172 research outputs found

    Optimization methods for developing electric vehicle charging strategies

    Get PDF
    Electric vehicles (EVs) are considered to be a crucial and proactive player in the future for transport electrification, energy transition, and emission reduction, as promoted by policy-makers, relevant industries, and the academia. EV charging would account for a non-negligible share in the future electricity demand. The integration of EV brings both challenges and opportunities to the electricity system, mainly from their charging profiles. When EV charging behaviors are uncontrolled, their potentially high charging rate and synchronous charging patterns may result in the bottleneck of the grid capacity and the shortage of generation ramping capacity. However, the promising load shifting potential of EVs can alleviate these problems and even bring additional flexibilities to the demand side for further applications, such as peak shaving and the integration of renewable energy. To grasp these opportunities, novel controlled charging strategies should be developed to help integrate electric vehicles into energy systems. However, corresponding methods in current literature often have customized assumptions or settings so that they might not be practically or widely applied. Furthermore, the attention of literature is more paid to explaining the results of the methods or making consequent policy recommendations, but not sufficiently paid to demonstrating the methods themselves. The lack of the latter might undermine the credibility of the work and hinder readers’ understanding. Therefore, this thesis serves as a methodological framework in response to the fundamental and universal challenges in developing charging strategies for integrating EV into energy systems. The discussions aim to raise readers’ awareness of the essential but often unnoticed concerns in model development and hopefully would enlighten future researchers into this topic. Specifically, this cumulative thesis comprises four papers and analyzes the research topic from two perspectives. With Paper A and Paper B, the micro perspective of the thesis is more applied and focuses on the successful implementation of charging scheduling solutions for each EV individually. Paper A proposes a two-stage scenario-based stochastic linear programming model to schedule EV charging behaviors and considers the uncertainties from future EVs. The model is calculated in a rolling window fashion with updated parameters. Scenario generation for future EVs is simulated by inhomogeneous Markov chains, and scenario reduction is achieved by a fast forward selection method to reduce the computational burden. The objective function is formulated as variance minimization so that the model can be flexibly implemented for various applications. Paper B applies the model proposed in Paper A to investigate how the generation of a wind turbine could be correlated with the EV controlled charging demand. An empirical controlled charging strategy is designed for comparison where EVs would charge as much as possible when wind generation is sufficient or would postpone charging otherwise. Although these two controlled charging strategies perform similarly in terms of wind energy utilization, the solutions from the proposed model could additionally alleviate the volatility of wind energy generation by matching the EV charging curve to the electricity generation profile. With Paper C and Paper D, the macro perspective of the thesis is more explorative and investigates how EVs as a whole would contribute to energy transition or emission reduction. Paper C investigates the greenhouse gas emissions of EVs under different charging strategies in Europe in 2050. Methodologically, the paper proposes an EV module that enables different EV controlled charging strategies to be endogenously determined by energy system models. The paper concludes that EVs would contribute to a 36% emission reduction on the European level even under an uncontrolled charging strategy. Unidirectional and bidirectional controlled charging strategies could further reduce emissions by 4% and 11%, respectively, compared with the original level. As a follow-up study of Paper C, Paper D develops, demonstrates, improves, and compares three different types of EV aggregation methods for integrating an EV module into energy system models. The analysis and demonstration of these methods are achieved by having a simplified energy system model as a testbed and the results from the individual EV modeling method as the benchmark. As different EV aggregation methods share the same data set as for the individual EV modeling method, the disturbance from parameters is minimized, and the influence from mathematical formulations is highlighted. These EV aggregation methods are compared from multiple aspects

    A Doppler Lidar system with preview control for wind turbine load mitigation

    Get PDF
    This dissertation focuses on the development of a system for wind turbine in order to mitigate the load from unstable wind speed. The work is divided into 2 main parts: a cost efficient Doppler wind Lidar system is developed based on a short coherence length laser system in combine with multiple length delayline concept; a preview pitch control is developed based on the design of a combination of 2 degree of freedom (2-DOF) feedback / feedforward control with a model predictive control

    Aeronautical Engineering: A special bibliography with indexes, supplement 62

    Get PDF
    This bibliography lists 306 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1975

    Lithium-Ion Ultracapacitor Energy Storage Integrated with a Variable Speed Wind Turbine for Improved Power Conversion Control

    Get PDF
    The energy of wind has been increasingly used for electric power generation worldwide due to its availability and ecologically sustainability. Utilization of wind energy in modern power systems creates many technical and economical challenges that need to be addressed for successful large scale wind energy integration. Variations in wind velocity result in variations of output power produced by wind turbines. Variable power output becomes a challenge as the amount of output power of the wind turbines integrated into power systems increases. Large power variations cause voltage and frequency deviations from nominal values that may lead to activation of relay protective equipment, which may result in disconnection of the wind turbines from the grid. Particularly community wind power systems, where only one or a few wind turbines supply loads through a weak grid such as distribution network, are sensitive to supply disturbances. While a majority of power produced in modern power systems comes from synchronous generators that have large inertias and whose control systems can compensate for slow power variations in the system, faster power variations at the scale of fraction of a second to the tens of seconds can seriously reduce reliability of power system operation. Energy storage integrated with wind turbines can address this challenge. In this dissertation, lithium-ion ultracapacitors are investigated as a potential solution for filtering power variations at the scale of tens of seconds. Another class of issues related to utilization of wind energy is related to economical operation of wind energy conversion systems. Wind speed variations create large mechanical loads on wind turbine components, which lead to their early failures. One of the most critical components of a wind turbine is a gearbox that mechanically couples turbine rotor and generator. Gearboxes are exposed to large mechanical load variations which lead to their early failures and increased cost of wind turbine operation and maintenance. This dissertation proposes a new critical load reduction strategy that removes mechanical load components that are the most dangerous in terms of harmful effect they have on a gearbox, resulting in more reliable operation of a wind turbine

    A cumulative index to Aeronautical Engineering: A special bibliography, January 1975

    Get PDF
    A cumulative index to the abstracts contained in NASA SP-7307 (41) through NASA SP-7037 (52) is presented. Subject, personal author, corporate source, contract, and report number indexes are included

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field

    Aeronautical engineering. A continuing bibliography with indexes, supplement 102

    Get PDF
    This bibliography lists 326 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1978

    Energy: A continuing bibliography with indexes (Issue 29)

    Get PDF
    This bibliography lists 1360 reports, articles, and other documents introduced into the NASA scientific and technical information system from January 1, 1981 through March 31, 1981

    Book of Abstracts:8th International Conference on Smart Energy Systems

    Get PDF
    • …
    corecore