
Engineering Applications of Artificial Intelligence 25 (2012) 159–173
Contents lists available at SciVerse ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

doi:10.1

n Corr

de Cast

fax: þ3

E-m
journal homepage: www.elsevier.com/locate/engappai
Model-driven engineering techniques for the development
of multi-agent systems
José M. Gascueña a, Elena Navarro a,b, Antonio Fernández-Caballero a,b,n

a Instituto de Investigación en Informática de Albacete (I3A), 02071 Albacete, Spain
b Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
a r t i c l e i n f o

Article history:

Received 8 June 2010

Received in revised form

4 July 2011

Accepted 22 August 2011
Available online 9 September 2011

Keywords:

Agent-based method

Model-driven development

Meta-modeling

MDE-MAS method and tool

Agent-oriented software development

Multi-agent systems

Surveillance systems

Eclipse-Modelling Framework

Graphical Modelling Framework
76/$ - see front matter & 2011 Elsevier Ltd. A

016/j.engappai.2011.08.008

esponding author at: Departamento de Sistem

illa-La Mancha, 02071 Albacete, Spain. Tel.: þ

4 967 599224.

ail address: Antonio.Fdez@uclm.es (A. Fernán
a b s t r a c t

Model-driven engineering (MDE), implicitly based upon meta-model principles, is gaining more and

more attention in software systems due to its inherent benefits. Its use normally improves the quality

of the developed systems in terms of productivity, portability, inter-operability and maintenance.

Therefore, its exploitation for the development of multi-agent systems (MAS) emerges in a natural way.

In this paper, agent-oriented software development (AOSD) and MDE paradigms are fully integrated for

the development of MAS. Meta-modeling techniques are explicitly used to speed up several phases of

the process. The Prometheus methodology is used for the purpose of validating the proposal. The meta-

object facility (MOF) architecture is used as a guideline for developing a MAS editor according to the

language provided by Prometheus methodology. Firstly, an Ecore meta-model for Prometheus language

is developed. Ecore is a powerful tool for designing model-driven architectures (MDA). Next, facilities

provided by the Graphical Modeling Framework (GMF) are used to generate the graphical editor. It

offers support to develop agent models conform to the meta-model specified. Afterwards, it is also

described how an agent code generator can be developed. In this way, code is automatically generated

using as input the model specified with the graphical editor. A case of study validates the method put in

practice for the development of a multi-agent surveillance system.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, the use of the model-driven engineering (MDE)
approach throughout the software development process is gain-
ing more and more attention (Gasevic et al., 2009). MDE concerns
the exploitation of models as the cornerstone of the software
development process. It allows both developers and stakeholders
to use abstractions closer to the domain than to computing
concepts. Thus, it reduces the complexity and improves the
communication. As the main aim of MDE is to develop software,
this paradigm uses software models as their expression vehicle.

Sometimes, models are constructed to a certain level of detail,
and then code is written by hand in a separate step. Some other
times (most often) code is automatically generated from the models,
ranging from code skeletons to completely deployable products.
Usually, these models are specified by instantiating meta-models,
that is, models to describe models. The basic idea of meta-model is
to identify the general concepts in a given problem domain and the
relations used to describe models. This serves as a strategy that
ll rights reserved.

as Informáticos, Universidad

34 967 599200;

dez-Caballero).
forces a clear distinction between the real problem to be solved by
the system and the framework where the model lives.

The use of MDE has the following consequences for a software
development process. (1) More time can be devoted to analyzing
and designing models. (2) The time necessary to perform coding
tasks is reduced, as code generators are usually available to carry
them out in an automatic way. The programmers are responsible
for completing those parts of the system that developers either
have decided not to generate or cannot do. (3) The quality of the
developed system is improved, as the generated code (usually)
does not have bugs. And, (4) productivity is improved as the time
necessary for coding is reduced. More effort is devoted to solve
errors during early phases of the life cycle, avoiding in this way
the ‘‘snow ball’’ effect (Pressman, 2010). Moreover, MDE provides
inter-operability among heterogeneous systems thanks to the
specification of bridges between different technologies. Portabil-
ity is also improved to adopt a new technology, just developing a
new code generator, as the models are independent of any
technology. In summary, MDE offers important benefits in aspects
as important as productivity, portability, inter-operability and
maintenance (Kleppe et al., 2003).

In contrast, MDE also demonstrates some drawbacks
(Mattsson et al., 2009). Although MDE automates the steps from
detailed design to implementation, as described before, at present

www.elsevier.com/locate/engappai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2011.08.008
mailto:Antonio.Fdez@uclm.es
dx.doi.org/10.1016/j.engappai.2011.08.008

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173160
it is not able to automate enforcement of the architecture on the
detailed design. This is due to the inability to model architectural
design rules. Unfortunately, this is a bottleneck in large MDE
projects, as the developers have to carry out this task manually,
that is, in a similar way to more traditional approaches.

On the other hand, multi-agent systems (MAS) are appropriate
to model and develop complex software applications with high
need of autonomy, communication among autonomous elements
and distribution (Jennings et al., 1993; Karageorgos et al., 2003;
Posadas et al., 2008; Leit~ao, 2009). More and more, MAS are
introduced in different domains (e.g. teleoperated systems,
Rodrı́guez-Seda et al., 2010, intruder detection systems, Jha and
Massan, 2002, and so on). Agent-oriented software development
(AOSD) (Henderson-Sellers and Giorgini, 2005) is the paradigm
described for the construction of this kind of systems. Lately,
several methodologies, such as Gaia (Wooldridge et al., 2000),
MaSE (Deloach et al., 2001), ADELFE (Bernon et al., 2003),
Prometheus (Padgham and Winikoff, 2004), Tropos (Bresciani
et al., 2004), and INGENIAS (Pavón et al., 2006) have come up
following this paradigm. Every one of them exhibits the char-
acteristics that a software methodology (Bauer and Odell, 2005)
should have, that is, a modeling language and a software process.
A modeling language is used for the specification of the corre-
sponding models by using its specific syntax (notation) and its
associated semantics. A software process specifies the develop-
ment activities, the inter-relationships among them, and how
they are performed. In the definition of the AOSD methodologies
two different approaches have been followed.

In first place, some of them, such as ADELFE, extend a generic
modeling language – Unified Modeling Language (UML)
(Rumbaugh et al., 2004) – and a process described in the context
of software engineering – Unified Software Development Process
(Jacobson et al., 1999). Other approaches, such as Prometheus,
have their own language and development process. However, no
matter which approach is followed by a methodology, there are
always compelling arguments to provide tool support for their
application. This is why, the MDE approach for building support-
ing tools emerges naturally as a way to improve the development
of agent-based software applications. This is the main argument
that has conducted this work, namely, to show how the AOSD
paradigm can be integrated with the MDE approach.

The rest of the paper is organized as follows. In Section 2 some
previous works related to our proposal are revisited. Then, in
Section 3 our new proposal of the use of model-driven engineer-
ing in Prometheus methodology are described. In Section 4 the
Prometheus Model Editor is introduced in detail through describ-
ing the meta-model definition, the graphical editor construction
and the code generation. A case of study related to the develop-
ment of a multi-agent surveillance system is used in Section 5 to
validate the method. Lastly, Section 6 offers some conclusions and
hints towards future work.
2. Related works in model-driven engineering for multi-agent
systems

Meta-models define general concepts of a given problem
domain and their relationships. General concepts and relation-
ships are really a language that, for instance, may be used to
specify the domain’s requirements (Smolı́k, 2006). The advantage
of introducing meta-models in the development process is the
higher abstraction level to work with.

According to Molesini (2008), meta-models should be used in
AOSD as they describe each methodology and infrastructure in a
compact and precise way. Moreover, they form the basis for
analyzing and comparing methodology and infrastructure.
Indeed, the elements and the relationships that describe them
are present in the meta-models. Besides, they help to study the
existing gap between agent-oriented methodologies and agent-
oriented infrastructures, as they allow one to isolate the main
concepts of the system from the underlying technology. Finally,
meta-models are the starting point to define methodologies along
with their corresponding agent-oriented infrastructures.

Unfortunately, there are several agent-oriented modeling lan-
guages but not a standard one. In principle UML could be
considered as the standard to be used, but it is not the best tool
for modeling agent-based systems (Bauer, 2001). This is basically
due to two reasons: (1) compared to objects, agents are active as
they take initiative and have control over external requests; and
(2) agents do not only act in isolation but in cooperation or
coordination with other agents. Several languages that extend
UML have been proposed so far to solve this problem. For
instance, Agent UML (AUML) (Bauer et al., 2001) is the first agent
modeling language that follows this approach. It provides inter-
action protocol diagrams and agent class diagrams as extensions
of UML’s sequence and class diagram, respectively, as a solution
to the stated problems. However, the absence of a meta-model
and modeling tools are the main drawbacks that explain why this
language is not widely accepted. More recently, the Agent
Modeling Language (AML) (Cervenka and Trencansky, 2007), a
semi-formal visual modeling language based on the UML
2.0 superstructure has been proposed. It is supported by tools
like (Enterprise Architect, 2010; StarUML, 2010). However, AML
does not concern about code generation, as it focuses its attention
on specification tasks. Despite the main aim of AML is to offer a
new and well documented unified language suitable for industrial
development, unfortunately, most research groups are still using
classic methodologies (Henderson-Sellers and Giorgini, 2005),
such as INGENIAS or Prometheus, to carry out the modeling of
agent-based applications.

Now let us focus on one of the principal agent-oriented
methodologies, namely INGENIAS (Pavón et al., 2006). The basis
of INGENIAS methodology is the definition of a MAS meta-model
described by using GOPRR (Graph, Object, Property, Relationship,
and Role) (Kelly et al., 1996). A set of agent-oriented MDE tools
(model edition, verification, validation and transformation) are
integrated into the INGENIAS Development Kit (IDK) (Gómez-
Sanz et al., 2008). The INGENIAS meta-model describes the
elements for modeling MAS from different perspectives—agent,
organization, environment, goals and tasks, and interaction
(Fuentes-Fernández et al., 2010). The agent perspective focuses
on the elements necessary to specify the behavior of each agent.
The organization perspective shows the system architecture.
From a structural point of view, the organization is a set of
entities with aggregation and inheritance relationships used to
define a schema where agents, resources, tasks and goals exist.
Under this perspective, groups may be used to decompose the
organization, plans, and workflows to establish the way the
resources are assigned, whose tasks are necessary to achieve a
goal, and who has the responsibility for carrying them out. The
environment perspective defines the agents’ sensors and actua-
tors, and identifies the system resources and applications. The
goals and tasks perspective describes the relations between tasks
and goals. The interaction perspective describes how the coordi-
nation among agents is performed. The IDK tool supports the
INGENIAS methodology, so that each one of the previous concepts
are specified using either an UML-like or INGENIAS specific
notation. This facility allows users familiar with the UML notation
to reduce the learning curve of INGENIAS. Moreover, the IDK tool
has a module for JADE code generation, and a mechanism to
define templates used to develop code generation modules for the
required target platform.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173 161
Now, PIM4Agents (Hahn et al., 2009) is another meta-model
that takes into account seven points of view to deal with the
different aspects of the system: multi-agent, agent, organization,
interaction, role, behavior, and environment. Every aspect is
defined by means of a sub-meta-model that, jointly with the
others, make up the PIM4Agents meta-model. Moreover, the
authors propose rules to transform PIM4Agents (platform-inde-
pendent) models to written code by using the agent-oriented
programming languages JACK (Winikoff, 2005) and JADE
(Bellifemine et al., 2007). These transformations are defined using
the JackMM and JadeMM (platform-specific) meta-models of JACK
and JADE, respectively.

Regarding technical aspects, all these meta-models have been
described by using Ecore. Model-To-Model (M2M) transformations
have been specified using Atlas Transformation Language (ATL)
(Jouault et al., 2008) to map platform-independent concepts to
platform-specific concepts. Also, the MOFScript language (Oldevik,
2009) is used to generate code written in JACK or JADE. Besides,
PIM4Agents, similarly to INGENIAS meta-model, may evolve by
(1) adding new modeling concepts in the existing aspects;
(2) extending the modeling concepts of the defined aspects; and
(3) incorporating new modeling concepts to describe additional
aspects for MAS. The available environment DSML4MAS (Warwas
and Hahn, 2009) offers support to create diagrams conforming to
the PIM4Agents meta-model and to generate JACK and JADE code.

Also, the language provided by the Prometheus methodology
(Padgham and Winikoff, 2004) allows us to describe a MAS by
using several diagrams. In general, diagrams to specify require-
ments, to show the system overall architecture, and to describe
the internal architecture of each agent and its interactions are
available. The set of concepts, and relationships among them,
used in these diagrams are specified with a meta-model (Dam
et al., 2006) represented by means of UML language. The Pro-
metheus Design Tool (PDT) supports the modeling using the
Prometheus methodology language. Moreover, it provides a code
generator, which is hard-code implemented, to facilitate the code
generation in JACK language from the developed models.

Regarding the software process followed to develop a MAS,
using the three agent modeling languages described previously, it
is found that: (1) INGENIAS adopts the Unified Software Devel-
opment Process (USDP) to define the steps necessary to develop
the MAS entities; (2) on the contrary, Prometheus defines its own
development process, providing guidelines to identify the MAS
entities; and (3) there is not a process related to PIM4Agents, but
it is the developer’s experience which determines the completion
of the system views.

Table 1 offers a brief comparison among Prometheus, INGE-
NIAS and PIM4Agents technological features. Specifically, these
are (1) the meta-model language used to represent its modeling
language, (2) their modeling tool, (3) the selected mechanism to
implement code generation, (4) the code generated by the tool,
(5) the software development process, and (6) guidelines defined
to discover agents. The three proposals use different meta-
modeling languages and are supported by tools. Prometheus
Table 1
Comparing Prometheus, INGENIAS and PIM4Agents.

Feature INGENIAS

Meta-model language GOPRR

Support tool IDK

Technology for code generation Template based proprietar

Generated code JADE

Development process Unified Software Developm

Mechanism to discover agents No
takes a clear advantage in front of INGENIAS and PIM4Agents: it
provides a collection of guidelines that help to determine the
agents that make up a MAS. However, the code generation
functionality provided by Prometheus is hard-code implemented
so that it is difficult to maintain, whereas INGENIAS and PIM4A-
gents implement it by using a template-based mechanism. There-
fore, in order to solve the drawback of Prometheus in regard to
INGENIAS and PIM4Agents, the exploitation of meta-modeling
techniques emerge in a natural way as a powerful solution.

There are other tools that also support the visual design of agent
applications. JACK Development Environment (JDE) (Agent
Oriented Software Pty. Ltd., 2008) is an integrated development
environment that provides graphical tools for writing plans, con-
necting plans to agents, managing inter-agent communication, as
well as for compiling and running JACK agent applications. This
tool automatically generates JACK language code for all graphically
represented elements (e.g. agents, events, plans, capabilities, data).
WADE (Workflows and Agents Development framework) (Caire
et al., 2009) is a software platform built on top of JADE that
facilitates the development of distributed multi-agent applications
where agent tasks are defined according to the work flow meta-
phor. WOLF (WOrkflow LiFe cycle management environment)
(Caire et al., 2008) is an Eclipse plug-in that provides support to
the graphical definition of workflows to develop WADE-based
applications. A workflow is implemented as a Java class because
the language does not provide support for this aim. In short, JDE
and WOLF are tools related to a specific implementation platform,
whereas others such as IDK, PDT and DSML4MAS, as well as the
Prometheus Model Editor (see Section 4), are related to an agent
modeling language. It is worth noting that models specified by
using JDE and WOLF are at a lower abstraction level than those
specified by using INGENIAS or Prometheus, what means a clear
difference. Moreover, JDE and WOLF do not provide functionalities
to develop new code generators capable of generating code for an
agent platform different from JACK and JADE, respectively.
3. Model-driven engineering in Prometheus methodology

As aforesaid, the main argument that has conducted this work
is to demonstrate that MDE techniques are a perfect complement
for developing multi-agent systems. So, the development of MAS
can be carried out by exploiting models at different stages of the
process. All necessary MDE techniques are put into practice with
the objective of exemplifying the proposal in the Prometheus
agent-oriented software methodology (Padgham and Winikoff,
2004). Fig. 1 summarizes the technologies used to achieve our
goal from two different perspectives:
�

y m

en
How can MDE be used to build tools for MAS? In this work, the
Eclipse Modeling Framework (EMF) (Steinberg et al., 2009) is
used to specify the Prometheus Ecore meta-model (PEMM),
necessary to describe the modeling elements of the Pro-
metheus methodology. Moreover, the Graphical Modeling
Prometheus PIM4Agents

UML Ecore

PDT DSML4MAS

echanism Hard-code MOFScript

JACK JACK and JADE

t Process Proprietary –

Yes No

Fig. 1. Technologies used in the proposal.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173162
Framework (GMF) (Gronback, 2009) is exploited to build a
graphical editor for specifying the Prometheus models. After-
wards, Java Emitter Templates (JET) technology (Vogel, 2009)
is used to create templates for automatically generating the
intermediate code.

�
 How can MAS be specified by applying an MDE approach?

Prometheus Models are specified and intermediate code is
generated by exploiting the tools obtained by means of the
previous process. Subsequently, the process to import the
generated code into the JACK Development Environment
(JDE) (Agent Oriented Software Pty. Ltd., 2008) to complete
the implementation by using the agent-oriented programming
language JACK (Winikoff, 2005) is also illustrated.

The functionality offered by the proposed tool (definition of
models according to the Prometheus methodology and JACK
skeleton code generation) is not totally new. Currently, the
Prometheus Design Tool (PDT) (Padgham et al., 2008) already
provides support for these tasks. However, the main difference of
this new proposal is that PDT does not take advantage of all the
benefits provided by MDE. So, our solution is a technological
innovation in the specific context of MAS applications developed
following the Prometheus methodology.

The Prometheus methodology (Padgham and Winikoff, 2004) is
defined as a proper detailed process to specify, implement and test/
debug agent-oriented software systems. It offers a set of detailed
guidelines, including examples and heuristics, which provide a
better understanding of what is required in each step of the
development process. This process incorporates three phases:
�
 The System Specification phase identifies the basic goals and
functionalities of the system, develops the use case scenarios
that illustrate how it works, and specifies the inputs (percepts)
and outputs (actions). Its main results are the analysis over-
view diagram, scenarios diagram, goal overview diagram, and
system roles diagram.

�
 The Architectural Design phase uses the outputs of the

previous phase to determine the types of agents of the system
and their interactions. Its main results are the data coupling
diagram, agent-role diagram, agent acquaintance diagram, and
system overview diagram.

�
 The Detailed Design phase focuses on developing the internal

structure of each agent and how each agent performs its tasks
within the global system. It obtains the agent overview and
capability overview diagrams.

Notice that the two first phases (System Specification and
Architectural Design) do not assume a particular agent architec-
ture. It is only in the last phase, the Detailed Design phase, where
Prometheus targets a particular agent architecture named BDI
(belief-desire-intention) (Georgeff et al., 1998). The key concepts
in this architecture are the beliefs (what the agent knows does not
know about the world), desires (what the agent wants to do) and
intentions (how the agent plans to do what it wants to do)
(Ronald and Sterling, 2005). One advantage of this architecture is
that for reasoning it uses understandable common terms used by
humans. Another advantage is that it has been implemented in
several agent programming languages such as JACK (Winikoff,
2005), Jadex (Pokahr et al., 2005) and Jason (Bordini et al., 2007).

Finally, Prometheus details how the entities obtained during the
design are transformed into concepts used in a specific agent-
oriented programming language (JACK) (Winikoff, 2005). In this
work, the Ecore language is used to develop the meta-model
concepts specific to the Prometheus language used in the
three phases of Prometheus method. A direct relation can be
established among the previous elements (proposed Prometheus

Fig. 2. MOF architecture.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173 163
Ecore meta-model, Prometheus multi-agent system model and
JACK code) and the four layer architecture proposed by meta-
object facility (MOF) (O.M.G., 2002). Indeed, as illustrated in Fig. 2,
the meta-modeling architecture MOF, proposed by the Object
Management Group, has four different layers (O.M.G., 2002). At
the meta-meta-modeling layer (M3), a collection of primitives is
offered to define meta-models at the M2 layer. That is, the meta-
meta-model describes the properties of the meta-models. At the
meta-modeling layer (M2), the defined meta-elements are used to
instantiate the elements that make up models at M1 layer. At the
modeling layer (M1) the application model is specified. Finally, it is
at the M0 layer where instances of M1 models are described.

Now, Ecore is the meta-model used by Eclipse Metamodeling
Framework (EMF) to define meta-models (Steinberg et al., 2009).
Ecore is an implementation of the Essential MOF (EMOF) lan-
guage, which is a subset of MOF. The EMOF model provides the
minimal set of elements required to specify meta-models. The
main elements of Ecore are EClass, EReference and EAttribute. An
EClass instance defines an element of the EMF meta-model that
describes a set of similar entities of the model. An EClass instance
can be related to another EClass by means of unidirectional
relationships named EReferences whose multiplicity is specified
by means of attributes lowerBound and upperBound. Bi-directional
relationships can be specified by using two EReferences and
the corresponding oppositeOf attribute. Moreover, an EClass has
EAttributes (EAttribute instances) to specify its properties.
The name of an Ecore meta-class is made up of the name of the
element that it implements along with a prefix ‘‘E’’. There are two
types of EReferences (Garcı́a-Magariño et al., 2009): (a) containments
describe composite relationship among two EClasses; and (b) non-

containments describe that an EClass is related to another EClass.
As shown in Fig. 2, for the concrete case of Prometheus

methodology, at M3 layer the Ecore meta-model definition is
found. At M2 layer the Prometheus Ecore meta-model (PEMM) is
defined. At M1 layer MAS models are specified according to the
PEMM meta-model. Finally, at M0 layer the instances of the
models at M1 layer are defined.
4. The Prometheus Model Editor

This section introduces the developed Prometheus Model
Editor. This is the tool required to solve the problem described
earlier. Remember that the code generation functionality pro-
vided by Prometheus is hard-code implemented. Therefore, the
editor provides a better technological solution compared to
Prometheus Design Tool (PDT). Again, this is thanks to the use
of meta-modeling techniques. Moreover, as Prometheus is
selected, the guidelines offered are helpful to experts in MAS
development because they can convey their experience to other
users by explaining why and how the different elements of the
agent-based application have been obtained (Fernández-
Caballero and Gascueña, 2010). In addition, Prometheus is also
useful as it explicitly considers agent perceptions and actions as
modeling elements.

Overall, the developed Model Editor is carried out following the
three activities of the process shown at the top of Fig. 1. Firstly, a
meta-model that specifies the modeling concepts of the Pro-
metheus methodology is created. Afterwards, the Eclipse Graphical
Modeling Framework (GMF) (Gronback, 2009) is used to develop
the graphical editor that supports the creation of graphical models,
in accordance with the Prometheus meta-model. Finally, the last
step carries out the implementation of the functionality into code
written in JACK agent programming language. Each one of these
steps is detailed in the following sections. In Section 4.1, the
defined PEMM meta-model is presented. Next, Section 4.2 intro-
duces the graphical editor developed to create Prometheus models.
Finally, in Section 4.3 it is illustrated how code generation
mechanisms are integrated into the proposed tool.

4.1. Defining the meta-model

The starting point to describe the proposed Prometheus Ecore
meta-model (PEMM) is its representation by means of the
Prometheus UML meta-model (PUMM) (Dam et al., 2006) and
the expertise acquired by modeling agent-based applications
using Prometheus supporting tool PDT. The meta-model is cre-
ated using directly the EMF’s simple tree-based Ecore editor.

The following rules are used to name each PEMM element:
(i) every EClass starts with an upper-case letter; (ii) EAttributes
and EReferences start with a lowercase letter that denotes the
referenced EClass. Regarding the graphical notation, PEMM ele-
ments represent the following images: (a) a rectangle split by
means of two horizontal lines depicts an EClass; (b) an arrow
illustrates EReference non-containment relationships; (c) a line
with a diamond at one end represents a containment EReference;
(d) a dashed line and a solid line denote two opposite ERefer-
ences; (e) the multiplicity of an EReference, established by means
of lower-bound and upper-bound attributes, is always shown
next to the line they are related to; and (f) an UML hierarchy
symbol – a triangle that joins supertype and subtype – is used to
illustrate the property ESuperType.

Fig. 3. Criteria to transform PUMM into PEMM.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173164
The criteria adopted to translate PUMM into PEMM are
explained next. Notice that fragments of the example shown in
Fig. 3 are included in brackets for a better comprehension.
�
 An EClass is created for every meta-entity of the PUMM (Role

and Action EClasses).

�
 With regard to meta-relationships, our steps – as described

next – can be distinguished, depending on whether they are
related to an association, aggregation, composition or general-
ization, respectively. As a rule, a pair of opposite EReferences is
created for every meta-relationship between two meta-enti-
ties of the PUMM meta-model; in this way, the UML navig-
ability is simulated in Ecore. Considering this fact:
J Whenever there is an association (see Fig. 3a), the ‘‘source’’

EClass (Role) has a non-containment EReference (actions) to
the ‘‘target’’ EClass (Action). Similarly, the ‘‘target’’ EClass
(Action) has a non-containment EReference (roles) to the
‘‘source’’ EClass (Role).

J If there is an aggregation (see Fig. 3b), the ‘‘source’’ (Agent)
has an EReference containment (roles) to the ‘‘target’’ EClass
(Role). Besides, the ‘‘target’’ EClass (Role) has a non-contain-
ment EReference (agent) to the ‘‘source’’ EClass (Agent).

J Composition (see Fig. 3c) is dealt with in a similar way to
association.

J If there is a generalization (see Fig. 3d) the property
ESuperTypes denoting the specialized class is used. For
instance, in Fig. 3d the EClass PerceptStep has its property
ESuperTypes set to StepOfScenario.
When a developer creates a Prometheus model in the tool, he/
she does not create all the potential EReferences in M1, but only
those identified as likely in PDT (see Table 2). The EMF framework
automatically creates the corresponding opposite EReferences in
M1. Although not absolutely necessary, the opposite relationships
are included to facilitate the management of the models. After
considering the above-mentioned facts, the final PEMM structure
is the following (see Fig. 4):
�
 A ‘‘Prometheus’’ package contains all the elements of the
meta-model.

�
 A model is made up of a collection of basic elements. This is

represented by adding an EReference named ‘‘elements’’ to the
EClass ‘‘Model’’. It has (1) its property EType set to the target
EClass (BasicElement), (2) its lowerBound and upperBound
properties set to 1 and �1, respectively, to denote that
‘‘Model’’ instances are related to one or more instances of
‘‘BasicElement’’, and (3) its property containment set to true to
specify that it is an aggregation relationship. ‘‘Model’’ is not an
abstract EClass; that is, it can be instantiated.

�
 BasicElement is an abstract EClass that has two EString

attributes to specify the name and a brief description, respec-
tively, of an entity of the model. Every concept used by the

Table 2
Connections between entities in each diagram used in prometheus.

Diagrams Connections

Analysis
overview

Actor �! Percept; Actor Action; Scenario Percept; Scenario �! Action

Scenario Scenario �! Action—it means first scenario has the second scenario in some step, it is to say, the second scenario is a sub-scenario of the first

scenario

Goal overview Goal �! Goal; where the second goal is a subgoal of the first goal

System roles Role �! Goal; Role �! Action; Percept �! Role

Data coupling Data �! Role—it means Data is read by the Role; Role �! Data—it means Data is written by the Role

Agent-role
grouping

Agent �! Role

System overview Agent �! Action; Percept �! Agent; Agent �! Data—it means Data is written by the Agent; Data �! Agent—it means Data is read by the Agent;

Agent �!Message—it means Message is sent by the Agent; Message �! Agent—it means Message is received by the Agent. Interaction protocols

are able to include relations Actor �! Percept; Actor Action; and messages between agents

Agent overview Capability �! Action; Capability �! Data; Capability �! Message; Percept �! Capability; Percept �! Plan; Plan �! Action; Plan �! Message;

Plan �! Data; Message �! Plan; Message �! Capability; Data �! Capability; Data �! Plan

Capability
overview

Capability �! Action; Capability �! Data; Capability �! Message; Percept �! Capability; Percept �! Plan; Plan �! Action; Plan �! Message;

Plan �! Data; Message �! Plan; Message �! Capability; Data �! Capability; Data �! Plan

Fig. 4. Prometheus Ecore meta-model (PEMM).

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173 165
Prometheus methodology (e.g. actor, agent, role, perception,
etc.) is described as an EClass that directly or indirectly
inherits from ‘‘BasicElement’’. The attributes defined in the
root EClass (BasicElement) are also available to all the other
EClasses included in the hierarchy.

4.2. Building the graphical editor

The Prometheus Graphical Editor is created through the guided
process offered by the Graphical Modeling Framework (GMF)
(Gronback, 2009), which allows us to create an editor from a
Domain Model. Fig. 5 summarizes the models and steps of this
process by means of an activity diagram. The models generated are:
(1)
 A Generator Model (.genmodel) is obtained by using the
Prometheus Ecore meta-model (PEMM) (see dm:ecore in
Fig. 5) described in Section 4.1. Specifically, a tree-based
editor is created to specify models by using this Generator
Model (.genmodel) (see gmd:genmodel in Fig. 5).
(2)
 Afterwards, a Graphical Model (.gmfgraph) (see gm:gmgraph
in Fig. 5) that defines the figures, nodes and links in the
diagrams is derived. This model specifies the elements of the
model that have a graphical representation, as node, relation
or attribute. Fig. 6a shows the wizard used to automatically
create the gmfgraph file (partly shown in Fig. 6b) from the
PEMM meta-model. For instance, Fig. 6a shows that it is only
necessary to check the corresponding option to graphically
describe Agent elements as nodes. Also, the name and the
description of the Agent elements are represented in diagrams
with label attributes. Finally, the relationships between Agent

and Goal elements are described by means of graphical
relations.
(3)
 Next, the Tooling Model (.gmftool) (see tm:gmftool in Fig. 5)
that defines the palette of the Prometheus Graphical Editor is
derived. This model specifies which elements are in the
palette and how they are shown (as relationships or nodes).
A wizard (see Fig. 7a) is also available for generating the
Tooling Model (see Fig. 7b), also using the PEMM meta-model
as input. For instance, the image (Agent.png) that is displayed
when an agent instance is created in a Prometheus model is
manually customized. On the contrary, images for links are
displayed using a default image.
(4)
 Afterwards, links between the Domain Model (.ecore) (see
dm:ecore in Fig. 5), the Graphical Model (.gmfgraph) and the
Tooling Model (.gmftool) are recorded in the Mapping Model
(.gmfmap) (see mm:gmfmap in Figs. 5 and 9). The process is
supported by means of a new wizard that allows us to select
each one of the previous models, and to customize which
elements are nodes or links, or to change their properties by
means of the dialog shown in Fig. 8.
(5)
 Finally, the Mapping Model (.gmfmap), along with the Gen-
erator Model (.genmodel), is used by another wizard to obtain
a GMF Graphical Generator Model (.gmfgen, see Fig. 10).
(6)
 The Graphical Generator Model (.gmfgen) (see gen:gmfgen in
Fig. 5) is employed by the Graphical Modeling Framework of
Eclipse to automatically generate code (.java) for the Pro-
metheus graphical editor.
Once the generated code is compiled as a new plug-in (Pro-
metheus .diagram), it can be run to create new Prometheus models.

4.3. Generating code

If the implementation is carried out in a manual way, starting
from the design, divergences between design and implementation
can emerge. This makes the design less useful for maintenance
and for the comprehension of the system (Bordini et al., 2007). In
this case, there is a gap between the design models and the
existing implementation languages. In order to bridge this gap,

Fig. 5. Steps for building the graphical editor.

Fig. 6. Establishing mappings among the available options of (a) the graphical definition wizard and (b) the generated gmfgraph file.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173166
techniques can be used that introduce refined design models
directly implementable in a programming language. Alterna-
tively, a dedicated agent-oriented programming language that
provides constructs to implement the high-level design concepts
(Dastani et al., 2004) could be used.

The Prometheus methodology follows the first approach.
During the Detailed Design phase it offers models close to the
concepts used in a specific agent-oriented programming language
named JACK (Winikoff, 2005). Hence, the entities obtained during
the design can directly be transformed into concepts used in JACK.
Table 3 shows which Prometheus entities are translated into their
equivalent JACK concepts. Note that some entities (Actor, Goal,
Protocol, Role, Scenario) are not transformed into JACK concepts
because they are only used during the design. In addition, the
Action concept is not transformed into a JACK specific concept, but
it can be implemented in the associated agent as a method.

Fig. 7. (a) Tooling definition wizard; (b) gmftool file.

Fig. 8. Map domain model elements.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173 167
Besides, JET (Java Emitter Templates) (Vogel, 2009) is used in
the editor to provide code generation abilities. JET is an engine for
generating code through templates. It has been developed as an
Eclipse plug-in that belongs to EMF. One advantage of JET is that it
uses a subset of the syntax of Java Server Pages (JSP) to define
templates for code generation. This way, developers who are used
to this technology can learn it very easily. In addition, XPath may
be used to access and navigate throughout the nodes of the
source model.

Basically, the process followed to develop the proposed code
generator is described in Fig. 11. First, a template is created by hand
for each type of entity (AgentTemplate, DataTemplate, EventTemplate,
PerceptTemplate, PlanTemplate and CapabilityTemplate), obtaining the
related java classes in an automatic way. Table 4 shows an
AgentTemplate fragment included in AgentTemplate.javajet file.
Next, the JackCodeGenerator class is developed. It is in charge of
instantiating the templates by using their related classes and of
generating the code of the MAS using the Prometheus model.
5. Case of study: a multi-robot multisensory surveillance
system

The authors of this paper have a long experience in the devel-
opment of surveillance systems (Fernández-Caballero et al., 2010;
Pavón et al., 2007). Therefore, the proposal has been validated in

Fig. 9. gmfmap file.

Fig. 10. gmfgen file.

Table 3
Mapping Prometheus and JACK concepts.

Prometheus entity JACK concept

Agent Agent

Capability Capability

Percept Event

Message Event

Plan Plan

Data Beliefset

Action Method

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173168
real-world projects related to the development of agent-based
surveillance systems (Gascueña and Fernández-Caballero, 2011).
Indeed, one of the developed systems focused on the detection
and tracking of objects by means of a variable number of mobile
robots that are under the control of software agents (Gascueña and
Fernández-Caballero, 2011). The case of study presented in this
paper introduces the mentioned multi-robot surveillance system
developed by means of the Prometheus Model Editor.
The developed system introduces a MAS at several levels.
Firstly, a single mobile robot is composed of different kinds of
sensors. Such a multisensory system can be developed as a MAS
where there is an agent for each physical sensor of the robot
(Vinyals, 2011). There are reactive agents that gather information
provided by the devices. Other agents collaborate to satisfy the
global goal of the robot. Moreover, the problem offers timing
functionality that allows us to consider that the system inherits
autonomy and proactivity—which are properties of the agents
(Jennings et al., 1993). At a second level, the case of study
considers the existence of a human guard and a number of
patrolling mobile robots.

Due to limitation in space, the case of study is only explained
at the multisensory MAS level. Thus, the process that the
proposed multisensory system applies is depicted in Fig. 12. Each
robot is moving randomly around the environment (state wander-

ing) while the collected images are shown to the human guard.
After some time has elapsed (Timer_P), a robot stops to analyze
the images captured until that moment (state detecting). There are
two likely alternatives for each robot in this state:
�
 If the robot detects a movement (Moreno-Garcia et al., 2010;
Delgado et al., 2010) then (1) information about the detected
blob is obtained, and (2) the guard is warned to decide
whether the robot should track the blob (Follow_P) or not
(Timer_P).

�
 Alternatively, the tracking process (Follow_P) is started by the

guard if he/she perceives that something is moving in the
environment thanks to the images displayed on his/her inter-
face. In that case, the guard orders (Detect_P) to analyze the
images to check whether there is or not movement. If the
image analysis does not detect movement, then the robot goes
on moving randomly. Otherwise, the guard orders to start the
tracking process of the blob (Follow_P).

Fig. 11. Jack code generator based on JET.

Table 4
AgentTemplate fragment.

(1) o %@ jet

(2) package¼"CodeGenerator"

(3) imports¼"java.util.*

(4) Metamodel.*

(5) java.util.ListIterator

(6) java.util.Iterator

(7) java.util.ArrayList"

(8) class¼"AgentImplementator"

(9) %4
(10) o% MetamodelFactory MF¼MetamodelFactory.eINSTANCE;

(12) MetamodelPackage MP¼MetamodelPackage.eINSTANCE;

(13) Model M¼MF.createModel();

(14) Agent A¼MF.createAgent();

(15) ArrayList/AgentS Ags¼new ArrayList();

(16) A¼(Agent)argument;

(17) %4
(18) package agents;

(19) import capabilities.*;

(20) import plans.*;

(21) import events.*;

(22) import data.*;

(23) public agent o%¼ ððAgentÞargumentÞ:getNameðÞ%4extendsAgent

Fig. 12. The robot’s states.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173 169
In order to achieve a successful tracking of an object (state
following), the images are captured, displayed, and analyzed
continuously so that blob information is obtained. The object is
followed until this tracking phase finishes. The condition is
satisfied by three different reasons: (1) the guard has decided
not to continue following the target (Follow stop_P); (2) the target
is out of the field of view (Following fault); or (3) it is impossible to
follow the target (Physical inaccessibility) because there is some
physical obstacle in the environment (for example, the object
goes upstairs). In these cases, the robot starts wandering again.

The next three subsections are structured according to the
three steps shown at the bottom of Fig. 1. Firstly, a Prometheus
model is specified by using the developed graphical Prometheus
Editor (see Section 5.1). Afterwards, intermediate code is auto-
matically generated (see Section 5.2). Finally, the implementation
is completed (see Section 5.3).

5.1. Step 1: Prometheus model

Using as input the above problem description, a MAS is defined
using the developed Prometheus Editor. Firstly, the agents and
goals of the proposed surveillance system are specified. As Fig. 13
shows, Camera, Wheels, Bumper and Sonar agents pursue to satisfy
the goal of capturing an image, moving a robot, controlling
collisions and avoiding obstacles, respectively. All these agents
are identified to control each one of the physical sensors in the
surveillance system. In addition, other agents and their corre-
sponding goals are specified to control the previous ones. Speci-
fically, as illustrated in Fig. 13, ImageManager is responsible for
goals related to managing the images sent by the Camera agent
(analyze images, get blob information and show field of view),

Fig. 13. What the Prometheus Graphical Editor looks like while it shows the (part of) Prometheus model for the surveillance system.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173170
whereas MotionManager is responsible for those goals related to
control the robot movement according to its actual state (wander,
follow object and finish following). Finally, a Central agent
pursues to control the interaction with the user of the application.
Therefore, it is responsible for satisfying goals of starting the
system and managing the commands issued by the guard. In
short, there are seven agent instances for each robot that patrols
the environment.

In addition, interactions between the system and the environ-
ment are described. On the one hand, the information that comes
into the system from the environment is identified (percepts).
It corresponds to impacts detected by the bumper device
(Collision_P), images captured by the camera (Image_P), distance to
obstacles/targets perceived by the sonar (Distance_P), time per-
cept issued by a timer (Timer_P), and orders issued by the guard to
start the system (StartSystem_P) and to control the change of the
system state (Detect_P, Follow_P, FollowStop_P). On the other
hand, every output produced by the system and observable by
an external observer is also identified (actions). It corresponds to
the camera movements carried out based on the tilt, pan and
zoom parameters provided (SetCameraFocus_a), commands to
control wheel motion (SetDirection_a, Stop_a, Move_a), and an
action ShowImages_a to show the images captured. ShowRsults_a

also highlights with a square the image regions where movement
has been detected.

Once the agents, goals and interaction with the environment
are specified, the interaction among these agents are defined. In
short, the proposed MAS (see Fig. 13) presents a hierarchical
communication among agents that allows achieving the global
goal: the surveillance of the environment. As can be observed,
Central sends messages to Motion Manager and Image Manager

depending on the robot’s state. The Motion Manager sends mes-
sages to the Camera and Wheels agents to move the robot’s mobile
components. Moreover, it receives messages from the Bumper and
Sonar agents containing the collected information. Finally, the
Image Manager receives messages from the Camera agent with
the captured images to show them or to detect motion.

To complete the specification of the Prometheus Model of the
surveillance system, the planning of the agents is specified. For
instance, the Follow_p and Wandering_p plans are specified for the
Motion Manager agent (see Fig. 13) in order to establish the
procedures used by the robot when it follows an object and
wanders around the environment, respectively. The Follow_p plan
is triggered due to three different reasons:
(1)
 The Motion Manager agent sends to itself a Follow_M message
that contains ‘‘continue follow’’ to continue the following process.
(2)
 The Central agent sends to the Motion Manager agent a
Follow_M message that contains ‘‘start follow’’ to start the
following process.
(3)
 The Central sends to the Motion Manager agent a message
Follow_M with information ‘‘stop follow’’ to stop the following

process.
5.2. Step 2: intermediate code

Once the Prometheus model of the surveillance system is
defined, the tool proposed in this paper is used to generate code,
according to the process depicted in Fig. 14. The process can be
summarized as follows. The JackCodeGenerator class is executed
to generate a JACK skeleton code. The Prometheus model and the
JET templates (see Fig. 11) are used as input. This automatically
generates a JACK folder that includes several subfolders (agents,
capabilities, data, events, plans). The agent sub-folder contains a
file ‘‘.agent’’ for each agent entity included in the model. The
filename is the name of the agent in the Prometheus model. The
same is applicable to capabilities, data, messages and plan entities
created from the model.

5.3. Step 3: final code

As shown in Fig. 14, the JACK Development Environment (JDE)
tool is used to import the intermediate code generated by the
proposed tool. Then, the imported skeleton code is completed and
some new java classes are created (e.g. to set up graphical user
interfaces, to create instances of agents, and so on). For example,
Fig. 15(a) shows the JACK skeleton code related to the Follow_M

message entity. Also, the final code for Follow_M is depicted in
Fig. 15(b). Notice that a more descriptive name (methodName is
always set by default) is provided for the posting method. More-
over, a variable is declared to put the contained information into
the message. Finally, all this code is compiled so that the
application can be run.

Fig. 14. Code generation process.

Fig. 15. Follow_M message. (a) JACK skeleton code. (b) Final code.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173 171
6. Conclusions and future work

The introduction of MDE in the software development process
is being more and more embraced by both academics and
practitioners. The main reason is the benefit provided in terms
of productivity, portability, inter-operability and maintenance.
Taking account of the importance of these quality requirements
for any developed system, we believe that MAS can also take
advantage of MDE to improve the quality of their development.
The concept of model is already present in most of the agent
methodologies. Therefore, the use of MDE techniques for agent-
oriented software development (AOSD) emerges in a natural way.
Indeed, we are not introducing new concepts, but we offer new
technological solutions for supporting the existing concepts.
Moreover, although the learning curve of MDE tools for AOSD
can be steep at first, it is offset by the benefits that they provide in
terms of quality of the developed products.

With this idea in mind, this paper has shown how to build a
tool for developing MAS through exploiting MDE techniques.
Specifically, a Model Editor that provides support to an AOSD
methodology named Prometheus has been developed. The Model
Editor is fully integrated in Eclipse; this way, it uses the facilities
provided by model-based development technologies. As stated,
the functionality offered by the proposed tool is not totally new.
Indeed, the definition of models according to the Prometheus
methodology and the generation of code in JACK are also provided
by PDT. However, the tool exploits important meta-modeling
techniques. For instance, it is able to build the complete modeling
environment. It allows us to modify the modeling environment in
a very easy manner, just by changing the meta-model. Also, one of
the main functionalities of the proposed Model Editor is the
generation of code by means of templates. This facility helps to
generate applications in an automatic way.

In addition, the Model Editor has been validated in the context
of several real-world projects which focus on multi-robot multi-
sensory surveillance systems. Only a partial description of the
system has been sketched in this paper due to space limitations.
However, the work has shown that the use of MDE improves the
development process of multi-agent surveillance systems. For
example, the specification of the model created by using the
developed editor is not tied to any specific agent implementation
language. In this work, templates have been created to automa-
tically generate code in JACK language, which uses the BDI model
to represent the internal structure of its agents. However, it is
feasible to create new templates for generating code in other
languages (e.g. Jadex and Jason) that also support the BDI agent
architecture. Thus, code may be generated in different languages
with a same specification. In short, the use of MDE techniques
allow us to face up technological changes more easily.

One of our future works is related to the improvement of the
proper Model Editor. As stated in Section 4, Prometheus uses
several kinds of sub-meta-models to provide complementary
views of the system. These sub-meta-models make up the

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173172
Prometheus meta-model. Currently, the Model Editor provides
only one view to specify the Prometheus meta-model. This way
its usability is reduced. That is why we are working on the
implementation of several kinds of views according to the
different perspectives of the Prometheus meta-model.
Acknowledgments

This work is partially supported by the Spanish Ministerio de
Ciencia e Innovación through the TIN2010-20845-C03-01 and
CENIT A-78423480 grants, and by the Junta de Comunidades de
Castilla-La Mancha through the PII2I09-0069-0994 and PEII09-
0054-9581 grants.

References

Agent Oriented Software Pty. Ltd., 2008. JACK Intelligent Agents Development
Environment Manual. Available at /http://www.aosgrp.com/documentation/
jack/JDE_Manual_WEBS.

Bauer, B., Müller, J.P., Odell, J., 2001. Agent UML: a formalism for specifying
multiagent software systems. Int. J. Software Eng. Knowl. Eng. (IJSEKE) 11 (3),
207–230.

Bauer, B., 2001. UML class diagrams revisited in the context of agent-based
systems. Agent-Oriented Software Engineering II. Lecture Notes in Computer
Science, vol. 2222; 2001, pp. 101–118.

Bauer, B., Odell, J., 2005. UML 2.0 and agents: how to build agent-based systems
with the new UML standard. Eng. Appl. Artif. Intell. 18, 141–157.

Bellifemine, F., Caire, G., Greenwood, D., 2007. Developing Multi-Agent Systems
with JADE. John Wiley and Sons.

Bernon, C., Greizes, M.P., Peyruqueou, S., Picard, G., 2003. ADELFE, a methodology
for adaptive multi-agent systems engineering. In: Third International Work-
shop Engineering Societies in the Agents World (ESAW), Lecture Notes in
Artificial Intelligence, vol. 2577, pp. 156–169.

Bordini, R.H., Dastani, M., Winikoff, M., 2007. Current issues in multi-agent
systems development. In: 7th Annual International Workshop on Engineering
Societies in the Agents World. Lecture Notes in Artificial Intelligence, vol.
4457, pp. 38–61.

Bordini, R.H., Hübner, J.F., Wooldridge, M., 2007. Programming Multi-agent
Systems in AgentSpeak using Jason. John Wiley and Sons.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A., 2004. Tropos: an
agent-oriented software development methodology. Autonomous Agents
Multi-Agent Syst. 8, 203–236.

Caire, G., Porta, M., Quarantotto, E., Sacchi, G., 2008. Wolf—an Eclipse plug-in for
WADE. In: Proceedings of 17th IEEE Workshops on Enabling Technologies
Infrastructure for Collaborative Enterprises (WETICE), pp. 26–32.

Caire, G., Quarantotto, E., Sacchi, G., 2009. WADE: an open source platform for
workflows and agents. In: Proceedings of the Second Multi-Agent Logics,
Languages, and Organisations Federated Workshops, pp. 69–72.

Cervenka, R., Trencansky, I., 2007. The Agent Modeling Language—AML: A
Comprehensive Approach to Modeling Multi-Agent Systems. Whitestein Series
in Software Agent Technologies and Autonomic Computing.

Dam, K.H., Winikoff, M., Padgham, L., 2006. An agent-oriented approach to change
propagation in software evolution. In: Proceedings of the Australian Software
Engineering Conference (ASWEC)IEEE Computer Society, pp. 309–318.

Dastani, M., Hulstijn, J., Dignum, F., Meyer, J., 2004. Issues in multiagent system
development. In: Third International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’04), pp. 922–929.

Delgado, A.E., López, M.T., Fernández-Caballero, A., 2010. Real-time motion
detection by lateral inhibition in accumulative computation. Eng. Appl. Artif.
Intell. 23 (1), 129–139.

Deloach, S., Wood, M., Sparkman, C., 2001. Multiagent system engineering. Int. J.
Software Eng. Knowl. Eng. 11 (3), 231–258.

Enterprise Architect. /http://www.sparxsystems.com.au/S. Last visited October
2010.

Fernández-Caballero, A., Castillo, J.C., Martı́nez-Cantos, J., Martı́nez-Tomás, R.,
2010. Optical flow or image subtraction in human detection from infrared
camera on mobile robot. Robot. Autonomous Syst. 58 (12), 1273–1281.

Fernández-Caballero, A., Gascueña, J.M., 2010. Developing multi-agent systems
through integrating Prometheus, INGENIAS and ICARO-T. Agents and Artificial
Intelligence. International Conference, ICAART 2009 67, 219–232 (Revised
Selected Papers. Communications in Computer and Information Science).

Fuentes-Fernández, R., Garcı́a-Magariño, I., Gómez-Rodrı́guez, A.M., González-
Moreno, J.C., 2010. A technique for defining agent-oriented engineering
processes with tool support. Eng. Appl. Artif. Intell. 23 (3), 432–444.

Garcı́a-Magariño, I., Fuentes-Fernández, R., Gómez-Sanz, J.J., 2009. Guideline for
the definition of EMF meta-models using an entity-relationship approach. Inf.
Software Technol. 51 (8), 1217–1230.

Gascueña, J.M., Fernández-Caballero, A., 2011. On the use of agent technology in
intelligent, multi-sensory and distributed surveillance. Knowledge Eng. Rev.
26 (2), 191–208.
Gascueña, J.M., Fernández-Caballero, A., 2011. Agent-oriented modeling and
development of a person-following mobile robot. Expert Syst. Appl. 38 (4),
4280–4290.

Gasevic, D., Djuric, D., Devedzic, V., 2009. Model Driven Engineering and Ontology
Development, 2nd ed. Springer-Verlag.

Georgeff, M.P., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M., 1998. The belief-
desire-intention model of agency. In: Intelligent Agents V, Agent Theories,
Architectures, and Languages, 5th International Workshop, pp. 1–10.

Gómez-Sanz, J.J., Fuentes, R., Pavón, J., Garcı́a-Magariño, I., 2008. INGENIAS
development kit: a visual multi-agent system development environment. In:
Proceedings of 7th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1675–1676.

Gronback, R.C., 2009. Eclipse Modeling Project, A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley.

Hahn, C., Madrigal-Mora, C., Fischer, K., 2009. A platform-independent meta-
model for multiagent systems. Autonomous Agents Multi-Agent Syst. 18 (2),
239–266.

Henderson-Sellers, B., Giorgini, P., 2005. Agent-Oriented Methodologies. Idea
Group.

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The Unified Software Development
Process. Addison-Wesley.

Jennings, N.R., Varga, L.Z., Aarnts, R.P., Fuchs, J., Skarekc, P., 1993. Transforming
standalone expert systems into a community of cooperating agents. Eng. Appl.
Artif. Intell. 6 (4), 317–331.

Jha, S., Massan, M., 2002. Building agents for rule-based intrusion detection
system. Comput. Commun. 25, 1366–1373.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., 2008. ATL: a model transformation
tool. Sci. Comput. Programming 72, 31–39.

Karageorgos, A., Mehandjiev, N., Weichhart, G., Hämmerle, A., 2003. Agent-based
optimisation of logistics and production planning. Eng. Appl. Artif. Intell.
16 (4), 335–348.

Kelly, S., Lyytinen, K., Rossi, M., 1996. MetaEditþ A fully configurable multi-user
and multi-tool CASE and CAME environment. In: Advanced Informa-
tion Systems Engineering. Lecture Notes in Computer Science, vol. 1080.
pp. 1–21.

Kleppe, A., Warmer, J., Bast, W., 2003. MDA Explained: The Model Driven
Architecture TM: Practice and Promise. Addison-Wesley.

Leit~ao, P., 2009. Agent-based distributed manufacturing control: a state-of-the-art
survey. Eng. Appl. Artif. Intell. 22 (7), 979–991.

Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B., 2009. Linking model-driven
development and software architecture: a case study. IEEE Trans. Software
Eng. 35 (1), 83–93.

Molesini, A., 2008. Meta-models Environment and Layers: Agent-oriented Engi-
neering of Complex Systems. Ph.D. Thesis, Alma Mater Studiorum-Universit�a
di Bologna.

Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.,
2010. Video sequence motion tracking by fuzzification techniques. Appl. Soft
Comput. 10 (1), 318–331.

Oldevik, J., 2009. MOFScript User Guide. Available in /http://www.eclipse.org/
gmt/mofscript/doc/S.

Object Management Group, 2002. Meta object facility (MOF) specification—ver-
sion 1.4, April 2002. Available in /http://www.omg.org/spec/MOF/1.4/S.

Padgham, L., Winikoff, M., 2004. Developing Intelligent Agents Systems: A
Practical Guide. John Wiley and Sons.

Padgham, L., Thangarajah, J., Winikoff, M., 2008. Prometheus design tool.
In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence,
pp. 1882–1883.

Pavón, J., Gómez-Sanz, J.J., Fuentes, R., 2006. Model driven development of multi-
agent systems. In: Model Driven Architecture—Foundations and Applications,
Lecture Notes in Computer Science, vol. 4066, pp. 284–298.

Pavón, J., Gómez-Sanz, J.J., Fernández-Caballero, A., Valencia-Jiménez, J.J., 2007.
Development of intelligent multi-sensor surveillance systems with agents.
Robotics Autonomous Syst. 55 (12), 892–903.

Pokahr, A., Braubach, L., Lamersdorf, W., 2005. Jadex: a BDI reasoning engine. In:
Multi-Agent Programming Languages, Platforms Applications, pp. 149–174.

Posadas, J.L., Poza, J.L., Simó, J.E., Benet, G., Blanes, F., 2008. Agent-based
distributed architecture for mobile robot control. Eng. Appl. Artif. Intell. 21
(6), 805–823.

Pressman, R.S., 2010. Software Engineering: A Practitioner’s Approach, 7th ed.
McGraw-Hill.

Rodrı́guez-Seda, E.J., Troy, J.J., Erignac, C.A., Murray, P., Stipanovic, D.M., Spong,
M.W., 2010. Bilateral teleoperation of multiple mobile agents: coordinated
motion and collision avoidance. IEEE Trans. Control Syst. Technol. 99 (1),
984–992.

Ronald, N., Sterling, L., 2005. A BDI approach to agent-based modelling of
pedestrians. In: Proceedings of 19th European Conference on Modelling and
Simulation (ECMS), pp. 169–174.

Rumbaugh, J., Jacobson, I., Booch, G., 2004. The Unified Modeling Language
Reference Manual, 2nd ed. Addison-Wesley.

Smolı́k, P.C., 2006. Mambo Meta-modeling Environment. Doctoral Thesis. Brno
University of Technology, Czech Republic.

StarUML /http://staruml.sourceforge.net/en/S. Last visited October 2010.
Steinberg, D., Budinsky, F., Paternostro, M., Merks, E., 2009. Eclipse Modeling

Framework, 2nd ed. Addison-Wesley.
Vinyals, M., Rodriguez-Aguilar, J.A., Cerquides, J., 2011. A Survey on Sensor

Networks from a Multiagent Perspective. Comput. J. 54 (3), 455–470.

http://www.aosgrp.com/documentation/jack/JDE_Manual_WEB
http://www.aosgrp.com/documentation/jack/JDE_Manual_WEB
http://www.sparxsystems.com.au/
http://www.eclipse.org/gmt/mofscript/doc/
http://www.eclipse.org/gmt/mofscript/doc/
http://www.omg.org/spec/MOF/1.4/
http://staruml.sourceforge.net/en/

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173 173
Vogel, L., 2009. Java Emitter Template (JET)—Tutorial. Available at /http://www.
vogella.de/articles/EclipseJET/article.htmlS.

Warwas, S., Hahn, C., 2009. The DSML4MAS development environment. In:
Proceedings of 8th International Conference on Autonomous Agents and
Multi-Agent Systems, pp. 1379–1380.
Winikoff, M., 2005. JackTM intelligent agents: an industrial strength platform. In:
Multi-Agent Programming Languages, Platforms Applications, pp. 175–193.

Wooldridge, M., Jennings, N.R., Kinny, D., 2000. The Gaia methodology for agent-
oriented analysis and design. J. Autonomous Agents Multi-Agent Syst. 3 (3),
285–312.

http://www.vogella.de/articles/EclipseJET/article.html
http://www.vogella.de/articles/EclipseJET/article.html

	Model-driven engineering techniques for the development of multi-agent systems
	Introduction
	Related works in model-driven engineering for multi-agent systems
	Model-driven engineering in Prometheus methodology
	The Prometheus Model Editor
	Defining the meta-model
	Building the graphical editor
	Generating code

	Case of study: a multi-robot multisensory surveillance system
	Step 1: Prometheus model
	Step 2: intermediate code
	Step 3: final code

	Conclusions and future work
	Acknowledgments
	References

