85,842 research outputs found

    A prescriptive approach to qualify and quantify customer value for value-based requirements engineering

    No full text
    Recently, customer-based product development is becoming a popular paradigm. Customer expectations and needs can be identified and transformed into requirements for product design with the help of various methods and tools. However, in many cases, these models fail to focus on the perceived value that is crucial when customers make the decision of purchasing a product. In this paper, a prescriptive approach to support value-based requirements engineering (RE) is proposed, describing the foundations, procedures and initial applications in the context of RE for commercial aircraft. An integrated set of techniques, such as means-ends analysis, part-whole analysis and multi-attribute utility theory is introduced in order to understand customer values in depth and width. Technically, this enables identifying the implicit value, structuring logically collected statements of customer expectations and performing value modelling and simulation. Additionally, it helps to put in place a system to measure customer satisfaction that is derived from the proposed approach. The approach offers significant potential to develop effective value creation strategies for the development of new product

    Engaging stakeholders in research to address water-energy-food (WEF) nexus challenges

    Get PDF
    The water–energy–food (WEF) nexus has become a popular, and potentially powerful, frame through which to analyse interactions and interdependencies between these three systems. Though the case for transdisciplinary research in this space has been made, the extent of stakeholder engagement in research remains limited with stakeholders most commonly incorporated in research as end-users. Yet, stakeholders interact with nexus issues in a variety of ways, consequently there is much that collaboration might offer to develop nexus research and enhance its application. This paper outlines four aspects of nexus research and considers the value and potential challenges for transdisciplinary research in each. We focus on assessing and visualising nexus systems; understanding governance and capacity building; the importance of scale; and the implications of future change. The paper then proceeds to describe a novel mixed-method study that deeply integrates stakeholder knowledge with insights from multiple disciplines. We argue that mixed-method research designs—in this case orientated around a number of cases studies—are best suited to understanding and addressing real-world nexus challenges, with their inevitable complex, non-linear system characteristics. Moreover, integrating multiple forms of knowledge in the manner described in this paper enables research to assess the potential for, and processes of, scaling-up innovations in the nexus space, to contribute insights to policy and decision making

    What Lies beyond the Pareto Front? A Survey on Decision-Support Methods for Multi-Objective Optimization

    Full text link
    We present a review that unifies decision-support methods for exploring the solutions produced by multi-objective optimization (MOO) algorithms. As MOO is applied to solve diverse problems, approaches for analyzing the trade-offs offered by MOO algorithms are scattered across fields. We provide an overview of the advances on this topic, including methods for visualization, mining the solution set, and uncertainty exploration as well as emerging research directions, including interactivity, explainability, and ethics. We synthesize these methods drawing from different fields of research to build a unified approach, independent of the application. Our goals are to reduce the entry barrier for researchers and practitioners on using MOO algorithms and to provide novel research directions.Comment: IJCAI 2023 Conference Paper, Survey Trac

    Stochastic Parameter Estimation of Poroelastic Processes Using Geomechanical Measurements

    Get PDF
    Understanding the structure and material properties of hydrologic systems is important for a number of applications, including carbon dioxide injection for geological carbon storage or enhanced oil recovery, monitoring of hydraulic fracturing projects, mine dewatering, environmental remediation and managing geothermal reservoirs. These applications require a detailed knowledge of the geologic systems being impacted, in order to optimize their operation and safety. In order to evaluate, monitor and manage such hydrologic systems, a stochastic estimation framework was developed which is capable of characterizing the structure and physical parameters of the subsurface. This software framework uses a set of stochastic optimization algorithms to calibrate a heterogeneous subsurface flow model to available field data, and to construct an ensemble of models which represent the range of system states that would explain this data. Many of these systems, such as oil reservoirs, are deep and hydraulically isolted from the shallow subsurface making near-surface fluid pressure measurements uninformative. Near-surface strainmeter, tiltmeter and extensometer signals were therefore evaluated in terms of their potential information content for calibrating poroelastic flow models. Such geomechanical signals are caused by mechanical deformation, and therefore travel through hydraulically impermeable rock much more quickly. A numerical geomechanics model was therefore developed using Geocentric, which couples subsurface flow and elastic deformation equations to simulate geomechanical signals (e.g. pressure, strain, tilt and displacement) given a set of model parameters. A high-performance cluster computer performs this computationally expensive simulation for each set of parameters, and compares the simulation results to measured data in order to evaluate the likelihood of each model. The set of data-model comparisons are then used to estimate each unknown parameter, as well as the uncertainty of each parameter estimate. This uncertainty can be inuenced by limitations in the measured dataset such as random noise, instrument drift, and the number and location of sensors, as well as by conceptual model errors and false underlying assumptions. In this study we find that strain measurements taken from the shallow subsurface can be used to estimate the structure and material parameters of geologic layers much deeper in the subsurface. This can signicantly mitigate drilling and installation costs of monitoring wells, as well as reduce the risk of puncturing or fracturing a target reservoir. These parameter estimates were also used to develop an ensemble of calibrated hydromechanical models which can predict the range of system behavior and inform decision-making on the management of an aquifer or reservoir

    Evolutionary Microeconomics and the Theory of Expectations

    Get PDF
    This paper sketches a framework for the analysis of expectations in an evolutionary microeconomics. The core proposition is that expectations form a network structure, and that the geometry of that network will provide a suitable guide as to the dynamical behaviour of that network. It is a development towards a theory of the computational processes that construct the data set of expectations. The role of probability theory is examined in this context. Two key issues will be explored: (1) on the nature and stability of expectations when they form as a complex network; and (2), the way in which this may be modelled within a multi-agent simulation platform. It is argued that multi-agent simulation (a-life) techniques provide an expedient analytical environment to study the dynamic nature of mass expectations, as generated or produced objects, in a way that bridges micro and macroeconomics.

    Optimization under Uncertainty: Machine Learning Approach

    Get PDF
    Data is the new oil. From the beginning of the 21st century, data is similar to what oil was in the 18th century, an immensely untapped valuable asset. This paper reviews recent advances in the field of optimization under uncertainty via a modern data lens and highlights key research challenges and the promise of data-driven optimization that organically integrates machine learning and mathematical programming for decision-making under uncertainty. A brief review of classical mathematical programming techniques for hedging against uncertainty is first presented, along with their wide spectrum of applications in Process Systems Engineering. we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems, and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments
    • …
    corecore