

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

DESIGNINIG COORDINATION AMONG HUMAN AND
SOFTWARE AGENTS

Anna Perini, Angelo Susi, and Fausto Giunchiglia

February 2002

Technical Report # DIT-02-0060

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11828908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

Designing Coordination among Human and Software
Agents

Anna Perini
�

and Angelo Susi
�

and Fausto Giunchiglia
�

Abstract. The goal of this paper is to propose a new method-
ology for designing coordination between human agents and soft-
ware agents and, ultimately, among software agents. The methodol-
ogy is based on two key ideas. The first is that coordination should
be designed in steps, according to a precise software engineering
methodology, and starting from the specification of early require-
ments. The second is that coordination should be modeled as de-
pendency between actors. Two actors may depend on one another
because they want to achieve goals, acquire resources or execute a
plan. The methodology used is based on Tropos, an agent oriented
software engineering methodology presented in earlier papers. The
methodology is presented with the help of a case study.

1 Introduction

Agents, either human or software, are social entities that interact,
by nature. Coordination among agents is considered a form of in-
teraction devoted to goal attainment and to task completion. More-
over, coordination processes support contrasting agents behaviors,
from cooperation to competition. Cooperating agents work together
to achieve a common goal, trying to accomplish them as a team.
Competitive agents work against each other, trying to optimize their
own benefit, because their goals are conflicting. So, building effective
Multi-Agent Systems (MAS), requires to carefully design and imple-
ment coordination processes. This motivates the large interest on this
topic, as emerging from the last ten years MAS literature. Agents
coordination has been studied from different perspectives, i.e. con-
sidering (software) agents coordination at run-time [8, 2], (software)
agents coordination at the detailed design level [11, 12] (i.e. design-
ing the micro level) and agents coordination at the group analysis
level [3, 12] (i.e. designing the macro level). At the macro level, both
human and software agents can be considered.

We think that, in order to build effective MAS that operate into hu-
man communities, interacting both with software and human agents,
we first need to model coordination processes taking place into the
social organizational setting where the MAS has to be introduced.
Then, we have to analyze how these coordination processes will be
affected by introducing a MAS (analogously to what is done dur-
ing the macro level analysis for heterogeneous systems). Only in
the following steps we keep designing coordination processes among
software agents and detailing interaction and communication mecha-
nisms which support the required coordination processes. This multi-

�
ITC-Irst, Via Sommarive 18, I-38050, Povo, Trento, Italy. email:�
perini,susi � @irst.itc.it�

Department of Information and Communication Technology, Univer-
sity of Trento, Via Sommarive 14, I-38050, Povo, Trento, Italy. email:
fausto@cs.unitn.it

steps process allow us to keep trace of the why (i.e. the needs) of the
coordination processes modeled at the micro level.

Coordination specifications should rest on a deep analysis of the
agent intentional dependencies which can be modeled in terms of
goal, plan or resource dependencies between pair of agents.

In our approach we adopt the Tropos methodology which offers
concepts and techniques at support of this idea. The Tropos method-
ology [17, 5] is an agent oriented software development methodol-
ogy that can be characterized by the following features, namely:

� The notion of agent, goal, plan and various other knowledge level
notions are used in all phases of software development, defining
a knowledge level [15] approach to requirement specification and
design activities.� A crucial role is given to the very early phase of requirements
specification when the environment and the system-to-be are ana-
lyzed, according to a requirement driven approach [14].

The methodology rests on the idea of building a conceptual model
that is incrementally refined and extended from an early requirement
model, in which the organizational setting where the MAS will be
introduced is analyzed, to executable artifacts, along five main de-
velopment phases, called respectively: early requirement analysis,
late requirements analysis, architectural design, detailed design, im-
plementation.

The paper is structured as follows. Section 2 describes the Tro-
pos methodology stressing how the specification of coordination pro-
cesses is carried out. Sections 3.1 and 3.2 describe the results of mod-
eling actor coordination during early and late requirements analysis
in Tropos, as applied in the context of a real application devoted to
provide a decision support to the technicians of the agricultural ad-
visory service when managing plant diseases. The related work are
considered in Section 4. Finally, conclusions and the future work are
presented in Section 5.

2 Coordination is Dependency among actors

Conceptual models in Tropos are built as instances of intentional and
social concepts (such as actor, goal and dependency) and of the rela-
tionships among them, which have been defined in the Tropos meta-
model [10] specified by a set of UML3 class diagram. A portion of
the metamodel is depicted in Figure 1.

The notion of actor represents an entity that has strategic goals
and intentionality. An actor represents a physical agent (e.g., a per-
son, an animal, a car), or a software agent [16] as well as a role, i.e.
an abstract characterization of the behavior of an actor within some
specialized context [22].

�
Unified Modeling Language [1]

Dependency

Actor

dependee depender

Belief

dependum Plan

Resource

Goal

{XOR}{XOR}

dependum

dependum

why
0..1

why
0..1

why
0..1

wants
0..n

has

1..n0..n

are
believed

wanted
by

0..n

Figure 1. Portion of the Tropos metamodel concerning the concept of
Actor, specified in UML class diagrams.

In Figure 1, Actor is represented as a UML class. An actor can
have ��������� goals and a goal is wanted by ��������� actors, as spec-
ified by the UML association relationship between the class Actor
and the class Goal. Moreover, an actor can have ��������� beliefs and,
conversely, beliefs are believed by 	
������� actors. A dependency be-
tween two actors indicates that one actor needs to coordinate itself
with another actor in order to attain some goal, execute some plan,
exploit a resource. The former actor is called the depender, while
the latter is called the dependee (specified in the Tropos metamodel
by the two association relationships between the class Dependency
and the class Actor). The object around which the dependency cen-
ters is called dependum and is an instance of one among the fol-
lowing classes: Goal, Plan, Resource. A few remarks about actor
dependency are worth to be mentioned:

� Through goal dependency a goal is delegated by the depender ac-
tor to the dependee who will decide autonomously how to satisfy
the goal. As a consequence, the depender becomes vulnerable re-
spect to the dependee for the goal satisfaction.� Plan dependency specifies that the depender requests the dependee
to execute a specific plan. The execution control is led to the de-
pendee, the depender is still vulnerable because he/she rests on
the plan outcomes for reaching (avoiding) desirable (undesirable)
states of affairs.� Resource dependency model the request of the depender to the
dependee of a specific entity (resource). The way this resource
should be delivered by the dependee is not specified. (It can even-
tually be specified by additional softgoal dependencies).

The reason for a given dependency (labelled why in Figure 1) can
be specified, in terms of goal, plan or resource. The reason for a given
dependency between two actors comes out from goal and plan anal-
yses, performed from the perspective of a specific actor by using
three basic reasoning techniques: means-end analysis, contribution
analysis, and AND/OR decomposition. For goals, means-end anal-
ysis proceeds by refining a goal into subgoals in order to identify

plans, resources and softgoals that provide means for achieving the
goal (the end). Contribution analysis allows the designer to point out
goals that can contribute positively or negatively in reaching the goal
being analyzed. In a sense, contribution analysis can be considered as
a special case of means-end analysis, where means are always goals.
AND/OR decomposition allows for a combination of AND and OR
decompositions of a root goal into sub-goals, thereby refining a goal
structure.

The conceptual modeling and the analysis above described are
used in the five phases of the software development process which
have been identified in Tropos, as described in the following.

Early Requirements analysis focuses on the understanding of a prob-
lem domain by studying an existing organizational setting and the
coordination processes that characterize the behavior of its elements.
Social actors and software systems that are already present in the do-
main are modeled with their individual goals.

It is worth to be noticed that in Tropos, system goals are not mod-
eled explicitly, as for instance in [7, 12], but emerges from the co-
ordination of actors pursuing individual goals. In particular, a social
actor can depend on another actor in order to attain one of its indi-
vidual goal, for having a resource or resting on the other actor for the
execution of a plan.

Late Requirement analysis focuses on the system-to-be which is in-
troduced as a new actor into the model. The system commits itself
to taking care of specific goals of the social actors. New goal de-
pendencies between social actors and the system-to-be actor are de-
signed and existing dependencies between the social actors can be
modified.

These dependencies define requirements of coordination involving
(some of) the human actors (the users) and the system. They will be
further refined and specified in the following design phases.

Architectural design defines the system’s global architecture in terms
of subsystems, that are represented as actors. They are assigned sub-
goals or subplans of the goals and plans assigned to the system.

Dependencies between subactors describe the coordination pro-
cesses, between the system components. Moreover, the user-system
dependencies specified during late requirements analysis can be fur-
ther refined identifying the system subactors which will play the role
of dependee, for each specific dependency.

The result of the architectural design is the mapping of the system
subactors to a set of agents. Each agent is characterized by a set of
social capabilities providing the coordination mechanisms required
by the coordination processes specified as actor dependencies.

Detailed design aims at specifying the agent micro-level. At this
point, usually, the implementation platform has already been cho-
sen and this can be taken into account in order to perform a detailed
design that will map directly to the code. So, for instance, consider-
ing a BDI [19] platform, each agent capability is defined in terms of
beliefs, plans and events and each plan in terms of atomic actions.
Interaction and communication protocols required by each coordina-
tion process involving the agent is also designed at this time.

The Implementation activity produces an implementation skeleton
according to the detailed design specification. Code is added to the
skeleton using the programming language supported by the imple-
mentation platform. Now run-time coordination processes can be
tested against the design objectives.

2

Advisor

follow IP
production
protocol

+

obtain salary

Producer
Local

Government

Plant
Disease
Expert

manage
disease

crisis

collect
orchards

data

choose &
apply IP
practices

obtain
registration
trademark

favour IP
production

obtain founds

be aware of
new IP

support IP
application

obtain
profit

work in an
healthy

environment

provide IP
techniques

define IP
protocol

provide disease
data & models

follow
EU

rules

be advised on
disease models

depender dependee
dependum

actor goal

dependency

LEGEND

Figure 2. The actor diagram showing a portion of the IP organizational
setting model. Early requirements model.

3 An Example

The example considered in this paper has been extracted from a tech-
nology transfer project aimed at developing a decision support sys-
tem for technicians of the agricultural advisory service which oper-
ates in our region. The role of the technicians is that of favoring the
application of Integrated Production (IP) practices, which are char-
acterized by a reduced environmental impact, by the local apple pro-
ducers.

In the rest of the paper we focus on the early requirements model
of the IP domain and on the late requirements model.

3.1 Early Requirements

Early Requirements focuses on the coordination processes be-
tween domain stakeholders; they are modeled as a set of depen-
dencies between pairs of actors.

The analysis starts identifying the stakeholders of the agriculture pro-
duction system of our region and modeling them as actors, depicted
by circles in Figure 2:

� The actor Producer represents the apple grower who pursues ob-
jectives such as to obtain a profit following acceptable market
strategies, and to work in a healthy environment.� The actor Advisor models the technician of the advisory service
that has been set up by the local government in order to provide
a support to producers in choosing and applying the best agricul-
tural practices and techniques (see the goal support IP applica-
tion). The advisor plays a key role in our area since the majority
of producers are not professional farmers, they lack specific skills
and/or are not confident enough of adopting an IP approach.� The actor Local Government plays both an institutional and a
practical role in promoting IP diffusion in our region (see the goals
favor IP production, follow EU rules). It sets up a list of ad-
missible chemicals and quantity limits, according to the European
Union agreements. These rules are yearly updated and coded into
a production protocol.� The actor Plant Disease Expert represents the researcher in bio-
logical phenomena and in agronomical techniques. Among his/her

objectives that of transferring research results directly to the pro-
duction level, for instance providing disease data and models and
new effective pest management techniques (see the goals provide
disease data & models, provide IP techniques).

The actor diagram in Figure 2 shows some of the critical coordina-
tion processes between the domain stakeholders which, at a macro-
scopic level, result in a joint effort to disseminate IP. Coordination is
modeled in terms of goal dependencies between the actors.

In particular, the actor Producer depends on the actor Local Gov-
ernment for obtaining a product certification (i.e. obtain registra-
tion trademark) that states that he/she follows IP practices, as re-
quired by specific market sectors. The local government sets up the
yearly IP production protocol and issues the desired certification only
to the producers that follows it. So, the actor Local Government
depends on the actor Producer in order to have its goal follow IP
production protocol satisfied. As already noticed, the actor Advi-
sor plays the role of mentor, with respect to the producer, in carrying
up apple production according to the IP rule. So the actors Advisor
and Producer closely coordinates: the actor Producer depends on
the actor Advisor in order to choose & apply IP practices accord-
ing to the production protocol and in order to manage disease cri-
sis which may occur in case of unforeseen events and that requires to
adopt an appropriate remedy action, still IP compliant. Viceversa, the
actor Advisor depends on the actor Producer for satisfying his/her
goal to collect orchards data in order to maintain an updated pic-
ture of the disease presence and evolution in the area under their
control. Moreover, the Advisor depends on the actor Plant Disease
Expert in order to use effective disease models (i.e. to attain the goal
be advised on disease models and to get information on new IP
techniques (be aware of new IP). Both actors, the Advisor and
the Plant Disease Expert are funded by Local Government). The
goal dependency define the IP protocol between the Local Gov-
ernment and the Plant Disease Expert closes the loop. It models
the contribution of the expert in providing the technical skills nec-
essary for defining a production protocol that follows the European
Union strategic directives.

The Early Requirements model is further refined by considering
each actor and by analyzing its goals. New actors and dependences
can be added in the model. The goal diagram depicted in Figure 3
shows the analysis of the goal support IP application, from the
point of view of the actor Advisor, with reference to the manage-
ment of a specific disease, a fungus called Venturia inæqualis.

The goal support IP application contributes positively to the ful-
fillment of both goals choose & apply IP practices for which the
actor Producer needs to coordinate with the actor Advisor. The goal
can be AND decomposed into a set of more specific subgoals, i.e. ac-
quire data, assess infection risk, plan the intervention and mon-
itor the situation after the intervention. In the following we consider
the plans that the advisor performs in order to satisfy them in a spe-
cific case, that is when dealing with the disease caused by Venturia
inæqualis. Considering the goal acquire data the following plans
are means to satisfy it getting data that are relevant in the case of
Venturia inæqualis, i.e. historical data on the presence of the disease
in the area, historical meteo data and weather forecast (see the plans,
depicted as hexagonal shapes in Figure 3, query disease histori-
cal data, query historical data and check weather forecast). The
analysis points out a set of coordination processes related to the ex-
ecution of these plans, they are modeled in terms of resource depen-
dencies. For instance, the dependency between the actor Advisor and
the actor Plant Disease Expert for the resource disease historical

3

acquire data

support
IP

application

assess
infection risk

Plant
Desease
Expert

Advisor

run RIM
analysis

historical
data

bases

check
weather
forecast

Producer
orchards
status
data

weather
forecast

plan the
intervention

monitorr
query disease

historical
data

+

Meteo
Service

choose &
apply IP
practices

+

+

manage
disease

crisis

query
historical meteo

data

plan

means-end

AND decomposition

contribution (positive)

+

LEGEND

OR decomposition

Figure 3. The goal diagram of the goal support IP application analyzed from the point of view of the actor Advisor.

data models the fact that the advisors usually perform searches into
the data bases on disease data held by the experts. Analogously, his-
torical meteo data and weather forecast are data to be obtained
from the actors that institutionally held them. The plan run RIM
model is a means to attain the goal assess infection risk. The RIM
model is a mathematical model for estimating both the disease stage
and the infection extent. It requires specific data from the orchard
in order to produce updated estimates. Analogously, the remaining
subgoals can be analyzed with the aim of identifying advisors plans
and coordination processes with the other actors that allow for the
execution of these plans.

acquire data
support

IP
application

assess
infection risk

Advisor
SW

Agent

Advisor

run
RIM

model

plan the
intervention

monitor

choose &
apply IP
practices

+ +

manage
disease

crisis

Figure 4. The advisor goal diagram for the venturia inæqualis
management. Late requirements model.

3.2 Late Requirements

Late Requirements analysis focuses on the system-to-be actor

and on the coordination processes between it and the human
actors.

During late requirements analysis the system-to-be, that is the de-
cision support system at use of the advisors when dealing plant dis-
ease management, is introduced as a new actor into the conceptual
model. Figure 4 4 depicts a fragment of the late requirements model
where the actor Advisor SW Agent models the system-to-be. In par-
ticular, the actor Advisor delegates the system-to-be for the fulfill-
ment of the goal acquire data and the execution of the plan run
RIM model. This implies that also the dependencies to the other so-
cial actors related with these model elements have to be appropriately
revised. For instance all the coordination processes with actors hold-
ing data relevant for disease management have been delegated to the
system-to-be actor.

The goal diagrams of the actor Advisor is modified accordingly
(Figure 4) and it should be compared with the analogous diagram of
the early requirement model, depicted in Figure 3. Figure 5 shows the
resulting goal diagram for the actor Advisor SW Agent. Note that
the plans that the actor executes in order to fulfill the goal acquire
data have to be redefined from the point of view of the system actor.

4 Related work

As already mentioned, agents coordination has been largely recog-
nized as a topical issue in both MAS and Distributed Artificial In-
telligence [21]. As a consequence, several interesting approaches for
studying this topic, from different perspectives, can be found in the
literature on MAS. We first consider work that focused mainly on
studying software agents coordination at run time, then work on de-
signing agents coordination at the micro and macro level (according
to the definition recalled in [21]).

�

Note that for these dependencies also the why argument, in the 4-argument
dependency relationship, has been explicitly modeled. So, for instance,
the depender is the actor Advisor, the dependee is the actor Advisor SW
Agent, the dependum is the goal acquire data and the reason for this de-
pendency is the goal support IP management.

4

+

Advisor SW
agent knowledge

bases
access

weather
forecast

historical
meteo data

orchards
pests
history

RIM pest risk
analysis

weather
forecasthistorical data

bases

Producer

orchards
status
data

Meteo
Service

Plant
Desease
Expert

Figure 5. The Advisor SW Agent goal diagram for the venturia inæqualis
management. Late requirements model.

Dealing with agents coordination at run-time consists, basically, in
setting up interaction and communication protocols that effectively
support coordination processes. For instance, one of the most widely
used interaction protocols for cooperative problem solving in prac-
tical MAS application is contract net [20], as discussed in [11]. At
a more theoretical level, the coordination problem at run-time has
been faced using dynamic programming strategies, see for instance
[8] or using multi-agent Markov Decision Processes, see for instance
[2, 18].

A relevant approach to the design of agents coordination processes
is [12], where commitments and conventions mechanisms are used to
specify coordination processes. Goal analysis techniques similar to
those used in Tropos are also proposed, the main difference resting
on the fact that in [12] global MAS goals are considered, while for us,
coordination processes emerges from the actors intentions to pursue
their own goals. Analyses of agents coordination based on an explicit
model of the dependencies among agents actions have been proposed
in [3, 4].

Finally, work in Computer Supported Cooperative Work [9], pro-
vides useful ideas for dealing with the problem of designing MAS co-
ordination, especially when heterogeneous agents, human and soft-
ware, are considered. In particular, the work of Malone [13] is worth
to be mentioned. Malone considers coordination as a phenomenon
that occurs in different kinds of systems (e.g. human, computational,
biological) and this allows to set up a framework for studying co-
ordination which exploits analysis techniques provided by different
disciplines, such as economics, computer science organizational the-
ory. A definition of coordination, as the process of managing depen-
dencies between activities has been defined and a research agenda on
this topic is proposed.

5 Conclusion and Future Work

This paper describes a new methodology for designing coordination
between human agents and software agents based on Tropos, an agent
oriented software engineering methodology. The approach rests on
the basic idea that coordination can be modeled as dependencies be-
tween actors.

Coordination modeling has been described in details, with refer-
ence to a real application for the agriculture domain which is cur-
rently being developed in our group. In particular, we have presented
the early requirements model that concerns the understanding of

the organizational setting (the environment), and late requirements
model which focuses on the system-to-be and its relationships with
the environment. The architectural design and the detailed design are
not presented, due to lack of space.

Our long term objective is to provide a complete and detailed ac-
count of the methodology. We are also considering how to combine
our methodology, which covers early and late requirements analysis,
with others, for instance those discussed in Section 4, suitable for
detailed design.

ACKNOWLEDGEMENTS

The work presented in the paper is partially funded by the Italian
Ministry of Scientific and Technological Research.

REFERENCES

[1] G. Booch, J. Rambaugh, and J. Jacobson, The Unified Modeling Lan-
guage User Guide, The Addison-Wesley Object Technology Series,
Addison-Wesley, 1999.

[2] C. Boutilier, ‘Sequential optimality and coordination in multiagent sys-
tems’, in IJCAI, pp. 478–485, (1999).

[3] C. Castelfranchi, ‘Modeling Social Action for AI Agents’, in IJCAI, pp.
1567–1576, (1997).

[4] C. Castelfranchi, M. Miceli, and A. Cesta, ‘Dependence relations
among autonomous agents’, in Decentralized AI 3 – Proceedings of
the Third European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW-91), eds., E. Werner and Y. Demazeau,
pp. 215–231. Elsevier Science B.V.: Amsterdam, Netherland, (1992).

[5] J. Castro, M. Kolp, and J. Mylopoulos, ‘A requirements-driven develop-
ment methodology’, in Proceedings Thirteen International Conference
on Advanced Information Systems Engineering CAiSE 01, Stafford UK,
(June 2001).

[6] Agent-Oriented Software Engineering, eds., P. Ciancarini and
M. Wooldridge, volume 1957 of Lecture Notes in AI, Springer-Verlag,
March 2001.

[7] A. Dardenne, A. van Lamsweerde, and S. Fickas, ‘Goal-directed re-
quirements acquisition’, Science of Computer Programming, 20(1–2),
3–50, (1993).

[8] E. H. Durfee, ‘Practically Coordinating’, AI Magazine, 20(1), (1999).
[9] C. Ellis and J. Wainer, Groupware and Computer Supported Coopera-

tive Work, chapter 10. In Weiss [21], 1999.
[10] F. Giunchiglia, J. Mylopoulos, and A. Perini, ‘The Tropos Software De-

velopment Methodology: Processes, Models and Diagrams’, Technical
Report 0111-20, ITC-irst, (2001).

[11] M. N. Huhns and L. M. Stephens, Multiagent systems and Societies of
agents, chapter 2. In Weiss [21], 1999.

[12] N. R. Jennings, ‘Commitments and conventions: The foundation of co-
ordination in multi-agent systems’, The Knowledge Engineering Re-
view, 8(3), 223–250, (1993).

[13] Thomas W. Malone and Kevin Crowston, ‘The Interdisciplinary Study
of Coordination’, ACM Computing Surveys, 26(1), 87–119, (1994).

[14] J. Mylopoulos and J. Castro, ‘Tropos: A framework for requirements-
driven software development’, in Information System Engineering:
State of the Art and Research Themes, eds., J. Brinkkemper and
A. Solvberg, Lecture Notes in Computer Science, Springer-Verlag,
(2000).

[15] A. Newell, ‘The knowledge level’, Artificial Intelligence, 18, 87–127,
(1982).

[16] H. Nwana, ‘Software agents: An overview’, Knowledge Engineering
Review Journal, 11(3), (November 1996).

[17] A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopou-
los, ‘A Knowledge Level Software Engineering Methodology for Agent
Oriented Programming’, in Proceedings of the Fifth International Con-
ference on Autonomous Agents, Montreal CA, (May 2001). ACM.

[18] N. R. Jennings R. A. Bourne, C. Excelente-Toledo, ‘Run-time selection
of coordination mechanisms in multi-agent systems’, in Proc. of the
14th European Conf. on Artificial Intelligence (ECAI’2000), pp. 348–
352. IOS Press, (2000).

5

[19] A.S. Rao and M.P. Georgeff, ‘Modelling rational agents within a BDI-
architecture’, in Proceedings of Knowledge Representation and Rea-
soning (KRR-91) Conference, San Mateo CA, (1991).

[20] R. G. Smith, ‘The contract net protocol: High-level communication and
control in a distributed problem solver’, in IEEE Transactions on Com-
puters, volume C-29, pp. 1104–1113, (1980).

[21] Multiagent System: a modern approach to Distributed AI, ed., G. Weiss,
MIT Press, 1999.

[22] E. Yu, ‘Agent-oriented modeling: Software versus the world’, In Cian-
carini and Wooldridge [6].

6

