165,602 research outputs found

    Mobile genetic elements in Clostridium difficile and their role in genome function.

    Get PDF
    Approximately 11% the Clostridium difficile genome is made up of mobile genetic elements which have a profound effect on the biology of the organism. This includes transfer of antibiotic resistance and other factors that allow the organism to survive challenging environments, modulation of toxin gene expression, transfer of the toxin genes themselves and the conversion of non-toxigenic strains to toxin producers. Mobile genetic elements have also been adapted by investigators to probe the biology of the organism and the various ways in which these have been used are reviewed

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Distinct genealogies for plasmids and chromosome

    Get PDF
    An earlier perspective on the diversity of conjugative elements in microbes [1] attempted to provide a broad audience with an introductory overview of the arcane biology of mobile genetic elements and their terminologies. It might well have been entitled "Plasmids, ICEs, IMEs, and Other Mobile Elements for Dummies," but common sense prevailed. This perspective introduces two related articles in the current issue of PLOS Genetics [2,3] and might have equally aptly been entitled "Antibiotic-Resistant Plasmids and Their Epidemiology for Dummies.

    Insight into the mobilome of <em>Escherichia coli</em>

    Get PDF
    Mobilomes are all mobile genetic elements (plasmids, transposable elements, insertion sequences, gene cassettes, integrons, genomic islands, and bacteriophages) in a genome. Mobilome is one of the responsible agents for the bacterial evolution, virulence, and increasing antibiotic resistance. The mobile genetic elements in the Escherichia coli genome can carry antibiotic resistance genes and/or virulence genes. The acquisition of new mobile genetic elements can lead to the emergence of new pathotypes. The aim of this chapter is to gather knowledge about mobile genetic elements in E. coli strains. The method in this chapter depends on a literature survey, which scans reviews, research articles, and theses published about transposable elements, plasmids, bacteriophages, and genomic islands in E. coli strains

    Mobile genetic elements of Staphylococcus aureus

    Get PDF
    Bacteria such as Staphylococcus aureus are successful as commensal organisms or pathogens in part because they adapt rapidly to selective pressures imparted by the human host. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information (DNA) among and within bacterial species. Importantly, MGEs encode putative virulence factors and molecules that confer resistance to antibiotics, including the gene that confers resistance to beta-lactam antibiotics in methicillin-resistant S. aureus (MRSA). Inasmuch as MRSA infections are a significant problem worldwide and continue to emerge in epidemic waves, there has been significant effort to improve diagnostic assays and to develop new antimicrobial agents for treatment of disease. Our understanding of S. aureus MGEs and the molecules they encode has played an important role toward these ends and has provided detailed insight into the evolution of antimicrobial resistance mechanisms and virulence

    Mobile transporter path planning

    Get PDF
    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research

    How the other half lives: CRISPR-Cas's influence on bacteriophages

    Full text link
    CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells used to combat phage and plasmid threats. The host cell adapts by incorporating DNA sequences from invading phages or plasmids into its CRISPR locus as spacers. These spacers are expressed as mobile surveillance RNAs that direct CRISPR-associated (Cas) proteins to protect against subsequent attack by the same phages or plasmids. The threat from mobile genetic elements inevitably shapes the CRISPR loci of archaea and bacteria, and simultaneously the CRISPR-Cas immune system drives evolution of these invaders. Here we highlight our recent work, as well as that of others, that seeks to understand phage mechanisms of CRISPR-Cas evasion and conditions for population coexistence of phages with CRISPR-protected prokaryotes.Comment: 24 pages, 8 figure
    corecore