
COSMICAH 2005: workshop on verification of COncurrent Systems with

dynaMIC Allocated Heaps (a Satellite event of ICALP 2005) - Informal

Proceedings
Distefano, Dino; Iosif, Radu; O'Hearn, Peter

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/5041

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/5041

I

Program

9.00 Welcome

9.10 INVITED TALK:
Transition Invariants, Transition Predicate Abstraction, Counterexample-
Guided Abstraction Refinement
A. Podelski

10.15 Coffee break

REGULAR PAPERS

10.45 Heap-abstractions for an object-oriented calculus with thread classes
E. Abraham, A. Gruner, M. Steffen

11.15 Symbolic Execution with Separation Logic
J. Berdine, C. Calcagno, P. O’Hearn

11.45 Verifying Red-Black Trees
P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. Konig, V. Kozioura

12.15 Lunch break

13.45 Local Reasoning for Termination
A. Podelski and I. Schaefer

PRESENTATIONS

14.15 Read-only permissions and abstract predicate
M. Parkinson

14.45 Local Reasoning about Tree Update
C. Calcagno

15.15 Coffee Break

15.45 Boolean Heaps
T. Wies

16.15 FIVE MINUTES MADNESS Session

17.00 (the latest) Closing.

II

Preface

This volume contains the proceedings of the First workshop on the verification
of COncurrent Systems with dynaMIC Allocated Heaps (COSMICAH). COS-
MICAH took place in Lisbon, Portugal, July 10, 2005, as a satellite workshop
of the International Colloquium on Automata, Languages and Programming
(ICALP). The workshop brings together researchers with different backgrounds
in formal methods, that share interest in the verification of programs which
combine advanced language features such as: concurrency, dynamic memory,
recursion, etc. The problems addressed by the participants in the workshop
are of crucial importance in the (well-established by now) domain of software
verification.

Topics covered by COSMICAH include logics for the specification of prop-
erties related to the dynamic memory of programs, object calculi and other
semantic models for software, verification algorithms such as satisfiability solv-
ing, abstract interpretation, theorem proving and model checking.

To provide an effective basis for discussion, the emphasis of the workshop
was on the quality of the presentations. Beside those of the reviewed papers,
a keynote invited talk was given by Andreas Podelski. Moreover, we had the
pleasure to host three presentations — given by young promising researchers —
on hot topics in the field. The character of these proceedings is informal, thus
inclusion of a paper does not preclude further submission to a larger symposium.
We would like to thank the authors of submitted papers and the other speakers.

To carry out the task of reviewing the submitted papers, we were fortunate
to have a highly qualified Program Committee from different research areas.
Each submission received comments from two reviewers. Special thanks to all
members of the Program Committee. The help of the ICALP organising com-
mittee in dealing with the technical details of the organisation was invaluable.

We hope to see you all next year to a new edition of COSMICAH!

Dino Distefano, Radu Iosif, and Peter O’Hearn

III

Program Committee

Cristiano Calcagno (Imperial College, London)
Dino Distefano (Queen Mary, Univ. of London, co-chair)
Peter Habermehl (Liafa, Paris 7 University)
Peter O’Hearn (Queen Mary, Univ. of London, co-chair)
Radu Iosif (Verimag, Grenoble, co-chair)
Yassine Lakhnech (Verimag, Grenoble)
Arend Rensink (University of Twente, Enschede)
Robby (Kansas State University, Manhattan KS)
Eran Yahav (IBM Research, New York)

Sponsoring Institution

COSMICAH is an official Appsem II workshop.

IV

Table of Contents

Verifying Red-Black Trees
Paolo Baldan, Andrea Corradini, Javier Esparza,
Tobias Heindel,Barbara König, and Vitali Kozioura 1

Local Reasoning for Termination
Andreas Podelski and Ina Schaefer .. 16

Symbolic Execution with Separation Logic
Josh Berdine, Cristiano Calcagno,and Peter W. O’Hearn 31

Heap-Abstraction for an Object-Oriented Calculus with
Thread Classes
Erika Ábrahám, Andreas Grüner, and Martin Steffen 47

V

Verifying Red-Black Trees�

Paolo Baldan1, Andrea Corradini2, Javier Esparza3, Tobias Heindel3,
Barbara König3, and Vitali Kozioura3

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany

baldan@dsi.unive.it andrea@di.unipi.it

{esparza,heindets,koenigba,koziouvi}@fmi.uni-stuttgart.de

Abstract. We show how to verify the correctness of insertion of ele-
ments into red-black trees—a form of balanced search trees—using anal-
ysis techniques developed for graph rewriting. We first model red-black
trees and operations on them using hypergraph rewriting. Then we use
the tool Augur, which computes approximated unfoldings, in order to
show that insertion preserves the property that there are no two consec-
utive red nodes in a tree, a requirement for red-black trees. Furthermore,
we prove that the tree remains balanced by exploiting a type system that
can be obtained as an instance of a general framework.

1 Introduction

In order to verify programs written in languages with dynamic memory alloca-
tion, such as C, it is important to find suitable abstractions for the dynamically
evolving pointer structures on the heap. The same problem arises for object-
oriented languages, for instance Java. Despite existing techniques such as alias
and points-to analysis [20, 24] and shape analysis [19], this is still a major open
problem. This paper proposes to use verification techniques based on graph
rewriting. The basic idea is to represent the state of the heap by a graph and
dynamic transformations of the pointer structure by graph rewriting rules. Com-
pared to the approaches to shape analysis which represent these structures as
models of a 3-valued logic we follow a more direct approach where pointer struc-
tures are represented as graphs, and graph morphisms can be used as a conve-
nient abstraction mechanism. This allows us to exploit partial order semantics
already developed for graph rewriting, as well as its close relation to Petri nets,
which we use as abstractions (over-approximations) of the behavior of graph
rewriting systems.

We demonstrate the effectiveness of this approach by modeling the insertion
of elements into red-black trees and verifying (partial) correctness of the insertion
operation. Red-black trees are binary search trees whose nodes are colored either

� Research partially supported by DFG project SANDS and EC RTN 2-2001-00346
SegraVis.

2

black or red. Only inner nodes can be red, and the following two properties
are satisfied: no red node has a red child, and the “black depth” is the same
for all leaves. In order to re-establish these properties after a new element is
inserted, it is necessary to perform some local transformations on the tree (called
rotations), which have the effect of rebalancing it. After modeling rotations as
graph rewriting rules, we use two different techniques to show that the two
properties of red-black trees mentioned above still hold after an insertion. The
first property is shown by automatically abstracting the graph rewriting system
into a Petri net [2, 4] by means of the Augur tool. The second property is proved
by resorting to a type-theoretical framework for graph rewriting, proposed in [9].

The rest of the paper is structured as follows. In Section 2 we introduce
red-black trees and their representation as hypergraphs. In Section 3 we model
insertion into red-black trees using graph rewriting. In Section 4 we show how
to verify that insertion preserves the structural properties of red-black trees.
Finally, in Section 5, we draw some conclusions.

2 Red-Black Trees

Red-black trees are a form of balanced search trees which can be easily imple-
mented (see [11, 5]). They can also be seen as a variant of (2, 4)-trees.

Definition 1 (Red-black tree). A red-black tree is a finite binary tree whose
inner nodes are associated with keys. Keys are elements of a totally ordered set. A
node can either be red or black. A red-black tree satisfies the following conditions:

(S) The tree is sorted, i.e., for every node v the maximal key in the left subtree
is smaller than the key of v, and the minimal key in the right subtree is equal
to or larger than the key of v.

(RL) The root and the leaves are black.
(D) All leaves have the same black depth, i.e., the number of black nodes on the

path from the root is the same for all leaves.
(R) No path from the root to a leaf contains two consecutive red nodes.

Due to these conditions the longest path from the root to a leaf is at most
twice as long as the shortest one. The height of a red-black tree with n inner
nodes is therefore O(log(n + 1)), and thus we say that the tree is balanced.

Since we will model insertion into red-black trees by hypergraph rewriting,
in the paper we always depict red-black trees as hypergraphs.

In the following, given a set A, let A∗ denote the set of finite sequences of
elements of A and for s ∈ A∗, let |s| denote its length.

Definition 2 (Hypergraph). Let Λ be a fixed set of edge labels, where every
label l ∈ Λ is associated with an arity ar(l) ∈ N.

A (Λ-)hypergraph (or simply graph) is a tuple G = (VG, EG, cG, lG), where
VG is a set of vertices and EG is a set of hyperedges. Each hyperedge is attached
to a sequence of vertices, as expressed by the connection function cG: EG → V ∗

G,

3

L L L L

R

9

L

Rt

B

B

B B L

11

16

4

19

L

R

23

Fig. 1. An example of a red-black tree.

and it is labeled with an element of Λ via the labeling function lG: EG → Λ. For
any hyperedge e ∈ EG it must hold that ar(lG(e)) = |cG(e)|, i.e., the number of
nodes an hyperedge is attached to is determined by the arity of its label.

Hypergraph morphisms ϕ: G → G′ are defined, as usual, as structure pre-
serving mappings (see also [18]).

A red-black tree is represented as a hypergraph where hyperedges correspond
to the nodes of the tree. Inner nodes are represented by hyperedges of arity
3, i.e., they are connected to exactly three vertices, where the parent and the
left and right children can be attached. They are labeled by either R or B
depending on whether the node is red or black. Leaves are represented by unary
hyperedges labeled L. Furthermore there is, for technical convenience, a single
unary hyperedge labeled Rt , indicating the root node. Figure 1 depicts a red-
black tree, where the keys are written next to the hyperedges. Note that, by
definition of hypergraph, each hyperedge is connected to an ordered sequence
of vertices. In our pictures, vertices are always arranged in such a way that the
vertex above a hyperedge is its first vertex, whereas the remaining vertices are
ordered counter-clockwise.

3 Insertion into Red-Black Trees using Graph Rewriting

We introduce now the concepts of graph rewriting rule and rewriting step, which
will be used to model the insertion of a new node into a red-black tree.

Definition 3 (Graph rewriting rule). A graph rewriting rule r is a tuple
(L, R, α) where L and R are hypergraphs, called the left-hand side and right-
hand side of the rule, while α : VL → VR is an injective function.

4

Intuitively, to apply a rule r = (L, R, α) to a hypergraph G one must find an
occurrence of the left-hand side L in G, i.e., a hypergraph morphism ϕ : L → G.
The application of the rule first removes from G the image of the hyperedges
of L, and then extends the resulting hypergraph by adding the new vertices in
R (i.e., the vertices in VR − α(VL)) and all the hyperedges of R, yielding a new
hypergraph H . In this case we write G ⇒r H . Observe that, unlike hyperedges,
vertices are never deleted: the vertices of G are not affected by the rewriting step.
We refer to [2] for a discussion of this restriction with respect to more general
definitions of graph rewriting. Notice, anyway, that the deletion of a vertex can
be simulated in our framework by leaving it isolated in the resulting graph.

The insertion of a new node into a red-black tree is described by the hyper-
graph rewriting rules shown in Fig. 2 and Fig. 3. For the corresponding pseudo-
code, see for instance [11]. An interesting question, that we leave as a topic of
future research, is whether and how graph rewriting rules can be synthesized
automatically from (pseudo-)code.

In the following the mapping α of a rule is represented by numbering the
nodes in the left-hand and right-hand sides: α maps a node in the left-hand-side
to the node of the right-hand side with the same number. Furthermore keys are
denoted by the letters y, z, u, v.

Rule [add-leaf] describes how a leaf is replaced by a new inner node labeled
M and two leaves. The label M stands for “marker” and denotes a red node
during the insertion phase. Rule [add-leaf] also consumes a “token”, the 0-ary
hyperedge add , that will be generated again when the insertion is completed:
this mechanism prevents the concurrent insertion of nodes. We assume that the
insertion of the new key y starts from the appropriate leaf, whose position must
have been determined by a previous search on the tree. Although this is out of
our focus, it is worth observing that this search could be realized by means of
graph rewriting rules acting on attributed graphs [10].

The remaining rules describe the local transformations needed to ensure that
the tree is converted into a red-black tree. If the marker has a black parent, it
is converted into a red hyperedge and insertion terminates (rule [marker-black],
this rule has two symmetric variants). If the marker is the root (rule [marker-
root]), it is replaced by a black hyperedge; in this case the black depth of the
tree increases by one. If the marker has a red parent, we distinguish several
cases (notice that in this case the marker’s grandparent (if any) must be black,
because otherwise Condition (R) would be violated):

– If the red parent of the marker has a red sibling, we perform a flip and move
the marker upwards (rule [flip], four variants). In this case the algorithm
continues.

– If the red parent of the marker has a black sibling, and this sibling is not a
leaf, we apply either rule [rotation] or rule [double-rotation]. Rule [rotation]
is applied if the marker and its red parent are either both left children or both
right children. In the two remaining cases rule [double-rotation] is applied.
In all cases the algorithm terminates.

5

add

L

1 1

L

M

L

y

[add-leaf]

B

M

y

z

1

2
3

4 5

2

add

y

z

1

3

4 5

R

B

[marker-black]

Rt
1

M

z

2 3

add

1

z

2 3

Rt

B

[marker-root]

2

4

5 5

y

z u

v

1

6 7

8 9

3

M

B

R

B

R

y

z u

v

R

M

1

2 3

4
6 7

8 9

B

[flip]

Fig. 2. Graph rewriting rules (insertion of an element into a red-black tree), part I.

– If the red parent of the marker has a black sibling, but this sibling is a
leaf, we proceed similarly to the previous case. There are four more rules,
obtained from those of Fig. 3 by replacing the node with key u by a leaf.

One can see fairly easily that all the transformations expressed by the above
rules preserve the sortedness Condition (S) in Definition 1. Moreover, for any
given finite tree, the insertion procedure started by rule [add-leaf] surely ter-
minates, generating again the token add . The formal verification of these two
properties goes beyond the goals of this paper: we shall only sketch in the con-
clusion how this could be done by exploiting the available theory of confluence
and termination of graph rewriting systems.

Note that modeling insertion into red-black trees using graph rewriting rules
is very natural. Similar diagrams can be found in most text books introducing

6

2

4

3

5 9

add

1

B

y

z u

v

M

1

2 3

4
6 7

8 9

R B

8 5

6 7

u

y

z

v

B

R R

B

[rotation]

2

v

M

8 9

5

add

z

1

B

y

z u

1

2 3

6 7

R B

6 7

4 4 9

3

5

v

u

y

B

R R

B

8

[double-rotation]

Fig. 3. Graph rewriting rules (insertion of an element into a red-black tree), part II.

red-black trees. Usually no marker is used, a red node takes its place instead.
However, this would lead to “inconsistent” intermediate states, produced dur-
ing the insertion procedure, which do contain two consecutive red hyperedges,
violating Condition (R). We avoid this by using a specific marker, which is fur-
thermore useful for indicating the position in the tree where operations have to
be performed.

4 Verifying Red-Black Trees

In the following we describe two static analysis techniques developed for the
verification of graph transformation systems: approximated unfolding and type
systems. Approximated unfolding is a fully automatic technique, based on a par-
tial order semantics of graph transformation systems. Here it is used to show that
no tree generated by the rewriting rules for insertion has two consecutive red
nodes (Condition (R)). The property that red-black trees remain balanced (Con-

7

dition (D)) is checked using a suitable type system, which is a simple instance
of a general framework [9]. We assume that the preservation of Conditions (S)
and (RL) has already been proved, as well as the fact that the result of the
insertion procedure is again a tree.

As the rest of the paper concentrates only on structural properties of red-
black trees, we neglect keys in the following.

4.1 Approximated Unfolding

Approximated unfolding was proposed in [2, 4] for the verification of infinite state
systems, modelled as graph transformation systems. It is based on the unfolding
construction which, applied to a graph transformation system, produces a static
structure fully describing the concurrent behavior of the system, including all
possible rewriting steps and their mutual dependencies, as well as all reachable
states [17, 3].

The unfolding is infinite for any non-trivial graph transformation system. The
mentioned papers propose an algorithm for constructing finite structures which
can be seen as over-approximations of the full unfolding, where interesting classes
of properties of the original system can be studied and verified. The structures
used for approximation are so-called Petri graphs, consisting of Petri nets the
places of which are hyperedges.

The outcome of the algorithm is determined by the chosen level of accuracy:
essentially one can require the approximation to be exact up to a certain causal
depth k, thus obtaining the so-called k-covering Ck(G) of the unfolding of G.

The covering Ck(G) over-approximates the behavior of G in the sense that
every computation in G is mapped to a valid computation in Ck(G) and every hy-
pergraph reachable from the start hypergraph can be mapped homomorphically
to (the graphical component of) Ck(G) (and its image is reachable in the Petri
graph). Therefore, given a property over hypergraphs reflected by hypergraph
morphisms, if it holds for all hypergraphs reachable in the covering Ck(G) then it
also holds for all reachable hypergraphs in G. Important properties of this kind
are the non-existence and non-adjacency of edges with specific labels, the ab-
sence of certain paths (for checking security properties) or cycles (for checking
deadlock-freedom). These structural properties can be specified using regular
expressions or by a monadic second-order logic on graphs that can be combined
with a temporal logic [4].

The technique described above has been implemented as part of the Augur
tool.4 It takes as input a graph transformation system encoded in GTXL (Graph
Transformation eXchange Language, an XML standard for graph transformation
systems) and outputs the Petri graph in GXL (Graph eXchange Language).
Next, several tools integrated with Augur can be used for verifying the desired
properties over the resulting Petri graph.

In order to show with Augur that insertion in a red-black tree does not
violate Condition (R), we provide as input to the tool a modified version of the

4 See http://www.fmi.uni-stuttgart.de/szs/tools/augur/.

8

Rt

BT

Initial graph:

BT

add

LB

1

B

1

BT

B

1

BT RT RT RT RT

1

B

1

BT BT

1 1

BT BT

RT R

Fig. 4. A context-free grammar for generating red-black trees.

add

L

1 1

Lx

M

Lx

y

[add-leaf-conv]

Rt
1

M

z

2 3

1

z

2 3

Rtx

Bx

[marker-root-conv]

Fig. 5. Rules of the converted system, part I.

rules shown in Figs. 2 and 3, as well as rules for generating all possible red-black
trees. The context-free rules for generating trees are shown in Fig. 4, together
with the initial graph: they use the non-terminals BT and RT , and generate all
finite trees satisfying Conditions (RL) and (R), but possibly not Condition (D)
(i.e., they are not balanced). Moreover, the rules modeling insertion are obtained
from those of the previous section as described next.

First, since every possible red-black tree is generated by the rules of Fig. 4,
it is sufficient to show that Condition (R) holds again after a single insertion;
thus in the modified rules, the token add is never generated again. Second, in
order to speed-up the verification, it is convenient to “freeze” the part of the
tree traversed during insertion. This is obtained by changing all labels Rt, B,
R and L appearing in the right-hand side of rules to labels Rtx , Bx , Rx and
Lx , respectively, which do not appear in any rule’s left-hand side (see Fig. 5).
This transformation is safe, because the hyperedges with x-marked labels do not
interfere with the current insertion, and no further insertion is possible by the
previous point.

9

3

3

42 5

1

RM

1

RMB

5 64 3

5 5

R

1

M

2

4 5

B

1

2

4

RM

5 6

3

2

7

R

1

RMB

3 4
5

2

1

M

Bx Bx

2 66 7

B

1

RMB

3 4
5

2

1

6 7

Bx

Rx Rx

Bx

2 3 4 72

3 4

Rx

Fig. 6. Rules of the converted system, part II.

The third modification is necessary because the current implementation of the
approximated unfolding suffers from the restriction that a rule cannot have two
hyperedges with the same label in the left-hand side, but rules [flip], [rotation]
and [double-rotation] do not satisfy this restriction. Therefore the offending rules
are converted into an equivalent set of rules which use some new labels and satisfy
this restriction. The way the new rules work can be grasped from Fig. 6. If the
first three rules can be applied in sequence, then we identified an occurrence
of the left-hand side of [double-rotation], and therefore the corresponding right-
hand side is generated (modified according to the previous two points). If instead
after the first two rules the left-hand side of the fourth rule is found, then we
generate the right-hand side of a [flip]. It can be shown that the converted rules
are equivalent to the original ones, in the sense that if G and G′ are graphs
containing only labels of the original graph rewriting system, then G can be
rewritten to G′ in the original system if and only if G can be rewritten to G′

in the converted system, possibly in more steps. Furthermore, all hyperedges
labeled by a label introduced in the converted system will eventually be deleted.

Applying Augur to the graph rewriting system just described and asking for
the 0-th approximation we get a Petri graph C0 with 125 hyperedges, 72 vertices
and 46 transitions, which is too large to be depicted here. In order to show

10

that the property under consideration holds, we want to check that no reachable
graph contains a path corresponding to the regular expression (R+Rx)(R+Rx).
The tools integrated into Augur can convert this regular expression into a set of
markings such that a path of this kind exists in the approximation if and only if
the corresponding markings are reachable in C0. However, in this case the set of
markings is empty, meaning that the hypergraph underlying the Petri graph does
not contain two consecutive red edges. In other words, using only the structural
properties of the covering C0 (without taking into account its behavior) we can
infer the desired property.

4.2 A Type System

In [9] a general framework for typing graph rewriting systems has been presented
which will be instantiated in the following in order to analyze red-black trees.
Type systems of this kind can be used to check structural invariants and are
related to type systems for process calculi [12].

Some intuition. Loosely speaking, a type system for a graph rewriting system
is a mapping that associates to a graph G another graph T , the (graph) type
of G. We say that it satisfies the subject reduction property if whenever G is
rewritten to G′ and G has type T , then G′ also has type T . In order to prove
that insertion preserves Condition (D) (all leaves have the same black depth), it
suffices to design a type system and a condition (P) over graph types such that:

(1) the type system has the subject reduction property with respect to the rules
for insertion;

(2) a graph satisfies Condition (D) if and only if its type satisfies Condition (P).

To see why, let G be any tree satisfying Condition (D), and let G′ be the result
of performing an insertion into G. By (1), G and G′ can be assigned the same
type. By (2), this type satisfies Condition (P) and, by (2) again, G′ satisfies
Condition (D).

Intuitively, our type system assigns to a graph G the graph T obtained by
(a) removing all red hyperedges, directly linking their parents to their children,
and (b) merging all black hyperedges having the same distance from the root. It
is easy to see that G satisfies Condition (D) if and only if no leaf of G is merged
to an inner hyperedge of T . This is Condition (P).

The technical setting. In the following we consider graphs G with a distinguished
sequence of external vertices χG ∈ V ∗

G, possibly with repetition. Graphically, we
identify the i-th vertex in the sequence by writing the number i close to the
corresponding node. The length of χG is called the arity of G. Rewriting rules
of the form (L, R, α) can now be seen as pairs of graphs with the same arity,
where χL is an arbitrary but fixed linearisation of VL, and α(v) = v′ if and only
if v, v′ appear in the same position of χL, χR. In the following, all operations
and morphisms are expected to preserve external vertices, i.e., for a morphism

11

2 3 2 3

1

�

1

Rt �

1

1
Rtx

1, 2, 3

1

�L/Lx

11

�

2 3

1

�

1

B/Bx R/Rx/M

Fig. 7. Local step.

ϕ: G → G′ we demand ϕ(χG) = χG′ . Technically, a type system associates to
G not only the graph T , but also all the graphs T ′ such that there is a graph
morphism T → T ′ (the type T can be seen as a subtype of each such T ′). All these
graphs are the graph types of G, and T is the strongest graph type. We consider
type systems in which the strongest graph type is obtained by first applying a
local transformation which replaces every hyperedge e by a graph having the
same arity as e. In a second phase a global closure operator is applied which
usually “folds” the graph obtained after the first step. In [9] it is shown that
under some mild conditions the subject reduction property holds whenever we
can show the following local property for every rewriting rule (L, R, α):

(Local subject reduction) Let TL, TR be the strongest graph types
for L and R. Then there is a morphism ϕ: TR → TL.

The type system. We describe the local and global step of our type system. They
correspond to the algorithmic steps (a) and (b) described above. We consider
here a graph rewriting system modeling a single insertion into a tree, consisting
basically of the rules of Fig. 2 and Fig. 3, where in the right-hand sides the
token add is removed and labels are of the variant marked by x (see the first
two modifications described in Section 4.1).

Local step: We replace every hyperedge modeling a black node by two binary
edges and every leaf by a unary edge indicated by a black rectangle (see Fig. 7).
Furthermore markers and red hyperedges are removed and all their vertices are
collapsed (this corresponds to step (a) above). A hyperedge labeled Rt indicating
the root is typed with a binary edge in order to have a black node “in reserve”
whenever the black depth of a tree grows.5

5 Observe that the type system makes a distinction between Rt and Rtx since in the
case of Rt an extra black edge is inserted, which is not done in the case of Rtx . This
makes it possible to establish the subject reduction property for rule [marker-root].

12

Fig. 8. Construction of a graph type (after the local/global step).

2, 3

1

2

3

5

2, 3, 4, 5, 8, 9 4, 8, 9

1

← ←
1, 2, 3

←
1 1

6, 7 6, 7

[double-rotation-conv][marker-root-conv][add-leaf-conv]

1

Fig. 9. Checking the local subject reduction property.

Global step/Closure: In the global step we collapse all branching black paths
into one (step (b) above) as follows: Whenever there are two binary edges with
the same source vertex or two unary edges with the same vertex, they are merged.
This process may have to be repeated.

Alternatively this closure operation can also be characterised by means of a
universal property.

If we apply the process described above to the red-black tree E in Fig. 1
we obtain the graph type TE depicted on the right-hand side of Fig. 8 (the
intermediate graph obtained after the local step is shown on the left-hand side).

Proving that insertions preserve Condition (D). According to the scheme shown
at the beginning of the section, we have to prove that (1) the type system has the
subject reduction property and (2) find a condition (P) such that Condition (D)
holds for a graph iff Condition (P) holds for its (strongest) type.

For (1), it is straightforward to show that the components of the type frame-
work, especially the operators used in the local and global step, satisfy the con-
ditions identified in [9], and thus it suffices to prove the local subject reduction
property. This is quite easy for most of the rules, we only show the property for
the rules [add-leaf], [marker-root] and [double-rotation] (see Fig. 9).

As for (2), recall that (P) should intuitively be: no leaf of a graph is merged
with an inner node in the graph type. The next proposition formalizes this fact.

Proposition 1. Let E be a tree satisfying all conditions of a red-black tree with
the possible exception of Condition (D). Furthermore let TE be its strongest type.

13

Then all leaves in E have the same black depth if and only if TE satisfies the
following condition:

(P) No unary edge (representing a leaf) is attached to a vertex which is
also the source vertex of a binary edge (representing a black edge).

Furthermore (P) satisfies the conditions specified in [9], specifically it is reflected
by morphisms.

Hence we have shown that only balanced red-black trees are reachable from
a balanced red-black tree by the rewriting rules in Figs. 2 and 3.

5 Conclusion and Related Work

We have shown how to model insertion into red-black trees using graph trans-
formations and we have demonstrated how analysis and verification techniques
based on graph transformation can be successfully used to verify the (partial)
correctness of insertion. The first technique (approximated unfolding) is fully
automatic and especially well-suited for showing that no reachable graph con-
tains certain forbidden graph patterns. Other types of invariants can be more
conveniently checked by using the second technique, a type system which is an
instance of a general framework.

More generally, we are convinced that a single analysis method can not solve
all problems, and thus a mix of several techniques is a promising method for the
verification of pointer structures. For example, there are other relevant properties
related to insertion into red-black trees that we did not address formally (as this
was beyond the goal of the paper), but that we could handle using other available
techniques. For example, it is quite obvious that termination of insertion can be
proved easily by defining a suitable reduction ordering. More interestingly, let
us sketch how the available theory of confluence for graph rewriting systems
could be used to prove that insertion into a red-black tree preserves sortedness
(Condition (S)).

Let us consider the system consisting of the rules of Figs. 2 and 3; since keys
are relevant for this discussion, we assume that they are represented as unary
hyperedges connected to the B, R or M hyperedge through a fourth node. The
technique is based on the well-known fact that a binary tree is sorted (i.e., it
satisfies Condition (S)) if and only if the in-order traversal returns its keys in
sorted order. The in-order traversal can be modeled by graph rewriting rules that,
starting from the root, destroy the tree while collecting all the keys in a linked
list. Then the preservation of sortedness can be reduced to the proof that the
system containing the rules for insertion and for in-order traversal is confluent:
together with termination, intuitively this means that at whatever stage we stop
the insertion, the in-order traversal returns the keys in the same order, and thus
the tree remains sorted if it was so at the beginning. Pragmatically, confluence
can be proved by resorting to a critical pair lemma for graph rewriting [13], and
automated support for critical pair analysis is provided, e.g., by the AGG tool.6

6 See http://tfs.cs.tu-berlin.de/agg/critical pairs.html.

14

Research concerned with the verification of graph transformation systems is
fairly recent. While some research groups [22, 6] pursue the idea of translating
graph transformation systems into the input language of a model checker, others
attempt to develop new specialized methods for graph rewriting. Work from our
side goes in this latter direction, as well as [15, 14, 16]. Most of the work so far
is concerned with verifying finite-state systems, whereas we have shown in this
paper how to analyze an infinite-state system where elements can be inserted
into red-black trees of arbitrary size.

In [23] red-black trees are checked using the structural analysis technique
implemented in Alloy. Originally written in Java, the program is translated to
Alloy’s input language and is then analyzed (by a further translation to SAT).
This requires bounds on the number of generated objects, on the maximum depth
of the call stack and on the number of times a loop can be executed. In [21], the
Moped model-checker is used, which allows to remove the last two bounds, but
not the first. As a consequence, both techniques will find bugs if they appear for
trees with a few nodes (around 5-7 in [23, 21]), but are not able to completely
verify red-black trees of arbitrary size as we have done in this paper.

In [8] and [1] shape types and shapes are introduced as certain graph lan-
guages. Both papers propose algorithms that analyze each rule and check whether
(and how) it may change the shape of a graph. In order to describe shapes the
former uses context-free grammars whereas the latter uses more expressive graph
reduction systems, that are able to express properties such as balancedness. In
principle this technique could be used to show invariants of red-black trees, but
the choice of graph reduction systems for shapes is non-trivial.

Furthermore insertion into red-black trees has been analyzed using the pointer
assertion logic PALE and the tool MONA [7].

References

1. Adam Bakewell, Detlef Plump, and Colin Runciman. Checking the shape safety
of pointer manipulations. In Rudolf Berghammer, Bernhard Möller, and Georg
Struth, editors, Proc. of RelMiCS ’03, volume 3051 of LNCS, pages 48–61. Springer,
2003.

2. Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis technique
for graph transformation systems. In Proc. of CONCUR ’01, volume 2154 of LNCS,
pages 381–395. Springer, 2001.

3. Paolo Baldan, Andrea Corradini, and Ugo Montanari. Unfolding and Event Struc-
ture Semantics for Graph Grammars. In W. Thomas, editor, Proc. of FoSSaCS
’99, volume 1578 of LNCS, pages 73–89. Springer, 1999.

4. Paolo Baldan and Barbara König. Approximating the behaviour of graph trans-
formation systems. In Proc. of ICGT’02, volume 2505 of LNCS, pages 14–29.
Springer, 2002.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2001. Second Edition.

6. Fernando Lúıs Dotti, Luciana Foss, Leila Ribeiro, and Osmar Marchi Santos. Ver-
ification of distributed object-based systems. In Proc. of FMOODS ’03, volume
2884 of LNCS, pages 261–275. Springer, 2003.

15

7. Jacob Elgaard, Anders Møller, and Michael I. Schwartzbach. Compile-time de-
bugging of C programs working on trees. In Proc. of ESOP ’00, pages 119–134.
Springer-Verlag, 2000. LNCS 1782.

8. Pascal Fradet and Daniel Le Métayer. Shape types. In Proc. of POPL ’97, pages
27–39. ACM, 1997.

9. Barbara König. A general framework for types in graph rewriting. Acta Informat-
ica, to appear.

10. Michael Löwe, Martin Korff, and Annika Wagner. An Algebraic Framework for the
Transformation of Attributed Graphs. In M.R. Sleep, M.J. Plasmeijer, and M.C.
van Eekelen, editors, Term Graph Rewriting: Theory and Practice, chapter 14,
pages 185–199. John Wiley, 1993.

11. Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. EATCS
Monographs on Theoretical Computer Science. Springer, 1984.

12. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Journal of Mathematical Structures in Computer Science, 6(5):409–454, 1996.

13. Detlef Plump. Hypergraph rewriting: Critical pairs and undecidability of conflu-
ence. In M.R. Sleep, M.J. Plasmeijer, and M.C. van Eekelen, editors, Term Graph
Rewriting: Theory and Practice, chapter 15, pages 201–214. John Wiley, 1993.

14. Arend Rensink. Model checking graph grammars. In Proc. of AVOCS ’03 (Work-
shop on Automated Verification of Critical Systems), 2003.

15. Arend Rensink. Canonical graph shapes. In Proc. of ESOP ’04, volume 2986 of
LNCS, pages 401–415. Springer, 2004.

16. Arend Rensink. State space abstraction using shape graphs. In Proc. of AVIS ’04,
ENTCS, 2004. to appear.

17. Leila Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
PhD thesis, Technische Universität Berlin, 1996.

18. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

19. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. TOPLAS (ACM Transactions on Programming Languages and
Systems), 24(3):217–298, 2002.

20. Bjarne Steensgaard. Points-to analysis in almost linear time. In Proc. of POPL
’96. ACM, 1996.

21. Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza. jMoped: A Java
Bytecode Checker Based on Moped. In Proc. of TACAS 2005, volume 3440 of
LNCS, pages 541–545. Springer, 2005.

22. Dániel Varró. Towards symbolic analysis of visual modeling languages. In Proc.
of GT-VMT’02, volume 72 of ENTCS. Elsevier, 2002.

23. Mandana Vaziri and Daniel Jackson. Checking properties of heap-manipulating
procedures with a constraint solver. In Proc. of TACAS 2003, volume 2619 of
LNCS, pages 505–520. Springer, 2003.

24. Robert Paul Wilson. Efficient, Context-Sensitive Pointer Analysis for C Programs.
PhD thesis, Stanford University, 1997.

Local Reasoning for Termination

Andreas Podelski and Ina Schaefer

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. In this paper, we bridge the gap between separation logic
and transition invariants in order to obtain a uniform framework for
proving total correctness of pointer programs. We introduce the concept
of separated transition constraints to describe the local effect of pointer
programs. Separated transition constraints provide a new view on local-
ity by their non-tight interpretation. Furthermore, separated transition
constraints constitute the basis for separated transition logic which en-
ables local reasoning about relations over states of heap-manipulating
programs. We put the framework of transition invariants to work with
separated transition logic and obtain as a consequence a conservative
extension of separation logic that is able to prove termination.

1 Introduction

So far, verification of pointer programs [12, 14] has mostly been restricted to
safety properties. In this paper, we will present an approach for verifying pointer
programs with respect to safety as well as liveness properties. While in this paper
we will concentrate on termination the reduction to general liveness properties
would follow the lines of [15, 6, 7].

We introduce separated transition constraints to describe the local effect of
program statements in heap-manipulating programs. Separated transition con-
straints are transition constraints in primed and unprimed variables conjoined
by ∧ and ∗-conjunction. The spatial ∗-conjunction is borrowed from separation
logic [12] and denotes that two parts of the heap must be disjoint.

Separated transition constraints offer a new viewpoint on locality in reasoning
about program statements operating with pointers. Their footprint corresponds
to the the minimal number of heap cells present in the heap for a valid inter-
pretation. But this heap may be extended by an arbitrary number of unchanged
heap cells. Separation logic requires an explicit frame rule which allows to extend
a tight specifications over a heap to a larger heap area. For separated transition
constraints, this is directly handled by the semantics. The frame axiom can sim-
ply be seen as a logical consequence thereof.

Separated transition constraints build the basis for separated transition logic
which enables local reasoning about relations over states of heap-manipulating
programs. This bridges the gap between the ideas of separation logic [12] where
assertions only refer to single program states and transition invariants [7] where
the proof rule is based on relations over program states.

17

Using separated transition logic we can put the framework of transition in-
variants [7] to work for heap manipulating programs and obtain a uniform proof
rule for their total correctness. We will show that this proof rule is complete
with respect to separation logic [12]. When it comes to termination arguments
the proof rule is strictly more expressive. As a consequence, our results are a
conservative extension of separation logic that is able to deal with termination.

Incorporating suitable abstraction techniques into the construction of sepa-
rated transition constraints offers a high potential of the automatization of this
proof rule. The results in transition predicate abstraction [8] offer a promising
starting point in this direction.

This paper is structured as follows: In Section 2, we will introduce the concept
of separated transition logic based on separated transition constraints. In Section
3, we will show how to use separated transition invariants for proving total
correctness of pointer programs and illustrate this in Section 4 at the destructive
reversal of a singly-linked list. In Section 5, we will briefly review some related
work before concluding the paper in Section 6.

2 Separated Transition Logic

Separated transition logic facilitates local reasoning about relations of program
states of a heap-manipulating program. It is based on the concept of separated
transition constraints which describe the local effect of pointer programs.

Separated transition constraints are transition constraints in primed and un-
primed variables conjoined by ∧ and ∗-conjunction. For instance, the separated
transition constraint

(x.n = x′ ∧ x = y′ ∧ x.n′ = y)

expresses the transition corresponding to the body of the while loop of a program
reversing a singly-linked list. In the heap consisting of at least one cell x is
updated to its successor under its next field, y gets updated to the old value of
x and the next field of the new value of x is updated to the old value of y.

Separated transition constraints are interpreted non-tightly over the heap.
The footprint of a separated transition constraint denotes the heap area the
constraint operates on. It corresponds to the minimal number of heap cells that
must be present in the heap for a valid interpretation. But this heap may be
extended by an arbitrary number of unchanged heap cells. Figure 1 depicts
this situation for the above constraint. We use n = n′ as a shorthand notation
that this heap part remains unchanged. We define atomic separated transition
constraints as v = w, v.n = w and v.n′ = w, where v and w are primed and
unprimed program variables, i.e. v = x or v = x′ and w = y or w = y′.
Atomic separated transition constraints can be conjoined to separated transition
constraints by ∧- and ∗-conjunction. We use these constraints to relate the values
x, x.n and x′, x.n′, x′.n′ of the variable x and the next field n before resp. after
a transition. The next field n is sometimes referred to as the cell content or the

18

x = y’

n’

y

n = n’
n x’

Fig. 1. Illustration of Separated Transition Constraint

value of the heap function. For notational convenience in the presence of primed
variables, we use x.n = y instead of x �→ y.

Definition 1 (Syntax of Separated Transition Constraints). Let v be an
element of the set of program variables. We define the syntax of tight separated
transition constraints as

w ::= v | v′

ϕ ::= emp
| w1 = w2

| w1.n = w2

| w1.n
′ = w2

| ϕ1 ∗ ϕ2

| ϕ1 ∧ ϕ2

Separated transition constraints denote a relation over pairs of program states.
A program state σ ∈ Σ is a tuple consisting of a valuation s ∈ S of the program
variables and the heap function h ∈ H . The heap is modelled by a finite partial
function mapping heap locations to values which themselves can be locations.
In the presentation of this paper, we concentrate on just one successor function
’n’ standing for the next-field of lists.

More formally, let Loc ⊆ Val denote the set of heap locations where nil is
a special heap location different from all other locations. Let Var denote a set
of unprimed program variables. Let s : V ar ⇀fin V al ∈ S be a finite partial
function denoting an evaluation of the program variables and h : Loc ⇀fin

V al ∈ H be a finite partial function denoting the heap function. Let dom(h)
denote its domain and h1 � h2 that the two heap domains are disjoint.

The satisfaction relation |= for separated transition constraints is defined
inductively on the structure of the formula c[V ar, V ar′] in the standard way. For
the spatial ∗-conjunction, we need a special definition which captures that the
heap must be separable into two disjoint parts in each of one of the two conjuncts
holds. Furthermore, the semantics definition allows the non-tight interpretation
over a heap extended by an arbitrary number of unchanged cells.

19

Definition 2 (Semantics of Separated Transition Constraints).
Let σ and σ′ be two program states. Then the satisfaction relation |= for

separated transition constraints is defined as follows:

(σ, σ′) |= emp if dom(h) = ∅
For v1, v2 ∈ V ar :
(σ, σ′) |= (v1 = v2) if s(v1) = s(v2)

...
...

(σ, σ′) |= (v′1 = v′2) if s′(v1) = s′(v2)
(σ, σ′) |= (v1.n = v2) if h(s(v1)) = s(v2) and {s(v1)} = dom(h)

...
...

(σ, σ′) |= (v′1.n = v′2) if h(s′(v1)) = s′(v2) and {s′(v1)} = dom(h)
(σ, σ′) |= (v1.n

′ = v2) if h′(s(v1) = s(v2) and {s(v1)} = dom(h′)
...

...
(σ, σ′) |= (v′1.n

′ = v′2) if h′(s′(v1) = s′(v2) and {s′(v1)} = dom(h′)

(σ, σ′) |= ϕ1 ∗ ϕ2 if h = h1 � h2 and h′ = h′1 � h′2 such that
((s, h1), (s′, h′1)) |= ϕ1

((s, h2), (s′, h′2)) |= ϕ2

(σ, σ′) |= ϕ1 ∧ ϕ2 if (σ, σ′) |= ϕ1 and (σ, σ′) |= ϕ2

Additionally, we define the non-tight interpretation
(σ, σ′) |= ϕ if h = h1 � h2 and h′ = h′1 � h′2 and h2 = h′2 such that

((s, h1), (s′, h′1)) |= ϕ

In the footprint of a separated transition constraint as defined by the syntax
above, we collect all program variables that are required to be allocated by the
constraint. The footprint is a syntactical construct because a separated transi-
tion constraint denotes a set of state pairs in which the domains of the heaps
may differ by unchanged parts. So a separated transition constraint may be in-
terpreted in heaps of different domains. However, if two constraints have the
same footprint they share at least the same number of heap cells corresponding
to the footprint and hence a subset relation must hold.

Definition 3 (Footprint). We define the footprint of a separated transition
constraint ϕ as

footprint(ϕ) = {x ∈ V ar| ϕ |= ∃z.x.n = z ∨ ∃z′.x.n′ = z′}
The frame axiom allows to extend a separated transition constraint by con-

juncts that explicitly refer to unchanged areas of the heap. It corresponds to the
frame rule used in separation logic and is a direct consequence of the semantics
of separated transition constraints. It says that is possible to add a conjunct
x.n = x.n′ to a constraint ϕ if x is not in the footprint of ϕ.

ϕ ≡ ϕ ∗ (x.n = x.n′) if x �∈ footprint(ϕ)

20

We define x.n = x.n′ as a shorthand notation for

∃zx.n = z → (∃z′x.n′ = z′ ∧ z = z′)
∨ ∃z′x.n′ = z′ → (∃zx.n = z ∧ z = z′)

This constraint requires that if a heap cell is allocated then it must remain
unchanged. But it allows also the case in which x is not interpreted in the heap
domain. This yields that for ψ

def= ϕ ∗ (x.n = x.n′), the footprint of ψ does only
comprise x if it is required to exist in the heap, e.g. by some other constraint.

For equivalence transformations, we use the following distributive law which
states that the ∧-conjunction distributes over the ∗-conjunction. It is a simple
consequence of the definition of ∗-conjunction in separated transition constraints.
It is used to conjoin two separated transition constraints working on two over-
lapping heap areas. It is applicable if ϕ1 and ψ1 have the same footprint.

(ϕ1 ∗ ϕ2) ∧ (ψ1 ∗ ψ2) ≡ (ϕ1 ∧ ψ1) ∗ (ϕ2 ∧ ψ2)

The composition of two separated transition constraints ϕ1 ◦ ϕ2 describes
the relational composition of the denoted relations over states and heaps. This
composition generalises strongest post and weakest preconditions. In the formula
below, we rename the transition constraints (over the set of variables X and
their primed versions; in our examples, X = {x, y, n}, X ′ = {x′, y′, n′} and
X ′′ = {x′′, y′′, n′′}) and obtain a renamed version of the transition constraint
for the composition. It is computed by

(ϕ1 ◦ ϕ2)[X, X ′′] ≡ ∃X ′ (ϕ1[X, X ′]) ∧ (ϕ2[X ′, X ′′])

3 Proof Rule for Total Correctness

Having set up separated transition logic as framework for local reasoning over
relations we are now ready to apply this to the proof rule proposed in [7] based
on relations. Hence, we will now review the proof rule of [7] which applies to
general programs, including pointer programs.

A program P is defined by a set of states Σ ⊆ S × H , a set of designated
starting states I ⊆ Σ and a transition relation R ⊆ Σ × Σ. We denote this
transition relation by a set of transition constraints. A computation is a sequence
of states σ1, σ2, . . . such that σ1 is a starting state, i.e. σ1 ∈ I and for all i ≥ 1
(σi, σi+1) ∈ R. A transition invariant is the superset of the transitive closure
of the transition relation of the program restricted to the accessible states, i.e.
formally

R+ ∩ (Acc×Acc) ⊆ T

where Acc = {σ ∈ Σ | R∗(σ1, σ), σ1 ∈ I}. For every computation segment of
the program, the start state and the end state are comprised in the transition
invariant. In the proof rule, transition invariants are the only auxiliary asser-
tion needed for proving termination and partial correctness of a program. An
inductive relation T , i.e. R ∪ T ◦R ⊂ T , is a transition invariant for P .

21

If there are no infinite computations in a program the program terminates.
This can be reduced to the well-foundedness of the transition invariant of the
program. If T is a transition invariant for a program P that denotes a finite
union of well founded relations then the program P terminates. The proof of
this proposition can be found in [7] and is based on Ramsey’s Theorem [11].

A program is partially correct with respect to a specification if it starts in an
initial state satisfying the precondition and after completion satisfies the post-
condition. If we restrict the transition invariant to the entry and the exit point of
the program and add the precondition then the constraints in T must imply the
post condition such that the program satisfies its specification. This proposition
can be justified by remembering that the transition invariant contains the start
and end state of every computation segment of the program and in particular
state pairs for the entry and the exit point of the program.

We can now give the proof rule for total correctness of programs based on
transition invariants.

Proof Rule

– P = (Σ, I, R) program
– T ⊆ Σ ×Σ a relation over program states of P
– pre and post pre and post condition for P

1. R ∪ T ◦R ⊆ T

2. T ∧ pre ∧ pc = entry ∧ pc′ = exit |= post

3. T is a finite union of well founded relations.

P is totally correct

We now instantiate the setting above to separated transition constraints.
This is straightforward since separated transition logic is designed to facilitate
local reasoning over relations.

Definition 4 (Separated Transition Invariant). A separated transition in-
variant is a set of separated transition constraints denoting a relation T over
program states such that T is a transition invariant.

We can show that separated transition logic, i.e. reasoning based on separated
transition constraints, is complete relative to separation logic [12].

Theorem 1 (Relative Completeness with respect to Separation Logic).
Separated transition logic is complete relative to separation logic, i.e. if for a pro-
gram P without allocation and deallocation of heap cells, separation logic proves
the Hoare triple {ϕ1}P{ϕ2} correct then there exists a separated transition in-
variant denoting a relation T such that

ϕ1 ∧ T |= ϕ2

22

Proof. The proof proceeds by structural induction over the set of axioms and
inference rules of separation logic. Every axiom of separation logic can be trans-
lated to separated transition logic. Furthermore, we show that for each inference
rule there exists a separated transition invariant that mimics the same reasoning
step. We omit the detailed proof in the short version of this paper but give some
examples:

– Mutation Axiom (Induction Basis) Separation logic proves

{∃ze.n = z}e.n′ = e1{e.n′ = e1}

Then T
def= e.n′ = e1 and hence ϕ1 ∧ T |= ϕ2.

– Frame Rule: (Induction Step) Separation logic proves

{p}c{q}
{p ∗ r}c{q ∗ r}

if r is not modified by c. Let ψ = (x1.n = x1.n
′)∗ . . .∗ (x1.m = x1.m

′) for all
xi ∈ footprint(r). By induction hypothesis we know that there exists T such
that p ∧ T |= q and hence there exists T ′ with T ′ def= T ∗ ψ. Further, T ′ ≡ T
since footprint(T) ∩ footprint(r) = ∅. Since footprint(r) = footprint(ψ) the
distributive law is applicable, thus

(p ∗ r) ∧ T ′ |= (p ∗ r) ∧ (T ∗ ψ)
|= (p ∧ T) ∗ (r ∧ ψ)
|= (p ∧ T) ∗ r
|= (q ∗ r)

which yields the result. �

Furthermore, separated transition logic extends separation logic by termina-
tion arguments.

Theorem 2 (Relative Completeness with respect to Termination). Sep-
arated transition logic is relatively complete for termination proofs, i.e. whenever
a program P terminates there exists a separated transition invariant denoting a
relation T such that T is a finite union of well-founded relations

Proof. Thanks to our definition of separated transition constraints the proof in
[7] can be directly extended. We omit the proof in the short version of the paper.

4 Case Example - List Reverse

In this section, we will illustrate how the first steps in our proof rule work for
verifying total correctness of a destructive reversal on singly linked lists. We will
establish that the relation denoted by a set of separated transition constraints
indeed forms a ’valid’ separated transition invariant. Figure 2 gives a pseudocode
implementation of the considered program.

23

List reverse (List x)

{ List y,t;

y := NULL;

l0 : while (x != NULL)

{ t := y;

y := x;

x := x->n;

y -> n := t;}

l1: return y;}

Fig. 2. Destructive List Reverse

For keeping track of program locations we will add a program counter to sep-
arated transition constraints. The program counter can be thought of as a special
program variable ranging over the set of program locations only. Therefore, we
add the conjuncts pc = �i and pc′ = �j to a separated transition constraint in
order to describe that this transition is only enabled if the program counter is
�i before the transition and updated to �j afterwards.

The transition relation of the reverse program is the union R
def= {r1, r2} of

the two relations r1 and r2 over states. A state is a valuation of the variables x,
y, n and pc (the program counter) where n is interpreted over the heap.

r1
def≡ pc = l0 ∧ c1 ∧ pc′ = l0

r2
def≡ pc = l0 ∧ c2 ∧ pc′ = l1

We can automatically translate the body of the while-loop to a separated
transition constraint

d ≡ (x �= nil ∧ x.n = x′ ∧ x = y′ ∧ y′.n′ = y)

The precondition for the reverse program is that x points to an acyclic list. We
define the predicate list(x) as usual.

list(x) ≡ (emp ∧ x = nil) ∨ ∃x1 (x.n = x1 ∗ list(x1))

Conjoining d with the precondition list(x) yields that also after one execution
of the while loop x points to an acyclic list, i.e. d ∧ list(x) |= list(x′). Hence it
holds that the precondition distributes over the composition

(list(x) ∧ d) ◦ d ≡ (list(x) ∧ d) ◦ (list(x′) ∧ d)

Therefore, the separated transition constraint c1 corresponds to the trans-
lation of body of while-loop together with guard “x is an acyclic list”, i.e.
c1

def= d ∧ list(x). Figure 3 illustrates the command c1.

c1
def≡ (x �= nil ∧ x.n = x′ ∧ x = y′ ∧ y′.n′ = y) ∗ (list(x′) ∧ n = n′)

24

x
y’

n

n’

y

x’

Fig. 3. Illustration of the body of the while loop

list(x) ∧ (n = n′) is a shorthand notation that the list remains unchanged.
Formally,

list(x) ∧ (n = n′)
def≡ (emp ∧ x = nil)

∨ (∃x1(x.n = x1 ∧ x.n = x.n′) ∗ (list(x1) ∧ (n = n′))

The transition constraint c2 corresponds to the termination of the while loop.

c2
def≡ x = nil ∧ x′ = x ∧ y′ = y ∧ n = n′

The transitive closure T of the transition relation R can now be formulated
as T = r+

1 ∪ r+
1 r2 ∪ r2 which also constitutes a separated transition invariant

for the reverse program. By r+
1 , we denote the i times relational composition of

the transition constraint r1 with itself for i ≥ 1 referring to i iterations of the
while loop of the reverse program. By r+

1 r2, we denote the i times composition
of r1 with itself composed with the constraint r2 corresponding to exiting the
while-loop. We define two ‘abstract’ transition constraints for r1

+ and r+
1 r2.

r1
+ def= pc = l0 ∧ Φ ∧ pc′ = l0

r+
1 r2

def= pc = l0 ∧ Ψ ∧ pc′ = l1

In order to show that these abstract transition constraints indeed form a valid
separated transition invariant, we will show that Φ

def=
∨

i ϕi ≡ c+
1 and that

Ψ ≡ c+
1 c2.

The formula ci
1 denotes the i-times composition of the transition constraint

c1 with itself, for i > 0. We define ϕi as a shorthand for the conjunction below,
we here omit the ∧ and ∗ symbols.

ϕi
def≡

x.n(i−1) �= nil
x.n′ = y

x.n(i−1) = y′

y′.n = x′

y′.n′(i−1) = x∧
0≤j≤i−1 y′.n′j = x.n(i−1−j)

∗ (list(x′) ∧ n = n′)

25

y

y’ x’
n’

n
x

n i−1

n’ i−1

Fig. 4. Illustration of the first part of ϕi

This constraint models that the first i cells of the initial list x are changed, while
the rest of the list still remains unchanged. The big conjunction expresses that
the links between the first i list elements are already reversed. Figure 4 illustrates
the first part of the formula ϕi and Figure 5 the big conjunction. The formula
x.ni = z expresses that x and z are linked by an acyclic chain of i next fields.
Formally,

x.n0 = z ≡ x = z

x.n(i+1) = z ≡ ∃y (x.n = y ∗ y.ni = z)

In the definition of ϕi, the conjunct x.n(i−1) = y′ is the special case of the big
conjunction for j = 0, and the conjunct y′.n′(i−1) = x the one for j = i− 1.

The crucial step in the total correctness proof is to show that the i-times
composition of the transition constraint c1 translating the guarded body of the
while of reverse is equivalent to the formula ϕi. The equivalence is proven by
induction over i. The base case for i = 1 follows by definition. Below we spell
out the proof of the equivalence for the case i = 2. This is sufficient to give us
the idea of the general induction step (which is analogous but more unpleasant
to read). Figure 6 illustrates the case for i = 2, i.e. c1 ◦ c1[var, var′, var′′]. The
result can then be derived as depicted in Figure 7.

In the presentation of Figure 7 we omit several details. In particular, we
do not include the (elimination of the) existential quantifiers of single-primed
variables. At step (1) we use the frame axiom where x ∈ footprint(c1[X, X ′])

x y’

n’i−1
n i−1

ni−1−j n’j

Fig. 5. Illustration of the big conjunction in ϕi

26

y

x y’
n

n’’

x’ y’’ x’’

list(x’’)list(x’)

n’ = n’’

n = n’ n = n’ = n’

Fig. 6. Illustration of c1 ◦ c1

but x �∈ \footprint(c1[X ′, X ′′]). Then we are able to apply the distributive law
in step (2) because the two first cells of the list have the same footprint x.
Additionally, we use the equivalence

list(x′) ∧ n = n′ ≡ (x′.n = x′′ ∧ x′.n = x′.n′) ∗ (list(x′′) ∧ n = n′).

Finally in step (3), we apply the distributive law again for the two second cells
which have the same footprint x′. The big conjunction appearing in ϕi does not
appear in our presentation of ϕ2. The conjunct x.n = y′ is the special case of
the big conjunction for i = 2 and j = 0, and the conjunct y′.n′ = x the one for
i = 2 and j = i− 1 (and those two conjuncts form ϕ2).

We define Ψ as a shorthand for the conjunction below, we again omit the ∧
and ∗ symbols.

Ψ
def≡

k > 0
x.n(k−1) �= nil

x.n′ = y

x.n(k−1) = y′

y′.n = nil

y′.n′(k−1) = x∧
0≤j≤k−1 x.nj = y′.n′(k−1−j))

We need to show that the composition ci
1 ◦c2 of the i-times iteration of the body

of the while loop with the exit transition c2 is equivalent to the the formula Ψ , for
i = k and x different from the empty list. We omit the proof of this equivalence;
it is analogous to the proof of ci

1 ≡ ϕi.
Now, we can reason about total correctness of the reverse program from

its separated transition invariant. The program terminates because T denotes a
finite union of well-founded relations. We show that r+

1 , r+
1 r2 and r2 each are well

founded relations, i.e. there are no infinite chains. This is trivially true for r+
1 r2

and r2 since the values of the program counter before and after the transition are
different, i.e. there are no chains of length greater than 2. The length of a chain
of r+

1 -transitions that starts in a state σ is bounded by the length of the list x
in the state σ, since r+

1 entails x.ni = x′, i.e. the length of the list x decreases

27

(c1 ◦ c1)[X, X ′′]

≡ c1[X, X ′] ∧ c1[X
′, X ′′]

≡ (∗) ∧ (∗)
x �= nil

x.n = x′

x = y′

x.n′ = y

list(x′)
n = n′

x′ �= nil
x′.n′ = x′′

x′ = y′′

x′.n′′ = y′

list(x′′)
n′ = n′′

(1)≡ (∗) ∧ (∗ ∗)
x �= nil

x.n = x′

x = y′

x.n′ = y

list(x′)
n = n′ x.n′ = x.n′′

x′ �= nil
x′.n′ = x′′

x′ = y′′

x′.n′′ = y′

list(x′′)
n′ = n′′

(2)≡ (∗ [(∗) ∧ (∗)]
x �= nil

x.n = x′

x = y′

x.n′ = y
x.n′ = x.n′′

x′.n = x′′

x′.n = x′.n′
list(x′′)
n = n′

x′ �= nil
x′.n′ = x′′

x′ = y′′

x′.n′′ = y′

list(x′′)
n′ = n′′

(3)≡ (∗ ∗)
x �= nil

x.n = x′

x = y′

x.n′ = y
x.n′ = x.n′′

x′ �= nil
x′.n′ = x′′

x′ = y′′

x′.n′′ = y′

x′.n = x′.n′

list(x′′)
n = n′ = n′′

≡ ϕ2[X, X ′′]

Fig. 7. Derivation of c2
1 ≡ ϕ2

28

by i > 0 with each r1-transition in the chain. So for i ≥ 1, r+
1 is contained in a

well founded relation,

r+
1 |= (x.n(i−1) �= nil ∧ x.ni = x′) ∗ (list(x′) ∧ n = n′)

Partial correctness follows from the fact that the separated transition invari-
ant T restricted to the pair of initial resp. final program locations entails the pre
and post condition pair.

T ∧ (pc = l0) ∧ (pc′ = l1) ∧ pre |= post

The precondition is that x is an acyclic list. The postcondition is that the pro-
gram implements an in-place reversal of the list x. The new value of y points
successively to the elements of the list x, in reverse order. The correctness of the
reverse program does not depend on having the initial value of y being nil or
being a list in a disjoint part of the heap. Our correctness criterion is strictly
stronger than the reversal of the word represented by the list.

pre
def≡ list(x)

post
def≡ length(x) = 0 ∧ x′ = x ∧ y′ = y ∧ n′ = n

∨ ∧
0≤j<length(x) x.nj = y′.n′ length(x)−1−j

We observe that T ∧ (pc = l0) ∧ (pc′ = l1) is equivalent to {r+
1 r2, r2}. The

transition constraint r2 entails the first disjunct of the post condition, and r+
1 r2

the second.

5 Related Work

For comparison with existing methods to prove partial correctness of pointer
programs, separation logic [12] is a Hoare style logic where separation logic asser-
tions are used for specifying partial correctness. The main feature of separation
logic is the spatial conjunction operator ∗ which explicitly expresses separation
of two parts of the heap. Separated transition constraints borrow this spatial
conjunction operator. In contrast to the pre and post condition pairs of separa-
tion logic, a single separated transition constraint can be used to describe the
effect of a program statement. The Hoare triples in separation logic are generally
tight and speak only about the memory area and variables currently used. The
frame rule allows to extend a local specification by adding arbitrary variables
and predicates not modified by commands in the Hoare triple. In our approach,
this explicit frame rule is directly encoded into the interpretation of separated
transition constraints and into the frame axiom. Separation logic so far is unable
to deal with termination or general liveness properties while in this paper we
have shown that separated transition logic provides a conservative extension of
separation logic that is able to deal with termination arguments.

29

The pointer assertion logic engine (PALE) [5] is another framework for ver-
ifying partial correctness of programs dealing with pointer structures that can
be expressed as graph types in second order monadic logic. However, this frame-
work is also not able to deal with reasoning about termination and other liveness
properties.

Another well-known approach to automatically prove safety properties of
pointer programs is shape analysis [14] based on abstract interpretation. The
properties shown by this framework are safety properties in the flavour of no
nil-pointer dereference, no memory leaks or structural invariance properties.
Shape analysis abstracts the structures in the heap according to a chosen set
of abstraction predicates. This abstraction, however, prevents to reason about
liveness properties. There are several approaches to extend classical shape anal-
ysis by means to reason about recursive pointer programs [13, 4] or to transfer
predicate abstraction techniques [3] to shape analysis [2, 10]. However, none of
these is able to deal with termination reasoning.

The only approach known to us dealing with liveness properties of pointer
programs is [1]. The authors propose to abstract a heap transition system and
the property to be verified by an abstraction preserving the desired properties of
the concrete system. Liveness properties are handled by adding a well-founded
ranking function to the system. This function is transformed into a progress mon-
itor which is composed with the system under consideration and subsequently
abstracted.

6 Discussion

In this paper, we have presented a novel approach to the verification of total
correctness of pointer programs which bridges the gap between ideas from sep-
aration logic and transition invariants.

However, some problems have not been solved completely yet. Separated
transition logic is at the moment unable to deal with allocation and deallocation
of memory cells. These operations still have to be integrated into our frame-
work. Furthermore, the concept of footprint is problematic in the presence of
disjunctions of separated transition constraints. Consider the constraint

ϕ
def= x.n = y ∧ ((y = nil) ∨ (∃z y.n = z))

which occurs for example using list(x). Then y �∈ footprint(ϕ) because by the
first disjunct y = nil, y is not allocated in the heap. But frame axiom is not
applicable because the second disjunct ∃z y.n = z requires that y is already
allocated and hence ϕ ∗ (y.n = y.n′) is inconsistent. Additionally, the definition
of footprints for predicates like the list predicate which require a previously
unknown number of heap cells is an open question. While this is not a problem
in the presentation of this paper the concept of footprint needs more subtle
investigations.

For the future, we aim at adding suitable abstraction techniques, as in [2, 13,
14, 10], to the concept of separated transition constraints in order to automatize

30

the proof rule. The results in transition predicate abstraction [8] can be trans-
ferred to this setting and offer a promising starting point for the development
of an automatic method for the verification of pointer programs. Furthermore,
we want to extend the approach presented here to handle recursive pointer pro-
grams by using the generalised notion of procedure summaries, as pointed out
in [9].

Acknowledgements. The authors would like to thank Peter O’Hearn, Christiano
Calcagno and Hongseok Yang for comments and suggestions.

References

1. I. Balaban, L. Zuck, and A. Pnueli. Shape analysis by predicate abstraction. In
Proceedings to VMCAI05, 2005.

2. Dennis Dams and Kedar S. Namjoshi. Shape Analysis through Predicate Ab-
straction and Model Checking. In Proceedings of the 4th International Conference
on Verification, Model Checking and Abstract Interpretation (VMCAI’03), volume
2575 of Lecture Notes in Computer Science, pages 310–323. Springer-Verlag, 2003.

3. Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS.
In Proceedings of CAV’1997: Computer Aided Verification.

4. B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to inter-
procedural shape analysis. In Proceedings of SAS’04, 2004.

5. A. Moeller and M. Schwartzbach. The pointer assertion logic engine. In Proceedings
of the ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation, PLDI’01, 2001.

6. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Proceedings of VMCAI’04, 2004.

7. A. Podelski and A. Rybalchenko. Transition invariants. In Proc. of LICS’2004:
Logic in Computer Science, pages 32–41. IEEE, 2004.

8. A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair ter-
mination. In Proc. of POPL’2005: Principles of Programming Languages. ACM
Press, 2005.

9. A. Podelski, I. Schaefer, and S. Wagner. Summaries for while programs with
recursion. Proceedings of European Symposium on Programing (ESOP’05), 2005.

10. A. Podelski and Th. Wies. Boolean heaps. to appear in SAS’05, 2005.
11. F. P. Ramsey. On a problem of formal logic. In Proceedings London Math. Soc.,

1930.
12. J. C. Reynolds. Separation logic: A logic for shared mutable data structures.

Proceedings of LICS’02, 2002.
13. Noam Rinetzky and Mooly Sagiv. Interprocedural shape analysis for recursive

programs. Lecture Notes in Computer Science, 2027, 2001.
14. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis

via 3-valued logic. ACM Transactions on Programming Languages and Systems
(TOPLAS), 24(3):217–298, 2002.

15. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of LICS’86, 1986.

Symbolic Execution with Separation Logic

Josh Berdine1, Cristiano Calcagno2, and Peter W. O’Hearn1

1 Queen Mary, University of London
2 Imperial College, London

Abstract. We describe a sound method for automatically proving Hoare
triples for loop-free code in Separation Logic, for certain preconditions
and postconditions (symbolic heaps). The method uses a form of sym-
bolic execution, a decidable proof theory for symbolic heaps, and extrac-
tion of frame axioms from incomplete proofs. This is a precursor to the
use of the logic in automatic specification checking, program analysis,
and model checking.

1 Introduction

Separation Logic has provided an approach to reasoning about programs with
pointers that often leads to simpler specifications and program proofs than pre-
vious formalisms [9]. This paper is part of a project attempting to transfer the
simplicity of the by-hand proofs to a fully automatic setting.

We describe a method for proving Hoare triples for loop-free code, by a form
of symbolic execution, for certain (restricted) preconditions and postconditions.
It not our intention here to try to show that the method is useful, just to say
what it is, and establish its soundness. This is a necessary precursor to further
possible developments on using Separation Logic in:

– Automatic Specification Checking , where one takes an annotated program
(with preconditions, postconditions and loop invariants) and chops it into
triples for loop-free code in the usual way;

– Program Analysis, where one uses fixed-point calculations to remove or re-
duce the need for annotations; and

– Software Model Checking .

The algorithms described here are in fact part an experimental tool of the first
variety, Smallfoot. Smallfoot itself is described separately in a companion paper
[2]; here we confine ourselves to the technical problems lying at its core. Of
course, program analysis and model checking raise further problems – especially,
the structure of our “abstract” domain and the right choice of widening operators
[3] – and further work is under way on these.

There are three main issues that we consider.
1. How to construe application of Separation Logic proof rules as symbolic

execution. The basic idea can be seen in the axiom

{A ∗ x7→[f : y]} x�fB z {A ∗ x7→[f : z]}

32

where the precondition is updated in-place, in a way that mirrors the imperative
update of the actual heap that occurs during program execution. The separating
conjunction, ∗, short-circuits the need for a global alias check in this axiom.
A ∗ x7→[f : y] says that the heap can be partitioned into a single cell x, that
points to (has contents) a record with y in its f field, and the rest of the heap,
where A holds. We know that A will continue to hold in the rest of the heap if
we update x, because x is not in A’s part of the heap.

There are two restrictions on assertions which make the symbolic execution
view tenable. First, we restrict to a format of the form B ∧ S where B is a pure
boolean formula and S is a ∗-combination of heap predicates. We think of these
assertions as “symbolic heaps”; the format makes the analogy with the in-place
aspect of concrete heaps apparent. Second, the preconditions and postconditions
do not describe the detailed contents of data structures, but rather describe
shapes (in roughly the sense of the term used in shape analysis). Beyond the
basic primitives of Separation Logic Smallfoot at this point includes several
hardwired shape predicates: for singly- and doubly-linked lists, for xor-linked
lists, and for trees. Here we describe our results for singly-linked lists and trees
only.

2. How to discharge entailments A ` B between symbolic heaps. We give a
decidable proof theory for the assertions in our language.

One key issue is how to account for entailments that would normally require
induction. To see the issue, consider a program for appending two lists. When
you get to the end of the first list you link it up to the second. At this point to
prove the program requires showing an entailment

ls(x, t) ∗ t 7→[n: y] ∗ ls(y, nil) ` ls(x, nil)

where we have a list segment from x to t, a single node t, and a further seg-
ment (the second list) from y up to nil. The entailment itself does not follow
at once from simple unwinding of an inductive definition of list segments. In
the metatheory it is proven by induction, and in our proof theory it will be
handled using rules that are consequences of induction but that are themselves
non-inductive in character.

In [1] we showed decidability of a fragment of the assertion language of this
paper, concentrating on list segments. Here we give a new proof procedure, which
appears to be less fragile in the face of extension than the model-theoretic pro-
cedure of [1]. Additionally, and crucially, it supports inference of frame axioms.

3. Inference of Frame Axioms. Separation Logic allows specifications to be
kept small because of it avoids the need to state frame axioms, which describe
the portions of heap not altered by a command [8]. To see the issue, suppose
you have a specification {

tree(p)
}
DispTree(p)

{
emp}

for disposing a tree, which just says that if you have a tree (and nothing else) and
you dispose it, then there is nothing left. When verifying a recursive procedure
for disposing a tree there will be recursive calls for disposing subtrees. The

33

problem is that, generally, a precondition at a call site will not match that for
the procedure because there will be extra heap around. For example, at the site
of a call DispTree(i) to dispose the left subtree we might have a root pointer p
and the right subtree j as well as the left subtree – p 7→[l: i, r: j]∗ tree(i)∗ tree(j)}
– while the precondition for the overall procedure specification expects only a
single tree.

Separation Logic has a proof rule, the Frame Rule, which allows us to resolve
this mismatch. It allows us the first step in the inference:

{tree(i)}DispTree(i){emp)}
{p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)}DispTree(j){p 7→[l: i, r: j] ∗ emp ∗ tree(j)}
{p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)}DispTree(j){p 7→[l: i, r: j] ∗ tree(j)}

To automatically generate proof steps like this we need some way to infer frame
axioms, the leftover parts (in this case p 7→[l: i, r: j] ∗ tree(j)). Sometimes, this
leftover part can be found by simple pattern matching, but often not. In this
paper we describe a novel method of extracting frame axioms from incomplete
proofs in our proof theory for entailments. A failed proof can identify the “left-
over” part which, were you to add it in, would complete the proof, and we show
how this can furnish us with a sound choice of frame axiom.

The notion of symbolic execution presented in this paper is, in a general
sense, similar in spirit to what one obtains in Shape Analysis or PALE [11, 7].
However, there are nontrivial differences in the specifics. In particular, we have
been unsuccessful in attempts to compositionally translate Separation Logic into
either PALE’s assertion language or into a shape analysis; the difficulty lies in
treating the separating conjunction connective. And this is the key to employing
the frame rule, which is responsible for Separation Logic’s small specifications
of procedures. So it seems sensible to attempt to describe symbolic execution
for Separation Logic directly, in its own terms. (Of course, once this is done
we hope that detailed comparisons and even Nelson-Oppen style coroutining of
proof methods will then be possible.)

2 Symbolic Heaps

The concrete heap models assume:

– A fixed finite collection Fields;
– Disjoint sets Loc of locations, Val of non-addressable values, with nil ∈ Val.

We then set:
Heaps def= Loc fin

⇀ (Fields→ Val ∪ Loc)

Stacks def= Var→ Val ∪ Loc
As a language for talking about these models we consider certain pure (heap

independent) and spatial (heap dependent) assertions.

x, y, . . . ∈ Var variables

34

E F nil | x expressions

P F E=E | ¬P simple pure formulæ
Π F true | P | Π ∧Π pure formulæ

f, fi, . . . ∈ Fields fields
ρF f1:E1, . . . , fk:Ek record expressions

S F E 7→[ρ] simple spatial formulæ
Σ F emp | S | Σ ∗Σ spatial formulæ

Π | Σ symbolic heaps

The pure part here is oriented to stating facts about pointer programs, where we
will use equality with nil to indicate a situation where we do not have a pointer.
Other subsets of boolean logic could be considered in other situations.

In this heap model a location maps to a record of values. The formula E 7→[ρ]
can mention any number of fields in ρ, and the values of the remaining fields are
implicitly existentially quantified. This allows us to write specifications which
do not mention fields whose values we do not care about.

The semantics is given by a forcing relation s, h � A where s ∈ Stacks,
h ∈ Heaps, and A is a pure assertion, spatial assertion, or symbolic heap.

JxKs def= s(x) JnilKs def= nil

s, h � E1=E2

def

iff JE1Ks = JE2Ks

s, h � ¬P
def

iff s, h 2 P

s, h � true always
s, h � Π0 ∧Π1

def

iff s, h � Π0 and s, h � Π1

s, h � E0 7→[f1:E1, . . . , fk:Ek]
def

iff h = [JE0Ks�r] where r(fi) = JEiKs for i ∈ 1..k

s, h � emp
def

iff h = ∅
s, h � Σ0 ∗Σ1

def

iff ∃h0h1. h = h0∗h1 and s, h0 � Σ0 and s, h1 � Σ1

s, h � Π | Σ
def

iff s, h � Π and s, h � Σ

Note that we abbreviate ¬(E1=E2) as E1 6=E2 and true | Σ as Σ, and use ≡ to
denote “syntactic” equality of formulæ, which are considered up to symmetry of
=, permutations across ∧ and ∗, e.g., Π ∧ P ∧ P ′ ≡ Π ∧ P ′ ∧ P , involutivity of
negation, and unit laws for true and emp. We use notation treating formulæ as
sets of simple formulæ, e.g., writing P ∈ Π for Π ≡ P ∧Π ′ for some Π ′.

To reason about pointer programs one typically needs predicates that de-
scribe inductive properties of the heap. We describe two of the predicates (adding
to the simple spatial formulæ) that we have experimented with in Smallfoot.

2.1 Trees

We describe a model of binary trees where each internal node has fields l, r for
the left and right subtrees. The empty tree is given by nil. What we require is

35

that tree(E) is the least (logically strongest) predicate satisfying:

tree(E)⇐⇒ (E = nil ∧ emp)
∨ (∃x, y. E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y))

where x and y are fresh. The use of the ∗ between E 7→[l:x, r: y] and the two
subtrees ensures that there are no cycles, and the ∗ between the subtrees ensures
that there is no sharing; it is not a DAG.

The way that the record notation works allows this definition to apply to any
heap model that contains at least l and r fields. In case there are further fields,
say a field d for the data component of a node, the definition is independent of
what the specific values are in those fields.

Our description of this predicate is not entirely formal, because we do not
have existential quantification, disjunction, or recursive definitions in our frag-
ment. However, what we are doing is defining a new simple spatial formula (ex-
tending syntactic category S above), and we are free to do that in the metatheory.
A longer-winded way to view this, as a semantic definition, is to say that it is
the least predicate such that

s, h � tree(E) holds if and only if
1. s, h � E = nil ∧ emp, or
2. there are `x, `y where

(s | x 7→ `x, y 7→ `y), h � E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y)

Of course, we would have to prove (in the metatheory) that the least definition
exists, but that is not difficult.

2.2 List Segments

We will work with linked lists that use field n for the next element. The predicate
for linked list segments is the least satisfying the following specification:

ls(E,F)⇐⇒ (E=F ∧ emp)
∨ (E 6=F ∧ ∃y.E 7→[n: y] ∗ ls(y, F))

Once again, this definition allows for additional fields, such as a head field, but
the ls predicate is insensitive to the values of these other fields.

With this definition a complete linked list is one that satisfies ls(E, nil). Com-
plete linked lists, or trees for that matter, are much simpler than segments. But
the segments are sometimes needed when reasoning in the middle of a list, par-
ticularly for iterative programs. (Similar remarks would apply to tree segments.)

3 Symbolic Execution

In this section we give rules for triples of the form

{Π | Σ} C {Π ′ | Σ′}

36

where C is a loop-free program. The commands C are given by the grammar:

C F empty empty command
| xBE ; C variable assignment
| xBE�f ; C heap lookup
| E�fBF ; C heap mutation
| new(x) ; C allocation
| dispose(E) ; C disposal
| ifP thenC elseC fi ; C conditional

The rules in this section appeal to entailments Π | Σ ` Π ′ | Σ′ between
symbolic heaps. Semantically, entailment is defined by:

Π | Σ ` Π ′ | Σ′ is true iff ∀s, h. s, h � Π | Σ implies s, h � Π ′ | Σ′

For the presentation of rules in this section we will regard semantic entailment
as an oracle. Soundness of symbolic execution just requires an approximation.

3.1 Operational Rules

The operational rules use the following notation for record expressions:

mutate(ρ, f, F) =

{
f :F, ρ′ if ρ = f :E, ρ′

f :F, ρ if f /∈ ρ

lookup(ρ, f) =

{
E if ρ = f :E, ρ′

x fresh if f /∈ ρ

The fresh variable returned in the lookup case corresponds to the idea that if
a record expression does not give a value for a particular field then we do not
care what it is. These definitions do not result in conditionals being inserted into
record expressions; they do not depend on the values of variables or the heap.

The operational rules are shown in Table 1. One way to understand these
rules is by appeal to operational intuition. For instance, reading bottom-up, from
conclusion to premise, the Mutate rule says:

To determine if {Π | Σ ∗ E 7→[ρ]} E�fBF ; C {Π ′ | Σ′} holds, execute
E�fBF on the symbolic pre-state Π | Σ ∗E 7→[ρ], updating E in place,
and then continue with C.

Likewise, the Dispose rule says to dispose a symbolic cell (a 7→ fact), the New

rule says to allocate, and the Lookup rule to read. The substitutions of fresh
variables are used to keep track of (facts about) previous values of variables.

The role of fresh variables can be understood in terms of standard consider-
ations on Floyd-Hoare logic. Recall that in Floyd’s assignment axiom

{A} xBE {∃x′. x=E[x′/x] ∧A[x′/x]}

37

Table 1 Operational Symbolic Execution Rules

Empty
Π | Σ ` Π ′ | Σ′

{Π | Σ} empty {Π ′ | Σ′}

Assign
{x=E[x′/x] ∧ (Π | Σ)[x′/x]} C {Π ′ | Σ′}

{Π | Σ} xBE ; C {Π ′ | Σ′}
x′ fresh

Lookup
{x=F [x′/x] ∧ (Π | Σ ∗ E 7→[ρ])[x′/x]} C {Π ′ | Σ′}

{Π | Σ ∗ E 7→[ρ]} xBE�f ; C {Π ′ | Σ′}
x′ fresh, lookup(ρ, f) = F

Mutate
{Π | Σ ∗ E 7→[ρ′]} C {Π ′ | Σ′}

{Π | Σ ∗ E 7→[ρ]} E�fBF ; C {Π ′ | Σ′}
mutate(ρ, f, F) = ρ′

New
{(Π | Σ)[x′/x] ∗ x7→[]} C {Π ′ | Σ′}
{Π | Σ} new(x) ; C {Π ′ | Σ′}

x′ fresh

Dispose
{Π | Σ} C {Π ′ | Σ′}

{Π | Σ ∗ E 7→[ρ]} dispose(E) ; C {Π ′ | Σ′}

Conditional
{Π ∧ P | Σ} C1 ; C {Π ′ | Σ′} {Π ∧ ¬P | Σ} C2 ; C {Π ′ | Σ′}

{Π | Σ} ifP thenC1 elseC2 fi ; C {Π ′ | Σ′}

the fresh variable x′ is used to record (at least the existence of) a previous value
for x. Our fragment here is quantifier-free, but we can still use the same general
idea as in the Floyd axiom, as long as we have an overall postcondition and a
continuation of the assignment command.

{x=E[x′/x] ∧A[x′/x]} C {B}
{A} xBE ; C {B}

x′ fresh

This rule works in standard Hoare logic: the fact that the Floyd axiom expresses
the strongest postcondition translates into the soundness and completeness of
this rule. All of the rules mentioning fresh variables are obtained in this way from
axioms of Separation Logic. This (standard) trick allows us to use a quantifier-
free language.

We will not explicitly give the semantics of commands, but just say that we
assume Separation Logic’s “fault-avoiding” semantics of triples in:

Theorem 1. All of the operational rules are sound (preserving validity), and
all except for Dispose are complete (preserving invalidity).

To see the incompleteness of the Dispose rule consider:

{x7→[] ∗ y 7→[]} dispose(x) ; empty {x6=y | y 7→[]}

38

This is a true triple, but if we apply the Dispose and Empty rules upwards
we will be left with an entailment y 7→[] ` x6=y | y 7→[] that is false. The rule
loses the implied information that x and y are unequal from the precondition.
Although we can construct artificial examples like this that fool the rule, none of
the naturally-occurring examples that we have tried in Smallfoot have suffered
from it. The reason, so it seems, is required that inequalities tend to be indicated
in boolean conditions in programs, in either while loops or conditionals.

This incompleteness could be dealt with if we were instead to use the backwards-
running weakest preconditions of Separation Logic [4]. Unfortunately, there is
no existing automatic theorem prover which can deal with the form of these
assertions (which use quantification and the separating implication −−∗). If there
were such a prover, we would be eager consumers of it.

Also, there are various hacks to reduce the incompleteness while still rea-
soning forwards, but actually achieving completeness is nontrivial. So in lieu of
neither completeness nor practical problems with the incompleteness, we have
opted for the simple solution presented here.

3.2 Rearrangement Rules

The operational rules are not sufficient on their own, because some of them
expect their preconditions to be in particular forms. For instance, in

{x=y | z 7→[f :w] ∗ y 7→[f : z]} x�fB y ; C {Π ′ | Σ′}

the Mutate rule cannot fire (be applied upwards), because the precondition has
to explicitly have x7→[ρ] for some ρ.

Symbolic execution has a separate rearrangement phase, which attempts to
put the precondition in the proper form for an operational rule to fire. For
instance, in the example just given we can observe that the precondition x=y |
z 7→[f :w] ∗ y 7→[f : z] is equivalent to x=y | z 7→[f :w] ∗x7→[f : z], which is in a form
that allows the Mutate rule to fire.

We use notation for atomic commands that access heap cell E:

A(E)F E�fBF | xBE�f | dispose(E)

The basic rearrangement rule simply makes use of equalities to recognize that
a dereferencing step is possible.

Switch(E)

{Π | Σ ∗ E 7→[ρ]} A(E) ; C {Π ′ | Σ′}
{Π | Σ ∗ F 7→[ρ]} A(E) ; C {Π ′ | Σ′}

Π | Σ ∗ F 7→[ρ] ` E=F

For trees and list segments we have rules that expose 7→ facts by unrolling
their inductive definitions, when we have enough information to conclude that

39

the tree or the list is nonempty.3 A nonempty tree is one that is not nil.

Unroll Tree(E)

{Π | Σ ∗ E 7→[l:x′, r: y′] ∗ tree(x′) ∗ tree(y′)} A(E) ; C {Π ′ | Σ′}
{Π | Σ ∗ tree(F)} A(E) ; C {Π ′ | Σ′}

†when Π | Σ ∗ tree(F) ` F 6=nil ∧ F=E and x′, y′ fresh

†

Here, we have placed the “side condition”, which is necessary for the rule to
apply, below it, for space reasons. Besides unrolling the tree definition some
matching is included using the equality F=E.

To unroll a list segment we need to know that the beginning and ending
points are different, which implies that it is nonempty.

Unroll List Segment(E)

{Π | Σ ∗ E 7→[n:x′] ∗ ls(x′, F ′)} A(E) ; C {Π ′ | Σ′}
{Π | Σ ∗ ls(F, F ′)} A(E) ; C {Π ′ | Σ′}

†when Π | Σ ∗ ls(F, F ′) ` F 6=F ′ ∧ E=F and x′ fresh

†

These rearrangement rules are very deterministic, and are not complete on
their own. The reason is that it is possible for an assertion to imply that a cell is
allocated, without knowing which ∗-conjunct it necessarily lies in. For example,
the assertion y 6=z | ls(x, y) ∗ ls(x, z) contains a “spooky disjunction”: it implies
that one of the two list segments is nonempty, so that x6=y ∨ x6=z, but we do
not know which. To deal with this in the rearrangement phase we rely on a
procedure for exorcising these spooky disjunctions. In essence, exor(Π | Σ,E)
is a collection of assertions obtained by doing enough case analysis (adding
equalities and inequalities to Π) so that the location of E within a ∗-conjunct
is determined. This makes the rearrangement rules complete.

We omit a formal definition of exor for space reasons. It is mentioned in the
symbolic execution algorithm below, where exor(g,E) is obtained from triple g
by applying exor to the precondition.

3.3 Symbolic Execution Algorithm

The symbolic execution algorithm works by proof-search using the operational
and rearrangement rules. Rearrangement is controlled to ensure termination.

To describe symbolic execution we presume an oracle oracle(Π | Σ ` Π ′ |
Σ′) for deciding entailments. We also use that we can express consistency of a
symbolic heap, and allocatedness, using entailments:

incon(Π | Σ) def= oracle(Π | Σ ` nil 6=nil | emp)
allocd(Π | Σ,E) def= incon(Π | Σ ∗ E 7→[]) and incon(E=nil ∧Π | Σ)

We also use pre(g) to denote the precondition in a Hoare triple g. incon and
pre are used to check the precondition for inconsistency in the first step of the
symbolic execution algorithm and allocd is used int he second-last line.
3 This is somewhat akin to the “focus” step in shape analysis [11].

40

Definition 2. E is active in g if g is of the form

{Π | Σ} A(E) ; C {Π ′ | Σ′}

Algorithm 3 (Symbolic Execution) Given a triple g, determines whether or
not it is provable.

check(g) =
if incon(pre(g)) return “true”
if g matches the conclusion of an operational rule

let p be the premise, or p1, p2 the two premises in
if rule Empty return oracle(p)
if rule Assign, Mutate, New, Dispose, or Lookup return check(p)
if rule Conditional return check(p1) ∧ check(p2)

elseif g begins with A(E)
if Switch(E), Unroll List Segment(E), or Unroll Tree(E) applies

let p be the premise in return check(p)
elseif allocd(pre(g), E) return

∧
{check(g′) | g′ ∈ exor(g,E)}

else return “false”

Theorem 4. The Symbolic Execution algorithm terminates, and returns “true”
iff there is a proof of the input judgment using the operational and rearrangement
rules, where we view each use of an entailment in the symbolic execution rules
as a call to the oracle.

4 Proof Rules for Entailments

The entailment Π | Σ ` Π ′ | Σ′ was treated as an oracle in the description of
symbolic execution. We now describe a proof theory for entailment.

The rules come in two groups. The first, the normalization rules, get rid of
equalities as soon as possible so that the forthcoming rules can be formulated
using simple pattern matching (i.e., we can use E 7→F rather than E′ 7→F plus
E′=E derivable), make derivable inequalities explicit, perform case analysis us-
ing a form of excluded middle, and recognize inconsistency. The second group of
rules, the subtraction rules, work by explicating and then removing facts from
the right-hand side of an entailment, with the eventual aim of reducing to the
axiom Π | emp ` true | emp.

Before giving the rules, we introduce some notation. We write op(E) as an
abbreviation for E 7→[ρ], ls(E,E′), or tree(E). The guard G(op(E)) is defined by:

G(E 7→[ρ]) def= true G(ls(E,E′)) def= E 6=E′ G(tree(E)) def= E 6=nil

The proof rules are given in Table 2. Except for G(op1(E1)),G(op2(E2)) ∈ Π,
the side-conditions are not needed for soundness, but ensure termination.

Theorem 5 (Soundness and Completeness). Any provable entailment is
valid, and any valid entailment is provable.

41

Table 2 Proof System for Entailment
Normalization Rules:

Π ∧ E 6=E | Σ ` Π ′ | Σ′

Π[E/x] | Σ[E/x] ` Π ′[E/x] | Σ′[E/x]
Π ∧ x=E | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ | Σ′

Π ∧ E=E | Σ ` Π ′ | Σ′

Π ∧G(op(E)) ∧ E 6=nil | op(E) ∗Σ ` Π ′ | Σ′

Π ∧G(op(E)) | op(E) ∗Σ ` Π ′ | Σ′ E 6=nil /∈ Π ∧G(op(E))

Π ∧ E1 6=E2 | op1(E1) ∗ op2(E2) ∗Σ ` Π ′ | Σ′

Π | op1(E1) ∗ op2(E2) ∗Σ ` Π ′ | Σ′
G(op1(E1)),G(op2(E2)) ∈ Π
E1 6=E2 /∈ Π

Π ∧ E1=E2 | Σ ` Π ′ | Σ′

Π ∧ E1 6=E2 | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ | Σ′

E1 6≡ E2

E1=E2, E1 6=E2 /∈ Π
fv(E1, E2) ⊆ fv(Π,Σ,Π ′, Σ′)

Π | Σ ` Π ′ | Σ′

Π | Σ ∗ tree(nil) ` Π ′ | Σ′
Π | Σ ` Π ′ | Σ′

Π | Σ ∗ ls(E,E) ` Π ′ | Σ′

Subtraction Rules:

Π | emp ` true | emp

Π | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ ∧ E=E | Σ′
Π ∧ P | Σ ` Π ′ | Σ′

Π ∧ P | Σ ` Π ′ ∧ P | Σ′

S ` S′ Π | Σ ` Π ′ | Σ′

Π | S ∗Σ ` Π ′ | S′ ∗Σ′ S ` S E 7→[ρ, ρ′] ` E 7→[ρ]

Π | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ | tree(nil) ∗Σ′
Π | Σ ` Π ′ | Σ′

Π | Σ ` Π ′ | ls(E,E) ∗Σ′

Π | E 7→[l:E1, r:E2, ρ] ∗Σ ` Π ′ | E 7→[l:E1, r:E2, ρ] ∗ tree(E1) ∗ tree(E2) ∗Σ′

Π | E 7→[l:E1, r:E2, ρ] ∗Σ ` Π ′ | tree(E) ∗Σ′

†E 7→[l:E1, r:E2, ρ] /∈ Σ′

†

Π ∧ E1 6=E3 | E1 7→[n:E2, ρ] ∗Σ ` Π ′ | E1 7→[n:E2, ρ] ∗ ls(E2, E3) ∗Σ′

Π ∧ E1 6=E3 | E1 7→[n:E2, ρ] ∗Σ ` Π ′ | ls(E1, E3) ∗Σ′

†E1 7→[n:E2, ρ] /∈ Σ′

†

Π | ls(E1, E2) ∗Σ ` Π ′ | ls(E1, E2) ∗ ls(E2, nil) ∗Σ′

Π | ls(E1, E2) ∗Σ ` Π ′ | ls(E1, nil) ∗Σ′

Π ∧G(op(E3)) | ls(E1, E2) ∗ op(E3) ∗Σ ` Π ′ | ls(E1, E2) ∗ ls(E2, E3) ∗Σ′

Π ∧G(op(E3)) | ls(E1, E2) ∗ op(E3) ∗Σ ` Π ′ | ls(E1, E3) ∗Σ′

42

The side-conditions are sufficient to ensure that progress is made when ap-
plying rules upwards. Decidability then follows using the naive proof procedure
which tries all possibilities, backtracking when necessary.

Theorem 6 (Decidability). Entailment is decidable.

It is possible, however, to do much better than the naive procedure. For
example, one narrowing of the search space is a phase distinction between nor-
malization and subtraction rules: Any subtraction rule can be commuted above
any normalization rule. Further commutations are possible for special classes of
assertion, and these are used in Smallfoot.

This system’s proof rules can be viewed as coming from certain implications,
and are arranged as rules just to avoid the explicit use of the cut rule in proof
search. For instance, the fourth normalization rule comes from the implications:

E 7→[]→ E 6=nil E1 6=E2 ∧ ls(E1, E2)→ E1 6=nil

the fifth from the implications:

E1 7→[ρ1] ∗ E2 7→[ρ2]→ E1 6=E2 E2 6=nil ∧ E1 7→[ρ] ∗ tree(E2)→ E1 6=E2

E2 6=E3 ∧ E1 7→[ρ] ∗ ls(E2, E3)→ E1 6=E2

E1 6=nil ∧ E2 6=nil ∧ tree(E1) ∗ tree(E2)→ E1 6=E2

E1 6=nil ∧ E2 6=E3 ∧ tree(E1) ∗ ls(E2, E3)→ E1 6=E2

E1 6=E3 ∧ E2 6=E4 ∧ ls(E1, E3) ∗ ls(E2, E4)→ E1 6=E2

and the last two from the implications:

tree(nil)→ emp ls(E,E)→ emp

For the inductive predicates, these implications are consequences of unrolling the
inductive definition in the metatheory. But note that we do not unroll predicates,
instead case analysis via excluded middle takes one judgment to several.

Likewise, the subtraction rules for the inductive predicates are obtained from
the implications:

emp→ tree(nil) E 7→[l:E1, r:E2, ρ] ∗ tree(E1) ∗ tree(E2)→ tree(E)

emp→ ls(E,E) E1 6=E3 ∧ E1 7→[n:E2, ρ] ∗ ls(E2, E3)→ ls(E1, E3)

ls(E1, E2) ∗ ls(E2, nil)→ ls(E1, nil)

ls(E1, E2) ∗ ls(E2, E3) ∗ E3 7→[ρ]→ ls(E1, E3) ∗ E3 7→[ρ]

E3 6=nil ∧ ls(E1, E2) ∗ ls(E2, E3) ∗ tree(E3)→ ls(E1, E3) ∗ tree(E3)

E3 6=E4 ∧ ls(E1, E2) ∗ ls(E2, E3) ∗ ls(E3, E4)→ ls(E1, E3) ∗ ls(E3, E4)

The first four are straightforward, while the last four express properties whose
verification of soundness would use inductive proofs in the metatheory. The re-
sulting rules do not, however, require a search for inductive premises. In essence,

43

what we generally do is, for each considered inductive predicate, add a collection
of rules that are consequences of induction, but that can be formulated in a way
that preserves the proof theory’s terminating nature.

In the last subtraction rule, the G(op(E3)) ∧ op(E3) part of the left-hand
side ensures that E3 does not occur within the segments from E1 to E2 or from
E2 to E3. This is necessary for appending list segments, since they are required
to be acyclic.

Here is an example proof, of the entailment mentioned in the Introduction:

t 6=nil | emp ` emp

t 6=nil | ls(y, nil) ` ls(y, nil)

t 6=nil | t 7→[n: y] ∗ ls(y, nil) ` t 7→[n: y] ∗ ls(y, nil)

t 6=nil | t 7→[n: y] ∗ ls(y, nil) ` ls(t, nil)

t 6=nil | ls(x, t) ∗ t 7→[n: y] ∗ ls(y, nil) ` ls(x, nil)

ls(x, t) ∗ t 7→[n: y] ∗ ls(y, nil) ` ls(x, nil)

Going upwards, this applies the normalization rule which introduces t 6=nil, then
the subtraction rule for nil-terminated list segments, the subtraction rule for
nonempty list segments, and finally ∗-Introduction (the basic subtraction rule
for ∗, which appears fourth) twice.

5 Incomplete Proofs and Frame Axioms

Typically, at a call site to a procedure the symbolic heap will be larger than
that required by the procedure’s precondition. This is the case in the DispTree
example where, for example, the symbolic heap at one of the recursive call sites is
p 7→[l: i, r: j]∗ tree(i)∗ tree(j), where that expected by the procedure specification
of DispTree(i) is just tree(i). We show how to use the proof theory from the
previous section to infer frame axioms.

In more detail the (spatial) part of the problem is,

Given: two symbolic heaps, Π | Σ (the heap at the call site), and Π1 | Σ1

(the procedure precondition)
To Find: a spatial predicate ΣF , the “spatial frame axiom”, satisfying the
entailment Π | Σ ` Π1 | Σ1 ∗ΣF .

Our strategy is to search for a proof of the judgment Π | Σ ` Π1 | Σ1, and if this
search, going upwards, halts at Π ′ | ΣF ` true | emp then ΣF is a sound choice
as a frame axiom. We give a few examples to show how this mechanism works.

First, and most trivially, let us consider the DispTree example:

Assertion at Call Site : p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)
Procedure Precondition : tree(i)

44

Then an instance of ∗-Introduction

p 7→[l: i, r: j] ∗ tree(j) ` emp

p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j) ` tree(i)

immediately furnishes the correct frame axiom: p 7→[l: i, r: j] ∗ tree(j).
For an example that requires a little bit more logic, consider:

Assertion at Call Site : x7→[] ∗ y 7→[]
Procedure Precondition : x6=y | x7→[]

x6=y | y 7→[] ` emp

x6=y | y 7→[] ` x6=y | emp

x6=y | x7→[] ∗ y 7→[] ` x6=y | x7→[]
x7→[] ∗ y 7→[] ` x6=y | x7→[]

Here, the inequality x6=y is added to the left-hand side in the normalization
phase, and then it is removed from the right-hand side in the subtraction phase.

On the other hand, consider what happens in a wrong example:

Assertion at Call Site : x7→[] ∗ y 7→[]
Procedure Precondition : x=y | x7→[]

??
x6=y | y 7→[] ` x=y | emp

x6=y | x7→[] ∗ y 7→[] ` x=y | x7→[]
x7→[] ∗ y 7→[] ` x=y | x7→[]

In this case we get stuck at an earlier point because we cannot remove the
equality x=y from the right-hand side in the subtraction phase. To correctly get
a frame axiom we have to obtain true in the pure part of the right-hand side; we
do not do so in this case, and we rightly do not find a frame axiom.

The proof-theoretic justification for this method is the following.

Theorem 7. Suppose that we have an incomplete proof (a proof that doesn’t use
axioms):

[Π ′ | ΣF ` true | emp]
···

Π | Σ ` Π1 | Σ1

Then there is a complete proof (without premises, using an axiomatic rule at the
top) of:

Π | Σ ` Π1 | Σ1 ∗ΣF .

This justifies an extension to the symbolic execution algorithm. In brief, we
extend the syntax of loop-free triples with a jsr instruction

C F · · · | [Π | Σ] jsr [Π ′ | Σ′] ;C jump to subroutine

45

annotated with a precondition and a postcondition. In Smallfoot this is is gen-
erated when an annotated program is chopped into straightline Hoare triples.
The appropriate operational rule is:

Π | Σ ` Π1 ∧Π | Σ1 ∗ΣF {Π2 ∧Π | Σ2 ∗ΣF } C {Π ′ | Σ′}
{Π | Σ} [Π1 | Σ1] jsr [Π2 | Σ2] ;C {Π ′ | Σ′}

When we encounter a jsr command during symbolic execution we run the proof
theory from the previous section upwards with goal Π | Σ ` Π1 | Σ1. If it
terminates with Π ′ | ΣF ` true | emp then we tack ΣF onto the postcondition
Σ2, and we continue execution with C. Else we report an error.

The description here is simplified. Theorem 7 only considers incomplete
proofs with single assumptions, but it is possible to generalize the treatment
of frame inference to proofs with multiple assumptions (which leads to several
frames being checked in symbolic execution). Also, we have only discussed the
spatial part of the frame, neglecting modifies clauses for stack variables. A pure
frame must also be discovered, but that is comparatively easy.

6 Conclusion

We believe that symbolic execution with Separation Logic has some promise for
modular verification and analysis. PALE is (purposely) unsound in its treatment
of frame axioms for procedures [7], the “modular soundness” of ESC is subtle
but probably not definitive [6], interprocedural shape analysis is just beginning
to become modular [10], and existing symbolic execution techniques such as [5]
are not modular in this sense. But there is much more to be done on our part,
even apart from investigating fixed-point convergence and widening. We would
like to have a general scheme of inductive definitions rather than using hardwired
predicates. (We are not just asking for semantically well-defined recursive pred-
icates, e.g., as developed in [12], but would want a, hopefully terminating, proof
theory.) It would be desirable to incorporate our proof theory with other decision
procedures, such as based on monadic second-order logic or shape analysis or
Pressburger arithmetic. And so on. So clearly, this is but a start.

References

1. J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic.
Proceedings of FSTTCS, LNCS 3328, Chennai, December, 2004.

2. J. Berdine C. Calcagno and P.W. O’Hearn. Smallfoot: A tool for Checking Sepa-
ration Logic footprint specifications. In preparation, 2005.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. 4th
ACM Symposium on Principles of Programming Languages. pages 238–252, 1977.

4. S. Isthiaq and P. W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 36–49, London, January 2001.

46

5. S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic execution
for model checking and testing. In Hubert Garavel and John Hatcliff, editors,
Proceedings of TACAS, volume 2619 of LNCS, pages 553–568. Springer, 2003.

6. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM
Trans. Program. Lang. Syst., 24(5):491–553, 2002.

7. A. Moller and M. Schwartzbach. The pointer assertion logic engine. Proceedings
of PLDI, 221-231, 2001.

8. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In Proceedings of 15th Annual Conference of the European
Association for Computer Science Logic, LNCS, pages 1–19. Springer-Verlag, 2001.

9. J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
Invited Paper, Proceedings of the 17th IEEE Symposium on Logic in Computer
Science, pages 55-74, 2002.

10. N. Rinetzky, J. Bauer, T. Reps, S. Sagiv, and R. Wilhelm. A semantics for proce-
dure local heaps and its abstractions. 32nd POPL, pp296–309, 2005.

11. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3valued logic.
ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

12. É.-J. Sims. Extending separation logic with fixpoints and postponed substitution.
In AMAST Proceedings, pages 475–490, 2004. Springer LNCS 3116.

Heap-Abstraction for an Object-Oriented

Calculus with Thread Classes�

Erika Ábrahám1 and Andreas Grüner2 and Martin Steffen2

1 Albert-Ludwigs-University Freiburg, Germany
2 Christian-Albrechts-University Kiel, Germany

Abstract. From an observational point of view, considering classes as
part of a component makes instantiation a possible interaction between
component and environment or observer. For thread classes it means that
a component may create external activity, which influences what can be
observed. The fact that cross-border instantiation is possible requires
that the connectivity of the objects needs to be incorporated into the
semantics. We extend our prior work not only by adding thread classes,
but also in that thread names may be communicated, which means that
the semantics needs to account explicitly for the possible acquaintance
of objects with threads.
This paper formalizes an open semantics for a calculus featuring thread
classes, where the environment, consisting in particular of an overapprox-
imation of the heap topology, is abstractly represented. We show basic
soundness results of the abstraction.

Keywords: class-based oo languages, thread-based concurrency, open
systems, formal semantics, heap abstraction, observable behavior

1 Introduction

An open system is a program fragment or component interacting with its en-
vironment or context. In a message-passing setting, the behavior of the com-
ponent can be understood to consist of message traces at the interface, i.e., of
sequences of component-environment interaction. Even if the environment is ab-
sent, it must be assumed that the component together with the (abstracted)
environment gives a well-formed program adhering to the syntactical and the
context-sensitive restrictions of the language at hand. Technically, for an ex-
act representation of the interface behavior, the semantics of the open program
needs to be formulated under assumptions about the environment, capturing
those restrictions. The resulting assumption-commitment framework gives in-
sight to the semantical nature of the language. Furthermore, an independent
characterization of possible interface behavior with environment and component

� Part of this work has been financially supported by the NWO/DFG project Mobi-J
(RO 1122/9-4).

48

abstracted can be seen as a trace logic under the most general assumptions,
namely conformance to the inherent restrictions of the very language and its
semantics.

With these goals in mind, this paper deals primarily with the following three
features, which correspond to those of modern class-based object-oriented lan-
guages like Java [10] or C# [8] and which are notoriously hard to capture:

– types and classes: the languages are statically typed, and only well-typed
programs are considered. For class-based languages, complications arise as
classes play the role of types and additionally act as generators of objects.

– concurrency: the mentioned languages feature concurrency based on threads
(as opposed to processes or active objects).

– references: each object carries a unique identity. New objects are dynamically
allocated on the heap as instances of classes.

We investigate the issues in a class-based, multi-threaded calculus with thread
classes. The interface behavior is phrased in an assumption-commitment frame-
work and based on three orthogonal abstractions:

– a static abstraction, i.e., the type system;
– an abstraction of the stacks of recursive method invocations, representing the

recursive and reentrant nature of method calls in a multi-threaded setting;
– finally an abstraction of the heap topology, approximating potential connec-

tivity of objects and threads. The heap topology is dynamic in that new ob-
jects may be created and tree structured in that previously separate groups
of objects may merge.

In [3,4] we showed that the last point, namely the need to represent the heap
topology, is a direct consequence of considering classes as a language concept.
Their foremost role in object-oriented languages is to act as “generators of state”.
With thread classes, there is also a mechanism for “generating new activity”, i.e.,
for creating new threads. This extension makes cross-border activity generation
a possible component-environment interaction, i.e., the component may create
threads in the environment and vice versa.

Thus, the technical contribution of this paper is threefold. We extend the
class-based calculus and its semantics of [3,4] to include thread classes and fur-
thermore allow the communication of thread names. This requires to consider
cross-border activity generation as well as to incorporate the connectivity of
objects and threads. Secondly, we characterize the potential traces of any com-
ponent in an assumption-commitment framework in a novel derivation system,
where the branching nature of the heap abstraction —connected groups of ob-
jects can merge by communication— is reflected in the branching structure of the
derivation system. Finally, we show the soundness of the mentioned abstractions.

Overview The paper is organized as follows. Section 2 contains syntax and
operational semantics of the calculus we use, formalizing the notion of thread

49

classes. Section 3 contains an independent characterization of the observable be-
havior of an open system and the soundness results of the abstractions. Section 4
concludes with related and future work. For a full account of the operational se-
mantics and the type system, we refer to the technical report [5].

2 A multi-threaded calculus with thread classes

Next we present the calculus, starting with the syntax. It is based on the multi-
threaded object calculus, similar to the one presented in [9] and in particular
[11]. Compared to our previous work for instance in [2], we added thread classes
as generators of activity.

2.1 Syntax

The abstract syntax is given in Table 1. A program is given by a collection of
classes where a class c[(O)] carries a name c and defines the implementation of its
methods and fields. Thread classes, written ct〈(ta)〉, are known under the name
ct and carry the code in ta. For names, we will generally use o and its syntactic
variants as names for objects, c for classes (in particular ct for thread classes),
and n when being unspecific, for instance in Table 1.

An object o[c, F] stores the current value of the fields or instance variables and
keeps a reference to the class it instantiates. A method ς(n:c).λ(x1:T1, . . . , xk:Tk).t
provides the method body abstracted over the ς-bound “self” parameter and the
formal parameters of the method [1]. Besides named objects and classes, the dy-
namic configuration of a program contains threads n〈t〉 as active entities.

A thread is basically either a value or a sequence of expressions, notably
method calls (written v.l(�v)), the creation of new objects new c where c is a
class name, and thread instantiation written as spawn ct(�v).

Furthermore we will use f for instance variables or fields, we use f = v
for field variable declaration, field access is written as x.f , and field update as
x.f := v.

The available types include thread as the type of threads. Furthermore, ob-
jects are typed by the name of their class. As auxiliary types we have T1× . . .×
Tk → T as the type of methods as well as for thread classes (in which case the
result type T equals thread), and furthermore [l1:U1, . . . , lk:Uk] as the type or
interface of unnamed objects, and [(l1:U1, . . . , lk:Uk)] as the type for classes.

2.2 Operational semantics

For the operational semantics, we concentrate on the interface behavior. For want
of space, we omit the (straightforward) definitions of the component-internal
steps, for instance-internal method calls or internal thread creation. For the
definition of the semantics, we refer to [5].

The external steps define the interaction of the component with the envi-
ronment. In particular, the semantics is defined in reference to assumption and

50

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F] | n〈t〉 | n〈(ta)〉 program
O ::= F, M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ(). stop field
ta ::= λ(x:T, . . . , x:T).t thread abstraction
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | v.l := v | currentthread
| new n | spawn n(v, . . . , v)

v ::= x | n values

Table 1. Abstract syntax

commitment contexts. The static part of the contexts corresponds to the static
type system (we again refer to [5] for the full definition) and takes care that,
e.g., only well-typed values are received from the environment. The contexts,
however, need to contain also a dynamic part dealing with the potential connec-
tivity of objects and thread names and which corresponds to an abstraction of
the heap of the program.

A component exchanges information with the environment via calls, returns,
and spawn actions (cf. Table 2). In the call and return labels, the mentioned n
is the active thread that issues the call or returns from the call. In the thread
instantiation label, n is the name of the new thread; the thread which spawned
the new thread is not part of the label.3 Furthermore note that there are no
separate external labels for object instantiation: Externally instantiated objects
are created only at the point when they are actually accessed for the first time,
which we call “lazy instantiation”. Given a label ν(Φ).γ′ where Φ is a name
context, i.e., a sequence of single ν(n:T) bindings and where γ′ does not contain
any binders, we call γ′ the core of the label. Given a label γ, we refer with �γ�
to its core. Analogously for send and receive labels.

γ ::= n〈call o.l(�v)〉 | n〈return(v)〉 | 〈spawn n of c(�v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send

Table 2. Labels

3 Of course it might be mentioned in the arguments.

51

2.2.1 Connectivity contexts In the presence of cross-border instantiation,
the semantics must contain a representation of the connectivity, which will be
formalized by a relation on the names of the calculus and which can be seen as an
abstraction of the program’s heap; for the exact definition, see Equation (2) and
(3) below. The external semantics is formalized as labeled transitions between
judgments of the form

∆, Σ; E∆ � C : Θ, Σ; EΘ , (1)

where ∆, Σ; E∆ are the assumptions about the environment of the component
C and Θ, Σ; EΘ the commitments . The assumptions consist of a part ∆, Σ
concerning the existence (plus static typing information) of named entities in
the environment. The semantics maintains as invariant that the assumption and
commitment contexts are disjoint concerning object and class names, whereas
a thread name occurs as assumption iff. it is mentioned in the commitments.
By convention, the contexts Σ (and their alphabetic variants) contain exactly
all bindings for thread names. This means, as invariant we maintain for all
judgments ∆, Σ; E∆ � C : Θ, Σ; EΘ that ∆, Σ, and Θ are pairwise disjoint.

The semantics must book-keep which objects of the environment have been
told which identities. This means it must take into account the relation of ob-
jects from the assumption context ∆ amongst each other, and the knowledge of
objects from ∆ about thread names and names exported by the component, i.e.,
those from Θ. In analogy to the name contexts ∆ and Θ, E∆ (the connectivity
context) expresses assumptions about the environment, and EΘ commitments
of the component:

E∆ ⊆ ∆× (∆ + Σ + Θ) . (2)

and dually EΘ ⊆ Θ × (Θ + Σ + ∆). Since in the language we allow the sending
of thread names, we must include pairs from ∆ × Σ (resp. Θ × Σ) into the
connectivity. We write o ↪→ n (“o may know n”) for pairs from the relations E∆,
resp. EΘ. Without full information about the complete system, the component
must make worst-case assumptions concerning the proliferation of knowledge,
which are represented as the reflexive, transitive, and symmetric closure of the
↪→-pairs of objects from ∆. Given ∆, Θ, and E∆, we write � for this closure,
i.e.,

� � (↪→↓∆ ∪ ←↩↓∆)∗ ⊆ ∆×∆ , (3)

where ↪→↓∆ is the projection of ↪→ to ∆. We also need the union � ∪ �; ↪→
⊆ ∆ × (∆ + Σ + Θ), where the semicolon denotes relational composition. We
write �↪→ for that union. As judgment, we use ∆, Σ; E∆ � o1 � o2 : Θ, Σ,
resp. ∆, Σ; E∆ � o �↪→ n : Θ, Σ. For Θ, Σ, EΘ, and ∆, Σ, the definitions are
applied dually.

The relation � partitions the objects from ∆ (resp. Θ) into equivalence
classes. We call a set of object names from ∆ (or dually from Θ) such that for
all objects o1 and o2 from that set, ∆, Σ; E∆ � o1 � o2 : Θ, Σ, a clique, and if
we speak of the clique of an object we mean the equivalence class.

As for the relationship of communicated values, incoming and outgoing com-
munication play dual roles: EΘ over-approximates the actual connectivity of the

52

component and is updated in incoming communication, while the assumption
context E∆ is consulted to exclude impossible combinations of incoming values.
Incoming new names, exchanged boundedly, however, update both commitments
and assumptions.

Remark 1 (Initial clique). Note that a thread can be instantiated without con-
nection to any object/clique and indeed the initial thread starts with static
code, i.e., without reference to any object. For appropriately dealing with the
connectivity in those cases, we need a syntactical representation for the clique
of objects, the thread n starts in; we use the symbol �n as n’s initial clique.

Concerning �n, the semantics maintains as invariant that a thread name
n occurs in the context Σ for thread names, iff. �n occurs in either ∆ or Θ,
the contexts containing the objects (plus class definitions). This means, besides
being relevant for connectivity information, �n contains also the information
whether the thread started its life in the environment or in the component.

2.2.2 Augmentation To formulate the external communication properly, we
need to introduce a few augmentations. We extend the syntax by two additional
expressions

o1 blocks for o2 and o2 returns to o1 v .

The first one denotes a method body in o1 waiting for a return from o2, and
dually the second expression returns v from o2 to o1.

Furthermore, we augment the syntax of the method definitions accordingly,
such that each method call and each spawn step is preceded by an annotation of
the caller; i.e., instead of ς(self :c).λ(�x:�T).(. . . x.l(�y) . . . spawn ct(�z) . . .) we write

ς(self :c).λ(�x:�T).(. . . self x.l(�y) . . . self spawn ct(�z) . . .) .

We need to augment the threads such that every thread n carries at the
beginning the identity �n of its initial clique. The program starts with one
single initial thread. If the thread starts within the component, the contexts
of the initial configuration ∆0 � C : Θ0 asserts Θ0 � �. Otherwise, ∆0 � �.
As in the augmentation for methods, the code in the thread classes must be
augmented in such a way, that for method calls the initial clique of the thread is
mentioned in front of the call. I.e., after instantiation, the call looks as follows:
n〈. . .�n x.l(�v) . . .〉. The static code of each thread class is augmented into

ct〈(λ(�x:�T).(. . .� x.l(�v) . . .))〉

for each mentioned call. When the thread is instantiated, � is replaced by �n

where n is the identity of the new thread. Given the above thread class, we
denote by ct(�v) the replacement t[�n, �v/�, �x], when t is the body of the thread
class definition. The initial thread, which is not instantiated from a thread class
but given directly (in case the activity starts in the component) starts with �n

as augmentation, if the initial thread is named n. If the component is renamed

53

by α-conversion, n and �n are renamed simultaneously. The steps of the internal
semantics must be adapted accordingly. We also omit the typing rules for the
augmentation, as they are straightforward.

2.2.3 Use and change of contexts The operational semantics is formulated
as transitions between typed judgments

∆, Σ; E∆ � C : Θ, Σ; EΘ
a−→ ∆́, Σ́; É∆ � Ć : Θ́, Σ́; ÉΘ .

The assumption context ∆, Σ; E∆ can be seen as an abstraction of the (not-
present) environment; more precisely, it represents the potential behavior of all
possible environments.

Notation 1 To facilitate the following definitions notationally, we will make
use of the following conventions. We abbreviate the triple of name contexts
∆, Σ, Θ as Φ, and the context ∆, Σ, Θ, E∆, EΘ combining assumptions and com-
mitments Ξ. Furthermore we understand ∆́, Σ́, Θ́ as Φ́, and Ξ́ as consisting of
∆́, Σ́, Θ́, É∆, ÉΘ, etc.

The check whether the current assumptions are met in an incoming commu-
nication step is given in Definition 1.

Definition 1 (Connectivity check). An incoming core label a with sender
os and receiver or is well-connected wrt. an assumption-commitment context Ξ́
(written Ξ́ � os

a→ or :ok) if:

∆́, Σ́; É∆ � os �↪→ fn(a) : Θ́, Σ́ . (4)

Note that in case of an incoming call label, fn(a) includes the receiver or and
the thread name.

Besides checking whether the connectivity assumptions are met before a tran-
sition, the contexts are updated by a step, reflecting the change of knowledge.

Definition 2 (Name context update: Φ+a). The update Φ́ of an assumption-
commitment context Φ wrt. an incoming label a = ν(Φ′)�a� is defined as follows.

1. Θ́ = Θ + Θ′. In case of a spawn-label Θ́ = Θ + Θ′,�n, where n is the name
of the spawned thread.

2. ∆́ = ∆ + �Σ′, ∆′. In case of a spawn label, �Σ′ \n is used instead of �Σ′,
where n is the name of the spawned thread.

3. Σ́ = Σ + Σ′.

We write Φ + a for the update. The update for outgoing communication is de-
fined dually in the sense that �n of a spawn label is added to ∆ instead of Θ.
Likewise, the �Σ′ (resp. �Σ′ \n) are added to Θ, instead of ∆. (The notation
�Σ′ abbreviates �n for all thread identities from Σ′).

54

Definition 3 (Connectivity context update). The update (É∆, ÉΘ) of an
assumption-commitment context (E∆, EΘ) wrt. an incoming label a = ν(Φ′)�a�?
with sender os and receiver or is defined as follows.

1. ÉΘ = EΘ + or ↪→ fn(�a�).
2. É∆ = E∆ + os ↪→ Φ′,�Σ′ . In case of a spawn label, �Σ′ \n is used instead

of �Σ′ , where n is the name of the spawned thread.

We write (E∆, EΘ) + os
a→ or for the update.

Combining Definitions 2 and 3, we write Ξ + os
a→ or when updating the name

and the connectivity at the same time.
Besides Definition 1, which checks whether the connectivity assumptions are

met for the label at hand, we must additionally check the static assumptions,
i.e., whether the transmitted values are of the correct types. In slight abuse of
notation, we write ∆, Σ, Θ � os

a→ or : T for that check, where T is type of
the expression in the program that gives rise to the label. We omit the exact
definition here which can be found in [5]. We combine the connectivity check of
Definition 1 and the type check notationally into one single judgment Ξ � os

a→
or : T .

2.2.4 Operational rules With all the ancillary definitions at hand, we can
define the operational rules of the semantics (cf. Table 3).

The three CallI-rules deal with incoming calls. For all three cases, the
contexts are updated to Ξ́ to include the information concerning new objects,
threads, and connectivity transmitted in that step. Furthermore, it is checked
whether the label statically type-checks and that the step is possible according
to the (updated) connectivity assumptions Ξ́. Remember that the update from
Ξ to Ξ́ includes guessing of connectivity, i.e., an element of non-determinism,
when the sender of the communication is unknown to the component.

The three rules for incoming calls deal with three different situations as to
when an incoming call may happen: A reentrant call4, a call of thread where the
thread name is already known in the component, and a call of a thread which is
new to the component.

To deal with component entities (threads and objects) that are being created
during the call C(Θ′, Σ′) stands for C(Θ′) ‖ C(Σ′), were C(Θ′) are the lazily
instantiated objects mentioned in Θ′. Furthermore, for each thread name n′ in
Σ′, a new component n′〈stop〉 is included, written as C(Σ′).

The treatment of the connectivity contexts is uniform in all three cases, only
the identity of the sender is different.

For reentrant method calls (cf. rule CallI1), the thread is blocked, i.e., it
has left the component previously via an outgoing call. The object that had been
the target of the call is remembered as part of the augmented block syntax. In
the rule it is referred to as os, as it represents the sender’s clique of the current
incoming call.
4 Reentrant on the level of the component, not on the level of a single object.

55

Rule CallI2 treats a non-reentrancy situation, where the thread name is
already known in the component nonetheless. As a consequence, the component
contains the entity n〈stop〉. Unlike in rule CallI1, the program code contains
no indication as to the origin of the call. Since the thread n must have crossed
the border before, the marker for its initial clique �n must be contained in
either ∆ or in Θ. The premise ∆ � �n assures that n had started its life on the
environment side. This bit of information is important as otherwise one could
mistake the code n〈stop〉 for the code of a (deadlocked) outgoing call. If ∆ � �n

and n〈stop〉 is part of the component code, it is assured that the thread either
has never actively entered the component before (and does so right now) or has
left the component to the environment by some last outgoing return. In either
case, the incoming call is possible now, and in both cases we can use �n as
representative of the caller’s identity.

The last call rule CallI3 deals with the situation, that the thread n enters
the component for the first time. This is assured by the premise Σ′ � n : thread .
As in CallI2, we do not have an indication from which clique the call originates,
since the corresponding thread is new. What is assured is that the new thread has
been created at some point before as instance of some environment thread class
—otherwise the cross-border instantiation would have been observed and the
thread name would not be fresh now— and by some environment clique. Indeed,
any existing environment clique is a candidate that might have created the
thread n. So the update to Ξ́ non-deterministically guesses to which environment
clique the thread’s origin�n belongs to. Note that �Σ′ contains �n since Σ′ � n,
which means ∆́ � �n after the call.

For incoming thread creation in rule SpawnI, we need again to know the
origin of the call, i.e., the spawning clique. The situation is similar to the one
for CallI3, in that the origin of the communication needs to be guessed. In
the case of CallI3, we use �n covering the situation where no actual calling
object may be the source. Different from the situation of unknown caller is
that here we obviously can not use �n; that identity is incorporated into the
component after the call. What is clear is that the spawner must be part of the
environment prior to the call, i.e., ∆ � os, where os might be some �n′ , i.e., a
virtual clique of objects from which no actually existing objects have yet escaped
to the component. Note that if os = �n′ , ∆ � os assures that n = n′. Note further
that the name of the spawned thread is treated specifically in the definition of
context update (cf. Definition 2 and 3) to cater for cross-border instantiation of
the new thread. An incoming spawn action without known external objects is
possible only in the very first step.

The remaining rules deal with outgoing communication and are simpler, as
the “check-part” is omitted: With the code of the program present, the checks
are guaranteed to be satisfied.

In addition to the external steps of Table 3, there are similar ones for com-
munication via returns, and rules dealing with initial steps. They are included
in the technical report [5].

56

dom(Φ′) ⊆ fn(�a�) Ξ́ = Ξ + os
a→ or Ξ́ � os

�a�→ or : T Θ́ � or

a = ν(Φ′). n〈call or .l(�v)〉? tblocked = let x′:T ′ = o blocks for os in t
CallI1

∆, Σ; E∆ � ν(Φ).(C ‖ n〈tblocked〉) : Θ, Σ; EΘ
a−→

∆́, Σ́; É∆ � ν(Φ).(C ‖ C(Θ′, Σ′) ‖ n〈let x:T = or.l(�v) in or returns to os x; tblocked〉) : Θ́, Σ́; ÉΘ

dom(Φ′) ⊆ fn(�a�) Ξ́ = Ξ +�n
a→ or Ξ́ � �n

�a�→ or : T Θ́ � or

a = ν(Φ′). n〈call or.l(�v)〉? ∆ � �n
CallI2

∆, Σ; E∆ � C ‖ n〈stop〉 : Θ, Σ; EΘ
a−→

∆́, Σ́; É∆ � C ‖ C(Θ′, Σ′) ‖ n〈let x:T = or.l(�v) in or returns to �n x; stop〉 : Θ́, Σ́; ÉΘ

dom(Φ′) ⊆ fn(�a�) Ξ́ = Ξ + o
a→ or Ξ́ � �n

�a�→ or : T Θ́ � or

a = ν(Φ′). n〈call or.l(�v)〉? ∆ � o Σ′ � n : thread
CallI3

∆, Σ; E∆ � C : Θ, Σ;EΘ
a−→

∆́, Σ́; É∆ � C ‖ C(Θ′, Σ′ \n) ‖ n〈let x:T = or.l(�v) in or returns to �n x; stop〉 : Θ́, Σ́; ÉΘ

dom(Φ′) ⊆ fn(�a�) Ξ́ = Ξ + os
a→ �n Ξ́ � os

�a�→ �n : thread

a = ν(Φ′).〈spawn n of ct(�v)〉? Θ́ � or ∆ � os Θ � ct Σ′ � n : thread
SpawnI

∆, Σ; E∆ � C : Θ, Σ; EΘ
a−→ ∆́, Σ́; É∆ � C ‖ C(Θ′, Σ′ \n) ‖ n〈ct(�v)〉 : Θ́, Σ́; ÉΘ

a = ν(Φ′). n〈call or.l(�v)〉! Φ′ = fn(�a�) ∩ Φ Φ́ = Φ \Φ′ ∆́ � or Ξ́ = Ξ + os
a→ or

CallO
∆, Σ;E∆ � ν(Φ).(C ‖ n〈let x:T = os or.l(�v) in t〉) : Θ, Σ; EΘ

a−→
∆́, Σ́; É∆ � ν(Φ́).(C ‖ n〈let x:T = os blocks for or in t〉) : Θ́, Σ́; ÉΘ

a = ν(Φ′).〈spawn n′ of ct(�v)〉! Φ′ = (fn(�a�) \n′) ∩ Φ Φ́ = Φ \Φ′

∆ � ct Ξ́ = Ξ + os
a→ �n′

SpawnO
∆, Σ; E∆ � ν(Φ).(C ‖ n〈let x:T = os spawn ct(�v) in t〉) : Θ, Σ;EΘ

a−→
∆́, Σ́; É∆ � ν(Φ́).(C ‖ n〈let x:T = n′ in t〉) : Θ́, Σ́; ÉΘ

Table 3. External steps

3 Legal traces

In this section we present a proof system which provides an independent charac-
terization of which traces are possible as interface behavior between component
and environment. We call those traces legal. “Half” of the work has been done
already by the careful design of the open semantics of Section 2.2.4, where the
absent environment is represented abstractly by the name and connectivity con-
texts. For characterizing the legal traces, we analogously abstract away from
the program code, which makes the system completely symmetric. Remember
that the assumption and commitment contexts in the operational semantics
where used asymmetrically insofar, as the commitment contexts where updated
as overapproximation of the actual component, but not used in checking whether

57

a = ν(Φ′). n〈call or .l(�v)〉? � r � os
a→ or

Ξ́ =
L

Ξi + a Θi � or ε = ai = (a, or) ↓Θi
∆́, Σ́ � r a � s : trace Θ́, Σ́

L-CallI
∆1, Σ1 � r � a1 s : trace Θ1, Σ1 . . . ∆k, Σk � r � ak s : trace Θk, Σk

∆, Σ � ra � s : trace Θ, Σ a = γ? � r � os
a→ or Θ � or

L-SkipI
∆, Σ � r � s : trace Θ, Σ

Table 4. Legal traces, branching on Θ

a component step, i.e., an outgoing communication, is possible as next interac-
tion.

3.1 A branching derivation system characterizing legal traces

Unlike the treatment in the operational semantics, the connectivity of objects
is not explicitly represented by connectivity contexts; instead, the tree structure
of the derivation itself represents the connectivity and its change. There are two
variants of the derivation system, one from the perspective of the component,
and one from the perspective of the environment. Each derivation corresponds
to a forest, with each tree representing a component, respectively environment
clique at the end. The judgments are of the form

∆, Σ �Θ r � s : trace Θ, Σ (5)

where r represents the history or past interaction, and s the future interaction.
We write �Θ to indicate that legality is checked from the perspective of the com-
ponent. From that perspective, we maintain as invariant that on the commitment
side, the context Θ represents one single clique. Thus the connectivity among
objects of Θ needs no longer be remembered. What needs to be remembered
still are the thread names known by Θ and the cross-border object connectivity,
i.e., the acquaintance of the clique represented by Θ with objects of the environ-
ment. This information is kept in ∆ resp. Σ. Note that this corresponds to the
environmental objects mentioned in EΘ ⊆ Θ× (Θ + ∆ + Σ), projected onto the
component clique under consideration, in the linear system.

The connectivity of the environment is ignored which implies that the system
of Table 4 cannot assure that the environment behaves according to a possible
connectivity. On the other hand, dualizing the rules checks whether the environ-
ment adheres to possible connectivity.

Now to the rules of Table 4. As before, rule L-CallI deals with incoming
calls. The call is possible only when the thread is input call enabled after the
current history. This is checked by the premise � r � os

a→ or :ok , which
also determines caller and callee. We omit the definition of � r � os

a→ or :ok ,
characterizing enabledness of a after trace r. The definition is the straightforward
extension of the one from [4] to a multi-threaded setting.

58

Since from the perspective of the component, the connectivity of the envi-
ronment is no longer represented as assumption, there are no premises checking
connectivity! An interesting part concerns the treatment of the commitment
context: Incoming communication may update the component connectivity, in
that new cliques may be created or existing cliques may merge. The merging of
component cliques is now represented by a branching of the proof system. Leaves
of the resulting tree (respectively forest) correspond to freshly created cliques.

In rule L-CallI, the context Θ in the premise corresponds to the merged
clique, the Θi below the line to the still split cliques before the merge. The
Θi’s form a partitioning of the component objects before the communication,
Θ is the disjoint combination of the Θi’s plus the lazily instantiated objects
from Θ′. For the cross-border connectivity, i.e., the environmental objects known
by the component cliques, the different component cliques Θi may of course
share acquaintance; thus, the parts ∆i and Σi are not merged disjointly, but
by ordinary “set” union.5 These restrictions are covered by the definition of the
(partial) operation

⊕
Ξi.

We omit the rules dealing with incoming returns and incoming spawn labels,
and furthermore those for outgoing communication.

The skip-rules stipulate that an action a which does not belong to the com-
ponent clique under consideration, is omitted from the component’s “future”
(interpreting the rule from bottom to top). The distinction is made according
to the sender resp. the receiver of the communication (cf. rule L-SkipO resp.
L-SkipI).

Definition 4 (Legal traces, branching system). We write ∆ �Θ t : trace Θ,
if there exists a derivation forest using the rules of Table 4 with roots ∆i, Σi �
t � ε : trace Θi, Σi and a leaf justified by one of the initial rules L-CallI0 or
L-CallO0. Using the dual rules, we write �∆ instead of �Θ.

We write ∆ �∆∧Θ t : trace Θ, if there exits a pair of derivations in the �∆-
and the �Θ- system with a consistent pair of root judgments.

5 Technically, of course, the contexts are syntactical entities of the calculus and not
sets; however, the invariants enforced by the type system and maintained by the
semantics allows to consider them as finite mappings from names to types.

a = ν(Φ′). n〈call or .l(�v)〉? � r � os
a→ or ∆́, Σ́, Θ́ � �a� :ok

∆ � static ∆́ � os Ξ́ = Ξ + a ∆́, Σ́ � r a � s : trace Θ́, Σ́
L-CallI

∆, Σ � r � a s : trace Θ, Σ

∆́ = ∆ � os ∆, Σ � ra � s : trace Θ, Σ a = γ? � r � os
a→ or

L-SkipI
∆, Σ � r � s : trace Θ, Σ

Table 5. Legal traces, branching on ∆

59

To accommodate for the simpler structure of the contexts, we adopt the
notational conventions (cf. Notation 1) appropriately.

The way a communication step updates the name context can be defined as
simplification of the treatment in the operational semantics (cf. Definition 2).
As before we write Φ + a for the update.

3.2 Soundness of the abstractions

The section contains the basic soundness results of the abstractions,
With E∆ and EΘ as part of the judgment, we must still clarify what it

“means”, i.e., when does ∆, Σ; E∆ � C : Θ, Σ; EΘ hold? The relation EΘ asserts
about the component C that the connectivity of the objects from the component
is not larger than the connectivity entailed by EΘ. Given a component C and
two names o from Θ and n from Θ + ∆ + Σ, we write C � o ↪→ n, if C ≡
ν(Φ).(C′ ‖ o[. . . , f = n, . . .]) where o and n are not bound by Φ, i.e., o contains
in one of its fields a reference to n. We can thus define:
Definition 5. The judgment ∆, Σ; E∆ � C : Θ, Σ; EΘ holds, if ∆, Σ � C :
Θ, Σ, and if C � n1 ↪→ n2, then Θ, Σ; EΘ � n1 �↪→ n2 : ∆, Σ.
We often simply write ∆, Σ; E∆ � C : Θ, Σ; EΘ to assert that the judgment is
satisfied. Note that references mentioned in threads do not “count” as acquain-
tance.

Lemma 1 (Subject reduction). ∆, Σ; E∆ � C : Θ, Σ; EΘ
s=⇒ ∆́, Σ́; É∆ �

Ć : Θ́, Σ́; ÉΘ, then ∆́, Σ́ � Ć : Θ́, Σ́. A fortiori: If ∆, Σ, Θ � n : T , then
∆́, Σ́, Θ́ � n : T .

Besides the static abstraction of the type system, also the assertions about the
heap topology (cf. Definition 5) preserved.
Lemma 2 (Soundness of the connectivity abstraction). ∆, Σ; E∆ � C :
Θ, Σ; EΘ

s=⇒ ∆́, Σ́; É∆ � Ć : Θ́, Σ́; ÉΘ, then ∆́, Σ́; É∆ � Ć : Θ́, Σ́; ÉΘ.
An interesting invariant concerns the connectivity of names transmitted bound-

edly. Incoming communication, e.g., not only updates the commitment contexts
—something one would expect— but also the assumption contexts. The fact
that no new information is learnt about already known objects (“no surprise”)
in the assumptions can be phrased using the notion of conservative extension.

Definition 6 (Conservative extension). Given two pairs (Φ, E∆) and (Φ́, É∆)
of name context and connectivity context, i.e., E∆ ⊆ Φ×Φ (and analogously for
(Φ́, É∆)), we write (Φ, E∆) � (Φ́, É∆) if the following two conditions holds:
1. Φ́ � Φ and
2. Φ́ � n1 � n2 implies Φ � n1 � n2, for all n1, n2 with Φ � n1, n2.

Lemma 3 (No surprise). Let ∆, Σ; E∆ � C : Θ, Σ; EΘ
a−→ ∆́, Σ́; É∆ � Ć :

Θ́, Σ́; ÉΘ for some incoming label a. Then ∆, Σ; E∆ � ∆́, Σ́; É∆ . For outgoing
steps, the situation is dual.

Lemma 4 (Soundness of legal trace system). If ∆0;� C : Θ0; and ∆0;�
C : Θ0;

t=⇒, then ∆0 � t : trace Θ0.

60

4 Conclusion

Related work [13] presents a fully abstract model for Object-Z, an object-
oriented extension of the Z specification language. It is based on a refinement of
the simple trace semantics called the complete-readiness model, which is related
to the readiness model of Olderog and Hoare. [14] investigates full abstraction in
an object calculus with subtyping. The setting is slightly different from the one
here, as the paper does not compare a contextual semantics with a denotational
one, but a semantics by translation with a direct one. The paper considers neither
concurrency nor aliasing. Recently, Jeffrey and Rathke [12] extended their work
[11] on trace-based semantics from an object-based setting to a core of Java,
called JavaJr, including classes and subtyping. However, their semantics avoids
the issue of object connectivity by using a notion of package. [7] tackles the
problem of full abstraction and observable component behavior and connectivity
in a UML-setting.

Future work We plan to extend the language with further features to make it
more resembling Java or C#. Concerning the concurrency model, objects should
be extended by lock-synchronization as provided by Java’s synchronized meth-
ods, and furthermore monitor synchronization via wait- and signal-methods.
Another interesting direction for extension concerns the type system, in partic-
ular to include subtyping and inheritance. This is challenging especially if the
component may inherit from environment classes and vice versa. For a first step
in this direction we will concentrate on subtyping alone, i.e., relax the type disci-
pline of the calculus to subtype polymorphism, but without inheritance. Another
direction is to extend the semantics to a compositional one; currently, the se-
mantics is open in that it is defined in the context of an environment. However,
general composition of open program fragments is not defined. Finally, we work
on adapting the full abstraction proof of [3] to the new setting, i.e., to deal with
thread classes. The results of Section 3.2 are covering the soundness-part of the
full-abstraction result.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. A structural opera-
tional semantics for a concurrent class calculus. Technical Report 0307, Institut für
Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel,
Aug. 2003.

3. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object connectivity
and full abstraction for a concurrent calculus of classes. In Z. Li, editor, ICTAC’04,
volume 3407 of Lecture Notes in Computer Science, pages 38–52. Springer-Verlag,
July 2004.

4. E. Ábrahám, F. S. de Boer, M. M. Bonsangue, A. Grüner, and M. Steffen. Ob-
servability, connectivity, and replay in a sequential calculus of classes. In Bosangue
et al. [6]. To appear.

61

5. E. Ábrahám, A. Grüner, and M. Steffen. An open structural operational semantics
for an object-oriented calculus with thread classes. Technical Report 0505, Insti-
tut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu
Kiel, May 2005.

6. M. Bosangue, F. S. de Boer, W.-P. de Roever, and S. Graf, editors. Proceedings
of the Third International Symposium on Formal Methods for Components and
Objects (FMCO 2004), Lecture Notes in Computer Science. Springer-Verlag, 2005.
To appear.

7. F. S. de Boer, M. Bonsangue, M. Steffen, and E. Ábrahám. A fully abstract trace
semantics for UML components. In Bosangue et al. [6]. To appear.

8. ECMA International Standardizing Information and Communication Systems. C#

Language Specification, 2nd edition, Dec. 2002. Standard ECMA-334.
9. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and

typing. In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98,
volume 16.3 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 1998.

10. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, Second edition, 2000.

11. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

12. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java
language. In M. Sagiv, editor, Proceedings of ESOP 2005, volume 3444 of Lecture
Notes in Computer Science, pages 423–438. Springer-Verlag, 2005.

13. G. P. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,
Department of Computer Science, University of Queensland, Oct. 1992.

14. R. Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.

