338 research outputs found

    On the Way toward the Sector Spanning Agrifood Process Traceability

    Get PDF

    Aligning business processes and IT of multiple collaborating organisations

    Get PDF
    When multiple organisations want to collaborate with one another they have to integrate their business processes. This requires aligning the collaborative business processes and the underlying IT (Information Technology). Realizing the required alignment is, however, not trivial and is the subject of this thesis. We approached the issue of alignment in three steps. First, we explored business-IT alignment problems in detail in a real-life business case. This is done in order to clarify what alignment of business processes and IT systems across a collaboration network entails. Second, we provided a business-IT alignment framework called BITA* (pronounce bita-star). The framework provides modelling abstractions for alignment. Third, we applied the framework in two real-life case studies, including the real-life business case used in step one. By applying the framework in practice we showed that the framework can, in fact, help to address the business-IT alignment problems that we identified in the first step. The work presented in this thesis is conducted over a number of years in the context of four large EU sponsored research projects. The projects focused on alignment problems in two very distinct application areas. Two projects were about realizing transparency systems for meat supply chains and constitute the first case study. The other two projects were about realizing multidisciplinary modelling collaboration systems and constitute the second case study. Although the projects were conducted sequentially the research questions were addressed iteratively over the years. The research methodology that shows how the framework is designed and how the case studies are applied is discussed in detail in chapter 2. In chapter 3 we present BITA*, a Business-IT Alignment framework for multiple collaborating organisations. The main challenges in designing BITA* have been what models to consider for alignment and how to compare them in order to make explicit statements about alignment. We addressed this problem by introducing allocation and alignment modelling constructs to help the alignment process, and the concept of business collaboration model to represent the models that have to be aligned. We identified three groups of stakeholders for whom we designed explicit design viewpoints and associated allocation and alignment models. The Business Process to Business Process (BP2BP) alignment viewpoint is designed for business analysts who have to align diverse business collaboration process models. The IT to IT (IT2IT) alignment viewpoint is designed for software architects to align the distribution of data and IT systems across a collaboration network. The Business Process to IT (BP2IT) alignment viewpoint is designed for an interdisciplinary team of business analysts and software architects who have to align the different ways of supporting business collaboration processes with distributed IT system. An essential element of this thesis has been elaborating how business-IT alignment problems occur in the context of multi-organisational collaboration. The case studies were used to demonstrate business-IT alignment concerns. Particularly, the details of the first case study presented in chapters 4 and 5 were used in chapter 3 to help derive the alignment framework. The case study presented an ideal problem scenario since realizing transparency across supply chains is intrinsically a collaborative effort. The second case study was used to enhance the validity of our approach. The results of the second case study are presented in chapter 6. The alignment framework was designed during the iterative process we followed when realizing a generic transparency system for meat supply chains. To realize the required generic transparency system we needed a reference architecture. To derive the reference architecture we adapted an already existing and broadly-accepted generic reference architecture. We have to adapt the generic reference architecture in order to address specific requirements of the meat sector that were not considered in the generic reference architecture. The adaptation process made it clear that we needed models for representing business collaborations. We, therefore, introduced the notion of business collaboration model, which we used both to model reference architectures and to adapt them. Adaptation required aligning the generic reference architecture with the diverse business collaboration models adopted by the organisations that have to collaborate. The alignment framework is thus used for adapting a generic reference architecture in order to create a reference architecture that the collaborating organisations can, and are willing to, adopt. We identified three types of business collaboration models: business collaboration process model, business collaboration IT model, and a model for representing the relationship between these two. A business collaboration process model is a business process model that spans a collaboration network. A business collaboration IT model is a model of the distribution of the IT across the collaboration network. A business collaboration process-IT model is a model of the relationships between the elements of the business collaboration processes and the elements of the distributed IT. Each organisation is considered to adopt its own business collaboration models. For instance, different actors in meat supply chains have different views on how chain-wide transparency should be realized. Which business processes and IT systems each organisation has to deploy and use depends on the business collaboration models each food operator adopts. If two different food operators adopt the same set of business collaboration models, they are aligned; otherwise they are misaligned. Hence, alignment entails comparing the different business collaboration models adopted by the participating organisations. The results of the alignment process are explicit statements about how convergent or divergent the organisations are from the chosen generic reference architecture. The explicit statements of alignment guide how best the generic and the corresponding organisational business collaboration models can be adapted to create a better state of alignment. To further enhance the validity of the overall approach the second case study was conducted. The second case study was a retrospective investigation of two past research projects focusing on aligning environmental modelling processes and IT systems. A retrospective case study was chosen because launching a new business-IT alignment project involving multiple collaborating organisations was not feasible. The projects were undertaken to support the European Water Framework Directive, which mandated, among other things, participatory, multidisciplinary, river-basin wide and model-based studies to manage the water resources of Europe. The directive particularly required a collaborative approach to building environmental decision support systems and to deriving methodologies for applying existing decision support systems. We applied BITA* to aligning environmental modelling processes and IT systems in order to evaluate the suitability of the framework to addressing alignment problems in other application areas. The contributions of the thesis are summarized in chapter 7. The contributions include a number of design artefacts, which can be grouped into four categories: constructs, models, methods, and instantiations. The contribution in the first category includes the conceptualization of allocation and alignment. The contributions in the second category include allocation and alignment models, and reference architectures. Allocation models are representations of business collaboration models in a form that can be compared and are the basis for alignment modelling. The main contribution in the third category is the BITA* systematic approach to alignment modelling. The contributions in the fourth category are the software systems developed with the help of the reference architectures.</p

    Business Process Modelling in Demand‐Driven Agri‐Food Supply Chains

    Get PDF
    Agri ‐food companies increasingly participate in demand‐driven supply chains that are able to adapt flexibly to changes in the marketplace. The objective of this presentation is to discuss a process modelling framework, which enhances the interoperability and agility of information systems as required in such dynamic supply chains. The designed framework consists of two parts: an object system definition and a modelling toolbox. The object system definition provides a conceptual definition of business process in demand‐driven supply chains from a systems perspective. It includes an application of the Viable Systems Model of Stafford Beer to supply chains, and classifications of business processes, control systems and coordination mechanisms. The modelling toolbox builds on the terminology and process definitions of SCOR and identifies three types of process models: i) Product Flow Models: visualize the allocation of basic transformations to supply chain actors and the related product flows from input material into end products (including different traceability units based on the GS1 Global Traceability Standard); ii) Thread Diagrams: visualize how order driven and forecast driven processes are decoupled in specific supply chain configurations (positions Customer Order Decoupling Points), and how interdependences between processes are coordinated; iii) Business Process Diagrams: depict the sequence and interaction of control and coordination activities (as identified in Thread Diagrams) in BPMN notation. The framework is applied to several agrifood sectors, in particular potted plants and fruit supply chains. The main benefits are: i) It helps to map supply chain processes, including its control and coordination, in a timely, punctual and coherent way; ii) It supports a seamless translation of high level supply chain designs to detailed information engineering models; iii) It enables rapid instantiation of various supply chain configurations (instead of dictating a single blueprint); iv) It combines sector specific knowledge with reuse of knowledge provided by generic cross industry standards (SCOR, GS1)

    Novel development of distributed manufacturing monitoring systems to support high cost and complexity manufacturing

    Get PDF
    In the current manufacturing environment, characterized by diverse change sources (e.g. economical, technological, political, social) and integrated supply chains, success demands close cooperation and coordination between stakeholders and agility. Tools and systems based on software agents, intelligent products and virtual enterprises have been developed to achieve such demands but either because of: (i) focus on a single application; (ii) focus on a single product; (iii) separation between the product and its information; or (iv) focus on a single system characteristic (e.g. hardware, software, architecture, requirements) their use has been limited to trial or academic scenarios. In this thesis a reusable distributed manufacturing monitoring system for harsh environments, capable of addressing traceability and controllability requirements within stakeholders and across high cost and complexity supply chains is presented. [Continues.

    An RFID-Based Tracing and Tracking System for the Fresh Vegetables Supply Chain

    Get PDF
    The paper presents an innovative gapless traceability system able to improve the main business processes of the fresh vegetables supply chain. The performed analysis highlighted some critical aspects in the management of the whole supply chain, from the land to the table of the end consumer, and allowed us to reengineer the most important processes. In particular, the first steps of the supply chain, which include cultivation in greenhouses and manufacturing of packaged vegetables, were analyzed. The re-engineered model was designed by exploiting the potentialities derived from the combined use of innovative Radio Frequency technologies, such as RFID and NFC, and important international standards, such as EPCglobal. The proposed tracing and tracking system allows the end consumer to know the complete history of the purchased product. Furthermore, in order to evaluate the potential benefits of the reengineered processes in a real supply chain, a pilot project was implemented in an Italian food company, which produces ready-to-eat vegetables, known asIV gammaproducts. Finally, some important metrics have been chosen to carry out the analysis of the potential benefits derived from the use of the re-engineered model

    SCIF-IRIS Framework: A framework to facilitate interoperability in supply chains

    Get PDF
    One approach that allows improving the collaboration among all the enterprises within a supply chain is interoperability. Interoperability allows the enterprises in the supply chain to collaborate in an efficient manner while preserving their own identities and their own ways of doing business through mechanisms that act as facilitators. However, there are few real practical examples of supply chain interoperability that can be used as a reference. In this paper, we present a framework that can facilitate supply chain interoperability and an example of how it can be applied to a food supply chain

    The role of Industry 4.0 enabling technologies for safety management: A systematic literature review

    Get PDF
    Abstract Innovations introduced during the Industry 4.0 era consist in the integration of the so called "nine pillars of technologies" in manufacturing, transforming the conventional factory in a smart factory. The aim of this study is to investigate enabling technologies of Industry 4.0, focusing on technologies that have a greater impact on safety management. Main characteristics of such technologies will be identified and described according to their use in an industrial environment. In order to do this, we chose a systematic literature review (SLR) to answer the research question in a comprehensively way. Results show that articles can be grouped according to different criteria. Moreover, we found that Industry 4.0 can increase safety levels in warehouse and logistic, as well as several solutions are available for building sector

    The role of Industry 4.0 enabling technologies for safety management: A systematic literature review

    Get PDF
    Innovations introduced during the Industry 4.0 era consist in the integration of the so called "nine pillars of technologies" in manufacturing, transforming the conventional factory in a smart factory. The aim of this study is to investigate enabling technologies of Industry 4.0, focusing on technologies that have a greater impact on safety management. Main characteristics of such technologies will be identified and described according to their use in an industrial environment. In order to do this, we chose a systematic literature review (SLR) to answer the research question in a comprehensively way. Results show that articles can be grouped according to different criteria. Moreover, we found that Industry 4.0 can increase safety levels in warehouse and logistic, as well as several solutions are available for building sector

    A Context-Driven Model for the Flat Roofs Construction Process through Sensing Systems, Internet-of-Things and Last Planner System

    Get PDF
    The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way
    corecore