204 research outputs found

    Model order reduction of time-delay systems using a laguerre expansion technique

    Get PDF
    The demands for miniature sized circuits with higher operating speeds have increased the complexity of the circuit, while at high frequencies it is known that effects such as crosstalk, attenuation and delay can have adverse effects on signal integrity. To capture these high speed effects a very large number of system equations is normally required and hence model order reduction techniques are required to make the simulation of the circuits computationally feasible. This paper proposes a higher order Krylov subspace algorithm for model order reduction of time-delay systems based on a Laguerre expansion technique. The proposed technique consists of three sections i.e., first the delays are approximated using the recursive relation of Laguerre polynomials, then in the second part, the reduced order is estimated for the time-delay system using a delay truncation in the Laguerre domain and in the third part, a higher order Krylov technique using Laguerre expansion is computed for obtaining the reduced order time-delay system. The proposed technique is validated by means of real world numerical examples

    Physics-based passivity-preserving parameterized model order reduction for PEEC circuit analysis

    Get PDF
    The decrease of integrated circuit feature size and the increase of operating frequencies require 3-D electromagnetic methods, such as the partial element equivalent circuit (PEEC) method, for the analysis and design of high-speed circuits. Very large systems of equations are often produced by 3-D electromagnetic methods, and model order reduction (MOR) methods have proven to be very effective in combating such high complexity. During the circuit synthesis of large-scale digital or analog applications, it is important to predict the response of the circuit under study as a function of design parameters such as geometrical and substrate features. Traditional MOR techniques perform order reduction only with respect to frequency, and therefore the computation of a new electromagnetic model and the corresponding reduced model are needed each time a design parameter is modified, reducing the CPU efficiency. Parameterized model order reduction (PMOR) methods become necessary to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as geometrical layout or substrate characteristics. We propose a novel PMOR technique applicable to PEEC analysis which is based on a parameterization process of matrices generated by the PEEC method and the projection subspace generated by a passivity-preserving MOR method. The proposed PMOR technique guarantees overall stability and passivity of parameterized reduced order models over a user-defined range of design parameter values. Pertinent numerical examples validate the proposed PMOR approach

    Parameterized modeling and model order reduction for large electrical systems

    Get PDF

    Laguerre-Gram Reduced-Order Modeling

    No full text
    International audienceWe present an efficient model reduction procedure based on the Laguerre description of the system to be approximated. Using a one-order operator defined in the Laplace domain we construct a pencil of functions and formulate the problem as the minimization of the ( L²) criterion. The use of a weight function in the inner product definition allows a control of the time-error spreading in model reduction procedure. We show how the required Gram matrix can be computed efficiently and prove that the impulse response of the reduced model is also in ( L²). The transfer function approach allows an immediate and promising application in model reduction of infinite dimensional systems. An extension to multiple-input-multiple-output systems is also given

    Combining Krylov subspace methods and identification-based methods for model order reduction

    Get PDF
    Many different techniques to reduce the dimensions of a model have been proposed in the near past. Krylov subspace methods are relatively cheap, but generate non-optimal models. In this paper a combination of Krylov subspace methods and orthonormal vector fitting (OVF) is proposed. In that way a compact model for a large model can be generated. In the first step, a Krylov subspace method reduces the large model to a model of medium size, then a compact model is derived with OVF as a second step

    A Fast Algorithm for Parabolic PDE-based Inverse Problems Based on Laplace Transforms and Flexible Krylov Solvers

    Full text link
    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method

    Numerical analysis of the Caughley model from ecology

    Get PDF
    This paper deals with numerical analysis of a reaction diffusion model from mathematical ecology posed in an unbounded spatial domain. For numerical simulations we replace the original system with an equivalent one posed in a bounded domain. This is done by means of an algebraic map in conjunction with a spectral method. For the semidiscretization in time we use an exponential time differencing scheme, the resulting scheme is explicit both in space and time. Improved error estimates are derived and the computational efficiency of the algorithm is considered. Finally, we present several numerical simulations which are useful for making pertinent biological deductions
    • …
    corecore