14,645 research outputs found

    Model of communities isolation at hierarchical modular networks

    Full text link
    The model of community isolation was extended to the case when individuals are randomly placed at nodes of hierarchical modular networks. It was shown that the average number of blocked nodes (individuals) increases in time as a power function, with the exponent depending on network parameters. The distribution of time when the first isolated cluster appears is unimodal, non-gaussian. The developed analytical approach is in a good agreement with the simulation data

    Comparison and validation of community structures in complex networks

    Full text link
    The issue of partitioning a network into communities has attracted a great deal of attention recently. Most authors seem to equate this issue with the one of finding the maximum value of the modularity, as defined by Newman. Since the problem formulated this way is NP-hard, most effort has gone into the construction of search algorithms, and less to the question of other measures of community structures, similarities between various partitionings and the validation with respect to external information. Here we concentrate on a class of computer generated networks and on three well-studied real networks which constitute a bench-mark for network studies; the karate club, the US college football teams and a gene network of yeast. We utilize some standard ways of clustering data (originally not designed for finding community structures in networks) and show that these classical methods sometimes outperform the newer ones. We discuss various measures of the strength of the modular structure, and show by examples features and drawbacks. Further, we compare different partitions by applying some graph-theoretic concepts of distance, which indicate that one of the quality measures of the degree of modularity corresponds quite well with the distance from the true partition. Finally, we introduce a way to validate the partitionings with respect to external data when the nodes are classified but the network structure is unknown. This is here possible since we know everything of the computer generated networks, as well as the historical answer to how the karate club and the football teams are partitioned in reality. The partitioning of the gene network is validated by use of the Gene Ontology database, where we show that a community in general corresponds to a biological process.Comment: To appear in Physica A; 25 page

    Identifying communities by influence dynamics in social networks

    Full text link
    Communities are not static; they evolve, split and merge, appear and disappear, i.e. they are product of dynamical processes that govern the evolution of the network. A good algorithm for community detection should not only quantify the topology of the network, but incorporate the dynamical processes that take place on the network. We present a novel algorithm for community detection that combines network structure with processes that support creation and/or evolution of communities. The algorithm does not embrace the universal approach but instead tries to focus on social networks and model dynamic social interactions that occur on those networks. It identifies leaders, and communities that form around those leaders. It naturally supports overlapping communities by associating each node with a membership vector that describes node's involvement in each community. This way, in addition to overlapping communities, we can identify nodes that are good followers to their leader, and also nodes with no clear community involvement that serve as a proxy between several communities and are equally as important. We run the algorithm for several real social networks which we believe represent a good fraction of the wide body of social networks and discuss the results including other possible applications.Comment: 10 pages, 6 figure

    Controlling nosocomial infection based on structure of hospital social networks

    Get PDF
    Nosocomial infection raises a serious public health problem, as implied by the existence of pathogens characteristic to healthcare and hospital-mediated outbreaks of influenza and SARS. We simulate stochastic SIR dynamics on social networks, which are based on observations in a hospital in Tokyo, to explore effective containment strategies against nosocomial infection. The observed networks have hierarchical and modular structure. We show that healthcare workers, particularly medical doctors, are main vectors of diseases on these networks. Intervention methods that restrict interaction between medical doctors and their visits to different wards shrink the final epidemic size more than intervention methods that directly protect patients, such as isolating patients in single rooms. By the same token, vaccinating doctors with priority rather than patients or nurses is more effective. Finally, vaccinating individuals with large betweenness centrality is superior to vaccinating ones with large connectedness to others or randomly chosen individuals, as suggested by previous model studies. [The abstract of the manuscript has more information.]Comment: 12 figures, 2 table

    Corporate payments networks and credit risk rating

    Get PDF
    Aggregate and systemic risk in complex systems are emergent phenomena depending on two properties: the idiosyncratic risks of the elements and the topology of the network of interactions among them. While a significant attention has been given to aggregate risk assessment and risk propagation once the above two properties are given, less is known about how the risk is distributed in the network and its relations with the topology. We study this problem by investigating a large proprietary dataset of payments among 2.4M Italian firms, whose credit risk rating is known. We document significant correlations between local topological properties of a node (firm) and its risk. Moreover we show the existence of an homophily of risk, i.e. the tendency of firms with similar risk profile to be statistically more connected among themselves. This effect is observed when considering both pairs of firms and communities or hierarchies identified in the network. We leverage this knowledge to show the predictability of the missing rating of a firm using only the network properties of the associated node

    Detecting communities of triangles in complex networks using spectral optimization

    Full text link
    The study of the sub-structure of complex networks is of major importance to relate topology and functionality. Many efforts have been devoted to the analysis of the modular structure of networks using the quality function known as modularity. However, generally speaking, the relation between topological modules and functional groups is still unknown, and depends on the semantic of the links. Sometimes, we know in advance that many connections are transitive and, as a consequence, triangles have a specific meaning. Here we propose the study of the modular structure of networks considering triangles as the building blocks of modules. The method generalizes the standard modularity and uses spectral optimization to find its maximum. We compare the partitions obtained with those resulting from the optimization of the standard modularity in several real networks. The results show that the information reported by the analysis of modules of triangles complements the information of the classical modularity analysis.Comment: Computer Communications (in press
    • …
    corecore