
Journal of Internet Services
and Applications

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14
DOI 10.1186/s13174-017-0064-1

RESEARCH Open Access

Model-driven development of user
interfaces for IoT systems via domain-specific
components and patterns
Marco Brambilla1 *, Eric Umuhoza1 and Roberto Acerbis2

Abstract

Internet of Things technologies and applications are evolving and continuously gaining traction in all fields and
environments, including homes, cities, services, industry and commercial enterprises. However, still many problems
need to be addressed. For instance, the IoT vision is mainly focused on the technological and infrastructure aspect,
and on the management and analysis of the huge amount of generated data, while so far the development of
front-end and user interfaces for IoT has not played a relevant role in research. On the contrary, user interfaces can
play a key role in the acceptance of IoT solutions by final adopters. In this paper we discuss the requirements and
usage scenarios covering the front end aspects of IoT systems and we present a model-driven approach to the design
of such interfaces by: defining specific components and design patterns using a visual modeling language for IoT
applications; describing an implementation of the solution that comprises also automatic code generation from
models; and by showing the solution at work.

Keywords: Internet of things, Model-driven development, User interaction, Design pattern, Mobile applications,
Modeling, User experience, Software engineering, IFML

1 Introduction
User interaction plays a crucial role in a large class of soft-
ware and systems. This is true also for the Internet of
Things (IoT) systems, although this aspect has been fre-
quently neglected. Indeed, the current IoT vision is mainly
focused on the technological and infrastructural aspect,
and on the management and analysis of the huge amount
of generated data [1–3]. So far, the development of the
front-end of IoT applications and user interfaces for IoT
has been covered by a very limited set of research [4–6].
On the other side, a lot of research has been focusing on
scenarios related to industrial use of IoT (IIoT) [7, 8],
and machine-to-machine (or sensor-to-sensor) commu-
nication [9–11]. Initiatives like the Industrial Internet
Consortium (IIC)1 demonstrate this trend and the grow-
ing awareness of the importance of this within the com-
panies. However, IoT has gone far beyond the industrial
plant context: IoT is (and will more and more be) a part of

*Correspondence: marco.brambilla@polimi.it
1Politecnico di Milano. Dipartimento di Elettronica, Informazione e
Bioingegneria, Piazza L. Da Vinci 32, 20133 Milan, Italy
Full list of author information is available at the end of the article

the everyday life of consumers too. Therefore, exactly as
it has happened in other fields like the Web, mobile and
wearable, user interfaces in the IoT ecosystem will play
more and more a key role in the end user acceptance.
Indeed, the intelligent things connected together by the

IoT paradigm can cooperate and exchange information,
but their ultimate goal is to provide value to the peo-
ple. Such value can be perceived only through appropri-
ate user interfaces, which visualize information (through
dashboard, reports, or infographics), let user navigate the
information, and also interact with the devices, by setting
properties or regulating their behavior.
In this paper we propose a model-driven approach to

the design of user interfaces of IoT systems, by defin-
ing IoT-specific UI components and design patterns. In
particular, we focus on the following research questions,
phrased as research objectives:

• RQ1: Define the main domain-specific concepts for
IoT and the typical use cases;

• RQ2: Define a (visual) modeling language for the
development of the user interaction aspects of IoT
applications;

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0064-1&domain=pdf
http://orcid.org/0000-0002-8753-2434
http://orcid.org/0000-0002-2451-8897
mailto: marco.brambilla@polimi.it
http://creativecommons.org/licenses/by/4.0/

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 2 of 21

• RQ3: Define a set of design practices that increase
productivity and simplifies the design of IoT front-
ends;

• RQ4: Implement model-driven tools covering the
design, deployment, and execution phases of IoT
applications.

In the rest of the paper we address these questions by
defining solutions and demonstrating the feasibility of the
proposed approaches with examples and use cases. In
particular, the solutions we propose focus on extending
the standard IFML language adopted by the Object Man-
agement Group (OMG) [12], together with methodolog-
ical guidelines and tool support for implementation. The
research has therefore addressed the following aspects:
1. Study of the IoT domain, adoption and its current

applications (responding to RQ1);
2. Extraction of common use cases for the IoT (respond-

ing to RQ1). The use cases identified during this
phase include: device management, device discovery
(or search), interaction with devices, and information
collection from devices;

3. Definition of a set of new IFML components allowing
the modeling of the IoT user interactions (responding
to RQ2);

4. Definition of a set of reusable design patterns
(responding to RQ3);

5. Implementation of the proposed solution as an IoT
management platform, design tools, and code gener-
ators (responding to RQ4).

The paper is organized as follows: Section 2 discusses
the background on IFML language; Section 3 shows the
common use cases of the IoT systems; Section 4 presents
our extensions to IFML tailored to IoT-based applica-
tions; Section 5 introduces design patterns for the mod-
eling of the user interactions with IoT systems; Section 6
shows an example; Section 7 summarizes our implemen-
tation; Section 8 describes three industrial cases where
the approach has been applied and validate the advantages
of the solution; Section 9 reviews the related work; and
Section 10 concludes.

2 Background on IFML
The Interaction Flow Modeling Language (IFML) is
designed for expressing the content, user interaction and
control behavior of the front-end of software applications.
Its metamodel uses the basic data types from the UML
metamodel, specializes a number of UML metaclasses as
the basis for IFML metaclasses, and presumes that the
IFML Domain Model is represented in UML.
An IFML model supports the following design perspec-

tives: (i) The view structure specification, which consists
of the definition of view containers, their nesting rela-
tionships, their visibility, and their reachability; (ii) The
view content specification, which consists of the definition

of ViewComponents, i.e., content and data entry ele-
ments contained within ViewContainers; (iii) The
events specification, which consists of the definition of
Events that may affect the state of the user interface.
Events can be produced by the user’s interaction, by
the application, or by an external system; (iv) The event
transition specification, which consists of the definition
of the effect of an Event on the user interface; (v)
The parameter binding specification, which consists of
the definition of the input-output dependencies between
ViewComponents and between ViewComponents
and Actions; and (vi) The reference to Actions trig-
gered by the user’s events. The effect of an Event
is represented by an InteractionFlow connection,
which connects the event to the ViewContainer
or ViewComponent affected by the Event. The
InteractionFlow expresses a change of state of the
user interface: the occurrence of the event causes a transi-
tion of state that produces a change in the user interface.
Figure 1 shows a simple example of IFML model,

describing a user interface where the user can search for
a product by entering some search criteria in the Product
Search Form. The model consists of a ViewContainer
Products (describing a screen or Web page) which con-
tains two ViewComponents (visual widgets positioned
in the screen), namely the Product Search Form, where
the user can enter the search criteria, and the ProductRe-
sultList List, which displays the search results. Further-
more, a Product Deletion Action can be triggered when
the user selects the Delete Event associated to Produc-
tResultList. This example model conforms to the IFML
metamodel, an excerpt of which is shown in Fig. 2.

2.1 Mobile IFML
Front-end design is a more complex task in mobile appli-
cations due mainly to: (i) the smallness of the screens of
mobile devices. This constraint requires an extra effort
in interaction design at the purpose of exploiting at the
best the limited space available; (ii) Mobile apps interact
with other software and hardware features installed on the
device they are running on; and (iii) the user interaction
which is basically done by performing precise gestures
on the screen or by interacting with other sensors. These
interactions often depend on the device, the operating
system and the application itself. This section presents
a mobile extension of IFML designed for expressing the
content, user interaction, and control behaviour of the
front-end of mobile applications [13]. An excerpt of those
extensions, along with the IoT extensions presented in
Section 4, is depicted in Fig. 3.

2.1.1 Containers and components
This section presents the concepts added to IFML in order
tomodel the containers and components that characterize

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 3 of 21

Fig. 1 IFML example: product search, listing and deletion. Themodel consists of a ViewContainer Productswhichcontains twoViewComponents
(Product Search form and ProductResultList list); and Product Deletion Action triggered once the user selects the Delete Event associated to
ProductResultList

the mobile context. A new class called Screen has been
defined to represent the screen of a mobile application.
Since the screen is the main container of a mobile appli-
cation, it extends the core class ViewContainer of the
IFML standard. The class ToolBar represents a partic-
ular sub-container of the screen. It may contain other
containers and may have on its boundary a list of events.
It extends the core class ViewContainer of the IFML
standard.
The class MobileComponent denotes the particu-

lar mobile view component such as button, image, and
icon. A MobileComponent is subject to user events,
described next.

A characteristic trait of mobile interfaces is the uti-
lization of predefined ViewContainers devoted to
specific functionalities that are provided at the oper-
ating system (including Notifications area and Settings
panel). These system level containers provide econ-
omy of space and enforce a consistent usage of com-
mon features. The MobileSystem stereotype has been
defined to distinguish these special ViewContainers.
A ViewContainer stereotyped as MobileSystem
denotes a fixed region of the interface, managed by mobile
operating system or by another interface framework in
a cross-application way. The MobileSystem stereotype
can be applied also to A ViewComponents to highlight

Fig. 2 IFML Metamodel excerpt showing the interaction flow elements of the language

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 4 of 21

Fig. 3Metamodel representing the Mobile and IoT extensions of IFML

that the interface uses the components of the system (as
shown in Fig. 5).

2.1.2 Mobile context
The context is a runtime aspect of the system that deter-
mines how the user interface should be configured and
the content that it may display. The context assumes a
particular relevance in mobile applications, which must
exploit all the available information to deliver the most
efficient interface. Therefore, the context must gather all
the dimensions that characterize the user’s intent, the
capacity of the access device and of the communication
network, and the environment surrounding the user. A
new class MobileContext extending the Context has
been defined to express the mobile contextual features.

2.1.3 Events
In this section we describe the new event types that
are defined within IFML for the mobile context. A
new class MobileUserEvent allowing the model-
ing of the mobile user events have been defined.
MobileUserEvent extends ViewElementEvent of
the IFML. The MobileUserEvent is further extended
to model the specific mobile user events. Its specific
extensions include: DragDrop, DoubleTap, Touch,
and LongPress. Each of them represents an event
related to the gesture which triggers it.
The screens in Fig. 4a show an example of the usage

of the LongPress gesture allowing the user to manage
the selected list. Figure 4b shows a fragment of IFML
model for lists management. When a user performs the
LongPress gesture on one element of the list, a pop up
containing information of the selected element is shown
allowing her to edit or delete the list.
A new class MobileSystemEvent has been

defined to express the mobile system events. It extends
SystemEvent of the IFML. The following classes extend
MobileSystemEvent for specific system events:

• SensorEvent, defining events related to the sensors
of the device;

• BatteryEvent, describing the events related to the
state of the battery;

• NotificationEvent, grouping the events related
to the generic notifications handled by the operating
system;

• StorageEvent, describing the events related to the
archiving capacity; and

• ConnectionEvent, describing the events related
to the connection state of the device.

MobileActionEvent class has been defined to
model the events triggered by a mobile action. Among
mobile actions, we have actions related to the photo
camera such as the Shoot action and actions related to
microphone. Figure 5 shows example of such events.
A user takes a photo with the device’s photo cam-
era and the application displays the product corre-
sponding to the taken photo if any. Once the photo
is available, a screen asking the user if he wants
to use or retake the photo is displayed. The photo
available CameraActionEvent is associated to the
CameraAction shoot.

3 Use cases
In this section we present the main use cases we identi-
fied for the IoT applications. Before proceeding with the
use case specifications, we provide a quick summary of the
IoT terminology used in the paper. In particular, we will
make use of the following IoT concepts:

• Device or Thing: It denotes all types of devices which
can generate information (about physical event or
state) and initiate, modify, or maintain those events or
states; or that can perform actions.

• Category: The IoT devices can be grouped into differ-
ent categories based on some criterion such as type,
features, and geographical location.

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 5 of 21

a

b

Fig. 4 Example of LongPress event used to display options of a pressed list: a the user interface representing the performed gesture; b the
corresponding IFML model

• Terminal: A terminal is any device which can run
an IoT application with a user interface which can
control other devices through the network.

• Communication: The devices can communicate in
different ways and can be connected with terminals
and external systems. Several communication proto-
cols for the IoT have been proposed around the IEEE
802.15.X standard.

• External System: With external system we refer to
all the systems connected to a network in which the
information of devices and terminals can be stored,
processed and retrieved. Examples of the external

systems include enterprise management systems such
as customer relationship management (CRM) and
enterprise resource planning (ERP).

• Intermediary: It represents any device or system
which acts as a gateway between the IoT device and
the terminal in an indirect communication.

The use cases we identified for the IoT applications
are based on our industrial experiences as well as on an
extensive investigation on IoT applications available on
the market and what is expected to be the user inter-
face of the IoT applications in different areas of their
application.

Fig. 5 Example of usage of MobileAction(Shoot), MobileActionEvent(Photo available) andMobileSystem stereotype

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 6 of 21

In particular, we rely on direct experience on scenarios
in the fields of building monitoring (with sensors and
actuators controlling the status of large venues used for
public events), smart cities (covering the needs of mon-
itoring people flow including pedestrians and vehicles,
parking availability and public transportation), market-
ing and sales monitoring (for controlling interactions with
store windows and artifacts), and massive sensor deploy-
ment on commercial goods for adaptive maintenance
(large appliances). Furthermore, we investigated the pos-
sible uses of IoT equipped products for the consumer
market, produced by famous vendors (Philips, bTicino,
Vimar, and others). Out of this analysis we derived a set
of abstract use cases that cover all these scenarios. We
present those use cases using the following schema: for
each use case we provide a description, primary actor, and
main tasks. The detailed list of use cases is reported in
Table 1.
The user of the IoT application could have differ-

ent roles, defined as a set of allowed actions. The
main roles are: Administrator, the user who has access
rights to the whole system, including the external sys-
tems; Performer, the user who can manage and inter-
act with the devices of the local network; and Viewer,
the user who can display the information of the devices
or the information about the environment monitored
by those devices. The use cases reported in Table 1
essentially cover device and user management, IoT
devices usage, and data management. The identified use
cases are: Configure Access and Permission, Manage
Devices, Interact with Devices, Manage Wait for Signal,
Search Devices, Manage Notifications, Get Information
from Devices, Visualize Information, Share Information,
Store Information, Retrieve Stored Information. Their
detailed characterization reported in Table 1 responds
to RQ1.

4 Modeling language for IoT
In this section we address the specification of a domain-
specific language for IoT UI design, thus responding to
RQ2. The interactions between the user and the IoT sys-
tems, as shown in Fig. 6, can be logically divided in
two phases: (i) User � Terminal communication. This
phase represents the interactions between the user and
the terminal used to access the IoT system; and (ii)
Terminal� IoT devices communication. This phase rep-
resents the interactions between the terminal and the
IoT devices. The first phase can be modeled using the
IFML standard and its extensions, especially the Mobile
IFML (introduced in Section 2.1). This section addresses
the second phase of the interactions with the IoT sys-
tem. It presents the new elements added to the IFML
to model both the events and actions associated to the
IoT devices.

4.1 Content model
This section presents the content model of an IoT system.
The designed model covers use cases presented in

Section 3, with a multi-tenant and enterprise perspective.
Indeed, the use cases described so far represent the per-
spective of a single IoT system. Based on this, we now aim
at a platform that supports multiple IoT systems within
and across enterprises. Therefore, the proposed model
allows to define a unique infrastructure for a multi-tenant
application platform that can serve multiple customers at
the same time.
Figure 7 shows a piece of content model. The model

comprehends the concepts needed for modeling the
application’s users and the structure of an organization
and its customers and the concepts needed to define
IoT services.

• User, it represents the physical user that access the
application. The user can be either a CustomerUser
or a OrganizationUser referring respectively to a cus-
tomer or a company.

• Tenant, this concept defines an access domain for
either an organization or a customer. The Tenant is
characterized by its own configurations and graphi-
cal layout. It is the main partitioning condition for the
data.

• Organization, it describes a company that offers a ser-
vice to the customer. The organization produces and
sells Things managed by the application. The organi-
zation belongs to a tenant or another organization.

• Customer, this concept describes a company that
either bought or uses service from the organization.
The customer has a reference to the organizations
that sold the Things or provides technical assistance.

• Branch, it represents a sub organization unit belong-
ing to a customer.

• Location, it represents a physical location owned by a
Customer. The location is the place where a Thing is
installed (e.g. office, store, and plant).

• Thing, this concept represents a generic object con-
nected to Internet, able to send and receive data. The
characteristics of a thing are defined by the corre-
sponding ThingDefinition and it is bound to a specific
Location.

• ThingDefinition, it represents the definition of a
Thing. It describes the exposed Metrics and the sup-
ported Command.

• Command, it represents an instruction that can be
executed by a Thing. A Command has a name and a
set of CommandParameter characterized by a name
and a type.

• Metric, this concept represents an observable charac-
teristic of a Thing. It can be either a physical measure
(e.g. temperature) or a value of an internal variable
(e.g. number of prints and working hours). A metric

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 7 of 21

Table 1 IoT use cases

Use case Description Actor Main tasks

Configure access
and permissions

Allows the application owner or the adminis-
trator, to set the access rights for users, teams
or roles.

Administrator • Manage users, teams & roles
• Access configuration
• Permission configuration
• Visualize information

Interact with
devices

Allows the user to send a set of operations to
the devices, which are in charge to perform
them.

Administrator
performer
viewer

• Send operations
• Manage routines

Manage
devices

Allows the user tomanage and configure the
devices which belong to the system.

Administrator • Include devices in the system
• Remove devices from system
• Manage categories
• Include devices to categories
• Assign a location

Manage wait
for signal

Allows the user to connect the terminal to
the network and start listening to the devices
of that network.

Administrator
performer
viewer

• Activate wait for signal
• Deactivate wait for signal

Manage
notifications

Allows the user to receive the notifications
coming from different devices directly or
through an external system.

Administrator
performer
viewer

• Visualize notification
• Save notification
• Delete notification

Search
devices

Allows the user to search for devices already
registered to the system, belonging to the
local or to external networks.

Administrator
performer
viewer

• Search a specific device
• Search devices by category
• Search devices by criteria

Store
information

Defines how the system can store the infor-
mation gathered by different devices about
the environment or the state of the devices.

Administrator • Store locally the information
• Store externally the info
• Store in a device the info

Retrieve stored
information

Allows the user to retrieve information
stored in the terminal or in an external sys-
tem.

Administrator
performer
viewer

• Local information retrieval
• External information retrieval

Get information
from devices

Allows the user to request information to the
devices of the network.

Administrator
performer
viewer

• Get information from devices associated to the
application

• Get information from devices associated to the
external system

• Get information from devices of the same
network

Visualize
information

Allow the user to visualize the information
related to or produced by devices in different
ways.

Administrator
performer
viewer

• Display information

Share
information

Allow the user to share information through
a communication channel with other users
or systems.

Administrator
performer
viewer

• Share information

is characterized by a name, a measurement unit, and
a type (e.g. integer, float, and boolean).

• Measure, it represents a value of a metric at a specific
timestamp. A set of measures constitute time series.
Things sendmeasures to the server runtime system at
regular intervals or when particular events occur.

4.2 Interaction model
In this section we present the new components which
allow to refer to the IoT concepts during the model-
ing of the UI for IoT-based applications. Those concepts
include the IoT-specific actions and the events from IoT
devices.

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 8 of 21

Fig. 6 Overview of the user interaction with the IoT Systems through the terminal, consisting in sending commands and requesting or monitoring
data from the IoT devices (possibly through an intermediary)

4.2.1 IoT actions
This category comprehends the components describing
the actions triggered when the user interacts with dif-
ferent IoT devices. Those actions can be grouped into
two categories: Device actions, that represent the actions
sent directly to the devices; and Intermediary actions,
that represent the actions sent to the devices through an
Intermediary (a component that manages the communi-
cation between the user and the devices). Each category
can be further decomposed into two subcategories: Set
and Get actions. Notice that the content model takes
care of defining the concepts related to the data transfer,

through Metric and Measure (which actually contain all
the metadata about data transfer formats, size and so on).

Set actions. This category contains the actions which
permit the user to send to one or more devices, a series
of identifiers of the operations or programs which those
devices have to perform or execute. We assume that the
operations are known a priori by the devices, thus when
we send an identifier of an operation to a given device, the
device knows how to perform the corresponding opera-
tion. The Set operations are mainly used to configure the
devices (e.g.: change the range in which the sensors are

Fig. 7 Content model underlying an IoT system

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 9 of 21

activated) and to perform specific actions such as turn
on and turn off the device. We have defined a new class,
SetAction, that allows the modeling of those actions
(see Fig. 3).

Get actions. The Get actions are mainly used to retrieve
the information from devices, category of devices, a pro-
gram or an operation.We have defined a new class,GetAc-
tion, that allows the modeling of those actions (see Fig. 3).
The class GetAction has been further extended to rep-
resent the specific data to retrieve. Examples of those data
include details and state of the device, information pro-
vided by the device and status of the operation assigned to
the device.

Plan actions. For the previous actions, we assume that
the devices execute specified operations once the user
triggers the action. But there exist other cases in which
the user wants to schedule the execution of a given action
at a specific time. We have defined a specific action,
called PlanAction, to model those operations which
are not executed immediately by the devices but sched-
uled for execution (once or several times) in a subsequent
moment. PlanAction is an asynchronous action that
waits until the time scheduled for the execution of the
operation. It inputs the targeted devices, execution time,
operations, and optionally (for the repeating actions or
operations) the number of repetitions.

4.2.2 IoT events
In this section we describe the new events defined as
IFML extension for the IoT domain. Those events are
grouped in: events from devices, and events associated to
IoT actions.

Events from IoT devices. The IoT devices emit specific
signals containing information about their status or about
what they are monitoring. Those signals are captured by
specific catching events and sent to the users (terminal) in
form of notifications. Those events are grouped into two
categories:
1. Single Information Event. It is an event which captures

every single message from the device it is listening to.
A new class SingleInformationEvent extend-
ing SystemEvent of the IFML standard has been
defined to model those events.

The usage of this event is exemplified in the Fig. 8.
In this example, the information from the device is
shown to the user only once the terminal is con-
nected. To test the connectivity

we use the ActivationExpression, a Boolean
condition which determines whether the associ-
ated ViewElement is active or inactive, associated

to the event. The ActivationExpression Con-
text. ConnectivityType<>“NONE” states that the
SingleInformationEvent will be activated only
when there is a network activated on the terminal.

2. Approaching Event. It is an event allowing to capture
the first signal sent by the device to which is associ-
ated. This event is used when the data transmitted by
the device must be shown to the user only once, i.e.,
each time the device is detected for the first time by
the terminal.

A new class, ApproachingEvent, extending
SystemEvent has been defined to model the
approaching events. The usage of this event is exem-
plified in Fig. 9. In this example, the information
from the device is shown to the user once the user
enters in the coverage area of the device transmitting
via BLUETOOTH. The ActivationExpression
“Context. ConnectivityType = “BLUETOOTH” states
that user receives information from the device only
when the BLUETOOTH connectivity is activated on
his terminal.

Action events. This category groups two types of events:
Timer event, denoting the time on which the associ-
ated action is scheduled for execution; and Repeat event,
specifying the time on which the execution of the asso-
ciated action will be repeated. We have defined a new
class for each type of those events: TimerEvent and
RepeatEvent.

5 Interaction patterns for IoT
In this section, we present the IoT interactions under a
problem-oriented view, with the aim of showcasing some
exemplary and reusable solutions to typical problems,
thus responding to RQ3. We introduce a number of pat-
terns that can be used to tackle typical problems in the
design of the user interactions (UI) with the aim of show-
ing the expressiveness of the designed IoT extensions. We
show the matching between those patterns and the user
interface patterns defined in the context of IFML [14].
We also present a set of alternative data synchronization
patterns which can be relevant to different IoT solutions,
and we analyze their compatibility with the UI patterns
for IoT.

5.1 IoT patterns
TheUI design patterns for the IoT systems can be grouped
into three categories: Set Patterns, Get Patterns, and
Event-based Patterns.

5.1.1 Set patterns
This category regroups patterns that allow the user to
send to the device a set of operations to be executed.

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 10 of 21

Fig. 8 Example of usage of SingleInformationEvent. A notification is shown to the user when the event is activated

Figure 10 exemplifies one pattern of this category, One
Device One Operation, a pattern which allows the user to
set an operation to be executed by one specific device. The
user selects a device of interest from a list of the devices
of the system. Then, he chooses the operation to be per-
formed from a list of operations supported by the selected
device.
Other patterns of this category are:
• One Device More Operations,
• More Devices One Operation,
• More Devices More Operations,
• One Device One Program, and
• One Category More Operations

described in Appendix (Table 6).

5.1.2 Get patterns
This category comprehends interaction patterns allowing
to retrieve information from a device, category, program
or operation. Figure 11 exemplifies one pattern of this cat-
egory, Get Details of a Device, a pattern which allows the
user to retrieve the general information about the device
such as Id, name, description, and model. The user selects
a device he is interested in from a list of devices.
Other patterns of this category are:
• Get State of the Device,
• Get Information from the Device,
• Get Information for One Category,
• Search Device, and
• Nearby Devices

described in Appendix (Table 7).

5.1.3 Event-based patterns
This category regroups patterns triggered by an occur-
rence of a specific events. Figure 12 exemplifies one pat-
tern of this category, Pull Information. This pattern allows
the user to check periodically availability of new data from
devices. To save some resources like power, for the data
that can be delayed for some amount of time without
impacting on the outcome of the application, the user can
decide to activate periodically the listening service and
pull all the information from the devices.
Other patterns of this category are Application Launch

and Push Information, described in Appendix (Table 8).

5.2 User interaction patterns
The work on [14] presents a set of design patterns that
can be used to address typical issues (related to interface
organization, content and navigation) of user interface
modeling in general. We report in Table 2 a subset of
patterns which are relevant, as building blocks, for the
modeling of UI patterns for the IoT systems. Table 3 shows
a matching between those UI patterns with the IoT pat-
terns introduced in Section 5.1. As rows of Table 3, we list
the IoT patterns, while as columns we have generic UI pat-
terns. A checked cell (i×j) means that the jth UI pattern
has been (can be) used to model the ith IoT pattern.
The work on [14] covered also the traditional database

operations of creation, update and deletion of an object of
a given entity—CRUD Patterns. In the IoT context, those
patterns are used to configure an IoT system by adding,
updating or removing an IoT object to the repository of

Fig. 9 Example of usage of ApproachingEvent. The details of a device are displayed to user as notification once he enters into the coverage area of
that device

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 11 of 21

Fig. 10 Example of Set Pattern: One Device One Operation

the system. Those patterns are not explicitly considered
in this section since they regard the static part of the IoT
system.
Permission and Access configuration. Security is a key

issue in IoT systems. In Section 3, we have reported the
common roles in an IoT system. The configuration of per-
mission and access rights is done by using the CRUD
pattens on users, groups and by assigning the access rights
to the group of users. Access control is then managed by
the Login and User management patterns (see Table 2).

5.3 Data synchronization patterns
There are several factors to consider when trying building
a model to describe data alignment. Data synchronization
patterns have been widely studied in computer science.
We report the patterns that can be applied in the context
of IoT-based applications in Table 4, while a synthesis of
the compatibility between those patterns and user inter-
action patterns for the IoT-based applications is reported
in Table 5. The table lists the user interaction patterns for
the IoT-based applications as rows and the data synchro-
nization patterns as columns. A checked cell indicates a
possible match in the adoption of the corresponding pair
of patterns.

6 Example
To demonstrate the effectiveness of the designed exten-
sions and usage of UI design patterns presented in

Fig. 11 Example of Get Pattern: Get Details of a Device

Section 5, we have modeled the interaction of smart-
home, an application that allows a user to interact with
different devices of a smart home system. The example
is inspired by a real world project implemented by our
approach and reported in Section 8.
Figure 13a contains a piece of the user interface of

smart-home application. The UI in Fig. 13a is divided in
three paths: (i) Manage cameras. When the user selects
manage camera from the Home screen, a new screen
Cameras showing a list of available cameras is displayed.
The screen shows real-time images from the selected
camera. The button Details associated to each camera
allows the user to access to the details, state and cur-
rent image, of the selected camera; (ii) Manage Lights.
Once the user selects Manage Lights from the Home
screen, a new screen called Lights is displayed. The screen
Lights, contains a list of available lights with their cur-
rent state (ON or OFF). The user can change the state
of the selected light by pressing on/of button associ-
ated to each light; (iii) Manage Alarms. The path which
allows the user to see the logs of recent alarms. Once the
user selects manage alarm from the home screen, a new
screen Recent Alarms containing a list of the recent alarms
is displayed.
Figure 13c shows the IFML model describing the user

interaction of the piece of smart-home application. The
interaction model is obtained by combining the following
IoT user interaction patterns:

• Get Information from One Category, used to retrieve
the current status of the monitored lights;

• Get State of the Device, used to retrieve the current
state of Camera01;

• Get Information from the Device, used to retrieve
the information about the object monitored (image
displayed on screen of Camera 01);

• One Device One Operation, used for instance to turn
off the Light01;

• Get Details of a Device, used to access the details of
the selected logLine of the alarms.

• Store Information, used to store the new alarm;
• Push Information, used to inform the user about the
new alarm. In the exemplified case, the new alarm
arrived (as a notification message) while the user was
visualizing an updated list of Lights after turning off
the Light01.

7 Implementation
Besides the formal definition of the IoT extensions to the
IFML language and the modeling of UI design patterns for
IoT, our research included the implementation of a plat-
form for the development of mobile and web applications
for interacting with IoT systems, with the aim of respond-
ing to RQ4. This has been achieved in collaboration
with WebRatio2, a company focusing on model-driven

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 12 of 21

Fig. 12 Example of Event-based Pattern: Pull Information

development of UIs and now building a new offer for IoT3.
The platform relies on a single, general-purpose static
data model (introduced in Section 4.1) representing any
infrastructure for managing IoT systems. Our implemen-
tation relied on WebRatio, a development environment
supporting IFML that comprises several modeling per-
spectives and includes a code generation framework that

Table 2 User interaction patterns

Pattern Description

Master details and
multi-details

Present some items and a selection permits
the user to access the details of one
instance at a time.

Multi-level master
details

Also called cascaded index, consists of a
sequence of lists over distinct classes, such
that each List specifies a change of focus
from one object, selected from the index, to
the set of objects related to it via an
association role. In the end, a single object is
shown.

Default selection Simulates a user’s choice at the initial access
of a list, thus selecting a default instance.

Multi-field form Form for submitting information through
several fields.

Preloaded field Variant of Multi-field Form where some
fields are preloaded with existing values.

Pre-assigned
selection field

Form where the value of a selection field is
pre-selected.

Data lookup Useful for data entry task that involves a
complex form with choices among many
options, such as in the case of form filling
with large product catalogs.

Cascade
selection fields

Useful for data entry task that involves
entering a set of selections which have some
kind of dependency between each others.

Basic search Keyword search upon a collection of items.

Location-aware
search

Enables search of items that are related and
close to the current user position.

Login Recognizes and checks for validity a
user-provided identity.

User management Shows and enables editing application-
dependent information associated with the
identity of an authenticated user.

automates the production of the software components in
all the tiers of the application and the connection between
the application and external APIs.
From architectural perspective, we can see the plat-

form as a multitenant stateless server application and a set
of thick client applications. Clients maintain the session
of authenticated users and are responsible for the com-
position of the user graphical interface. No presentation
logic is executed on the server. The backend serves data,
either in pull or push fashion, and executes the business
logic.

7.1 Backend
The back-end architecture is composed by the following
components: Microservices layer and API gateway.

7.1.1 Microservices layer
The microservices layer provides access to the data. A
microservice is a standalone, independently deployable
software system, which provides a specific and atomic
functionality. The micro-services present in our archi-
tecture include: (i) Identity, which provides information
for user management; (ii) Network, which groups the
concepts related with the organizational structure of the
actors; (iii) Inventory, which groups the concepts related
to the definition of things; (iv) Data, which allows clients
to access to the actual value gathered by the IoT sen-
sors; and (v)View, which allowsmanaging all the graphical
resources used by the clients.

7.1.2 API gateway
The API gateway is a component that works as proxy
toward the micro-services. It exposes the micro-services
APIs to the clients.

7.2 Client architecture
The front-end architecture is based on standard Web
technologies and hybrid containers. The clients are thick
stateful applications. After the login, a client saves the
identity of the user and uses it to sign the subsequent
requests. The clients communicate only with the API gate-
way, and never directly with themicro-services. The client
builds dynamically the user interface using the common
resources retrieved by the service (on the proxy) together

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 13 of 21

Ta
b
le

3
Sy
nt
he

si
s
of

U
se
rI
nt
er
ac
tio

n
Pa
tt
er
ns

us
ed

to
m
od

el
Io
T
Pa
tt
er
ns

Io
T
pa

tt
er
ns

U
se
ri
nt
er
ac
tio

n
pa

tt
er
ns

M
as
te
r

de
ta
ils

M
ul
ti-

le
ve
l

m
as
te
r

de
ta
ils

D
ef
au
lt

se
le
ct
io
n

M
ul
ti-

fie
ld

fo
rm

Pr
el
oa
de

d
fie
ld

D
at
a

lo
ok

up
C
as
ca
de

se
le
c-

tio
n

fie
ld
s

Ba
si
c

se
ar
ch

Lo
ca
tio

n-
aw

ar
e

se
ar
ch

Lo
gi
n

U
se
r

pr
of
ile

di
sp
la
y

O
ne

de
vi
ce

on
e
op

er
at
io
n

�
�

�
�

O
ne

de
vi
ce

m
or
e
op

er
at
io
ns

�
�

�
�

M
or
e
de

vi
ce
s
on

e
op

er
at
io
n

�
�

�
�

M
or
e
de

vi
ce
s
m
or
e
op

er
at
io
ns

�
�

�
�

O
ne

de
vi
ce

on
e
pr
og

ra
m

�
�

�

O
ne

ca
te
go

ry
m
or
e
op

er
at
io
ns

�
�

�

G
et

de
ta
ils

of
a
de

vi
ce

�
�

�

G
et

st
at
e
of

th
e
de

vi
ce

�
�

G
et

in
fo
rm

at
io
n
fro

m
th
e
de

vi
ce

�
�

�

G
et

in
fo
rm

at
io
n
fo
ro

ne
ca
te
go

ry
�

�
�

Se
ar
ch

de
vi
ce

�

N
ea
rb
y
de

vi
ce
s

�
�

�

Pu
ll
in
fo
rm

at
io
n

�
�

�
�

�
�

�

A
pp

lic
at
io
n
la
un

ch
�

�
�

�

Pu
ll
in
fo
rm

at
io
n

�
�

�
�

�
�

�

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 14 of 21

Table 4 Data Synchronization Patterns

Pattern Description

Asynchronous data
synchronizations

Managing a data synchronization event
asynchronously and without blocking the user
interface.

Synchronous data
synchronization

Manage a data synchronization event
synchronously; blocking the user interface while it
occurs.

Partial storage Synchronize and store data only as needed to
optimize network bandwidth and storage space
usage.

Complete
storage

Synchronize and store data before it is needed so
the application has better response or loading
time.

Full transfer On a synchronization event, the entire dataset is
transferred between the mobile device and the
remote system.

Timestamp
transfer

On a synchronization event, only the parts of the
dataset changed since the last synchronization are
transferred between the mobile device and the
remote system using a last-changed timestamp.

Mathematical
transfer

On a synchronization event, only the parts of the
dataset changed since the last synchronization are
transferred between the mobile device and the
remote system using a mathematical method.

with the templates specific for things andmetrics, and the
graphic elements owned by the correspondent tenant.
Figure 14 shows an example of an interaction between

the client and the API Gateway in order to perform a
request. Initially the client requests a token by using the
/authenticate endpoint. The API Gateway then queries
the Identity microservice to verify the client credentials
and generate a token. The client saves the token and use
it for the subsequent requests. In the exemplified case,
the client performs a request to retrieve all the Things
belonging to its Customer.
Figure 15 reports a piece of the user interface of a

Web application implemented for supporting a IoT-based
scenario.

8 Experiences and validation
Thanks to the collaboration with the Semioty team
of WebRatio, we had the possibility of validating our
approach around ten real industrial cases. In this section
we report our experience within three of them. They
represent significant real-world cases to which we have
applied our approach, and thus have been useful for vali-
dating our solution too.

8.1 Home automation system
A company specialized in consumer home automa-
tion solutions needed a mobile application for home

automation systems management. The requirements of
the application were:

• monitoring of various home appliances: HVAC (heat-
ing ventilation and air conditioning), lights, security
system (cameras and alarms), watering system, and
environmental sensors;

• visualization of the status of all the appliances and
devices, filter devices, and highlight the active ones;

• Real time notification about consumption and states
of appliances;

• Multi-platform (iOS, Android, and Windows) and
multi-device (Smartphone and Tablet) implementa-
tion. In particular, the Tablet version shall allow the
visualization of the house map with the things in their
respective rooms;

• Remote configuration of the home automation sys-
tem, by sending commands to devices like turning
on/off the lights. The commands can be sent to a
single device or a group of them.

8.2 Smart ovens for bakery industry
A company specialized in manufacturing of ovens for bak-
ery industry, needed a tool allowing the configuration
and monitoring of industrial ovens deployed on their cus-
tomers’ premises. The tool shall provides four different
user interfaces:
1. The Production Dashboard for the final user of

the oven. It shall visualize information related to
the use of the oven. The information to visual-
ize include: cooking sequences in temporal order
and details (dates and times, completion percent-
age, carriage load, calculated energy consumption
and temperature profile) of the cooking in progress
and made. It shall also allow to send recipes to the
oven.

2. The Dashboard for Power Management. It shall visu-
alize the information regarding energy consumption
of the oven, which include: (i) Current and previ-
ous consumption referenced by day, week, month and
year; (ii) Calculation of energy consumption costs
referring to day, week, month and year; and (iii)
Energy consumption and average cost per recipe. For
each, the consumption and the average cost of all
cooking are displayed.

3. The Dashboard for Maintenance which shall allow to
visualize and manage the status of various compo-
nents of the oven.

4. The Recipe Dashboard shall allow to visualize, edit,
add and delete recipes available for the oven.

8.3 Industrial printers management
A company specialized in printing technologies, wanted
an application to monitor the smart printers deployed
to their customers. The application shall allow the

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 15 of 21

Ta
b
le

5
Sy
nt
he

si
s
of

th
e
co
m
pa

tib
ili
ty
be

tw
ee
n
D
at
a
Sy
nc
hr
on

iz
at
io
n
Pa
tt
er
ns

an
d
th
e
Io
T
Pa
tt
er
ns

Io
T
pa

tt
er
ns

D
at
a
sy
nc
hr
on

iz
at
io
n
pa

tt
er
ns

A
sy
nc
.d
at
a
sy
nc
.

Sy
nc
.d
at
a
sy
nc
.

Pa
rt
ia
ls
to
ra
ge

C
om

pl
et
e
st
or
ag
e

Fu
ll
tr
an
sf
er

Ti
m
es
ta
m
p
tr
an
sf
er

M
at
h.
tr
an
sf
er

O
ne

de
vi
ce

on
e
op

er
at
io
n

�
�

�
�

�

O
ne

de
vi
ce

m
or
e
op

er
at
io
ns

�
�

�
�

�

M
or
e
de

vi
ce
s
on

e
op

er
at
io
n

�
�

�
�

�

M
or
e
de

vi
ce
s
m
or
e
op

er
at
io
ns

�
�

�
�

�

O
ne

de
vi
ce

on
e
pr
og

ra
m

�
�

�
�

�

O
ne

ca
te
go

ry
m
or
e
op

er
at
io
ns

�
�

�
�

�

G
et

de
ta
ils

of
a
de

vi
ce

�
�

�
�

�
�

G
et

st
at
e
of

th
e
de

vi
ce

�
�

�
�

�
�

G
et

in
fo
rm

at
io
n
fro

m
th
e
de

vi
ce

�
�

�
�

�
�

G
et

in
fo
rm

at
io
n
fo
ro

ne
ca
te
go

ry
�

�
�

�
�

�

Se
ar
ch

de
vi
ce

�
�

�
�

�
�

N
ea
rb
y
de

vi
ce
s

�
�

�
�

�
�

Pu
ll
in
fo
rm

at
io
n

�
�

�
�

�
�

A
pp

lic
at
io
n
la
un

ch
�

�
�

�
�

�
�

Pu
sh

in
fo
rm

at
io
n

�
�

�
�

�
�

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 16 of 21

a

c

b

Fig. 13 Example of pattern-based modeling: a a piece of user interface of smart-house application; b Smart objects considered in smart-house
application; c The user interaction model of the application, obtained by combining together various design patterns

monitoring of: (i) the different states assumed by the
printer during a given interval of time; (ii) printing
parameters (including velocity, number of prints, and
quantity of ink); and (iii) overall equipment effectiveness
statistics. The final aim of the system is to enable pre-
dictive maintenance and continuous monitoring of the

devices, so as to increase the level of service for the
customers.

8.4 Preliminary validation
In all the described scenarios we applied our approach
and obtained the final version of the running applications

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 17 of 21

Fig. 14 Example of interaction between the client and the server

with satisfaction of the customer. The generated applica-
tions consisted in a cloud-based deployment of the server
side of the system, plus (when needed) multi-platform
mobile apps generated on Cordova PhoneGap distribu-
tion. In this stage, since the platform is not yet completely
industrialized, due to the diversity of the customers we
had to deploy one application per customer, as opposed
to the multi-tenant solution devised in our conceptual
framework.
Although we didn’t run a comprehensive and detailed

validation of the work, we report here the assessment of
some quality metrics of our approach.
In terms ofadequacy of the modeling language, we

can report high satisfaction of the designers. Indeed the
defined content model and user interaction components
were completely covering all the requirements of all the
applications. The only case that could not be covered
completely automatically was the one of the design of the

map of the location with the position of the devices. To
optimize the experience, this had to be manually imple-
mented in Javascript.
In terms of executability, the generators and execution

platform were covering the requirements too: all the gen-
eral structure of the application, the navigation and the
main contents of the pages have been generated automat-
ically. The part of interfaces that could not be generated is
basically the customization of the user interface style.
In terms of coverage of the design patterns, all the

main behaviour could be covered and were subsumed by
one or another pattern. Therefore the design of the basic
application structure could be specified with a pattern-
based approach. What could not be covered with this was
the connection between patterns: this part required some
manual design and refinement of the models for opti-
mizing the experience in the move from a use case (i.e.,
pattern) to another.

Fig. 15 Example of a real case implementation of a UI for IoT system, for monitoring the parameters of an air conditioning system

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 18 of 21

9 Related work
This work is related to a large corpus of researches that
apply model-driven development (MDD) to specify the
user interaction for multi-device UI modeling. Among
them we can cite: UsiXML [15], TERESA [16], IFML [12],
and MARIA [17]. These approaches deal with the specifi-
cation of general purpose user interfaces and interaction
and they are agnostic with respect to the technical plat-
form or technology. Our approach instead focuses on the
specifics of user interactions for IoT systems.
On the other side, the approaches that apply MDD

to the development of IoT-based applications do not
specifically focus on user interfaces; they can be
grouped into two clusters.
The first cluster includes the works that target exe-

cutability for IoT, i.e., produce executable code for the
IoT-based applications. Among them we can cite: (i)
FRASAD (Framework for sensor application develop-
ment) [18], a node-centric, multi-layered software archi-
tecture which aims at filling the gap between applications
and low-level systems of sensor nodes. It provides a rule-
based programming model which allows to describe the
local behaviors of the sensor node and a domain specific
language for sensor-based applications modeling. The
final application code is automatically generated from the
initial models; (ii) Pankesh Patel and Damien Cassou [19]
proposed a development methodology which consists on
separating the IoT application development into different
concerns: domain, functional, deployment, and platform.
This separation allows stakeholders to deal with those
concerns individually and reuse them. The framework
integrates a set of modeling languages to specify each of
which allowing to describe one of the above mentioned
concerns of the IoT applications; (iii) Franck Fleurey et al.
[20] proposed aMDD approach to generate efficient com-
munication APIs to exchange messages with and between
resource-constrained devices. This approach is based on
ThingML (things modeling language) [21]; (iv) Mainetti
et al. [22] proposed a conceptual model for IoT, the Web
of Topics (WoX). WoX extends the concept of topic from
the MQ Telemetry Transport (MQTT) publish-subscribe
protocol [23] with the aim of filling the gap between the
design and the solution domains in the IoT context. In
WoX the generic IoT entity is seen as a set of couples
Topic-Role. A WoX Role is expressed in terms of tech-
nological and collaborative dimensions; (v) Conzon et al.
[24, 25] provided a model driven development toolkit
based on the semantic discovery service, allowing to
dynamically selecting and locating available resources or
devices, and provides a graphical interface allowing devel-
opers to compose mashup applications. (vi) Ferry Pramu-
dianto et al. [26] proposed aMDD approachwhich focuses
on the separation of domain modeling from techno-
logical implementations. The framework allows domain

experts to construct domain models by composing vir-
tual objects and linking them to the implementation
technologies. It allows automatic generation of a proto-
type code from the domain models and manual refine-
ment of it. All these approaches have in common the
main target, that is executability of IoT systems, while
they differ on the development phases covered and the
kind of support provided to the designer. In this sense,
their main focus is to build APIs or middleware lay-
ers so as to mask access to diverse IoT devices, thus
allowing discovery, integration and execution of device
functions. Our work is targeting an orthogonal dimen-
sion, that is user interaction. As such, our approach could
be used together with one of the approaches discussed
above. They can provide the common access layer to
the devices, and our solution can provide model-driven
specification and execution of the application layer over
them.
In the second cluster of MDD approaches we include

works that apply MDD to other aspects of IoT applica-
tions. Among them we can mention a MDD approach for
the analysis of IoT applications via simulation [27]. Pre-
hofer and Chiarabini [28] compared themodel-based and
mashup approaches, considering tools and methodologies
for the development of IoT applications, using UML and
Paraimpu [29]. Again, our approach is working on orthog-
onal aspects with respect to these issues. However, it can
integrate very well with them, thanks to the availability
of formal semantics of IFML and of simulation solutions
based on IFML [30]. Neither detailed formal specifica-
tion nor simulation/validation tooling are needed for the
proposed extensions for IoT, because we rely on existing
resources and infrastructure about IFML. Viceversa, in
our approach we concentrate on providing efficient design
methods and executability.

10 Conclusions
In this paper we presented the IoT domain and use cases
(RQ1), and we addressed them by defining a set of exten-
sions of OMG’s standard IFML for modeling the UI of
the IoT-based applications (RQ2). We have presented a
set of design patterns for the common user interactions
for those applications (RQ3). Besides the formal defini-
tion of the IoT extensions to the IFML language and
the modeling of UI design patterns for IoT, our research
included the implementation of a code generator pro-
totype tailored to IoT applications development (RQ4).
The future works include the completion of code gener-
ators, the implementation of other real case scenarios in
collaboration with the WebRatio customers, and the val-
idation of the approach in terms of performance (both
of the code generators and of the generated systems) as
well as of acceptance by the final users of the generated
solutions.

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 19 of 21

Appendix

Table 6 IoT User Interaction Patterns: Set Patterns

ID Pattern Description Example

P1 One device
one operation

This pattern allows the user to set an operation to be exe-
cuted by one specific device. The user selects a device
of interest from a list of the devices of the system. Then,
he chooses the operation to be performed from a list of
operations supported by the selected device.

P2 One device
more operations

This pattern allows the user to send to a single device a
set of the operations to be performed. The interactions
start with the selection of a device of interest. Then the
user selects desired operations from a list of supported
operations.

P3 More devices
one operation

This pattern allows the user to send to many devices
one operation to be executed. The interactions start by
selecting the devices of interest. Then the user selects an
operation (from a list of the operations supported by the
selected devices) to be executed by those devices.

P4 More devices
more operations

This pattern allows the user to send a set of operations to
different devices. Those operations are not necessary the
same for all devices, thus the operations must be binded
to the devices which can perform them.

P5 One device
one program

This pattern allows the user to send the program (iden-
tifier) to the device which will execute it. A program is a
set of operations which have to be executed in a precise
order. We assume that the programs are already config-
ured in the devices, thus, the user has only to send the
program identifier to the device.

P6 One category
more operations

This pattern allows the user to set operations to differ-
ent devices based on the groups they belong to, without
needing to select one device at a time.

Table 7 IoT User Interaction Patterns: Get Patterns

ID Pattern Description Example

P7 Get details of a device The user retrieves, the general information about the
device such as Id, name, description, and model. The user
selects a device he is interested in from a list of devices.

P8 Get state of the device This pattern allows the user to retrieve the current state a
given device. The interactions start with the selection of
the device for which the user needs tho know the state.
Then, the corresponding state is displayed to the user.

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 20 of 21

Table 7 IoT User Interaction Patterns: Get Patterns (Continued)

ID Pattern Description Example

P9 Get information from the
device

This pattern allows the user to retrieve the information
provided by a device about the monitored object. The
interactions start with the selection of the device for
which the user needs tho know the information of the
monitored object. Then, the requested information is
displayed to the user.

P10 Get Information for one
category

This pattern allows the user to get the information from
all devices of the same category.

P11 Search device This pattern allows the user to search a specific device.
The search of the device can be done in different ways
depending on the application and on the devices.

P12 Nearby devices This pattern allows the user to retrieve all the devices
near to a given location. The location can be setted by
the user or retrieved from the ContextDimension,
Position, which represents the location information of
the device used to access the application.

Table 8 IoT User Interaction Patterns: Event-based Patterns

ID Pattern Description Example

P13 Pull information This pattern allows the user to check periodically
availability of new data from devices. To save some
resources like power, for the data that can be delayed for
some amount of time without impacting on the
outcome of the application, the user can decide to
activate periodically the listening service and pull all the
information from the devices.

P14 Application launch This pattern allows the user to retrieve the information
sent by the devices when the application was not
running or when he was offline. The launching event
calls the external system and gets the notifications sent
by all the devices when the user was offline.

P15 Push information This pattern allows the user to visualize the messages
sent by an IoT device as a push notification.

Endnotes
1 http://www.iiconsortium.org/
2 http://www.webratio.com
3http://www.semioty.com

Authors’ contributions
Equal contribution. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Politecnico di Milano. Dipartimento di Elettronica, Informazione e
Bioingegneria, Piazza L. Da Vinci 32, 20133 Milan, Italy. 2WebRatio s.r.l, Piazzale
Cadorna, 10, 20123 Milan, Italy.

Received: 28 November 2016 Accepted: 28 August 2017

http://www.iiconsortium.org/
http://www.webratio.com
http://www.semioty.com

Brambilla et al. Journal of Internet Services and Applications (2017) 8:14 Page 21 of 21

References
1. Koreshoff TL, Robertson T, Leong TW (2013) Internet of things: a review of

literature and products. In: Proceedings of the 25th Australian
Computer-Human Interaction Conference: Augmentation, Application,
Innovation, Collaboration. OzCHI ’13. ACM, New York. pp 335–44.
doi:10.1145/2541016.2541048

2. Vatsa VR, Singh G (2015) A literature review on internet of things (iot). Int J
Comput Syst (ISSN: 2394-1065) 2(08)

3. Atzori L, Iera A, Morabito G (2010) The internet of things: A survey.
Comput Netw 54(15):2787–805. doi:10.1016/j.comnet.2010.05.010

4. Broll G, Rukzio E, Paolucci M, Wagner M, Schmidt A, Hussmann H (2009)
Perci: Pervasive service interaction with the internet of things. IEEE
Internet Comput 13(6):74–81

5. Kranz M, Holleis P, Schmidt A (2010) Embedded interaction: Interacting
with the internet of things. IEEE Internet Comput 14(2):46–53

6. Shirehjini AAN, Semsar A (2017) Human interaction with IoT-based smart
environments. Multimed Tools Appl 76(11):13343–65

7. Da Xu L, He W, Li S (2014) Internet of things in industries: A survey. IEEE
Trans Ind Inf 10(4):2233–243

8. Capello F, Toja M, Trapani N (2016) A real-time monitoring service based
on industrial internet of things to manage agrifood logistics.
In: Proceedings of the 6th International Conference on Information
Systems, Logistics and Supply Chain, Bordeaux, France, Available From:
http://ils2016conference.com/wpcontent/uploads/2015/03/
ILS2016_FB01_1.Pdf, Accessed. pp 10–21

9. Holler J (2014) From Machine-to-machine to the Internet of Things:
Introduction to a New Age of Intelligence. Academic Press, Amsterdam.
ISBN:978-0124076846

10. Vermesan O (2014) Internet of things - from research and innovation to
market deployment. River Publishers, Aalborg. ISBN:9788793102941

11. Farooq M, Waseem M, Mazhar S, Khairi A, Kamal T (2015) A review on
internet of things (iot). Int J Comput Appl 113(1):1–7

12. Brambilla M, Fraternali P, et al. (2014) The Interaction Flow Modeling
Language (IFML), Version 1.0. Technical report, Object Management
Group (OMG), http://www.ifml.org

13. Brambilla M, Mauri A, Umuhoza E (2014) Extending the Interaction Flow
Modeling Language (IFML) for Model Driven Development of Mobile
Applications Front End. In: Awan I, Younas M, Franch X, Quer C (eds).
Mobile Web Information Systems: 11th International Conference,
MobiWIS 2014. Proceedings. Springer International Publishing, Cham.
pp 176–91. doi:10.1007/978-3-319-10359-4_15

14. Brambilla M, Fraternali P (2014) Interaction Flow Modeling Language:
Model-Driven UI Engineering of Web and Mobile Apps with IFML.
Morgan Kaufmann Publishers Inc., USA

15. Vanderdonckt J (2005) A MDA-compliant environment for developing
user interfaces of information systems. In: Pastor O, Falcão e Cunha J
(eds). Advanced Information Systems Engineering: 17th International
Conference, CAiSE 2005. Proceedings. Springer Berlin Heidelberg, Berlin.
pp 16–31. doi:10.1007/11431855_2

16. Berti S, Correani F, Mori G, Paternò F, Santoro C (2004) Teresa: a
transformation-based environment for designing and developing
multi-device interfaces. In: CHI ’04 Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’04. ACM, New York. pp 793–4.
doi:10.1145/985921.985939

17. Paternò F, Santoro C, Spano LD (2009) Maria: A universal, declarative,
multiple abstraction-level language for service-oriented applications in
ubiquitous environments. ACM Trans Comput-Hum Interact
16(4):19:1–19:30. doi:10.1145/1614390.1614394

18. Nguyen XT, Tran HT, Baraki H, Geihs K (2015) Frasad: A framework for
model-driven iot application development. In: 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT). IEEE. pp 387–92.
doi:10.1109/WF-IoT.2015.7389085

19. Patel P, Cassou D (2015) Enabling high-level application development for
the internet of things. J Syst Softw 103:62–84

20. Fleurey F, Morin B, Solberg A, Barais O (2011) Mde to manage
communications with and between resource-constrained systems.
In: MODELS. Springer, Berlin. pp 349–63

21. Fleurey F, Morin B (2016) ThingML. http://thingml.org. Online;
Accessed 6 Sept 2016

22. Mainetti L, Manco L, Patrono L, Sergi I, Vergallo R (2015) Web of topics: An
iot-aware model-driven designing approach. In: 2nd IEEE World Forum

on Internet of Things, WF-IoT 2015. IEEE, Milan. pp 46–51.
doi:10.1109/WF-IoT.2015.7389025

23. Locke D (2016) MQ Telemetry Transport (MQTT) V3.1 Protocol
Specification. https://www.ibm.com/developerworks/library/ws-mqtt/.
Online. Accessed 6 Sept 2016

24. Conzon D, Brizzi P, Kasinathan P, Pastrone C, Pramudianto F, Cultrona P
(2015) Industrial application development exploiting iot vision and model
driven programming. In: Intelligence in Next Generation Networks (ICIN),
2015 18th International Conference On. IEEE. pp 168–75

25. (2016) Ebbits. http://www.ebbits-project.eu/news.php. Online. Accessed
6 Sept 2016

26. Pramudianto F, Indra IR, Jarke M (2013) Model driven development for
internet of things application prototyping. In: The 25th International
Conference on Software Engineering and Knowledge Engineering,
Boston, MA, USA, June 27-29, 2013. pp 703–8.
http://dblp.uni-trier.de/rec/bib/conf/seke/PramudiantoIJ13

27. Brumbulli M, Gaudin E (2016) Towards model-driven simulation of the
internet of things. In: Complex Systems Design & Management Asia.
Springer, Berlin. pp 17–29

28. Prehofer C, Chiarabini L (2015) From internet of things mashups to
model-based development. In: Proceedings of the 2015 IEEE 39th Annual
Computer Software and Applications Conference - Volume 03,
COMPSAC ’15. IEEE Computer Society, Washington. pp 499–504.
doi:10.1109/COMPSAC.2015.263

29. Pintus A, Carboni D, Piras A (2012) Paraimpu: a platform for a social web of
things. In: Proceedings of the 21st international conference on world
wide web, WWW ’12 Companion. ACM, New York. pp 401–4.
doi:10.1145/2187980.2188059

30. Bernaschina C, Comai S, Fraternali P (2017) IFMLEdit.Org: Model Driven
Rapid Prototyping of Mobile Apps. In: Proceedings of the 4th International
Conference onMobile Software Engineering and Systems, MOBILESoft ’17.
IEEE Press, Piscataway. pp 207–8. doi:10.1109/MOBILESoft.2017.15

http://dx.doi.org/10.1145/2541016.2541048
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://ils2016conference. com/wpcontent/uploads/2015/03/ILS2016_FB01_1.Pdf
http://ils2016conference. com/wpcontent/uploads/2015/03/ILS2016_FB01_1.Pdf
http://www.ifml.org
http://dx.doi.org/10.1007/978-3-319-10359-4_15
http://dx.doi.org/10.1007/11431855_2
http://dx.doi.org/10.1145/985921.985939
http://dx.doi.org/10.1145/1614390.1614394
http://dx.doi.org/10.1109/WF-IoT.2015.7389085
http://thingml.org
http://dx.doi.org/10.1109/WF-IoT.2015.7389025
https://www.ibm.com/developerworks/library/ws-mqtt/
http://www.ebbits-project.eu/news.php
http://dblp.uni-trier.de/rec/bib/conf/seke/PramudiantoIJ13
http://dx.doi.org/10.1109/COMPSAC.2015.263
http://dx.doi.org/10.1145/2187980.2188059
http://dx.doi.org/10.1109/MOBILESoft.2017.15

	Abstract
	Keywords

	Introduction
	Background on IFML
	Mobile IFML
	Containers and components
	Mobile context
	Events

	Use cases
	Modeling language for IoT
	Content model
	Interaction model
	IoT actions
	Set actions.
	Get actions.
	Plan actions.

	IoT events
	Events from IoT devices.
	Action events.

	Interaction patterns for IoT
	IoT patterns
	Set patterns
	Get patterns
	Event-based patterns

	User interaction patterns
	Data synchronization patterns

	Example
	Implementation
	Backend
	Microservices layer
	API gateway

	Client architecture

	Experiences and validation
	Home automation system
	Smart ovens for bakery industry
	Industrial printers management
	Preliminary validation

	Related work
	Conclusions
	Appendix
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

