
 

Combining Krylov subspace methods and identification-based
methods for model order reduction
Citation for published version (APA):
Heres, P. J., Deschrijver, D., Schilders, W. H. A., & Dhaene, T. (2006). Combining Krylov subspace methods
and identification-based methods for model order reduction. (CASA-report; Vol. 0606). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/9b6de765-8725-48f4-bfc7-0547c5679bb2


INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS

Int. J. Numer. Model. 2006; 00:1–13 Prepared using jnmauth.cls [Version: 2002/09/18 v1.01]

Combining Krylov subspace methods and identification-based
methods for Model Order Reduction

P.J. Heres1, D. Deschrijver2, W.H.A. Schilders1 and T. Dhaene2

SUMMARY

Many different techniques to reduce the dimensions of a model have been proposed in the near

past. Krylov subspace methods are relatively cheap, but generate non-optimal models. In this paper

a combination of Krylov subspace methods and Orthonormal Vector Fitting is proposed. In that way

an optimal model for a large model can be generated. In the first step, a Krylov subspace method

reduces the large model to a model of medium size, then an optimal model is derived with

Orthonormal Vector Fitting as a second step.

key words: Model Order Reduction, Krylov subspace methods, Orthonormal Vector Fitting,

redundancy
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1. INTRODUCTION

In many areas of application and certainly also in the electronic industry complex simulations

have to be performed. Model Order Reduction plays a vital role in keeping up with the pace

of the ever increasing complexity of the simulations. Many different reduction techniques have

been proposed in the near past. Two interesting methods are exposed here, Krylov subspace

methods [1, 2, 3] and Orthonormal Vector Fitting [4, 5].
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2 P.J. HERES, D. DESCHRIJVER, W.H.A. SCHILDERS AND T. DHAENE

Krylov subspace methods are relatively cheap and can therefore handle systems with a

few thousand degrees of freedom. In the meantime, the methods are known for their non-

optimality: Reduced models generated by Krylov subspace methods are generally too large,

since they contain information which is not needed for a good approximation.

Orthonormal Vector Fitting is an identification method, which is typically used to

approximate simulated or measured frequency responses by an analytic function. Rather than

reducing the state-space dimensions of a model, this technique is used to build a new model with

a reduced model complexity. The goal of this algorithm is to parameterize the transfer function,

such that its spectral behaviour matches the response of the larger model as accurately as

possible.

In this paper a combination of both methods is proposed. In that way an optimal model for

a large model can be generated. In the first step, a Krylov subspace method reduces the large

model to a model of medium size, then an optimal model is derived using Orthonormal Vector

Fitting in a second step.

2. KRYLOV SUBSPACE METHODS

2.1. General

Krylov subspace methods start with a state space system:

E
d

dt
x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t), (1)

where x(t) is the state space of the system, u(t) is the input and y(t) is the output of the

system. In general, x(t) has a very large number of entries, say n and in the case of modelling

an electrical component it can consist of both voltages and currents. The system can have

more than one, say p, inputs. In that case the input selecting matrix B has p columns.

After Laplace transforming to the frequency domain and after eliminating the state space

vector X(s), for this system a transfer function H(s) can be formulated, which represents a

direct relation between input U(s) and output Y(s):

H(s) = C(sE−A)−1B + D

Int. J. Numer. Model. 2006; 00:1–13
Prepared using jnmauth.cls



COMBINING KRYLOV SUBSPACE METHODS AND ORTHONORMAL VECTOR FITTING 3

2.2. Algorithm

In Krylov subspace methods a Krylov space associated to these system matrices is generated.

The definition of this Krylov space can differ. In PRIMA [2] the moments of the transfer

function are collected in one space. The Krylov space is then defined as:

Kq(Â, B̂) = [B̂, ÂB̂, Â2B̂, . . . , ÂqB̂],

with Â = (A − s0E)−1E and B̂ = (s0E − A)−1B. In [3] the Krylov space is based on the

expansion of the transfer function in Laguerre functions.

If the size of the Krylov space, pq, is smaller than the size of the system, n, a reduction can

be performed by projecting the system matrices onto the Krylov space, in the following way:

Ẽ = VT EV Ã = VT AV

B̃ = VT B C̃ = CV

D̃ = D, (2)

where V is an orthonormal basis of the Krylov subspace. The reduced matrices then form a

reduced system:

Ẽ
d

dt
x̃(t) = Ãx̃(t) + B̃u(t)

ỹ(t) = C̃x̃(t) + D̃u(t) (3)

The transfer function of the reduced system approximates the transfer function of the original

system well within a certain frequency range. It is proven that PRIMA with a Krylov subspace

of order q preserves q moments of the transfer function [6]. Moreover, because of the orthogonal

projection, stability and passivity are preserved [2].

Krylov subspace methods are relatively cheap. For a single point expansion, one LU-

decomposition is calculated and can be reused in every iteration. The cost of an LU-

decomposition is of the order n3, the rest of the computations needed to derive the reduced

model will then be O(n2). This makes Krylov subspace methods applicable to large models.

Multiple input and output ports can very easily be incorporated in the reduced model, although

the size of the model will increase proportionally to the number of the ports.

Int. J. Numer. Model. 2006; 00:1–13
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4 P.J. HERES, D. DESCHRIJVER, W.H.A. SCHILDERS AND T. DHAENE

2.3. Redundancy

A well-known drawback of Krylov subspace methods is their redundancy: the models generated

by Krylov subspace methods are in general larger than strictly needed. The iterative method

tries to capture the dominant poles in quite a brute force way. Beforehand it is not known what

minimal order is needed for a good approximation. Besides, there is no practical error-bound

known for these methods, although an error estimate can be derived. In practice, we see that it

might take long before the essential poles are approximated well. Moreover, if multiple input

ports are considered it might be that the behavior of one or more ports stays behind with

the rest of the ports. More iterations for these ports are needed, while an equal amount of

information for all the ports is added to the space.

Quite a few propositions are published to cure this redundancy. This can either be done

by a different reduction algorithm as a second step [7, 8], or by making the Krylov subspace

method more efficient [9]. In [10] a way to stop the iterative process for one column while

proceeding with the other ports is pointed out. Although, this partly solves the problem, the

reduced models may still suffer from redundancy.

In this article we propose to combine Krylov subspace methods with Orthonormal Vector

Fitting as a post-processing step.

3. ORTHONORMAL VECTOR FITTING

3.1. Algorithm

The OVF algorithm approximates the Laplace domain data samples (sk,H(sk)), ∀k = 0, ..., K,

using a rational transfer function R(s) [11]

R(s) =
N(s)
D(s)

=

∑P
p=1 cpφp(s)

c̃0 +
∑P

p=1 c̃pφp(s)
s = i2πf (4)

cp and c̃p are the real-valued system parameters which need to be estimated, and P represents

the number of poles. To obtain an improved numerical conditioning, the basis functions φ(s)

are chosen to be orthonormal rational functions [12] rather than polynomials [13]. They are

calculated analytically, by applying a Gram-Schmidt orthonormalization on a set of partial

Int. J. Numer. Model. 2006; 00:1–13
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fractions [14]. The orthonormality is defined with respect to the following inner product

〈φm(s), φn(s)〉 =
1

2πi

∫

iR

φm(s)φ∗n(s)ds (5)

and the basis functions are governed by the following closed form expression

φp(s) =




p−1∏

j=1

s− a∗j
s + aj




√
2<e(ap)
s + ap

(6)

To ensure that the poles and zeros of the transfer function occur in complex conjugate pairs,

the basis functions are made real-valued. This can be achieved by forming a linear combination

of 2 basis functions φp(s) and φp+1(s) if −ap = −a∗p+1 [15]

φp(s) =




p−1∏

j=1

s− a∗j
s + aj




√
2<e(ap)(s− |ap|)

(s + ap)(s + ap+1)
(7)

φp+1(s) =




p−1∏

j=1

s− a∗j
s + aj




√
2<e(ap)(s + |ap|)

(s + ap)(s + ap+1)
(8)

The coefficients are estimated by minimizing Levi’s cost function [16]

arg min
c,c̃

K∑

k=0

|D(sk)H(sk)−N(sk)|2 (9)

Initially, the poles −ap of the basis functions are prescribed, and one coefficient (e.g. c̃0) can

be fixed to unity since both numerator and denominator can be divided by the same constant

value without loss of generality. After simplification of (4), it becomes clear that the poles of

the transfer function are essentially the zeros of the denominator. In order to calculate them,

the minimal state-space realization (A,B,C,D) of D(s) is formed by cascading a number of

smaller, first or second order sections [17]. The zeros can then easily be calculated by solving

an eigenvalue problem.

−ap = eig(A− bc) (10)

Using a Sanathanan-Koerner iteration [18], the poles can be relocated iteratively

arg min
c(t),c̃(t)

(
K∑

k=0

∣∣D(t)(sk)H(sk)−N (t)(sk)
∣∣2

∣∣D(t−1)(sk)
∣∣2

)
(11)

until the cost function is minimized (iteration counter t). Before each iteration, unstable poles

are avoided by flipping them into the left half of the complex plane. The transfer function can

Int. J. Numer. Model. 2006; 00:1–13
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6 P.J. HERES, D. DESCHRIJVER, W.H.A. SCHILDERS AND T. DHAENE

be obtained in a straightforward way by solving the residues, which is a linear problem. If the

poles are stable, this can be done in the orthonormal basis

arg min
c

K∑

k=0

∣∣∣∣∣H(sk)−
(

P∑
p=1

c(t)
p φ(t)

p (s)

)∣∣∣∣∣

2

(12)

or if unstable poles are allowed, one can resort to the partial fractions basis [19]

arg min
c

K∑

k=0

∣∣∣∣∣H(sk)−
(

P∑
p=1

c
(t)
p

sk + a
(t)
p

)∣∣∣∣∣

2

(13)

Such representation can easily be realized as a compact RLCG circuit.

3.2. Order Estimation & Sample Distribution

3.2.1. State Space Evaluation using Adaptive Sample Distribution The goal of the OVF

reduction step is to obtain a transfer function which approximates the behavior of the original

system as accurately as possible, using a restricted number of poles. It is critical to select an

appropriate sample distribution which captures all spectral dynamics of the original system,

including resonances and coupling effects. This means that a relatively dense frequency sweep,

and consequently a large amount of state-space evaluations, are required to calculate the

frequency response for all elements of the system matrix.

The number of poles Porig of the original system can be reduced with the Krylov method and

an Adaptive Sample Distribution scheme (ASD) can be applied to obtain a good estimate of

K. If the value of K is chosen too low, important effects may be missed due to undersampling.

On the other hand, if this value is chosen too high, the computational cost of the state-space

evaluations can be excessive. Using this ASD scheme, such problems are avoided without

requiring a priori knowledge of the structure :

First an initial set of 4 equidistant data samples is selected over the frequency range of

interest for each matrix element, and a rational fitting model is calculated using OVF. Between

each pair of successive frequency samples, 1 or 2 additional samples are evaluated and compared

to the response of the transfer function. If the deviation between the two models is too large,

the sample distribution can be further refined by evaluating intermediate data points until the

error is below an accuracy threshold. This approach limits the number of required state-space

evaluations, and the overall computation time.

Int. J. Numer. Model. 2006; 00:1–13
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COMBINING KRYLOV SUBSPACE METHODS AND ORTHONORMAL VECTOR FITTING 7

3.2.2. Model Order Estimation Another parameter which needs to be estimated carefully is

the number of starting poles P which are needed for the OVF fitting algorithm. This choice

is particularly important, since the resulting transfer function will either be redundant or

inaccurate if the number of poles is chosen too high or too low. Usually, one visually inspects

the data, starts from an initial guess of P starting poles, which is then manually increased or

decreased according to the resulting accuracy of the fitting model. During the ASD step, the

number of poles was chosen sufficiently high, e.g. equal to the number of available data samples

or the number of poles of the original system, depending on which value is the smallest. The

order can now be reduced as follows :

1) One can start from a low number of poles, e.g. 4, in order to fit the initially selected

data samples. Each time the distribution is refined, the number of poles can be gradually

incremented until the accuracy in the selected data samples is sufficiently high. Rather than

reducing the order of the model of the original system, this approach starts from a low number

of poles which is adaptively increased as needed. Even though this method works well in

practice, it does not look very appealing from a computational point of view, since this process

may require a large amount of rational approximations.

2) A more efficient alternative is refit all evaluated data samples using the poles from the

final rational model, which was calculated during the ASD step. These poles are relocated

using the Sanathanan-Koerner iteration, and their corresponding residues are calculated. If

the magnitude of the residues in the partial fraction expansion are sufficiently small, the terms

with the corresponding poles can be discarded since their contribution is very limited. Based

on the reduced set of poles, the poles can be relocated and discarded iteratively until the

magnitude of all the residues is sufficiently large. The convergence of this method is usually

relatively fast, and requires a limited number of rational approximations.

3.3. Extension to multi-port systems

The extension of OVF to multi-port systems can be done in a similar way as the matrix version

of the classical Vector Fitting algorithm [19]. The basic idea is that all elements of the system

matrix are stacked in one column, and are fitted using a common set of poles. This reduces to

Int. J. Numer. Model. 2006; 00:1–13
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8 P.J. HERES, D. DESCHRIJVER, W.H.A. SCHILDERS AND T. DHAENE

solving the following iterative problem

arg min
c
(t)
ij ,c̃(t)




K∑

k=0

Np∑

i=1

Np∑

j=1

∣∣∣D(t)(sk)Hij(sk)−N
(t)
ij (sk)

∣∣∣
2

∣∣D(t−1)(sk)
∣∣2


 (14)

where Hij represents the i, jth element of the system matrix. The reader is referred to [19] for

more implementation details. In practice, the dimensions of the system equations may become

quite large, even for systems with a moderately amount of ports and poles. In fact, the number

of elements in the pole identification matrix requires a large amount of memory resources and

computation time. To our experience, it often suffices to select a subset of the elements of the

system matrix in the pole identification step.

3.4. Passivity Enforcement

It was shown in [20], that the impedance system matrices of passive electrical networks are

positive real. A square rational matrix function H(s), is said to be positive real if the following

criteria are satisfied :

1. H(s) is analytic, for <e(s)>0.

2. H∗(s)=H(s∗)

3. H(s) + HT (s∗) ≥ 0

The first and second criterion can easily be imposed by the OVF algorithm. Loosely speaking,

these restrictions imply that all poles must be located in the left half of the complex plane, and

that the poles and zeros of the transfer function are real, or occur in complex conjugate pairs

(i.e. the coefficients of the transfer function are real). The third criterion is not satisfied in the

general case, however several techniques are available to enforce this constraint a posteriori.

The interested reader is referred to [21] and [22].

4. EXAMPLES

As an example we consider a planar version of a double LC-filter. The layout (and mesh) is

given in Figure 1.

The quasi-static EM-behavior of this model is linear time-invariant, and can be formulated

as a state space system with 695 poles and 11 ports. In Figure 2 the magnitude of the H11

Int. J. Numer. Model. 2006; 00:1–13
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COMBINING KRYLOV SUBSPACE METHODS AND ORTHONORMAL VECTOR FITTING 9

entry (impedance element Z11) of the system matrix is given.

First we will consider only one port of the model. This single-input-single-output model

corresponds with the H11-element of the transfer function. We reduced the model by PRIMA

to size 58. The parameter s0 in the moment expansion for PRIMA was chosen equal to 3 · 109,

according to the maximum frequency of interest. We define a relative error to indicate the

accuracy of the approximation as follows: Let Hij(s) and H̃ij(s) be all function values of the

(i, j)-entry of the original and reduced system matrix respectively, then the error is defined as:

eij = max
s




∣∣∣Hij(s)− H̃ij(s)
∣∣∣

|Hij(s)|


 , (15)

The relative error e11 between the original and the Krylov reduced model is then equal to

6.7 · 10−4. Using the OVF method, the state-space dimensions of the reduced model can be

further minimized.

Figure 3 illustrates the ASD scheme on the structure over the frequency range [1 MHz -

3 GHz]. In Figure 3(a), the algorithm starts by selecting 4 equidistant data samples, marked

with circles, and builds a rational model using OVF. The approximant (dashed line) and the

state-space realization of the original structure (full line) are evaluated in the intermediate

data samples, which are marked with crosses. The maximum relative error is obtained by

calculating the difference between these models, and it is clearly too high after the initial step.

A model is built using all evaluated samples, and the density is refined as shown in Figure

3(b). Again the error is calculated in all intermediate samples, and the procedure is repeated

until the error is below a given threshold, e.g. smaller than 10−7. Such an accuracy (7.5 ·10−8)

was obtained after running 4 iterations.

Now, the model reduction step is applied using the 2nd method (see § 3.2.2). All 244 data

samples are gathered (the number of crosses in Figure 3(d)), and a rational model was build

using the 82 poles which were calculated in the final iteration of the ASD step (the number

of circles in Figure 3(d)). All redundant poles are discarded, based on the magnitude of

their corresponding residues, and the algorithm reduces the model complexity to 31 poles

in 5 SK-iterations. Table 1 illustrates the reduction of the poles per iteration, and shows its

corresponding error.

The resulting accuracy in all 244 data samples is 1.5·10−6. As a verification step, the reduced

model was compared over a dense set of data samples and the overall accuracy is 3.5·10−5. The

Int. J. Numer. Model. 2006; 00:1–13
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10 P.J. HERES, D. DESCHRIJVER, W.H.A. SCHILDERS AND T. DHAENE

fitting error (i.e. the difference between the Krylov and OVF approximant) is shown in figure

4. Optionally, one can use a stepwise reduction of the number of poles as a post-processing

step to further reduce the number of poles. It should be noted however that this reduction will

be compensated by an increase in the fitting error.

The 695 poles of the original problem are reduced to 58 poles after Krylov reduction, and

reduced to 31 poles after OVF. The overall error is bounded by 7.05 · 10−4.

Now, we consider the full multiple-input-multiple-output model. The model is first reduced

to size 143 by PRIMA. The maximum over all 11 × 11 relative errors between original and

reduced model is then 4.85 · 10−4.

First, it is verified by the ASD step that a sample distribution of 244 equidistant data samples

is sufficiently dense. Then, each element on the diagonal of the system matrix is modeled using

a set of 31 poles. The order is step-wise increased (e.g. by 1 or 2 poles) until the accuracy is

sufficiently high. When the order is set to 46, the estimated accuracy of all elements is equal to

2.74 · 10−5. This accuracy was verified on a very dense set of samples, and corresponds nicely

to the estimate.

5. CONCLUSIONS

Krylov subspace methods, like PRIMA and Laguerre-SVD have proved to be very useful

in applications where the dimensions of the state space realization are significantly large.

These methods can provide a good approximation, at a relatively low computational cost.

Nevertheless, the size of the reduced model will not be optimal.

Once the model is reduced to a size for which the full transfer function can be calculated in

a reasonable time, the Orthonormal Vector Fitting techniques comes into play. This method

is essentially an elegant combination of a Sanathanan-Koerner iteration using orthonormal

rational functions [4]. Using this method, an optimal model can be easily be derived as a

second step in the reduction process. This approach extends easily to multiple-input-multiple-

output systems.

We have to remark that the preservation of passivity, a merit of Krylov space methods as for

instance PRIMA and Laguerre-SVD is not guaranteed by OVF. Nevertheless, post-processing

techniques can be applied to enforce such physical behaviour.

Int. J. Numer. Model. 2006; 00:1–13
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