176,544 research outputs found

    Model-driven engineering techniques for the development of multi-agent systems

    Get PDF
    Model-driven engineering (MDE), implicitly based upon meta-model principles, is gaining more and more attention in software systems due to its inherent benefits. Its use normally improves the quality of the developed systems in terms of productivity, portability, inter-operability and maintenance. Therefore, its exploitation for the development of multi-agent systems (MAS) emerges in a natural way. In this paper, agent-oriented software development (AOSD) and MDE paradigms are fully integrated for the development of MAS. Meta-modeling techniques are explicitly used to speed up several phases of the process. The Prometheus methodology is used for the purpose of validating the proposal. The meta-object facility (MOF) architecture is used as a guideline for developing a MAS editor according to the language provided by Prometheus methodology. Firstly, an Ecore meta-model for Prometheus language is developed. Ecore is a powerful tool for designing model-driven architectures (MDA). Next, facilities provided by the Graphical Modeling Framework (GMF) are used to generate the graphical editor. It offers support to develop agent models conform to the meta-model specified. Afterwards, it is also described how an agent code generator can be developed. In this way, code is automatically generated using as input the model specified with the graphical editor. A case of study validates the method put in practice for the development of a multi-agent surveillance system

    Advances in infrastructures and tools for multiagent systems

    Full text link
    In the last few years, information system technologies have focused on solving challenges in order to develop distributed applications. Distributed systems can be viewed as collections of service-provider and ser vice-consumer components interlinked by dynamically defined workflows (Luck and McBurney 2008).Alberola Oltra, JM.; Botti Navarro, VJ.; Such Aparicio, JM. (2014). Advances in infrastructures and tools for multiagent systems. Information Systems Frontiers. 16:163-167. doi:10.1007/s10796-014-9493-6S16316716Alberola, J. M., Búrdalo, L., Julián, V., Terrasa, A., & García-Fornes, A. (2014). An adaptive framework for monitoring agent organizations. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9478-x .Alfonso, B., Botti, V., Garrido, A., & Giret, A. (2014). A MAS-based infrastructure for negotiation and its application to a water-right market. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9443-8 .Andrighetto, G., Castelfranchi, C., Mayor, E., McBreen, J., López-Sánchez, M., & Parsons, S. (2013). (Social) norm dynamics. In G. Andrighetto, G. Governatori, P. Noriega, & L. W. van der Torre (Eds.), Normative multi-agent systems (pp. 135–170). Dagstuhl: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik.Baarslag, T., Fujita, K., Gerding, E. H., Hindriks, K., Ito, T., Jennings, N. R., et al. (2013). Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artificial Intelligence, 198, 73–103.Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., & Santi, A. (2013). Multi-agent oriented programming with JaCaMo. Science of Computer Programming, 78(6), 747–761.Campos, J., Esteva, M., López-Sánchez, M., Morales, J., & Salamó, M. (2011). Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing, 91(2), 169–215.Carrera, A., Iglesias, C. A., & Garijo, M. (2014). Beast methodology: an agile testing methodology for multi-agent systems based on behaviour driven development. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9438-5 .Criado, N., Such, J. M., & Botti, V. (2014). Norm reasoning services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9444-7 .Del Val, E., Rebollo, M., & Botti, V. (2014). Enhancing decentralized service discovery in open service-oriented multi-agent systems. Journal of Autonomous Agents and Multi-Agent Systems, 28(1), 1–30.Denti, E., Omicini, A., & Ricci, A. (2002). Coordination tools for MAS development and deployment. Applied Artificial Intelligence, 16(9–10), 721–752.Dignum, V., & Dignum, F. (2012). A logic of agent organizations. Logic Journal of IGPL, 20(1), 283–316.Ferber, J., & Gutknecht, O. (1998). A meta-model for the analysis and design of organizations in multi-agent systems. In Multi agent systems. Proceedings. International Conference on (pp. 128–135). IEEE.Fogués, R. L., Such, J. M., Espinosa, A., & Garcia-Fornes, A. (2014). BFF: a tool for eliciting tie strength and user communities in social networking services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9453-6 .Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494–506.Garcia-Fornes, A., Hübner, J., Omicini, A., Rodriguez-Aguilar, J., & Botti, V. (2011). Infrastructures and tools for multiagent systems for the new generation of distributed systems. Engineering Applications of Articial Intelligence, 24(7), 1095–1097.Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., & Wooldridge, M. (2001). Automated negotiation: prospects, methods and challenges. International Journal of Group Decision and Negotiation, 10(2), 199–215.Jung, Y., Kim, M., Masoumzadeh, A., & Joshi, J. B. (2012). A survey of security issue in multi-agent systems. Artificial Intelligence Review, 37(3), 239–260.Kota, R., Gibbins, N., & Jennings, N. R. (2012). Decentralized approaches for self-adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 7(1), 1.Kraus, S. (1997). Negotiation and cooperation in multi-agent environments. Artificial Intelligence, 94(1), 79–97.Lin, Y. I., Chou, Y. W., Shiau, J. Y., & Chu, C. H. (2013). Multi-agent negotiation based on price schedules algorithm for distributed collaborative design. Journal of Intelligent Manufacturing, 24(3), 545–557.Luck, M., & McBurney, P. (2008). Computing as interaction: agent and agreement technologies.Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2005). Agent technology: Computing as interaction (A roadmap for agent based computing). AgentLink.Ossowski, S., & Menezes, R. (2006). On coordination and its significance to distributed and multiagent systems. Concurrency and Computation: Practice and Experience, 18(4), 359–370.Ossowski, S., Sierra, C., & Botti. (2013). Agreement technologies: A computing perspective. In Agreement Technologies (pp. 3–16). Springer Netherlands.Pinyol, I., & Sabater-Mir, J. (2013). Computational trust and reputation models for open multi-agent systems: a review. Artificial Intelligence Review, 40(1), 1–25.Ricci, A., Piunti, M., & Viroli, M. (2011). Environment programming in multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems, 23(2), 158–192.Sierra, C., & Debenham, J. (2006). Trust and honour in information-based agency. In Proceedings of the 5th international conference on autonomous agents and multi agent systems, (p. 1225–1232). New York: ACM.Sierra, C., Botti, V., & Ossowski, S. (2011). Agreement computing. KI-Knstliche Intelligenz, 25(1), 57–61.Vasconcelos, W., García-Camino, A., Gaertner, D., Rodríguez-Aguilar, J. A., & Noriega, P. (2012). Distributed norm management for multi-agent systems. Expert Systems with Applications, 39(5), 5990–5999.Wooldridge, M. (2002). An introduction to multiagent systems. New York: Wiley.Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. Knowledge Engineering Review, 10(2), 115–152

    Designing normative open virtual enterprises

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Enterprise Information Systems on 23/03/2016, available online: http://www.tandfonline.com/10.1080/17517575.2015.1036927.[EN] There is an increasing interest on developing virtual enterprises in order to deal with the globalisation of the economy, the rapid growth of information technologies and the increase of competitiveness. In this paper we deal with the development of normative open virtual enterprises (NOVEs). They are systems with a global objective that are composed of a set of heterogeneous entities and enterprises that exchange services following a specific normative context. In order to analyse and design systems of this kind the multi-agent paradigm seems suitable because it offers a specific solution for supporting the social and contractual relationships between enterprises and for formalising their business processes. This paper presents how the Regulated Open Multiagent systems (ROMAS) methodology, an agent-oriented software methodology, can be used to analyse and design NOVEs. ROMAS offers a complete development process that allows identifying and formalising of the structure of NOVEs, their normative context and the interactions among their members. The use of ROMAS is exemplified by means of a case study that represents an automotive supply chain.This work was partially supported by the projects [PROMETEOII/2013/019], [TIN2012-36586-C03-01], [FP7-29493], [TIN2011-27652-C03-00] and [CSD2007-00022], and the CASES project within the 7th European Community Framework Programme [grant agreement number 294931].Garcia Marques, ME.; Giret Boggino, AS.; Botti Navarro, VJ. (2016). Designing normative open virtual enterprises. Enterprise Information Systems. 10(3):303-324. https://doi.org/10.1080/17517575.2015.1036927S303324103Cardoso, H. L., Urbano, J., Brandão, P., Rocha, A. P., & Oliveira, E. (2012). ANTE: Agreement Negotiation in Normative and Trust-Enabled Environments. Advances on Practical Applications of Agents and Multi-Agent Systems, 261-264. doi:10.1007/978-3-642-28786-2_33Chu, X. N., Tso, S. K., Zhang, W. J., & Li, Q. (2002). Partnership Synthesis for Virtual Enterprises. The International Journal of Advanced Manufacturing Technology, 19(5), 384-391. doi:10.1007/s001700200028Davidsson, P., & Jacobsson, A. (s. f.). Towards Norm-Governed Behavior in Virtual Enterprises. Studies in Computational Intelligence, 35-55. doi:10.1007/978-3-540-88071-4_3DeLoach, S. A., & Ojeda, J. C. G. (2010). O-MaSE: a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244. doi:10.1504/ijaose.2010.036984DI MARZO SERUGENDO, G., GLEIZES, M.-P., & KARAGEORGOS, A. (2005). Self-organization in multi-agent systems. The Knowledge Engineering Review, 20(2), 165-189. doi:10.1017/s0269888905000494Dignum, V. 2003. “A Model for Organizational Interaction: Based on Agents, Founded in Logic.” PhD diss., Utrecht University.Dignum, V., and F. Dignum. 2006.A Landscape of Agent Systems for the Real World. Technical Report 44-CS-2006-061. Utrecht: Institute of Information and Computing Sciences, Utrecht University.Dignum, V., Meyer, J.-J. C., Dignum, F., & Weigand, H. (2003). Formal Specification of Interaction in Agent Societies. Lecture Notes in Computer Science, 37-52. doi:10.1007/978-3-540-45133-4_4Garcia, E. 2013. “Engineering Regulated Open Multiagent Systems.” PhD diss., Universitat Politecnica de Valencia.Garcia, E., Giret, A., & Botti, V. (s. f.). Software Engineering for Service-Oriented MAS. Lecture Notes in Computer Science, 86-100. doi:10.1007/978-3-540-85834-8_9Garcia, E., Giret, A., & Botti, V. (2013). A Model-Driven CASE tool for developing and verifying regulated open MAS. Science of Computer Programming, 78(6), 695-704. doi:10.1016/j.scico.2011.10.009Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494-506. doi:10.1016/j.infsof.2010.12.012Garcia, E., Giret, A., & Botti, V. (2011). Regulated Open Multi-Agent Systems Based on Contracts. Information Systems Development, 243-255. doi:10.1007/978-1-4419-9790-6_20Garcia, E., Giret, A., & Botti, V. (2014). ROMAS Methodology. Handbook on Agent-Oriented Design Processes, 331-369. doi:10.1007/978-3-642-39975-6_11Hollander, C. D., & Wu, A. S. (2011). The Current State of Normative Agent-Based Systems. Journal of Artificial Societies and Social Simulation, 14(2). doi:10.18564/jasss.1750HORLING, B., & LESSER, V. (2004). A survey of multi-agent organizational paradigms. The Knowledge Engineering Review, 19(4), 281-316. doi:10.1017/s0269888905000317Julian, V., Rebollo, M., Argente, E., Botti, V., Carrascosa, C., & Giret, A. (2009). Using THOMAS for Service Oriented Open MAS. Lecture Notes in Computer Science, 56-70. doi:10.1007/978-3-642-10739-9_5Luck, M., Barakat, L., Keppens, J., Mahmoud, S., Miles, S., Oren, N., … Taweel, A. (2011). Flexible Behaviour Regulation in Agent Based Systems. Lecture Notes in Computer Science, 99-113. doi:10.1007/978-3-642-22427-0_8Meneguzzi, F., Modgil, S., Oren, N., Miles, S., Luck, M., & Faci, N. (2012). Applying electronic contracting to the aerospace aftercare domain. Engineering Applications of Artificial Intelligence, 25(7), 1471-1487. doi:10.1016/j.engappai.2012.06.004Presley, A., Sarkis, J., Barnett, W., & Liles, D. (2001). International Journal of Flexible Manufacturing Systems, 13(2), 145-162. doi:10.1023/a:1011131417956Saeki, M., & Kaiya, H. (2008). Supporting the Elicitation of Requirements Compliant with Regulations. Active Flow and Combustion Control 2018, 228-242. doi:10.1007/978-3-540-69534-9_18Such, J. M., García-Fornes, A., Espinosa, A., & Bellver, J. (2013). Magentix2: A privacy-enhancing Agent Platform. Engineering Applications of Artificial Intelligence, 26(1), 96-109. doi:10.1016/j.engappai.2012.06.009Telang, P. R., & Singh, M. P. (2009). Enhancing Tropos with Commitments. Lecture Notes in Computer Science, 417-435. doi:10.1007/978-3-642-02463-4_22Wooldridgey, M., & Ciancarini, P. (2001). Agent-Oriented Software Engineering: The State of the Art. Lecture Notes in Computer Science, 1-28. doi:10.1007/3-540-44564-1_

    Analysis and design of multiagent systems using MAS-CommonKADS

    Get PDF
    This article proposes an agent-oriented methodology called MAS-CommonKADS and develops a case study. This methodology extends the knowledge engineering methodology CommonKADSwith techniquesfrom objectoriented and protocol engineering methodologies. The methodology consists of the development of seven models: Agent Model, that describes the characteristics of each agent; Task Model, that describes the tasks that the agents carry out; Expertise Model, that describes the knowledge needed by the agents to achieve their goals; Organisation Model, that describes the structural relationships between agents (software agents and/or human agents); Coordination Model, that describes the dynamic relationships between software agents; Communication Model, that describes the dynamic relationships between human agents and their respective personal assistant software agents; and Design Model, that refines the previous models and determines the most suitable agent architecture for each agent, and the requirements of the agent network

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    The role of intelligent systems in delivering the smart grid

    Get PDF
    The development of "smart" or "intelligent" energy networks has been proposed by both EPRI's IntelliGrid initiative and the European SmartGrids Technology Platform as a key step in meeting our future energy needs. A central challenge in delivering the energy networks of the future is the judicious selection and development of an appropriate set of technologies and techniques which will form "a toolbox of proven technical solutions". This paper considers functionality required to deliver key parts of the Smart Grid vision of future energy networks. The role of intelligent systems in providing these networks with the requisite decision-making functionality is discussed. In addition to that functionality, the paper considers the role of intelligent systems, in particular multi-agent systems, in providing flexible and extensible architectures for deploying intelligence within the Smart Grid. Beyond exploiting intelligent systems as architectural elements of the Smart Grid, with the purpose of meeting a set of engineering requirements, the role of intelligent systems as a tool for understanding what those requirements are in the first instance, is also briefly discussed

    Exploiting multi-agent system technology within an autonomous regional active network management system

    Get PDF
    This paper describes the proposed application of multi-agent system (MAS) technology within AuRA-NMS, an autonomous regional network management system currently being developed in the UK through a partnership between several UK universities, distribution network operators (DNO) and a major equipment manufacturer. The paper begins by describing the challenges facing utilities and why those challenges have led the utilities, a major manufacturer and the UK government to invest in the development of a flexible and extensible active network management system. The requirements the utilities have for a network automation system they wish to deploy on their distribution networks are discussed in detail. With those requirements in mind the rationale behind the use of multi-agent systems (MAS) within AuRA-NMS is presented and the inherent research and design challenges highlighted including: the issues associated with robustness of distributed MAS platforms; the arbitration of different control functions; and the relationship between the ontological requirements of Foundation for Intelligent Physical Agent (FIPA) compliant multi-agent systems, legacy protocols and standards such as IEC 61850 and the common information model (CIM)

    Designinig Coordination among Human and Software Agents

    Get PDF
    The goal of this paper is to propose a new methodology for designing coordination between human angents and software agents and, ultimately, among software agents. The methodology is based on two key ideas. The first is that coordination should be designed in steps, according to a precise software engineering methodology, and starting from the specification of early requirements. The second is that coordination should be modeled as dependency between actors. Two actors may depend on one another because they want to achieve goals, acquire resources or execute a plan. The methodology used is based on Tropos, an agent oriented software engineering methodology presented in earlier papers. The methodology is presented with the help of a case study
    • …
    corecore