return the set of possible facts from a
knowledge base that indicate why a rule evaluated to “true.”
The declarative nature of Prolog significantly reduced the
number of lines of code written to transform an instance of
a DSML into a knowledge base and to create constraints (its
roughly comparable to OCL for writing constraints). More-
over, Prolog enables MIGs to derive sequences of modeling
actions that converts the model from an incomplete or in-
valid state to a valid one. As shown in Section 1, this capa-
bility is crucial for domains, such as deployment in complex
DRE systems, where manual model specification is infeasible
or extremely tedious and error-prone.

The remainder of this section describes how Domain Intelli-
gence Generation (DIG) uses Prolog and GEMS to support
the creation of customizable and extensible domain-specific
constraint solver and optimization frameworks for MIGs.
Our research focuses on providing modeling guidance and
automatic model completion, as described below.

3.2 Modeling Guidance on-the-fly
To provide domain-specific model intelligence, an MDE tool
must capture the current state of a model and reason about
how to assist and guide modelers. To support this function-
ality, MIGs use a Prolog knowledge base format that can be
parameterized by a metamodel to create a domain-specific
knowledge base. GEMS metamodels represent a set of model
entities and the role-based relationships between them. For
each model, DIG populates a Prolog knowledge base using
these metamodel-specified entities and roles. For each en-
tity, DIG generates a unique id and a predicate statement
specifying the type associated with it.

In the context of our AUTOSAR example, a model is trans-
formed into the predicate statement component(id), where
id is the unique id for the component. For each instance of a
role-based relationship in the model, a predicate statement
is generated that takes the id of the entity it is relating and
the value it is relating it to. For example, if a component
with id 23 has a TargetHost relationship to a node with id
25 the predicate statement targethost(23,25) is generated.
This predicate statement specifies that the entity with id
25 is a TargetHost of the entity with id 23. Each knowl-
edge base generated by DIG provides a domain-specific set
of predicate statements.

The domain-specific interface to the knowledge base pro-
vides several advantages over a generic format, such as the
format used by a general-purpose constraint solver like for
exampl CLIPS. First, the knowledge base maintains the
domain-specific notations from the DSML, making the for-
mat more intuitive and readable to domain experts. Sec-
ond, maintaining the domain-specific notations allows the
specification of constraints using domain notations, thereby
enabling developers to understand how requirements map
to constraints. Third, in experiments that we conducted,

writing constraints using the domain-specific predicates pro-
duced rules that had fewer levels of indirection and thus
outperformed rules written using a generic format. In gen-
eral, the size of the performance advantage depended on the
generality of the knowledge base format. To access prop-
erties of the model entities, the predicate syntax presents
the most specific knowledge base format. Given an entity
id and role name, the value can be accessed with the state-
ment role(id,Value), which has exactly zero or one facts that
match it.

Based on this domain-specific knowledge base, modelers can
specify user-defined constraints in form of Prolog rules for
each type of metamodel relationship. These constraints se-
mantically enrich the model to indicate the requirements of
a correct model. They are also used to automatically deduce
the sets of valid model changes to create a correct model.

For example, consider the following constraint to check if a
node (ECU) is a valid host of a component:
is a valid component targethost(Comp, Nodes). It can be
used to both check a Component/Node combination (e.g.,
is a valid component targethost(23,[25]).) and to find valid
Nodes that can play the TargetHost role for a particular com-
ponent (e.g.,
is a valid component targethost(23, Nodes).). The latter ex-
ample uses Prolog’s ability to deduce the correct solution,
i.e., the Nodes variable will be assigned with the list of all
constraint-valid nodes for the TargetHost role of the spec-
ified component. This example illustrates how constraints
can be used to check and to generate the solution, if one
exists.

Figure 2 shows how dynamic suggestions from Prolog are
presented to modelers. The upper part of the figure shows

Figure 2: Highlighting valid target host

the fragment of the metamodel that describes the Deploy-

ment relationship between Component and Node model en-
tities. The lower part of the picture shows how the gen-
erated editor displays the corresponding entity instances.
This screenshot was made at the moment a modeler had be-
gun dragging a connection begining from the “ABS” compo-

Applying Model Intelligence Frameworks for Deployment Problem in Real Time and Embedded Systems 153

MARTES 2006 at MoDELS 2006

nent. The rectangle around “Host10” labelled “Valid Tar-
getHost” is drawn automatically as a result of triggering
the corresponding solver rule and receiving a valid solution
as feeback. GEMS also can also trigger arbitrary Prolog
rules from the modeling tool and incorporate their results
back into a model. This mechanism can be used to solve
for complete component to ECU deployments and automat-
ically add deployment relationships based on a (partially)
complete model.

To enable modeling assistance, different subsystems must
collaborate within the modeling environment. It is the re-
sponsibility of the modeler (or MDE tool creator) to provide
the set of constraints and supply solvers for new constraint
types. The GEMS metamodel editor updates the knowl-
edge base and incorporates the new rules into the generated
MIG. User-defined solver(s) can be based on existing Pro-
log algorithms, the reusable rules generated by GEMS, or a
hybrid of both. Solvers form the core of the basic MIG gen-
erated by GEMS. Below we describe the solver we developed
for completing partially specified models in our AUTOSAR
deployment tool.

3.3 Model Completion Solvers
Using a global deployment (completion) solver, it is possi-
ble to ask for the completion of partially specified models
constrained by user-defined rules. For example, in the AU-
TOSAR modeling tool, the user can specify the components,
their requirements, the nodes (ECUs), and their resources
and ask the tool to find a valid deployment of components
to nodes. After deploying the most critical components to
some nodes by using MIGs step-wise guidance, modelers can
trigger a MIG global deployment solver to complete the de-
ployment. This solver attempts to calculate an allocation
of components to nodes that observes the deployment con-
straints and update the connections between components
and nodes accordingly. This global solver can aim for an op-
timal deployment structure by using constraint-based Prolog
programs or it could integrate some domain-specific heuris-
tics, such as attempting to find a placement for the compo-
nents that use the most resources first.

In some cases, however, the modeled constraints cannot be
satisfied by the available resources. For example, in a large
AUTOSAR model, a valid bin-packing of the CPU require-
ments for the components into EPUs may not exist. In
these cases the complexity of the rules and entity relation-
ships could make it extremely hard to deduce why there is
no solution and how to change the model to overcome the
problem. For such situations, we developed a solver that
can identify failing constraints and provide suggestions on
how to change the model to make the deployment possible.

4. CASE STUDY: SOLVING AUTOSAR DE-
PLOYMENT PROBLEM

To validate our DIG MDE tool, we created a DSML for
modeling AUTOSAR deployment problems. This DSML
enables developers to specify partial solutions as sets of com-
ponents, requirements, nodes (ECUs), and resources. A fur-
ther requirement was that the MIGs should produce both
valid assignments for a single component’s TargetHost role
and global assignments for the TargetHost role of all com-

ponents. In the automotive domain certain software compo-
nents often cannot be moved between ECUs from one model
car to the next due to manufacturing costs, quality assur-
ance, or other safety concerns. In these situations, develop-
ers must fix the TargetHost role of certain components and
allow MIGs to solve for valid assignments of the remaining
unassigned component TargetHost roles.

For the first step, we created a deployment DSML meta-
model that allows users to model components with arbitrary
configuration and resource requirements and nodes (ECUs)
with arbitrary sets of provided resources. Each component
configuration requirement is specified as an assertion on the
value of a resource of the assigned TargetHost. For example,
OSVersion > 3.2 would be a valid configuration constraint.
Resource constraints were created by specifying a resource
name and the amount of that resource consumed by the
component. Each Node could only have as many compo-
nents deployed to it as its resources could support. Typical
resource requirements were the RAM usage and CPU usage.

Each host can provide an arbitrary number of resources.
Constraints comparisons on resources were specified using
the <, >, -, and = relational operators to denote that the
value of the resource with the same name and type (e.g., OS
version) must be less, greater, or equal to the value specified
in requirement. The “-” relationship indicates a summation
constraint, i.e., the total value of the demands on a resource
by the components deployed to the providing node must not
exceed the amount present on the node. After defining the
metamodel and generating the graphical editor for the de-
ployment DSML using GEMS, we added a set of Prolog con-
straints to enforce the configuration and resource constraint
semantics of our models.

4.1 Defining Constraints and Solvers
Our constraint rules specified that for each child requirement
element of a component, a corresponding resource child of
the TargetHost must satisfy the requirement. Our complete
configuration constraint rules are as following.

%%

% specifying validness of a requirement-resource

% pair

requirement_resource_valid_pair(Req, Res) :-

(requirement_spec(Req, Name, ’>’),!

;

requirement_spec(Req, Name, ’<’),!

;

requirement_spec(Req, Name, ’=’)

),

resource_spec(Res, Name, ’=’).

requirement_to_resource(Req, Host, Res) :-

requirement(Req),

resource_to_node(Res, Host),

requirement_resource_valid_pair(Req, Res).

%%

% configuration requirement resource solver

comparevalue(V1,V2,’>’) :- V1 > V2.

comparevalue(V1,V2,’<’) :- V1 < V2.

comparevalue(V1,V2,’=’) :- V1 == V2.

154 A. Nechypurenko, E. Wuchner, J. White, D. C. Schmidt

MARTES 2006 at MoDELS 2006

requirement_resource_constraint(Req, Res) :-

requirement(Req),

self_type(Req, Type),

(Type = ’<’ ; Type = ’>’ ; Type = ’=’),

!,

resource(Res),

self_value(Res, ResValue),

self_value(Req, ReqValue),

comparevalue(ResValue, ReqValue, Type).

%%

% local role base component targethost

% relationship solver

is_a_valid_component_targethost(Owner, Value) :-

(self_targethost(Owner, [Value]), ! %deployed

;

(is_a(Value,node),

self_requires(Owner, Requirements),

forall(member(Req,Requirements)

,

(requirement_to_resource(Req, Value, Res),

requirement_resource_constraint(Req, Res))

))).

These lines of code are the entire solution, providing not
only configuration constraint checking for an arbitrary set
of requirements and resources but also enabling domain-
specific GEMS editors to provide valid suggestions for de-
ploying a component. Moreover, this solution was intended
as a proof-of-concept to validate the approach and thus
could be implemented with even fewer lines of code. The
rest of the required predicates to implement the solver were
generated by GEMS.

In our experiments with global solvers, Prolog solved a valid
global deployment of 900 components to 300 nodes in ap-
proximately 0.08 seconds. This solution met all configura-
tion constraints.

The rules required for solving for valid assignments using re-
source constraints were significantly more complicated since
resource constraints are a form of bin-packing (an NP-Hard
problem). We were able to devise heuristic rules in Prolog,
however, that could solve a 160 component and 80 ECU
model deployment in approximately 1.5 seconds and an en-
tire 300 component and 80 ECU deployment, a typical AU-
TOSAR sized problem, in about 3.5 seconds. These solu-
tion times are directly tied to the difficulty of the problem
instance. For certain instances, times could be much higher,
which would make the suggestive solver from Section 3 dis-
cussed in the previous section applicable. In cases where
the solver ran too long, the suggestive solver could be used
to suggest ways of expanding the underlying resources and
making the problem more tractable.

5. RELATED WORK
Many complex modeling tools are available for describing
and solving combinatorial constraint problems, such as those
presented in [2, 6, 4]. These tools provide mechanisms for
describing domain-constraints, a set of knowledge, and find-
ing solutions to the constraints. These tools, however, are
not designed to generated domain-specific solvers based on a

metamodel. These tools also do not support the generation
of a DSML graphical environment and integrated graphical
suggestions. In contrast, our domain-specific model intel-
ligence, based on GEMS, is automatically integrated with
any DSML tool generated from a GEMS metamodel.

Decision support systems are similar to the domain-specific
model intelligence approach proposed in this paper. In [1],
Achour and all propose a modeling tool based on the Uni-
fied Medical Language System (UMLS), to create knowledge
bases for diagnosing and treating diseases. Both their UMLS
approach and our approach attempt to glean domain knowl-
edge and constraints from an expert and simplify users abil-
ities to find the correct solution to a partially specified prob-
lem. Their approach, however, differs significantly from our
approach in several ways. First, our approach is designed
to facilitate the creation of decision support systems for any
domain-specific modeling language. In particular, MIGs are
not limited solely to decision tree type guidance but also
complex analysis and optimizations specified by users. Sec-
ond, MIGs are automatically generated from a metamodel
and integrated with a graphical modeling tool via GEMS,
which supports the creation of graphical modeling tools with
integrated modeling decision support for arbitrary domains.

6. CONCLUDING REMARKS
The work presented in this paper addresses scalability prob-
lems of conventional manual modeling approaches. These
scalability issues are particularly problematic for domains
that have large solutions spaces and few correct solutions.
In such domains, it is often infeasible to create correct mod-
els manually, so constraint solvers are therefore needed.

Turning a DSML instance into a format that can be used
by a constraint solver is a time-consuming task. Our DIG
MDE tool generates a domain-specific constraint solver that
leverages a semantically rich knowledge base in Prolog for-
mat. It also allows users to specify constraints in declarative
format that can be used to derive modeling suggestions.

In future work, we plan to continue our development of tem-
platized solver-frameworks for modeling tools and incorpo-
rate new types of constraint solvers into the framework. We
plan to investigate the use of both automatic control and
monitoring of running systems using domain-specific model
intelligence and human-assisted monitoring and control. Fi-
nally, we intend to extend our infrastructure to allow other
types of constraint solving platforms, such as bin-packing
solvers written in C, to be integrated into a GEMS-based
modeling environment.

GEMS and the MIGs generation framework is an open-
source project available from:
http://www.sf.net/projects/gems.

7. REFERENCES
[1] S. L. Achour, M. Dojat, C. Rieux, P. Bierling, and

E. Lepage. A umls-based knowledge acquisition tool for
rule-based clinical decision support system
development. Journal of the American Medical

Information Association, 8(4):351–360, July 2001.

[2] J. Cohen. Constraint logic programming languages.

Applying Model Intelligence Frameworks for Deployment Problem in Real Time and Embedded Systems 155

MARTES 2006 at MoDELS 2006

Commun. ACM, 33(7):52–68, 1990.

[3] H. H. et al. Autosar current results and preparations
for exploitation. In 7th EUROFORUM conference, may
2006.

[4] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A

Modeling Language for Mathematical Programming.
Duxbury Press, November 2002.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented

software. Addison-Wesley Professional, 1995.

[6] G. Smolka. The oz programming model. In JELIA ’96:

Proceedings of the European Workshop on Logics in

Artificial Intelligence, page 251, London, UK, 1996.
Springer-Verlag.

[7] J. Sztipanovits and G. Karsai. Model-integrated
computing. Computer, 30(4):110–111, 1997.

[8] J. White and D. C. Schmidt. Simplifying the
development of product-line customization tools via
mdd. In Workshop: MDD for Software Product Lines,

ACM/IEEE 8th International Conference on Model

Driven Engineering Languages and Systems, October
2005.

[9] J. White and D. C. Schmidt. Reducing enterprise
product line architecture deployment costs via
model-driven deployment and configuration testing. In
13th Annual IEEE International Conference and

Workshop on the Engineering of Computer Based

Systems, 2006.

156 A. Nechypurenko, E. Wuchner, J. White, D. C. Schmidt

MARTES 2006 at MoDELS 2006

An experience in modeling real-time systems
with SysML

Pietro Colombo Vieri Del Bianco Luigi Lavazza Alberto Coen-Porisini
Dipartimento di Informatica e Comunicazione

Università dell'Insubria
Via Mazzini, 5

21100 Varese, Italia

{pietro.colombo, vieri.delbianco, luigi.lavazza, alberto.coenporisini}@uninsubria.it

ABSTRACT
Model-based development is particularly attractive and promising in the area of real-time and embedded
systems, since the complexity of such systems can greatly benefit from the availability of models that abstract
away details, allowing developers to focus on the most relevant and challenging features of the systems.

Recently, SysML has been adopted by the OMG as a modeling language for Systems Engineering. SysML is a
UML profile that represents a subset of UML 2 with extensions. These characteristics make SysML
particularly interesting, since it remains largely compatible with UML while overcoming its limits concerning
the possibility to model non software elements of systems, and developing a systemic view in the models.

Since SysML has been released quite recently, it is not yet clear how effectively SysML can be used to model
the different relevant aspects of real-time and embedded systems, which have some very specific
requirements.

This paper reports a modeling activity that was carried out in order to test the effectiveness of SysML in
modeling real-time and embedded systems. In particular, SysML was used to model one of the best known
benchmarks for real-time development languages: the crossing gate problem. By means of this experience the
authors were able to perform a first assessment of the strengths and the weaknesses of SysML as a real-time
modeling language.

Keywords
Real-time software, Model-based development, SysML.

1 INTRODUCTION
The usage of models in software development is continuously increasing. This practice makes it possible to
concentrate on the essential features of the systems without having to deal with the intricacies of actual code.
Moreover, models are usually platform independent, thus keeping application development separate from the
underlying platform technology in the early stages of the lifecycle, and easing porting. Whenever sufficiently
expressive modeling languages are used, models can also be processed for various purposes, such as to
validate or/and verify properties, to generate code, to generate test cases, etc.

Recently, SysML has been proposed by the OMG as a modeling language for Systems Engineering [7]. It is a
UML profile based on a subset of UML 2 [10][11] with extensions. It introduces new features that are
expected to better support the specification, analysis, design, verification, and validation of systems that
include hardware, software, data, personnel, procedures, and facilities.

Since real-time and embedded systems are not comprised uniquely of software, but tend to involve hardware,
devices, and often people, SysML is a natural candidate to support the development of this type of systems.
Nevertheless, since SysML was released quite recently, there is still little evidence of its suitability to support
effectively the development of real-time embedded systems, which have some very specific requirements.

The goal of this paper is to test the effectiveness of SysML in modeling real-time and embedded systems. In
the past, the authors were involved in the definition of techniques for model based development of real-time
and embedded software using UML and extensions of UML [14][15][16][17][18][19]. In that activity, it was

An Experience in modeling real-time systems with SysML 157

MARTES 2006 at MoDELS 2006

particularly enlightening the usage of UML to model one of the best known benchmarks for real-time
development languages: the generalized crossing gate (GRC) problem [2]. Here the experience is repeated
with SysML: by modeling the GRC with SysML we were able to perform a first assessment of the strengths
and the weaknesses of the language.

The paper is organized as follows: Section 2 introduces the GRC problem, Section 3 illustrates the
corresponding SysML model. Section 4 discusses the effectiveness of SysML, and identifies some qualities
and limitations. Section 5 draws some conclusions.

Throughout the paper we assume that the reader has a minimum of familiarity with SysML.

2 THE GRC PROBLEM
The Generalized Railroad Crossing problem was proposed by Heitmeyer [2] as a general benchmark for the
development of real-time systems. Since then it has been used extensively to test several formalisms,
methodologies and tools aimed at easing the development of real-time systems [2][3]. The problem is quite
simple, yet it exposes time constraints we usually find in hard real-time systems.

2.1 The definition
The system to be developed operates a gate at a railroad crossing. The railroad crossing I lies in a region of
interest R (see Figure 1). Trains travel over R on K tracks in both directions. Trains may proceed at different
speeds, and can even pass each other. Only one train per track is allowed to be in R at any moment. Sensors
indicate when each train enters and exits regions R and I. A gate function g from the real-time domain to the
real interval [0,90] describes the state of the gate according to the inclination of the bar, g(t)=0 indicating that
the bar is down (gate closed) and g(t)=90 indicating that the bar is up (gate open). A sequence of “occupancy
intervals” is also defined, where each occupancy interval is the maximal time interval during which one or
more trains are in I.

The problem is to develop a system to operate the crossing gate that satisfies the following two properties:

Safety Property: The gate is closed during all occupancy intervals.

Utility Property: The gate is open whenever this is possible without violating the safety property, and
according to the features of the gate. For instance, when the last train in the crossing leaves and no train is
approaching, the gate must open. The utility property is required, since a permanently closed gate satisfies
the safety property.

R

I

Gate

Figure 1. The railroad crossing regions.

Notice that Figure 1 shows trains going in only one direction. We adopt this simplification, since it has been
shown that the solution of this simplified problem can be trivially extended to the general case.

2.2 Towards the solution of the GRC problem
Let us introduce the relevant points in the interest region (see Figure 2):

point RI indicates the position of the entrance sensor;

point RO indicates the position of the exit sensor;

158 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

point II indicates the position of the sensor which detects trains entering region I.

RI-RO defines zone R and II-RO defines zone I.

I

R

RI II RO

dm

gdm-g

X

Legend

RI – X : Safe Zone

X – II : Critical Zone

I : Crossing Zone

R : Region of Interest

Figure 2. Annotated GRC.

A set of temporal constants describe maximum and minimum times for crossing the various zones, as well as
the gate opening and closing times:

dm and dM: minimum and maximum time taken by a train to cross RI-II zone;

hm and hM: minimum and maximum time taken by a train to cross zone I (i.e., II-RO zone);

g is the time taken by the bars of the gate for moving from the completely open to completely closed
position (or vice versa).

Point X is thus defined as follows: when a train enters zone X-II it is time to start closing the gate, so that bars
will be completely lowered when the train arrives at II (i.e., when the train enters the crossing zone I, or II-
RO). We name RI-X and X-RO zones “Safe zone” and “Critical zone”, respectively. The exact position of X
depends on the speed of each train, which is not known precisely. Thus the system cannot determine the right
moment when a given train is at point X. However, it is clear that if we make the system safe for the fastest
train, it will be safe also for other trains. In order to have the gate closed when the fastest trains arrive at II, we
must begin to close the gate dm-g seconds after the train entered region R. In this way when the fastest trains
arrive at II the bars will be down and the crossing will be safe. Of course, the system will be safe for the
slower trains as well.

In order to assure the safety property, the bars can be raised only when both the crossing zone and the critical
zone are empty. Similarly, in order to assure the utility property, the system must start opening the gate as
soon as the critical zone and the crossing zone become empty.

3 MODELING THE GRC WITH SysML
The System Modeling Language (SysML) is a visual modeling language that provides a graphical notation
with (informal) semantics and different types of diagrams, which can be used to describe both the behavioral
and the structural aspects of a system [9]. The variety of diagrams and a very rich notation allow designers to
show in a quite intuitive way the relationships among the different elements involved in a model. Most of the
diagrams are inherited from UML and are adopted without any change. Other diagrams are adapted so that
they are compatible with the new constraints defined by SysML. Moreover, completely new diagrams are
defined to extend the language in order to fully support system modeling.

SysML does not provide a specific modeling methodology. The language is said methodology independent,
and thus the system engineer is completely free to adopt the approach he/she likes best. In the following
sections we will see how SysML can be used to support the modeling activity of the GRC problem. The
methodology adopted follows a classical iterative approach. Each step contributes to the growth of the whole
model but sometimes it is necessary to go back and modify some element in order to assure the consistency of

An Experience in modeling real-time systems with SysML 159

MARTES 2006 at MoDELS 2006

the system. We will start describing the requirements of the system using a Requirements diagram. Then we
will define the structural aspects with Block Definition diagrams and Internal Block diagrams. Behavioral
aspects will be defined using Activity diagrams and State Machine diagrams, while constraints on the model
elements will be introduced using Parametric diagrams. The usage of cross cutting constructs, like allocations
and requirements, indicates how each model element introduced in a specific diagram is tied to other elements
defined in other diagrams, showing the existence of an underlying unique logical model for the whole system.

3.1 Requirements
Requirements diagrams are a new diagram type introduced by SysML. The language allows defining text
based requirements and relations between requirements and the elements of the model. Requirements can
specify capabilities related to structural elements, but also functionalities that must be provided or constraints
that must be satisfied.

Requirements are described using a dedicated element “requirement” defined as a stereotype of a UML Class.
Notice that the SysML language, being defined as an extension of a part of the UML meta-model, uses the
same extension mechanisms provided by UML (e.g. tagged values, stereotypes and profiles). Each
requirement element provides a textual description of the requirement and defines a unique identifier for the
same.

Figure 3 shows the requirement diagram of the GRC problem. The requirement element labeled
RailroadCrossingSpecification defines at a very high level of abstraction the goals of the system. Every other
requirement in the diagram is related to this one. For instance the RailroadCrossingSpecification requirement
is directly related to the SafetyProperty and UtilityProperty requirements, which describe properties that the
whole model has to satisfy, while the StructuralProperties requirement provides an informal description of the
system structure.

SysML provides different kinds of extensions of the UML association and dependency relationships for
defining the relationships between couples of requirement elements, as. In particular SysML introduces a
derivation relationship (as an extension of UML dependency) and a containment relationship (as an extension
of UML association). The derive relationship deriveReqt is used to describe that a requirement may be derived
from another one; however it has not a formal semantics and can be used to show extensions of properties, as
between OccupancyInterval and OccupancyDuration elements. The containment relationship has been used
among the RailroadCrossingSpecification and StructuralProperties, SafetyProperty and UtilityProperty
requirements, but also among StructuralProperties and the other elements that describe the components of the
system. This kind of relationship allows the decomposition of complex requirements into sets of simpler ones.
Reading the text fields of requirements we find that the system is composed of a gate, a controller, K tracks
and three sensors for each track. In this case requirements describe in an informal way the structure of the
system, and suggest the organization of the architecture (which will be introduced later by means of other
diagrams). We can also find a short description of the functionalities and features of each component. Each
requirement can be related to either a specific model element or an aggregation of model elements. In fact,
requirements can collect properties and constraints that will be referenced by different components. As an
example, the SafetyProperty requirement defines a property related to the whole system and not to a single
specific model element, while the Gate requirement specifies the existence of a unique physical gate
component.

160 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

req RailroadCrossingSystem

<<requirement>>
Gate

Id =S1.4
Text = a gate regulates the
access to the railroad
crossing

<<requirement>>
Controller

Id =S1.1
Text = A controller receives
signals from enter and exit
sensors and operates a gate

<<requirement>>
Track

Id =S1.3
Text = the railroad is
composed by K tracks.
Each track can be
cross following only a
direction.

<<requirement>>
RegionOfInterest

Id =S1.6
Text = the railroad crossing lies in
a region R which is called region
of interest. R is bounded by an
entry sensor RIS and an exit
sensor ROS.

<<requirement>>
Train

Id =S1.5
Text = trains travel along
tracks crossing the region of
interest R in both directions

<<requirement>>
UtilityProperty

Id = S2.0
Text = If no train is in the
occupancy interval for at least
ug time then the gate is open.

<<requirement>>
SafetyProperty

Id =S3.0
Text = The gate is closed
during all the occupancy
intervals<<requirement>>

StructuralProperties

Id = S1.0
Text=The system is composed by a gate,
a controller, K tracks and three sensors for
each track.

<<requirement>>
CrossingZone

Id =Z1.2
Text = A region called “I”
contains the railroad
crossing. “I” lies in the
region of interest R. “I” is
bounded by two sensors
IIS and ROS.

<<requirement>>
GateMovementProperty

Id =T1.0
Text = the gate is governed
by an actuator which takes g
time for moving the bars from
the completely open to
completely closed position
and viceversa

<<requirement>>
OccupancyInterval

Id =T4.0
Text = the occupancy
interval h is the time
taken by a train
(travelling on a track tr) to
cross the railroad
crossing region I .

<<requirement>>
OccupancyDurationProperty

Id =T4.0.2
Text = an occupancy interval has
a length h such that
hm<=h<=hM, where hm and hM
are the minimum and the
maximum time taken by a train
travelling on a track to cross I

<<requirement>>
TimeToReachI

Id =T2.0
Text = Once entered the
region of interest R a train
takes d time to reach the
railroad crossing region I. d
has the following property:
dm<=d<=dM, where dm
and dM are the minimum
and the maximum time
taken by a train to reach I

<<requirement>>
SafeZone

Id =Z1.1
Text = the “Safe zone” is a
region contained by R
which is bounded by the
RIS sensor and a point X.
X is the position reached
by a train after dm-g time.

<<requirement>>
OccupancyDuration

Id =T4.0.1
Text = h is defined as the
difference between the
timestamp of RO and II
signals. Such signals are
generated by ROS and IIS
sensors which lie on the
same track.

<<requirement>>
CriticalZone

Id =Z1.3
Text = A train reaches the
critical zone as soon as has
left the safe zone. Whenever
a train has entered the critical
zone the controller has to
invoke the gate bars closure.
A train takes at least g time to
cross the critical zone .Id =T3.0

Text = Trains take at least g time
to cross the critical zone. The
slowest ones takes (dM-(dm-g))
time

<<requirement>>
TimeToCrossCriticalZone

<<requirement>>
RailroadCrossingSpecification

Id = S.0
Text = Describe a system which operates
a gate at a railroad crossing with multiple
tracks.

<<requirement>>
Sensor

Id =S1.2
Text = sensors notifiy that a
train has passed

<<deriveReqt>>

<<requirement>>
SystemZones

Id =Z1.0
Text = The region of interest is
composed by a safe zone, a critical
zone and a crossing zone

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<requirement>>
CIRCounter

Id = C2.0
Text = CIR represents
the number of trains in
the crossing zone

<<requirement>>
CriticalZoneCounter

Id =C1.0
Text = CCR represents the
number of trains currently in the
critical zone

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

Figure 3. The requirements diagram for the railroad crossing problem

3.2 The structural aspects
The first step of the modeling process consists in defining the static aspects, i.e., the structure of our
heterogeneous system. This activity is quite similar to the definition of an architecture for a software system
[5], although here the subject is the problem domain.

An Experience in modeling real-time systems with SysML 161

MARTES 2006 at MoDELS 2006

SysML defines the Block element type as the elementary building block to describe a system structure. Each
block defines a collection of features, properties, and operations that represent an element of the system. The
system is modeled as a block that can be recursively decomposed into other blocks down to the basic elements
of the structure. The resulting system structure is thus a hierarchy of blocks.

SysML provides Block Definition diagrams (BDD) and Internal Block diagrams (IBD) to define blocks, their
internal structure and the relationships among them. Such diagrams are extensions of the UML Class diagram
and Composite Structure diagram. Among the most innovative aspects introduced by these extensions there is
a new kind of connection, based on flow ports through which material, energy, data or signals can flow (enter
or leave the block); usually a flow port is intended to be used for asynchronous broadcast, or “send and
forget” interactions. For instance in Figure 4 the Block Sensor exhibits a flow port whose type is SensorData
and whose name is sensP.

bdd RailroadCrossingSystem

<<block>>
Train

<<block>>
Controller <<block>>

Sensor

<<block>>
Gate

<<block>>
RailroadCrossing

3K

gate

ctrl

<<interface>>
GateI

+raise():void
+lower():void

ctrlGP

ctrlRISP:SensorData

GateP

GateI

sensP:SensorData

<<dataType>>
SensorData

GateI

sensorID:integer
trackID:integer

ctrlROSP:SensorData

<<Block>>
GateStatus

values
CCR:integer
CIR:integer
dm:integer
dM:integer
hm:integer
hM:integer
K:integer

properties
gS:GateStatus
tr[K]:TrainStatus

ctrlIISP:SensorData

values
onTrack:integer

<<Block>>
TrainStatus

values
onTrack:integer

values
g:integer

Figure 4. The Block Definition diagram for the railroad crossing system

We start the modeling activity defining the Block Definition diagram for the system (Figure 4). The system is
composed of a block RailroadCrossing, which is decomposed into block Gate, Controller and Sensor.

The Controller block defines three input flow ports of type SensorData and a standard port labeled ctrlGP. A
controller has three different input sources, one for each type of sensor. The port ctrlGP requires an interface
GateI, which represents the interaction point with a gate component. Such interface defines two methods raise
and lower that can be used to operate the gate. The Controller defines a set of attributes that keep track of the
status and properties of regions. The CCR attribute represents the number of the trains currently in the critical
region, while the CIR attribute represents the number of trains in the region of interest. The other attributes
define constant values as the minimum or the maximum time to cross a specific region (as defined in the
requirements diagram, see Figure 3) and the maximum number of tracks that compose the system. Therefore,
the controller owns attributes of type TrainStatus and GateStatus that represent local models of the trains and
of the gate, respectively. Such components are used in order to keep track of the state of the trains and of the
gate. More in detail, block TrainStatus represents the position of trains in each track of the region of interest
R. We are not interested in the exact position of trains; therefore the position is defined in an abstract way: out
of region R, in RI-X, in X-II, in II-RO. The position of the train is determined according to the information
provided by the sensors, and taking into account the flowing of time. According to the specification, there will
be exactly K instances of this class, representing the trains traveling on the K tracks of R. Such a constraint is
represented by specifying the number of instances of the attribute of type TrainStatus in the Controller block.

162 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

The Gate block implements the GateI interface and therefore it defines how the raise and lower operations
must be realized.

The Sensor block is characterized by an output flow port of type SensorData. A sensor will generate
SensorData signals, which will be sent through this port. A SensorData signal contains the necessary
attributes for storing information on the sensor that has generated signal.

It can be noticed that the proposed model adopts some simplifications: for instance, dm, dM, hm, hM should
be functions of both train speed and region lengths. Moreover blocks representing tracks and regions are
missing. We decided not to represent these items in order to keep the model as simple as possible, while
focusing on the specification of the real-time behavior of the system. It is easy to enhance the model in order
to include all the omitted details, and in order to reflect more faithfully the structure of the real system.
Despite this simplification, the structure directly satisfies what was defined in the requirements diagram. For
instance, tracks do not play a fundamental role in the system, since they represent a collection of sensors and
trains. Trains traveling along a track interact with sensors that generate signals that will be captured by the
controller. Block Train owns an attribute that identifies the track on which the train is traveling. The same
applies to the Sensor block.

An Internal Block diagram is used to show more in detail how blocks are interconnected.

ibd [block] RailroadCrossing

ctrl:Controller

ROS:Sensor

gate:Gate
ctrlGP

ctrlROSP:SensorData

GateP

GateI

sensP:SensorData

GateI

ctrlRISP:SensorData

RIS:Sensor

sensP:SensorData R
I:SensorD

ata

R
O

:S
en

so
rD

at
a

K

K

ctrlIISP:SensorData

IIS:Sensor

sensP:SensorData

K

II:
Se

ns
or

D
at

a

Figure 5. The Internal Block diagram for the block RailroadCrossing

In Figure 5 we can see a sketch of the structure of the system. This diagram defines the instances of the blocks
defined in the Block Definition diagram. Notice that the same names of instances appear in different diagrams.
Here we find a first usage of the model centric vision introduced above and a first application of separation of
concerns principle. We defined a model element in a dedicated diagram and then used the same element in a
different diagrams.

The RailroadCrossing block is composed of different parts. A Gate instance labeled gate is directly connected
to ctrl, an instance of the Controller block. The connection is specified by means of a usage relationships
between elements that require and provide the interface GateI (see the Block Definition diagram in Figure 4).
Three instances of the Sensor block are connected to ctrl through flow ports of type SensorData. More in
detail, for each track i (with 1<=i<=K) we have three sensors labelled RIS[i], ROS[i] and IIS[i]. RIS[i] is the
sensor at the beginning of the region of interest R, IIS[i] is the sensor at the beginning of the crossing zone I
and ROS[i] is the sensor at the end of the crossing zone (and of the region of interest too) of the i-th track.
Each sensor will produce SensorData signals to indicate on which track the sensor operates and the position of
the sensor on the track. For example the RIS[i] sensor will generate a SensorData signal characterized by a

An Experience in modeling real-time systems with SysML 163

MARTES 2006 at MoDELS 2006

attribute trackID=i value and a attribute sensorID=RIS (indicating that the sensor is placed at the entrance of
the safe region).

ibd [block] Controller

tr:TrainStatusgs:GateStatus

RI:SensorData II:SensorData

RO:SensorData

K

Figure 6. The Internal block diagram for the Controller block

Figure 6 describes the architecture of the Controller block. The Controller is composed of an instance of
GateStatus that stores the current position of the bar of the gate, and by K instances of TrainStatus that keep
track of the position of the trains. Each TrainStatus object receives signals from the sensors and changes its
state if it is on the same track as the sensor.

3.3 Abstract dynamics: Activity diagrams
The modeling of the system goes on with the definition of the abstract dynamics of the system. For this
purpose SysML extends UML activity diagrams with constructs aimed at handling continuous flows of data
(streaming activities). For more detailed information see [6].

act [activity] controllerBehavior

<<controlOperator>>
CheckRaise

[enable]

[else]

GateBehavior:raise

<<controlOperator>>
CheckLower

[enable]

[else]

GateBehavior:lower

Arriving
(wait for dm-g)

IncCCR

DecCCRDecCIR

II:DataSensor

IncCIR

RI:DataSensor

RO:DataSensor

<<allocatedTo>>
RailroadCrossing:ctrl

Leaving

Figure 7. Controller behavior

The main activity of the system is shown in Figure 7. The squared boxes on the border of the diagram
represent incoming data from the 3 sensors flow ports ctrlIISP, ctrlRISP and ctrlROSP (see the Internal Block
diagram in Figure 5); in fact each of these ports is connected to K sensors (one sensor for each track).

The effect of the signals from sensors on the status of the controller is specified by the activities DecCIR,
DecCCR, which decrement counters CIR and CRR respectively, and by activities IncCIR and IncCCR, which
increment them. Counters CIR and CCR (that are part of the state of the Controller, see Figure 4) represents
the number of trains in the critical region and in the crossing region, respectively.

164 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

The values of these attributes have to change only according to trains entering or exiting the znes of the
interest region. As an example, consider the entrance in the critical region. There are not sensors that notify to
the controller that a train has entered such zone, but the controller assumes that a train is entering (dm-g)
seconds after the entrance in the interest region. Therefore the diagram shows that the execution of IncCCR is
strictly triggered by the receipt of data from the RI sensor, with a (dm-g) delay. The activation is labeled
“Arriving” in order to synchronize the dynamic behaviour specified by the activity diagram with the
behaviour specified by state diagrams (Leaving is used in the state machine of the Controller, Figure 12).

The dynamics of TrainStatus, GateStatus and Controller will be further refined in the State diagrams of
Figure 10, Figure 11 and Figure 12.

The data coming from sensors RO and RI enable the activities CheckRaise and CheckLower respectively.
These activities check the values of the counters to decide whether the gate has to be lowered or raised. Then
the control returns to the initial point for a new iteration of the control loop. We can see clearly in this diagram
that the flow of actions is not only specified by the control flow (marked as a dotted line), but is also
influenced by incoming data (solid line).

An activity can be further described by an Activity diagram showing inner activities and flows. An example of
such descriptions is shown in Figure 8, where activities CheckRaise and CheckLower are described. In both
the diagrams the Control Value data explicitly model the outputs of the activities used to decide whether to
enable raise and/or lower.

<<ControlOperator>>
act CheckRaise

GetGateStatus gStatus:GateStatus

<<ValueSpecificationAction >>
Disable

ControlValue

[gStatus.inState(down)
&& CCR==0]

[else]

<<ValueSpecificationAction >>
Enable

<<ControlOperator>>
act CheckLower

GetGateStatus gStatus:GateStatus

<<ValueSpecificationAction >>
Disable

ControlValue

[gStatus.inState(up) ||
gStatus.inState(going_up)]

[else]

<<ValueSpecificationAction >>
Enable

Figure 8. CheckRaise and CheckLower activities behaviors

act [activity] TrainBehavior

act [activity] SensorBehavior

Pass SensorDataGenerateData

Reach the
region of
interest

Reach the
railroad
crossing

Abandon the
railroad crossing

Pass Pass Pass

Figure 9. Train and Sensor Behavior

The remaining Activity diagrams of our model are simpler and they are shown in Figure 9. The train activities
simply consist in moving through the region of interest and the crossing zone; each time the train goes through
a sensor an event is fired to let the proper sensor generate data and make it available to the rest of the system.

An Experience in modeling real-time systems with SysML 165

MARTES 2006 at MoDELS 2006

3.4 State diagrams
SysML provides state machine diagrams that inherit all the features of the corresponding UML diagrams.
State machines can be used to describe the behavior of an element of a system in terms of its states and
transitions.

In Figure 10 we can see the state machine diagram of the block TrainStatus. The block definition diagram in
Figure 4 shows that a train is characterized by a property onTrack that specifies the name of the track on
which the train is traveling. Let us consider a train traveling on a track Tr. Initially the train is out of the
region of interest, then it reaches such region (coherently with the activity diagram of Figure 9) and passes the
sensor RIS. Such sensor sends the signal RI, which is an instance of the block SensorData with sensorID set to
RIS and trackID equal to Tr. When the sensor sends its signal, the train is entering the safe zone and after dm-
g seconds the fastest trains are entering the critical zone (at point X). This transition is governed by a time-out,
modeled by means of the after statement provided by UML [10] and inherited by SysML.

Now we should specify that the train enters region I not earlier than g seconds nor later than dM-(dm-g)
seconds after entering the critical zone. SysML does not provide any means to specify that a transition cannot
happen before a given time or must occur before a given time. In order to express such constraints we had to
introduce the state Close_to_Crossing and the state Error. Notice that these states were introduced only
because of the limits of the language. Notice also that the state Error indicates that the behavior of the system
deviated from the specification. In designing a real system, we would wish to substitute the state Error with
some exception handling state, for the sake of robustness.

stm [state machine] TrainState

Error

RI [RI.trackID=onTrack]

After(dm-g)

After(g) [not (II and II.trackID=onTrack)]

II [II.trackID=onTrack]

After(hm)
[not (RO and RO.trackID=onTrack)]

After(g)
[II and II.trackID=onTrack]

RO
[RO.trackID=onTrack]

After(hM-hm)
[not (RO and RO.trackID=onTrack)]

After(dM-dm)
[not (II and II.trackID=onTrack)]

Out_of_zone

Safe_zone

Close_to_crossing

Crossing

Ready_to_exit

Critical_zone

Figure 10. State machine diagram for the TrainStatus block

Consider now how to specify what happens if a train reaches point II exactly after it has been in the Critical
zone for g seconds (that can actually happen, for the fastest trains). In such a case the train goes directly into
the Crossing state, without passing into the state Close_to_Crossing. In order to express this constraint we
borrowed from UML the syntax of conditions, extending their semantics to express the occurrence of an event

166 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

at a given time (in plain UML conditions cannot contain references to events). The meaning of the remaining
transitions should be clear, thus they are not commented here.

The State diagram of the block Gate is shown in Figure 11.

Most transitions are easy to understand, and modeling them presented no difficulty. When the gate is closed
(i.e., the bar is down), and a raise command is received, the bars start to move upwards. If a lower signal
occurs when the gate is still opening, the bars must start to move down immediately: this is modeled by a
transition to state InvertedDown. According to the problem definition the bar will reach the closed position
after a time equal to the time it has been opening. In order to represent this behavior, we have to explicitly
refer to the time when such event occurred: transition to state Down will occur after a time equal to the
interval between the last open and close commands. When the gate is in the state Up, and a lower command is
received, the bars start to move downwards. If a raise signal occurs when the gate is still closing, the bars must
start to move up. This is described by a transition to state InvertedUp.

The states InvertedUp and InvertedDown require some comments. The state InvertedDown can be reached as a
consequence of a lower command sent by the controller whenever a train reaches the Critical region while the
gate is opening. The state InvertedUp should never be reached as a consequence of a command sent by the
controller (see the state machine diagram for the Controller block). Consider such diagram as the description
of the generic behavior of a gate.

By allocating the states and the transitions of this machine to the instances of the blocks, signals and activities
of our system, we define which transitions can fire and therefore which states can be reached.

stm [state machine] GateStates

Up

on raise : do_nothing

Down

on lower : do_nothing

Going_Up

on raise : do_nothing

Going_down

on lower : do_nothing

T1:raise

After(g)[not lower] T3:lower

After(g)[not raise]

InvertedDown

on lower : do_nothing

T2:lower

After(T2.SendTime-T1.ReceiveTime)

InvertedUp

on raise : do_nothing

T4:raise

After(T3.SendTime-T4.ReceiveTime)

Figure 11. State machine for the block Gate

SysML provides the keywords ReceiveTime and SendTime to indicate the time when an event was issued and
received, respectively. However, we also need to indicate to which of the raise or lower signal we refer (e.g.,
we are interested in the lower event occurred while the gate was in state Going_Up, not to the one occurred
while in Up state). The language provides a labeling mechanism that can be used to identify individual
transition instances. State diagrams represent transition types, i.e., every transition may occur several times,
that is, it may have several instances. We thus extend SysML syntax and semantics by applying labels to
transitions in the state diagrams, so that we always refer to the last occurrence. Thus, the transition from
InvertedDown to Down occurs after a period equal to the interval between the last raise command and the last
lower command.

The state diagram of the Controller block is reported in Figure 12.

An Experience in modeling real-time systems with SysML 167

MARTES 2006 at MoDELS 2006

stm [state machine] ControllerStates
NotEmpty

on Arriving: IncCCR

Crossing_occupied

On II:IncCIR

Crossing_free

Leaving [CIR=1 and CCR>1] /
DecCCR; DecCIR II / IncCIR

Leaving [CIR>1] /
DecCCR; DecCIR

Arriving / IncCCR ^gate.lower

Empty

EmptyOpening

EmptyOpen

After(g) [not Arriving]

Leaving[CCR=1 and CIR=1] /
DecCCR; DecCIR ^gate.raise

Figure 12. The state machine diagram for the Controller block

Initially the Crossing is empty and the gate is open (this means that there are no trains in the critical zone).
Whenever a train enters the critical zone the counter CCR is incremented invoking the IncCCR activity.
Whenever a train exits the critical zone the counter CCR is decremented. If a train arrives while the critical
zone is empty the state is changed to non-empty, and a close command is sent to the gate. When the last train
leaves the critical zone, the state is changed to empty, and an open command is sent to the gate.

3.5 Expressing model properties
SysML provides constraint blocks to define properties and constraints on elements of the model. Constraint
blocks enable the application of engineering analysis mechanisms to check the consistency of the system. A
Constraint block is an extension of a standard block; it is characterized by a property and a set of parameters
that represent the basic elements involved by the property. SysML provides a mechanism to separate the
definition of a constraint element from its usage. A constraint block specifies a context-independent property.
Defined constraints can be reused involving different elements of the same model. Parameters are the binding
points among the elements of the model and the property expressed by the constraint. Block constraints are
specified using block definition diagram. SysML also provides Parametric diagrams, an extension of the
Internal block diagram that can be used to define the usage of constraints and thus to define instances of
constraints elements. Such diagrams provide constructs to apply the binding mechanism.

Different languages can be adopted to define constraints using different levels of rigor, e.g., according to the
criticality of the system. In particular, formal languages can be applied whenever it is advisable to define
crucial properties that have to be assured. As a consequence we could say that SysML provides an easy way to
apply “lightweight” formal methods, supporting rigor and formality when needed.

As we can see in the Internal Block diagram in Figure 5, the Controller block has only one instance, which
represents the current situation and the criteria to be followed in sending commands to the gate. The controller
must always know how many trains are in the critical and in the crossing zones. Thus, in the block definition
diagram defined in Figure 4 we have introduced the attributes CCR and CIR, which count how many trains are
in these regions. Both counters are initially set to zero, and are modified by the increment and decrement
methods.

We use the Object Constraint Language (OCL) [12] for defining constraints on SysML blocks. For this
purpose SysML blocks are treated as UML Classes and activities allocated to a block are treated as operations
provided by a class. Here follows a selection of the properties related to the Controller block:
context Controller inv :
 self.CCR>=0

168 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

context Controller::IncCCR inv :
 CCR@pre<K and CCR=CCR@pre+1
context Controller::DecCCR inv :
 CCR@pre>0 and CCR = CCR@pre-1
context Controller inv :
 self.CIR>=0 and self.CIR<=self.CCR
context Controller::IncCIR inv :
 CIR@pre<K and CIR=CIR@pre+1
context Controller::DecCIR inv :
 CIR@pre>0 and CIR = CIR@pre-1
Constraints concerning the minimum and maximum traversing times are expressed by means of the following
OCR statement:
context Controller inv :
 Self.dM >= Self.dm
 Self.dm > Gate.g
 Self.hM >= Self.hm
 Self.hm > 0
 Self.dm > 0
The GRC can be classified as a real-time safety critical system. As a consequence, we have decided to use the
TRIO [21] formal language for the definition of the constraints on our model. TRIO is a first order logic
language augmented with a temporal domain, arithmetic operators and temporal operators. Such language has
been applied as a specification language to different industrial case studies [20] and it is well suited to
describe the most crucial properties related to our problem.

We consider the same invariant properties for the Controller block that we described above with OCL. Figure
13 reports the definition of such properties using constraint blocks in a block definition diagram and using
TRIO as specification language.

As an example, let us consider the constraint IncCounterInvariant. Such block defines a property related to
three different parameters. The property states that given a value C and a signal IncC, for each k such that up
to now C was equal to k, when IncC occurs C will be equal to k+1. Then the property says that a time instant
exists such that C is equal to 0 and before such instant C was always equal to 0. A detailed explanation of
TRIO formulas and temporal operators does not fit in the objectives of this paper and can be found in [21]. A
brief description of the most common TRIO operators is reported in the appendix.

Let us consider the Block definition diagram shown in Figure 13, in which all the defined constraint blocks
are apparently independent from the other elements of the model. For instance the constraint
DecCounterInvariant can be considered as a generic property that can be instantiated and bound to different
couples of elements of the model matching with the DecC and C parameters of the constraint block.

An Experience in modeling real-time systems with SysML 169

MARTES 2006 at MoDELS 2006

bdd [constraint] ControllerProperty

Parameters

CRCounter:integer

Constraints

Alw(CRCounter>=0)

<<constraint>>
CCRinvariant

Parameters

CRCounter:integer
IRCounter:integer

Constraints

Alw(CRCounter>=0 and
CRCounter>=IRCounter)

<<constraint>>
CIRinvariant

Parameters
IncC:signal
C:integer
Max:integer

<<constraint>>
IncCounterInvariant

Constraints

(all k (0<=k<Max -> (
 (UpToNow(C=k) and IncC -> C=k+1) or
 (UpToNow(C=k) and not IncC -> C=k)
))) and Som(C=0 and AlwP(C=0))

Parameters

g:integer
dm:integer
dM:integer
hm:integer
hM:integer

Constraints

Alw(dM>=dm and dm>g and hM>=hm
and hm>=0)

<<constraint>>
ControllerInvariant

Parameters
DecC:signal
C:integer

Constraints

(all k (0<k<=Max -> (
 ((UpToNow(C=k) and DecC) -> C=k-1) or
 ((UpToNow(C=k) and not(DecC)) -> C=k)
)))

<<constraint>>
DecCounterInvariant

<<constraint>>
ControllerProperty

CIRICCRICtrlI

Figure 13. Definition of invariant properties for the Controller block

Par [block] ControllerAttrConstraints

IncCCR:ControllerProperty.IncCounterInvariant

RailroadCrossingSystem.
Controller.IncCCR

RailroadCrossingSystem.
Controller.CCR

RailroadCrossingSystem.
Controller.K

C

IncC

Max

IncCIR:ControllerProperty.IncCounterInvariant

Max

RailroadCrossingSystem.
Controller.IncCIR

RailroadCrossingSystem.
Controller.CIR

C

IncC

CIRI:ControllerProperty.CIRinvariant

IRCounter

CRCounter

DecCCR:ControllerProperty.IncCounterInvariant
C

RailroadCrossingSystem.
Controller.DecCCR

DecC

CCRI:ControllerProperty.CCRinvariant

CRCounter
DecCIR:ControllerProperty.DecCounterInvariant

RailroadCrossingSystem.
Controller.DecCIR

DecC

C

Figure 14. The parametric diagram which shows how the instances of the properties for the Controller
block are bound to other element instances of the GRC system.

170 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

Figure 14 reports a Parametric diagram that specifies how the parameters of the constraints defined in Figure
13 are allocated to instances of elements. For instance, parameter C of the DecCounterInvariant constraint is
allocated to the CIR attribute of the Controller.

Although the model discussed so far is sufficient to guarantee that the gate controller works properly, it is not
detailed enough to express the safety property. In fact, we need to say that “when there is at least one train in
the crossing zone I, the gate is closed”. Thus we need to refine what we have defined in the requirements
diagram using a formal notation. The safety condition can be written in OCL as follows:
Context Controller inv:
 Self.oclInstate(Crossing_occupied) implies Gate.oclInstate(Down)
Expressing the utility property involves some problems. Exploiting the state diagrams, it is only possible to
state the following property:
Context Crossing inv:
 Self.oclInstate(Empty) implies
 Gate.oclInstate(Going_Up)or Gate.oclInstate(Up)
However, it is easy to see that the property above is too weak, as it does not require the gate to eventually
reach the open position. The utility property, instead, requires that the gate is open whenever the crossing has
been empty for at least g seconds (i.e., for the time required to open the gate):
Context Crossing inv:
 Self.oclInstate(Empty) for at least g implies Gate.oclInstate(Up)
Unfortunately, the sentence above is not a legal OCL statement, since OCL does not provide a way to deal
with time. Instead, we can use a dedicated language as TRIO to express both properties.

bdd [constraint] SystemProperty

Parameters

Zone_I_occupied:state
Down:state

Constraints

Zone_I_occupied -> Down

<<constraint>>
Safety

Parameters

Empty:state
Up:state

Constraints

Lasted(Empty,g) -> Up

<<constraint>>
Utility

<<constraint>>
SystemProperty

ut
saf

<<Refine>>
SystemRequirements:safety

<<Refine>>
SystemRequirements:utility

Figure 15. Expressing the Utility and Safety properties

As an example let us consider the constraint Utility defined in Figure 15. It uses a couple of parameters and a
property expressed in TRIO. The property states that after the state Empty lasted for g time units the state is
Up. This expression specifies the property that we could not express using OCL. It is now necessary to
associate it with the elements of the model. When instantiating the property we state that the parameter Empty
is associated with the state Empty of the state machine diagram shown in Figure 6, and, as a consequence, it
represents that no train is in the crossing region. Similarly the parameter Up is associated with the state Up of
the state machine that describes the behavior of the block Gate.

The constraint blocks Utility and Safety are introduced in Figure 15 as refinements of the informal properties
described in the requirements diagram shown in Figure 3. In this way the user requirements –which are often
defined in natural language– are complemented by constraint blocks that provide a formal specification of the
critical system properties.

An Experience in modeling real-time systems with SysML 171

MARTES 2006 at MoDELS 2006

4 A FIRST ASSESSMENT
SysML represents a big step forward in modeling systems; it implements most of the requirements found in
the original request of proposals submitted to OMG in 2003 (see [13]), often enhancing them. Flow ports and
continuous activities have been introduced to adequately address the modeling of continuous systems [6], thus
overcoming a limit of UML 2.0.

Considering embedded and real-time systems, it is quite clear that the capabilities of SysML to model such
systems are far better than UML 2.0 ones. As an example think about the problem of modeling a control
system, a type of system that usually has both real-time and embedded features. Notice that the
communications among the components of such systems usually require continuous flows of information, and
while SysML provides constructs to describe streams of data and allows one to deal with them (as described in
[6]), UML does not allow modelling continuous data flows. Nevertheless, some needed features are poorly
supported by SysML or are completely missing.

SysML provides the extension mechanisms that were inherited from UML (tagged values, stereotypes and
profiles). Such extensions are useful to adapt the language to describe a specific problem domain. However,
these extension mechanisms are not powerful enough to change the semantics of the basic constructs. As an
example, consider the extensions defined for the state machine diagrams in [19] or for the sequence diagrams
in [23]. The mechanisms provided by UML are not powerful enough to change the semantics of the transitions
in the state machine diagrams and of the interactions in the sequence diagrams, so in both cases changes must
be defined by directly manipulating the UML meta-model.

For the GRC problem we have preferred not to use a profile (e.g., a temporal profile) to model the system.
Instead, we have based our modeling activity on the usage of the basic profile of SysML. There are two main
reasons for this choice: one is that at the moment no timing profiles are available for SysML, the second is
that we were interested in studying the basic capabilities of SysML and how the usage of a formal notation
could be merged in the modeling process.

Focusing the attention on the usage of the standard constructs and diagrams we have found the inadequacy of
the language to address the problem of modeling strict timing information. In fact, the state diagram behavior
of SysML is the same of UML 2.0: it follows a run-to-completion semantics. The run-to-completion semantics
provides each state machine with a buffer to handle the incoming events; every event is then consumed when
the machine has finished consuming the previous one. The consumption of an event can trigger a transition
that executes in a non null time. While this behavior is acceptable in modeling the implementation of a
system, it is unsuited to model the time requirements and to carry out the analysis of a system. For this
purpose instantaneous and possibly simultaneous transitions are needed, as well as the ability to deal with time
intervals. Timed Statecharts [22] are suitable to express precise time constraints (see [15], [16] and [19] where
the problem is specifically addressed). Besides, syntax and graphical constructs of Timed Statecharts are very
similar to analogous constructs found in SysML (UML 2.0). Therefore, the state diagrams presented above
model well the time behavior of the system if we assume that they follow the Timed Statecharts semantics.

SysML does not feature a proper temporal logic (or analogous formalism) to express time constraints.
Although SysML does not prevent the use of any formal language to express constraints, the availability of a
standard formal language would be useful, especially considering that UML constraint language OCL does
not support the specification of timing issues, and it lacks many of the needed features (see [18] for an OCL
proposal of extension with time related features). In practice, modelers have to employ a language like TRIO
[21] to represent time constraints.

A final remark is that resource management and consumption –which are very important features when
dealing with embedded systems– are not directly addressed. On the positive side, the buffered behavior of
each activity in Activity diagrams can be disabled in SysML, in order to model activities that do not buffer
incoming data. In SysML it is even possible to constrain the rate of incoming or outgoing data that activities
can accept (thus preventing buffering). These features are relevant for embedded systems since buffers can
consume large amount of resources.

172 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

5 CONCLUSIONS
Our goal was to apply and assess a full model-centric approach to the definition of a complex heterogeneous
system using SysML, in order to evaluate the capabilities of ysML by applying it to the analysis and design of
a system characterized by real-time safety critical requirements. We chose the GRC problem as a reliable and
well-known benchmark for this kind of systems.

We found SysML well suited to support a model-centric development, since it provides dedicated constructs
to describe all the aspects of a system: it supports the definition of both structural and behavioral features, and
provides constructs to describe and organize the requirements. The language also provides cross cutting
constructs that allow the modeler to allocate behavioral elements on structural ones and vice-versa, and to
relate the elements of the model to the requirements. Despite these remarkable features, the language is not
fully satisfactory for modeling precise time requirements because the language inherits some of the
weaknesses found in UML 2.0. SysML provides mechanisms to define extensions to its meta-model;
constructs like tagged values, constraints, stereotypes and profiles can be used to extend the expressiveness of
the language and to adapt the language to describe systems of a specific domain. Such mechanisms help to
extend the capabilities of SysML, but do not allow redefining the semantics of its basic constructs. As a
consequence, we were obliged to use external formal languages to address such issues. The usage of formal
language like TRIO allows to express time properties and behaviors in a rigorous way and to possibly
integrate the automated or semi-automated engineering analysis tools.

In the future we plan to apply SysML to a complex industrial case study in order to evaluate the scalability of
this approach. Moreover we are interested in evaluating the consequences on the following development
phases. As a second line of interest, we are working on coupling SysML with formal languages such as TRIO
in order to come up with an effective development method for real-time embedded systems.

6 REFERENCES
[1] Douglass B. P. Real-Time UML, Addison Wesley, 1998.

[2] Heitmeyer C.L., Jeffords R.D., Labaw B.G., “Comparing different approaches for Specifying and verifying Real-Time
Systems”, in Proc. 10th IEEE Workshop on Real-Time Operating Systems and Software (New York May 1993), 122-129.

[3] C.L. Heitmeyer and N. Lynch. “The generalized railroad crossing: A case study in formal verification of real-time systems”,
in Proc. of the IEEE Real-Time Systems Symposium, San Juan, Puerto Rico, December 7-9, 1994

[4] Selic B., Gullekson G., Ward P.T., “Real-Time Object-Oriented Modeling”, Wiley, 1999.

[5] Garlan D., Shaw M., “Software Architecture”, Prentice-Hall, 1996.

[6] Bock C., SysML and UML2 Support for Activity Modeling, Systems Engineering, Vol. 9, No. 2, Wiley, 2006.

[7] OMG, “Meta Object Facility (MOF) 2.0 XMI Mapping Specification”, v2.1 formal/05-09-01, September 2005

[8] OMG, “OMG Systems Modeling Language (OMG SysML) Specification”, Final Adopted Specification ptc/06-05-04, May
2006.

[9] OMG, “OMG Systems Modeling Language (OMG SysML) Tutorial”, July 2006.

[10] OMG, “Unified Modeling Language: Superstructure”, version 2.0, formal/05-07-04, August 2005.

[11] OMG, “Unified Modeling Language: Infrastructure”, version 2.0, formal/05-07-05, March 2006.

[12] OMG, “OCL 2.0 Specification”, version 2.0, ptc/2005-06-06, June 2005.

[13] SE-DSIG (OMG Systems Engineering Domain Special Interest Group), “UML for systems engineering RFP”,
http://www.omg.org/cgi-bin/doc?ad/03-03-41, March 2003.

[14] L. Lavazza, G. Quaroni, M. Venturelli, “Combining UML and formal notations for modelling real-time systems”, Joint 8th
European Software Engineering Conference (ESEC) and 9th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering (FSE), Vienna, 10-14 September 2001.

[15] V. del Bianco, L. Lavazza, M. Mauri, “A Formalization of UML Statecharts for Real-Time Software Modeling”, The Sixth
Biennial World Conference on Integrated Design Process Technology (IDPT 2002), Pasadena, California, 23-28 June 2002.

[16] V. del Bianco, L. Lavazza, M. Mauri, “Model Checking UML Specifications of Real-Time Software”, The Eighth IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS 2002), Greenbelt, Maryland, 2–4
December, 2002.

An Experience in modeling real-time systems with SysML 173

MARTES 2006 at MoDELS 2006

[17] L. Lavazza e G. Occorso “Simulation-based Verification of UML models”, 15th International Conference on Software
Engineering and Knowledge Engineering (SEKE2003), San Francisco, July 2003.

[18] L. Lavazza, S. Morasca, A. Morzenti, “A Dual Language Approach to the Development of Time-Critical Systems with
UML” TACoS (International Workshop on Test and Analysis of Component Based Systems) in conjunction with ETAPS
2004, Barcelona, march 27 - 28, 2004. Electronic Notes in Theoretical Computer Science 116 (2005), 19 January, p. 227–
239.

[19] V. Del Bianco, L. Lavazza, M. Mauri, G. Occorso, “Towards UML-based formal specifications of component-based real-
time software”, International Journal on Software Tools for Technology Transfer (STTT) - Springer-Verlag GmbH, online
at: http://dx.doi.org/10.1007/s10009-006-0024-8.

[20] Ciapessoni E., Coen-Porisini A., Crivelli E., Mandrioli D., Mirandola P., Morzenti A., “From formal models to formally-
based methods: an industrial experience”, ACM Transactions on Software Engineering and Methodology, vol. 8. no 1,
January 1999, pp.79-113.

[21] Ghezzi C., Mandrioli D., Morzenti A.. “TRIO a Logic Language for Executable Specifications of Real-time Systems”,
Journal of Systems and Software, vol. 12, n. 2, May 1990.

[22] Y. Kesten, A. Pnueli, “Timed and Hybrid Statecharts and their Textual Representation”, Weizmann Institute of Science, In
Formal Techniques in Real-Time and Fault-Tolerant Systems 2nd International Symposium, 1992.

[23] M. Elkoutbi, M. Bennani, R. K. Keller, M. Boulmalef, “Real-time System Specifications based on UML Scenarios and
Timed Petri Nets”, In International Workshop on Communication Software Engineering (IWCSE’2002), IEEE 2nd
International Symposium on Signal Processing and Information Technology, Marrakech, Morocco, December 2002, pp 362-
366

7 APPENDICES

7.1 Introduction to TRIO
TRIO is a first order temporal logic language that supports a linear notion of time [21]. Besides the usual
propositional operators and quantifiers, one may compose formulas by using a single basic modal operator,
called Dist, that relates the current time, which is left implicit in the formula, to another time instant: the
formula Dist(F, t), where F is a formula and t a term indicating a time distance, specifies that F holds at a time
instant at t time units from the current instant.

A number of derived temporal operators can be defined from the basic Dist operator through propositional
composition and first order quantification on variables representing a time distance.

Table 1. Some TRIO Temporal Operators definitions

Operator TRIO Definition

Som(F) (d)(Dist(F,d))

Alw(F) Som(F)

Lasts(F,t) (d)(0<d<t Dist(F,d))

Lasted(F,t) (d)(0<d<t Dist(F,-d))

Until(F,G) (d)(d>0 Lasts(F,d) Dist(G,d))

Since(F,G) (d)(d>0 Lasted(F,d) Dist(G,-d))

UpToNow(F) (d)(d>0 Lasted(F,d))

NowOn(F) (d)(d>0 Lasts(F,d))

Table 1 reports the formal definition of some TRIO derived operators. Most of the operators are symmetrically
defined with reference to the past and the future of the current instant. TRIO is well suited to deal with both
continuous and discrete time.

174 P. Colombo, V. Del Bianco, L. Lavazza, A. Coen-Porisin

MARTES 2006 at MoDELS 2006

