3,512 research outputs found

    Model-based clustering of array CGH data

    Get PDF
    Motivation: Analysis of array comparative genomic hybridization (aCGH) data for recurrent DNA copy number alterations from a cohort of patients can yield distinct sets of molecular signatures or profiles. This can be due to the presence of heterogeneous cancer subtypes within a supposedly homogeneous population

    Spatial clustering of array CGH features in combination with hierarchical multiple testing

    Get PDF
    We propose a new approach for clustering DNA features using array CGH data from multiple tumor samples. We distinguish data-collapsing: joining contiguous DNA clones or probes with extremely similar data into regions, from clustering: joining contiguous, correlated regions based on a maximum likelihood principle. The model-based clustering algorithm accounts for the apparent spatial patterns in the data. We evaluate the randomness of the clustering result by a cluster stability score in combination with cross-validation. Moreover, we argue that the clustering really captures spatial genomic dependency by showing that coincidental clustering of independent regions is very unlikely. Using the region and cluster information, we combine testing of these for association with a clinical variable in an hierarchical multiple testing approach. This allows for interpreting the significance of both regions and clusters while controlling the Family-Wise Error Rate simultaneously. We prove that in the context of permutation tests and permutation-invariant clusters it is allowed to perform clustering and testing on the same data set. Our procedures are illustrated on two cancer data sets

    Generalized Species Sampling Priors with Latent Beta reinforcements

    Full text link
    Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a {novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data.Comment: For correspondence purposes, Edoardo M. Airoldi's email is [email protected]; Federico Bassetti's email is [email protected]; Michele Guindani's email is [email protected] ; Fabrizo Leisen's email is [email protected]. To appear in the Journal of the American Statistical Associatio

    A hidden Markov model-based algorithm for identifying tumour subtype using array CGH data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent advancement in array CGH (aCGH) research has significantly improved tumor identification using DNA copy number data. A number of unsupervised learning methods have been proposed for clustering aCGH samples. Two of the major challenges for developing aCGH sample clustering are the high spatial correlation between aCGH markers and the low computing efficiency. A mixture hidden Markov model based algorithm was developed to address these two challenges.</p> <p>Results</p> <p>The hidden Markov model (HMM) was used to model the spatial correlation between aCGH markers. A fast clustering algorithm was implemented and real data analysis on glioma aCGH data has shown that it converges to the optimal cluster rapidly and the computation time is proportional to the sample size. Simulation results showed that this HMM based clustering (HMMC) method has a substantially lower error rate than NMF clustering. The HMMC results for glioma data were significantly associated with clinical outcomes.</p> <p>Conclusions</p> <p>We have developed a fast clustering algorithm to identify tumor subtypes based on DNA copy number aberrations. The performance of the proposed HMMC method has been evaluated using both simulated and real aCGH data. The software for HMMC in both R and C++ is available in ND INBRE website <url>http://ndinbre.org/programs/bioinformatics.php.</url></p

    A hierarchical Bayesian model for inference of copy number variants and their association to gene expression

    Get PDF
    A number of statistical models have been successfully developed for the analysis of high-throughput data from a single source, but few methods are available for integrating data from different sources. Here we focus on integrating gene expression levels with comparative genomic hybridization (CGH) array measurements collected on the same subjects. We specify a measurement error model that relates the gene expression levels to latent copy number states which, in turn, are related to the observed surrogate CGH measurements via a hidden Markov model. We employ selection priors that exploit the dependencies across adjacent copy number states and investigate MCMC stochastic search techniques for posterior inference. Our approach results in a unified modeling framework for simultaneously inferring copy number variants (CNV) and identifying their significant associations with mRNA transcripts abundance. We show performance on simulated data and illustrate an application to data from a genomic study on human cancer cell lines.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS705 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Gene Copy Number Analysis for Family Data Using Semiparametric Copula Model

    Get PDF
    Gene copy number changes are common characteristics of many genetic disorders. A new technology, array comparative genomic hybridization (a-CGH), is widely used today to screen for gains and losses in cancers and other genetic diseases with high resolution at the genome level or for specific chromosomal region. Statistical methods for analyzing such a-CGH data have been developed. However, most of the existing methods are for unrelated individual data and the results from them provide explanation for horizontal variations in copy number changes. It is potentially meaningful to develop a statistical method that will allow for the analysis of family data to investigate the vertical kinship effects as well. Here we consider a semiparametric model based on clustering method in which the marginal distributions are estimated nonparametrically, and the familial dependence structure is modeled by copula. The model is illustrated and evaluated using simulated data. Our results show that the proposed method is more robust than the commonly used multivariate normal model. Finally, we demonstrated the utility of our method using a real dataset

    Unsupervised Classification for Tiling Arrays: ChIP-chip and Transcriptome

    Full text link
    Tiling arrays make possible a large scale exploration of the genome thanks to probes which cover the whole genome with very high density until 2 000 000 probes. Biological questions usually addressed are either the expression difference between two conditions or the detection of transcribed regions. In this work we propose to consider simultaneously both questions as an unsupervised classification problem by modeling the joint distribution of the two conditions. In contrast to previous methods, we account for all available information on the probes as well as biological knowledge like annotation and spatial dependence between probes. Since probes are not biologically relevant units we propose a classification rule for non-connected regions covered by several probes. Applications to transcriptomic and ChIP-chip data of Arabidopsis thaliana obtained with a NimbleGen tiling array highlight the importance of a precise modeling and the region classification
    corecore