45,255 research outputs found

    Mobile, collaborative augmented reality using cloudlets

    Get PDF
    The evolution in mobile applications to support advanced interactivity and demanding multimedia features is still ongoing. Novel application concepts (e.g. mobile Augmented Reality (AR)) are however hindered by the inherently limited resources available on mobile platforms (not withstanding the dramatic performance increases of mobile hardware). Offloading resource intensive application components to the cloud, also known as "cyber foraging", has proven to be a valuable solution in a variety of scenarios. However, also for collaborative scenarios, in which data together with its processing are shared between multiple users, this offloading concept is highly promising. In this paper, we investigate the challenges posed by offloading collaborative mobile applications. We present a middleware platform capable of autonomously deploying software components to minimize average CPU load, while guaranteeing smooth collaboration. As a use case, we present and evaluate a collaborative AR application, offering interaction between users, the physical environment as well as with the virtual objects superimposed on this physical environment

    A component-based approach towards mobile distributed and collaborative PTAM

    Get PDF
    Having numerous sensors on-board, smartphones have rapidly become a very attractive platform for augmented reality applications. Although the computational resources of mobile devices grow, they still cannot match commonly available desktop hardware, which results in downscaled versions of well known computer vision techniques that sacrifice accuracy for speed. We propose a component-based approach towards mobile augmented reality applications, where components can be configured and distributed at runtime, resulting in a performance increase by offloading CPU intensive tasks to a server in the network. By sharing distributed components between multiple users, collaborative AR applications can easily be developed. In this poster, we present a component-based implementation of the Parallel Tracking And Mapping (PTAM) algorithm, enabling to distribute components to achieve a mobile, distributed version of the original PTAM algorithm, as well as a collaborative scenario

    Dimensions of Mobile Augmented Reality for Learning: A First Inventory

    Get PDF
    Specht, M., Ternier, S., & Greller, W. (2011). Dimensions of Mobile Augmented Reality for Learning: A First Inventory. Journal of the Research for Educational Technology (RCET), 7(1), 117-127. Spring 2011.This article discusses technological developments and applications of mobile augmented reality (AR) and their application in learning. Augmented reality interaction design patterns are introduced and educational patterns for supporting certain learning objectives with AR approaches are discussed. The article then identifies several dimensions of a user context identified with sensors contained in mobile devices and used for the contextualization of learning experiences. Finally, an AR game concept, “Locatory”, is presented that combines a game logic with collaborative game play and personalized mobile augmented reality visualization

    Mobile Augmented Reality for Learning

    Get PDF
    Specht, M. (2012, April). Augmented Reality for Learning. Technical report for workshop at eLearning congress 2012. 's Hertogenbosch, The Netherlands.Until recently, augmented reality (AR) applications were mostly available for powerful workstations and high power personal computers. The introduction of augmented reality applications to smartphones enabled new and mobile AR experiences for everyday users. Because of the increasing pervasion of smartphones, AR is set to become a ubiquitous commodity for leisure and mobile learning. With this ubiquitous availability, mobile AR allows to devise and design innovative learning scenarios in real world settings. This carries much promise for enhanced learning experiences in situated learning. In the present article, we will look at different dimensions of mobile AR and exemplify their potential for education. At the end, we want to report on a short experiment that we conducted, called Locatory. It exceeds the current state of art for common mobile AR applications by introducing interactive and collaborative elements as well as gaming mechanisms

    Collaborative Augmented Reality

    Get PDF
    Over the past number of years augmented reality (AR) has become an increasingly pervasive as a consumer level technology. The principal drivers of its recent development has been the evolution of mobile and handheld devices, in conjunction with algorithms and techniques from fields such as 3D computer vision. Various commercial platforms and SDKs are now available that allow developers to quickly develop mobile AR apps requiring minimal understanding of the underlying technology. Much of the focus to date, both in the research and commercial environment, has been on single user AR applications. Just as collaborative mobile applications have a demonstrated role in the increasing popularity of mobile devices, and we believe collaborative AR systems present a compelling use-case for AR technology. The aim of this thesis is the development a mobile collaborative augmented reality framework. We identify the elements required in the design and implementation stages of collaborative AR applications. Our solution enables developers to easily create multi-user mobile AR applications in which the users can cooperatively interact with the real environment in real time. It increases the sense of collaborative spatial interaction without requiring complex infrastructure. Assuming the given low level communication and AR libraries have modular structures, the proposed approach is also modular and flexible enough to adapt to their requirements without requiring any major changes

    Collaborative Augmented Reality

    Get PDF
    Over the past number of years augmented reality (AR) has become an increasingly pervasive as a consumer level technology. The principal drivers of its recent development has been the evolution of mobile and handheld devices, in conjunction with algorithms and techniques from fields such as 3D computer vision. Various commercial platforms and SDKs are now available that allow developers to quickly develop mobile AR apps requiring minimal understanding of the underlying technology. Much of the focus to date, both in the research and commercial environment, has been on single user AR applications. Just as collaborative mobile applications have a demonstrated role in the increasing popularity of mobile devices, and we believe collaborative AR systems present a compelling use-case for AR technology. The aim of this thesis is the development a mobile collaborative augmented reality framework. We identify the elements required in the design and implementation stages of collaborative AR applications. Our solution enables developers to easily create multi-user mobile AR applications in which the users can cooperatively interact with the real environment in real time. It increases the sense of collaborative spatial interaction without requiring complex infrastructure. Assuming the given low level communication and AR libraries have modular structures, the proposed approach is also modular and flexible enough to adapt to their requirements without requiring any major changes

    An augmented reality learning toolkit for fostering spatial ability in mathematics lesson: Design and development

    Get PDF
    Previous research claimed that integration of augmented reality on educational settings helps to improve academic achievement of students in collaborative learning environments, as well as to improve their retention and ability to translate this within other environments. Since augmented reality is still considered relatively novel technology in educational fields, there is an inherent need for research-based guides to design effective and feasible augmented reality tools for school-based learning. The main aim of this study was therefore to design and develop an augmented reality learning toolkit to foster spatial ability in middle school students using mobile devices. The study was conducted in two parts, as preliminary research and a prototyping phase. The findings guided the characteristics for designing an augmented reality learning toolkit with a set of spatial tasks aimed at middle school students. In light of the results, it can be inferred that the students were able to use this designed toolkit to perform their spatial ability through given spatial tasks since the students encountered no technical difficulties with the final toolkit prototype, and that they were able to use the toolkit assuredly. In conclusion, the study showed that augmented reality seemed helpful in enhancing the usage of mobile devices, not just for the reading of books, communication or playing games, but also as a support mechanism for the learning of mathematics. Thus, the augmented reality toolkit developed in this study presents a new way for students and/or teachers to use mobile devices in the learning and teaching of mathematics

    Musical peddy-paper: a collaborative learning activity suported by augmented reality

    Get PDF
    Gaming activities are an integral part of the human learning process, in particular for children. Game-based learning focuses on motivation and children's engagement towards learning. Educational game-based activities are becoming effective strategies to enhance the learning process. This paper presents an educational activity focusing to merge mobile computing devices and Augmented Reality, as a means to engage student in collaborative learning towards the Aesthetical Periods of Music History. The Musical Peddy-paper proposes student to use their mobile computing devices (smartphones/ tablets) to find eight stations scattered in a set location, and then use their music literacy skills to find the correct answer in each station. Collaborative work is required to find the stations and the answers to the clues. The musical Peddy-paper was developed mixing Geo-location and Augmented Reality concepts. Geo-location Points of Interest (POI’s) where set through Hoppala platform. Augmented Reality browsing and QRCode reading is supported by the LAYAR platform. In this paper, we introduce the concept of game-based activities as a tool to promote motivation and engagement towards learning, and fully explain the development process of the activity. We conclude this paper presenting the conclusions contemplating the use of this activity among a group of children from the 2nd Cycle of Basic Education in Basic School Maria Manuela de Sá, Matosinhos – Portugal.info:eu-repo/semantics/publishedVersio

    Collaborative Content Generation Architectures for the Mobile Augmented Reality Environment

    Get PDF
    The increasing adoption of smartphones by the society has created a new research area in mobile collaboration. This new domain offers an interesting set of possibilities due to the introduction of augmented reality techniques, which provide an enhanced collaboration experience. As this area is relatively immature, there is a lack of conceptualization, and for this reason, this paper proposes a new taxonomy called Collaborative Content Generation Pyramid that classifies the current and future mobile collaborative AR applications in three different levels: Isolated, Social and Live. This classification is based on the architectures related to each level, taking into account the way the AR content is generated and how the collaboration is carried out. Therefore, the principal objective of this definition is to clarify terminology issues and to provide a framework for classifying new researches across this environment

    A Distributed Software Architecture for Collaborative Teleoperation based on a VR Platform and Web Application Interoperability

    Full text link
    Augmented Reality and Virtual Reality can provide to a Human Operator (HO) a real help to complete complex tasks, such as robot teleoperation and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on different Mobile platforms to control one or many robots
    • …
    corecore