9 research outputs found

    A prototype fire detection implemented using the Internet of Things and fuzzy logic

    Get PDF
    Dangerous fires often occur because slow fire spots have the potential to become big fires that are difficult to extinguish. An example of this danger are peatlands in Riau, Indonesia. These dangerous conditions can be ameliorated by first detecting them. A device was developed that can detect fire hotspots by using the Internet of Things (IoT) and fuzzy logic. This early prototype fire detection tool could identify hotspots in the peatlands by using fire sensors, temperature sensors, servo motors, buzzers and surveillance cameras controlled by a WEMOS ESP8266 microcontroller and by applying the fuzzy logic method to analyse the intensity of the detected flames. Based on an experiment using the prototype, fire detection devices with an IoT connection can speed up the monitoring of fire hotspots, and the use of fuzzy logic can minimise false warnings from fire detection devices. The prototype could be used as a medium of learning for high school students majoring in computer engineering and networking

    Design patterns for smart home systems development

    Get PDF
    The information technology is increasingly entering the household and allowing the different devices integration into smart home systems. IoT (Internet of things) provides interoperability and the ability to control devices through a global network. The "smart" devices used in the environment shaping for smart home systems utilize large amounts of data that need storage, distribution and computation. There are numerous problems with the processing and security of large data sets. The design patterns can be used to solve the whole variety of emerging issues. The purpose of the report is to identify and classify the design patterns that allow different processes and devices collaboration on smart home systems

    The SKA dish local monitoring and control system user interface

    Get PDF
    The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world's largest radiotelescope ever built: eventually two arrays of radio antennas - SKA1-Mid and SKA1-Low - will be installed in the South Africa's Karoo region and Western Australia's Murchison Shire, each covering a different range of radio frequencies. In particular SKA1-Mid array will comprise 133 15m diameter dish antennas observing in the 350 MHz-14 GHz range, each locally managed by a Local Monitoring and Control (LMC) system and remotely orchestrated by the SKA Telescope Manager (TM) system. Dish LMC will provide a Graphical User Interface (GUI) to be used for monitoring and Dish control in standalone mode for testing, TM simulation, integration, commissioning and maintenance. This paper gives a status update of the LMC GUI design involving users and tasks analysis, system prototyping, interface evaluation, provides details on the GUI prototypes being developed and technological choices and discuss key challenges in the LMC UI architecture, as well as our approaches to addressing them. In the GUI design task we have adopted a Usage-Centered Design (UCD) approach based on the early involvement of users whose feedback is being iteratively considered in analysis phases, as well as in design and evaluation. An IFML based user interaction modeling approach has been adopted

    Model-driven development of user interfaces for IoT systems via domain-specific components and patterns

    Get PDF
    Abstract Internet of Things technologies and applications are evolving and continuously gaining traction in all fields and environments, including homes, cities, services, industry and commercial enterprises. However, still many problems need to be addressed. For instance, the IoT vision is mainly focused on the technological and infrastructure aspect, and on the management and analysis of the huge amount of generated data, while so far the development of front-end and user interfaces for IoT has not played a relevant role in research. On the contrary, user interfaces can play a key role in the acceptance of IoT solutions by final adopters. In this paper we discuss the requirements and usage scenarios covering the front end aspects of IoT systems and we present a model-driven approach to the design of such interfaces by: defining specific components and design patterns using a visual modeling language for IoT applications; describing an implementation of the solution that comprises also automatic code generation from models; and by showing the solution at work

    Model-driven Development of User Interfaces for IoT Systems via Domain-specific Components and Patterns

    No full text
    Internet of Things technologies and applications are evolving and continuously gaining traction in all fields and environments, including homes, cities, services, industry and commercial enterprises. However, still many problems need to be addressed. For instance, the IoT vision is mainly focused on the technological and infrastructure aspect, and on the management and analysis of the huge amount of generated data, while so far the development of front-end and user interfaces for IoT has not played a relevant role in research. On the contrary, user interfaces in the IoT ecosystem they can play a key role in the acceptance of solutions by final adopters. In this paper we present a model-driven approach to the design of IoT interfaces, by defining a specific visual design language and design patterns for IoT applications, and we show them at work. The language we propose is defined as an extension of the OMG standard language called IFML

    Model-driven round-trip engineering of REST APIs

    Get PDF
    Les API web s'han convertit cada vegada més en un actiu clau per a les empreses, que n'han promogut la implementació i la integració en les seves activitats quotidianes. A la pràctica, la majoria d'aquestes API web són "REST-like", que significa que s'adhereixen parcialment a l'estil arquitectònic conegut com transferència d'estat representacional ('representational state transfer', REST en anglés). De fet, REST és un paradigma de disseny i no proposa cap estàndard. Com a conseqüència, tant desenvolupar com consumir API REST són tasques difícils i costoses per als proveïdors i clients de l'API. L'objectiu d'aquesta tesi és facilitar el disseny, la implementació, la composició i el consum de les API REST, basant-se en tècniques d'enginyeria dirigida per models ('model-driven engineering', MDE en anglés). Aquesta tesi proposa les contribucions següents: EMF-REST, APIDiscoverer, APITester, APIGenerator, i APIComposer. Aquestes contribucions constitueixen un ecosistema que avança l'estat de la qüestió al camp de l'enginyeria de programari automàtica per al desenvolupament i el consum de les API REST.Las API Web se han convertido en una pieza fundamental para un gran número de compañías, que han promovido su implementación e integración en las actividades cotidianas del negocio. En la práctica, estas API Web son "REST-like", lo que significa que se adhieren parcialmente al estilo arquitectónico conocido como transferencia de estado representacional ('representational state transfer', REST en inglés). De hecho, REST es un paradigma de diseño y no propone ningún estándar. Por ello, tanto el desarrollo como el consumo de API REST son tareas difíciles y que demandan mucho tiempo de los proveedores y los clientes de API. El objetivo de esta tesis es facilitar el diseño, la implementación, la composición y el consumo de API REST, apoyándose en el desarrollo de software dirigido por modelos (DSDM). Esta tesis propone las siguientes contribuciones: EMF-REST, APIDiscoverer, APITester, APIGenerator y APIComposer. Estas contribuciones constituyen un ecosistema que avanza el estado de la cuestión en el área de la ingeniería del software referida a la automatización de las tareas relacionadas con el desarrollo y consumo de API REST.Web APIs have become an increasingly key asset for businesses, and their implementation and integration in companies' daily activities has thus been on the rise. In practice, most of these Web APIs are "REST-like", meaning that they adhere partially to the Representational State Transfer (REST) architectural style. In fact, REST is a design paradigm and does not propose any standard, so developing and consuming REST APIs end up being challenging and time-consuming tasks for API providers and clients. Therefore, the aim of this thesis is to facilitate the design, implementation, composition and consumption of REST APIs by relying on Model-Driven Engineering (MDE). Likewise, it offers the following contributions: EMF-REST, APIDiscoverer, APITester, APIGenerator and APIComposer. Together, these contributions make up an ecosystem which advances the state of the art of automated software engineering for REST APIs
    corecore