1,345 research outputs found

    Interacting via the Heap in the Presence of Recursion

    Full text link
    Almost all modern imperative programming languages include operations for dynamically manipulating the heap, for example by allocating and deallocating objects, and by updating reference fields. In the presence of recursive procedures and local variables the interactions of a program with the heap can become rather complex, as an unbounded number of objects can be allocated either on the call stack using local variables, or, anonymously, on the heap using reference fields. As such a static analysis is, in general, undecidable. In this paper we study the verification of recursive programs with unbounded allocation of objects, in a simple imperative language for heap manipulation. We present an improved semantics for this language, using an abstraction that is precise. For any program with a bounded visible heap, meaning that the number of objects reachable from variables at any point of execution is bounded, this abstraction is a finitary representation of its behaviour, even though an unbounded number of objects can appear in the state. As a consequence, for such programs model checking is decidable. Finally we introduce a specification language for temporal properties of the heap, and discuss model checking these properties against heap-manipulating programs.Comment: In Proceedings ICE 2012, arXiv:1212.345

    A Notion of Dynamic Interface for Depth-Bounded Object-Oriented Packages

    Full text link
    Programmers using software components have to follow protocols that specify when it is legal to call particular methods with particular arguments. For example, one cannot use an iterator over a set once the set has been changed directly or through another iterator. We formalize the notion of dynamic package interfaces (DPI), which generalize state-machine interfaces for single objects, and give an algorithm to statically compute a sound abstraction of a DPI. States of a DPI represent (unbounded) sets of heap configurations and edges represent the effects of method calls on the heap. We introduce a novel heap abstract domain based on depth-bounded systems to deal with potentially unboundedly many objects and the references among them. We have implemented our algorithm and show that it is effective in computing representations of common patterns of package usage, such as relationships between viewer and label, container and iterator, and JDBC statements and cursors

    Dynamic Package Interfaces - Extended Version

    Full text link
    A hallmark of object-oriented programming is the ability to perform computation through a set of interacting objects. A common manifestation of this style is the notion of a package, which groups a set of commonly used classes together. A challenge in using a package is to ensure that a client follows the implicit protocol of the package when calling its methods. Violations of the protocol can cause a runtime error or latent invariant violations. These protocols can extend across different, potentially unboundedly many, objects, and are specified informally in the documentation. As a result, ensuring that a client does not violate the protocol is hard. We introduce dynamic package interfaces (DPI), a formalism to explicitly capture the protocol of a package. The DPI of a package is a finite set of rules that together specify how any set of interacting objects of the package can evolve through method calls and under what conditions an error can happen. We have developed a dynamic tool that automatically computes an approximation of the DPI of a package, given a set of abstraction predicates. A key property of DPI is that the unbounded number of configurations of objects of a package are summarized finitely in an abstract domain. This uses the observation that many packages behave monotonically: the semantics of a method call over a configuration does not essentially change if more objects are added to the configuration. We have exploited monotonicity and have devised heuristics to obtain succinct yet general DPIs. We have used our tool to compute DPIs for several commonly used Java packages with complex protocols, such as JDBC, HashSet, and ArrayList.Comment: The only changes compared to v1 are improvements to the Abstract and Introductio

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Program verification with interacting analysis plugins

    Get PDF
    In this paper we propose and argue for a modular framework for interprocedural program analysis, where multiple program analysis tools are combined in order to exploit the particular advantages of each. This allows for “plugging together” such tools as required by each verification task and makes it easy to integrate new analyses. Our framework automates the sharing of information between plugins using a first order logic with transitive closure, in a way inspired by the open product of Cortesi et al.. We describe a prototype implementation of our framework, which performs static assertion checking on a simple language for heap-manipulating programs. This implementation includes plugins for three existing approaches — predicate abstraction, 3-valued shape analysis and a decidable pointer analysis — and for a simple type system. We demonstrate through a detailed example the increase in precision that our approach can provide. Finally we discuss the design decisions we have taken, in particular the tradeoffs involved in the choice of language by which the plugins communicate, and identify some future directions for our work

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Evaluating software verification systems: benchmarks and competitions

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 14171 “Evaluating Software Verification Systems: Benchmarks and Competitions”. The seminar brought together a large group of current and future competition organizers and participants, benchmark maintainers, as well as practitioners and researchers interested in the topic. The seminar was conducted as a highly interactive event, with a wide spectrum of contributions from participants, including talks, tutorials, posters, tool demonstrations, hands-on sessions, and a live competition
    • …
    corecore