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Abstract 
 

Over the past number of years augmented reality (AR) has become an increasingly 
pervasive as a consumer level technology. The principal drivers of its recent development 
has been the evolution of mobile and handheld devices, in conjunction with algorithms 
and techniques from fields such as 3D computer vision. Various commercial platforms and 
SDKs are now available that allow developers to quickly develop mobile AR apps 
requiring minimal understanding of the underlying technology. 
 
Much of the focus to date, both in the research and commercial environment, has been on 
single user AR applications. Just as collaborative mobile applications have a demonstrated 
role in the increasing popularity of mobile devices, and we believe collaborative AR 
systems present a compelling use-case for AR technology. 
 
The aim of this thesis is the development a mobile collaborative augmented reality 
framework. We identify the elements required in the design and implementation stages 
of collaborative AR applications. Our solution enables developers to easily create multi-
user mobile AR applications in which the users can cooperatively interact with the real 
environment in real time. It increases the sense of collaborative spatial interaction 
without requiring complex infrastructure. Assuming the given low level communication 
and AR libraries have modular structures, the proposed approach is also modular and 
flexible enough to adapt to their requirements without requiring any major changes. 
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1. Introduction 
 

We live in a physical world containing concrete and detectable objects with which we can 
interacted. With the help of technology, computers today are more capable of storing 
information about real world objects, as well as manipulating or modifying these objects. 
However, although programming paradigms, such as object-oriented approaches, have 
tried to represent and model the concept of real life objects, the gap between the real and 
virtual world has not yet been closed. What is needed is a new technology to enhance the 
user’s sensory perception of the virtual information that they are seeing or interacting 
with in order to increase its connection to the real world: Augmented Reality. With the 
increasing processing power, more accurate sensors and high resolution cameras in 
mobile devices, augmented reality is no longer a science fictional concept as it was in 
Kubrick’s 2001: A Space Odyssey. The improvements of open source SDK’s, furthermore, 
lead augmented reality to move from industrial niches to mass technology (Yang, 2011). 
Many commercial and off-the-shelf systems and applications now exist that permit the 
developers of collaborative augmented reality applications. 

 

1.1. Augmented Reality 
 

Augmented Reality (AR) is closely related to Virtual Reality (VR), since the concept of AR 
evolved as a variation of VR (Milgram, et.al, 1994). VR aims to present an artificial world 
that the user can explore interactively. Augmented Reality, on the other hand, 
supplements the real world with computer generated content, instead of creating an 
entirely virtual world.  

 

 

 

 

AR has been defined by Milgram as existing on a continuum of real to virtual 
environments, and is thus a subset of mixed reality (Figure 1). 

The left extreme on the continuum is the real world, or the physical environment; which 
we all are familiar with. The opposite extreme is the virtual world, or virtual environment, 
in which all information is solely computer generated and nothing to do with real world 
objects. AR and VR exist between these two extremes. Augmented reality is often used to 
refer to manipulation of the real world, viewed through head mounted or mobile devices, 
with the additional information generated by the computer. An AR system adds or 
superimposes modifiable digital information directly on top of items in the real world. 

Although it is a relatively new concept, the origins of augmented reality date back to the 
late 1950s, when Morton Leonard Heilig developed the Sensorama, a virtual reality based 
arcade game which gave the player the sense of real world interaction.   

Figure 1. Reality-Virtuality (RV) Continuum (Milgram, et al., 1994) 



8 
 

In 1966, Professor Ivan Sutherland of Electrical Engineering at Harvard University 
invented the Head-Mounted Display (Figure 2), which was a milestone in making AR a 
usable possibility (Sutherland, 1968).  

 

 

 

 

 

It is believed that, Tom Caudell first coined the term “Augmented Reality” in 1990 while 
working in Boeing’s Computer Services’ Adaptive Neural Systems Research and 
Development in Seattle (Caudell, 1992). The complex software he came up with helped 
mechanics during assembly stages by showing the correct positions of where cables were 
supposed to go. 

Despite all the improvements, AR remained pretty much a curiosity of the research 
domains until 1999, when Hirokazu Kato of the Nara Institute of Science and Technology 
released the ARToolKit1 to the open source community. Together with the invention of 
smartphones and handheld devices with sensors and cameras, ARToolKit was what 
helped to bring AR to the masses and end users. Nowadays, numerous augmented reality 
applications have been released to the general public, mostly on Android and iOS 
platforms, thanks to open source and commercial AR tools and libraries developed by 
companies such as Qualcomm2, Metaio3 and ARMedia4. 

 

1.2. How does Augmented Reality work? 
 

An augmented reality system basically consists of a camera, a processor and a display unit. The 
camera captures an image, and then AR software system superimposes virtual objects onto the 
image in real time and displays the result (Siltanen, 2012). 

 

 

 

 

 

                                                           
1 http://www.hitl.washington.edu/artoolkit 
2 http://www.qualcomm.com/solutions/augmented-reality 
3 http://www.metaio.com 
4 http://www.armedia.it 

Figure 2. Head Mounted Display (Azuma, 1995) 

 

Figure 3. Simple AR System (Siltanen, 2012) 

 



9 
 

As shown in the Figure 3, the current image viewed by the camera is captured by the 
image acquisition module. The tracker calculates the correct location and orientation for 
virtual overlay relative to the camera. Finally, the renderer puts the virtual image on top 
of the real image using the calculated pose and renders the augmented image onto the 
display. 

The critical component here is the tracker, since its role is to compute the relative pose of 
the camera in real time. The term pose refers to the six degrees of freedom (DOF) position 
and orientation, as we will see it in detail later. As Sanni says, “the fundamental difference 
compared to other image processing tools is that in augmented reality virtual objects are 
moved and rotated in 3D coordinates instead of 2D image coordinates” (Sanni, 2012).  

 

1.3. Types of AR 
 

1.3.1. Marker Based Tracking 
 

The most common type of augmented reality is marker based tracking, because 
calculating the pose of the camera, referred to as camera tracking, by using a complex 
marker is relatively simple.  

As previously mentioned, an augmented reality systems displays additional information 
on top of real objects. To be able to do this, it has to know where the user, or camera, is 
and what the camera is looking at. Hence, computation of location and orientation of the 
camera relative to the real world is vital. In an unfamiliar environment, computing the 
pose is difficult as it takes some time to collect enough data. Adding an easily detectable 
marker in the real world makes the estimation easier. A marker is a sign, like QR code, 
which can be detected by a computer using image processing techniques. Once the marker 
is detected, the marker’s pose defines the correct position and orientation of the camera. 
In other words, the marker is used as a reference point for computer generated graphics 
to be overlaid. 

 

 

A good marker should be easily detectable. According to Hartley and Zisserman, 
differences in brightness are more easily detected than the differences in colour. In 
addition, four known points are sufficient to determine the pose of a camera (Hartley & 
Zisserman, 2000) and the simplest shape with four points is a square. That is the reason, 
most of the marker based systems use black and white square markers. In spite of its 

Figure 4. Different Markers 
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advantages, such as easy implementation and faster detection, it is not suitable for all 
types of AR as it requires predefined markers to be placed within the scene. In some 
situations, for example, where we wish to augment a building, the lack of a predefined 
marker complicates the process. 

 

 

 

1.3.2. Markerless Tracking 
 

As its name suggests, markerless AR does not require a predefined marker to place the 
virtual objects with the real world. There are numerous subtypes of Markerless AR.  

Location based tracking, for example, is one of them. With the help of a triangulation 
technology, such as an integrated GPS sensor and a digital compass in a mobile phone, 
location based AR helps to determine the current location and then displays some kind of 
additional information on the screen according to the location and position of the sensor. 

Instead of placing a two dimensional predefined marker in the environment, a specific 
object can be modelled and stored in a cloud. Using image processing techniques (3D 
tracking), an AR system can search for the modelled object in the real world viewed 
through camera by comparing every frame with the existing object online. 

Using advanced tracking algorithms is another way of providing markerless augmented 
reality. For example Pang suggests the following approach (Pang, et.al, 2006): 

1. Kanade-Lucas-Tomasi (KLT) natural feature tracker is used to track 
corresponding points in two control images. 

2. Four planar points are specified in each control image to setup the world 
coordinate system. 

3. The affine reconstruction and reprojection techniques are used to estimate the 
image projections of these four specified planar points in the live video sequence. 

4. These image projections are used to estimate the camera pose in real time. 

In markerless tracking technique, a camera captures video frames and features in each 
frame are analysed. Then, correspondences between consecutive frames are found. The 
technique computes the camera’s pose using these correlations. The features that has not 
been detected so far are stored and their three dimensional coordinates are computed. 
The system stores these new features to benefit from them for upcoming correspondence 
detections (Ziegler, 2009). 

Figure 5. A Multimedia marker (left), Location Based AR (middle), 
Markerless AR (right) 
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Even though markerless tracking allows more complex application of AR and thus gives 
more flexibility to the user, it is difficult to implement and requires a considerable amount 
of computational power because of complex calculations. 

In this project, we use a hybrid approach in that we do not require a marker, but instead 
allows the user to define their own marker at runtime. A critical constraint of the system 
is that the marker region is assumed to be planar, and should be textured (i.e. to facilitate 
robust tracking). Once the marker region has been defined by the user it forms a planar 
map, and therefore the rest works similarly to the marker based tracking. 

  

 

1.4. Our Motivation 
 

“It is a human need to share and shape the world surrounding us”, says Kasahara. 
(Kasahara, et.al, 2012). Several physiological studies have shown that the social 
interaction involved with other people constitutes a large motivational factor for gaming 
(Järvelä, et.al, 2014). Therefore, the need for synchronization (i.e., mutual variation) of 
interactions and sharing information can be considered as a human need. Sharing photos 
on social media platforms, such as Instagram, Twitter and Facebook is a good example of 
this need. 

From this point of view, it can be said that, although single user augmented reality 
applications have shown great promise thus far; perhaps the greatest potential use for 
augmented reality is in developing new types of collaborative interfaces (Billinghurst & 
Kato, 2002). Augmented reality applications can be used to improve remote collaboration 
in a shared space.  

Although there are currently some multi-user augmented reality applications in the 
market, most of these systems are based on complex infrastructure, such as optical 
motion capture systems, or predefined markers as mentioned above. These limitations 
are the main reasons why augmented reality is still considered as a niche technology. 

Vicon5 and OptiTrack6, for instance, are both infrared marker tracking systems, which 
may be integrated into a collaborative augmented reality application (CAR). However, 
they are not suitable for everyday setup and are very costly. StudierStube7, on the other 
hand, is an augmented reality interface which introduces a face-to-face collaboration in a 
shared physical workspace. However, it requires head mounted displays to allow users to 
collaboratively view 3D virtual models superimposed on the real world (Billinghurst & 
Kato, 2002). Since it is an old project, which was stopped in 2008, it is not supported 
anymore. Additionally, the native programming languages it uses, complicated setup and 
implementation details prevent it from being a suitable candidate for the rapid 
prototyping and mobile applications. 

In this project, we address the following questions: What elements are required in the 
design and implementation on collaborative augmented reality applications? How can we 

                                                           
5 http://www.vicon.com 
6 http://www.naturalpoint.com/optitrack 
7 http://studierstube.icg.tugraz.at 
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develop a collaborative augmented reality framework such that it allows developers to 
easily create multi-user mobile AR applications in which the users can cooperatively interact 
with the real environment in real time? How can we increase the sense of collaborative 
spatial interaction in a shared workspace without relying on complex infrastructure? How 
can our framework be flexible enough to adopt any type of AR engines and communication 
libraries when a replacement is needed? As such our aim is to create a framework that sits 
on top of existing augmented reality and communication frameworks, and makes use of 
their common behaviours. 

Collaborative AR applications which can be developed using our framework will be 
mostly for entertainment purposes, such as games, shopping or social applications. Yet, 
we have identified a few other fields that can benefit from our CAR framework: 

 Advertisement: Augmented Reality systems have been popular for commercial 
purposes since it was born. Commercial interest in AR is even increasing as AR has 
the power to bring consumers closer to products before purchase. Our framework 
suggests to use the real environment as a shared canvas, without any need for a 
complex setup. This can mean putting signatures, banners, product pictures or 
even live videos on trees or walls or wherever is suitable. It could dramatically 
change the advertising methods. 

 Education: Smart boards have become a more popular way of teaching at schools 
(Lee K. , 2008). With the help of collaborative applications, a smart phone can work 
as a master which sends the information to students’ tablets. Any student who has 
the right to manipulate the canvas can draw on his/her device and it 
simultaneously appears on the smart board. 

 Architecture and Design: Augmented Reality has been widely used in video 
gaming and media entertainment to date. Architecture is another field that can 
benefit from the creative features of collaborative AR. Architecture and design 
firms can use it to show clients proposed designs in a collaborative way using 
mobile devices such that clients can make alterations on the proposed design in 
line with their requirements. 

 

The rest of this paper is organized as follows: Section 2 gives an overview of the related 
work to our problem; more specifically we introduce previous attempts to integrate 
collaboration into augmented reality applications, although such attempts have been 
infrequent. Next, in Section 3 and in Section 4, we explain the techniques of pose 
tracking and content generation respectively in single user AR systems. Section 5 
discusses how well known content distribution methods can be adapted into AR 
applications. These three sections together give the necessary background for our 
solution. Later in Section 6, we present our collaborative augmented reality solution 
together with some implementation details.  Section 7 critically evaluates the solution 
in terms of its modularity, dependability and reliability and addresses its limitations. 
Finally, in Section 8 conclusions are drawn with an outlook into future research 
directions. 
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2. Related Work 
 

In this chapter we critically analyse and refer to the other works that are related to 
collaborative augmented reality and compare our approach with theirs. 

Recently, AR applications have become more popular due to the advancement in mobile 
device technology (Vuforia8, Metaio9, Layar10, etc.). These mobile based applications allow 
programmers to apply augmented reality in different domains. Metaio and Layar allow 
users to show computer generated content on top of printed media. However, they both 
require a trackable printed surface to work. Scrawl11 is a marker-based 3D augmented 
reality painting app by String. It requires users to print out markers to create interactive 
AR applications. Stiktu12 allows users to scan everyday objects and virtually add AR 
stickers and images on surfaces. The created content may be captured as an image and 
posted to social networking platforms such as Twitter and Facebook (Kasahara, et.al, 
2012). Wikitude13 and Mixare14 use sensors for location based AR.  None of these 
examples support shared workspace for multiple users. 

As mentioned in the previous chapter, although AR applications have been widely 
explored and applied in many domains to date, there has not been much work done in the 
collaborative AR field. We show that SecondSurface, developed by MIT Media Lab, is the 
closest and most comparable work to our solution. Studierstube, as described by 
Schmalstieg and others, was one of the first collaborative augmented reality systems 
(Schmalstieg, et al., 2002). Since our solution separates the collaboration module, the 
content generation module, and the AR engine; we will briefly look at some other works 
that embody peer-to-peer content distribution and mobile content generation.  

 

2.1. SecondSurface 
 

In 2012, MIT Media Lab introduced a multi user augmented reality system that takes real 
time interaction further by superimposing user generated contents on the physical 
environment (Kasahara, et al., 2012). The system consists of a mobile application and a 
server application. The mobile application runs on iOS and the server application runs on 
a Linux based machine. 
 
Very similar to our approach, there is a shared spatial canvas on which users can create 
contents and share with each other. What differentiates our solution from theirs is that in 
their structure, the multiple iOS devices are connected to each other through a server 
application. When a user generates a new content on top of the canvas, the data (content 
itself and its pose matrix Mvirtual object) is sent to the server (Figure 6). The server handles 

                                                           
8 http://www.qualcomm.com/solutions/augmented-reality 
9 http://www.metaio.com 
10 https://www.layar.com/augmented-reality 
11 http://www.poweredbystring.com/showcase 
12 http://blog.stiktu.com 
13 http://www.wikitude.com 
14 http://www.mixare.org 
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the data and pushes it to all devices connected to each other. If any of the other devices 
are looking at the same object, the generated content appears on their screen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SecondSurface15 has been especially influential to our solution choice. It was the starting 
point of this project. As this project does, it also uses image based AR engine Vuforia, 
developed by Qualcomm, which recognizes a natural image as a target object with 
advanced registered dictionary data (Kasahara, et al, 2012). However, there are some 
major differences with our approach.  
 
First of all, SecondSurface is an application rather than a framework that can be used to 
develop different collaborative AR applications. That means if they want to change the AR 
engine working under SecondSurface or the server design (for example, in order to allow 
additional functionalities such as sensor support for location based AR), most of the 
implementation has to be changed. By developing a flexible collaborative AR framework, 
this project aims to provide an easier way to create applications similar to SecondSurface, 
independently from the AR engine or content distribution design.  
 
Secondly, using a server application to handle and distribute the generated content is a 
design choice here. For our project, it would double the time to share the content with 
other peers and increase the overall complexity of the framework. With the help of 
computational power of mobile devices today, our solution prefers to rely on each peer, 
instead of a server.  
 
We note that it could be advantageous to integrate the server application into our system. 
Since the data would be stored in the server, it would provide a persistent layer. This 
means when a user views an object through his/her device’s camera, all previous contents 
(i.e. information about that object) would appear on the object. By adapting peer to peer 
communication in our system, we lose the content when the current session between 
peers expires in favour of simplicity and faster distribution. 
 
 
 

                                                           
15 http://tangible.media.mit.edu/project/second-surface 

Figure 6. SecondSurface Server System (left), Content Generation (right) 
(Kasahara, et al., 2012) 
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2.2. Studierstube 
 

Studierstube16 is a long running augmented reality research project carried out at Graz 
University of Technology. The maintenance of the project ceased in 2008. It is one of the 
first AR projects that allows multiple users to share the same virtual environment. 
 

 

 

 

 

 

 

At the heart of the Studierstube system, collaborative AR is used to embed computer 
generated images into a real world environment. Studierstube uses display technologies 
such as see through head mounted displays (HMDs), a virtual table (which could be 
interacted with a pen and a panel), or projection screens to combine computer graphics 
with a user’s view of the real world (Schmalstieg, et. al., 2002). Differently from our 
solution, the project focuses on face to face collaboration rather than supporting remote 
collaboration. Another limitation of the project is that it is only available for Windows and 
Linux platforms and gives no support for handheld devices and mobile operating systems, 
such as Android and iOS. 

It gives support to many different markers (template markers, data-matrix markers, 
frame markers, split markers, grid markers), provides high performance (twice as fast as 
ARToolKit) and low memory consumption (5% of the memory usage of ARToolKit). 
However, despite its advantages, there are also some limitations. It does not read images 
from a camera, render anything, support hardware or track natural features. It only 
supports Local Area Network (LAN) communication between peers. Studierstube, 
furthermore, uses many different libraries and frameworks, such as ARToolKit as its core 
AR engine, QT17 as its GUI toolkit, OpenVideo18 as its video abstraction library and 
OpenTracker19 to track the input data. It therefore requires complex configuration 
settings and high coding skills. This also prevents it from becoming a portable framework 
as it depends on too many external libraries and requires special settings. In contrast to 
Studierstube, our project makes use of the mobile devices that encompass all of the above 
(camera, touch screen, wireless networking) in one solution. 

                                                           
16 http://studierstube.icg.tugraz.at 
17 http://qt-project.org 
18 http://www.open-video.org 
19 http://studierstube.icg.tugraz.at/opentracker 

Figure 7. Collaborative work in Studierstube: 3D painting 
application window (Billinghurst & Kato, 2002) 
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2.3. Content Distribution in Mobile AR Systems 
 

Content sharing is one of the key points that makes mobile devices so popular. Countless 
numbers of applications allow users to share information over a network. Social 
networking applications, such as Facebook, Twitter and Whatsapp, are good examples of 
content distribution. However, most of them provide this communication through 
servers. Whatsapp, for example, is an instant messenger application which uses a client-
server model to provide connection between devices. A new text is created by a device 
and sent to the server, then the server handles the message and pushes it to the other 
peers. TextHer, on the other hand, is a peer to peer messaging application where messages 
are directly sent from one device to another without being routed through servers.  

Muddleware is a networking solution for mobile devices, particularly for augmented 
reality applications (Wagner & Schmalstieg, 2007). There is a high speed XML server at 
its core which can handle large amount of queries. Muddleware uses XML DOM and XPath 
to support rapid prototyping. 

 

 

 

 

 

We want our solution to be independent from a server for the sake of overall simplicity of 
the framework, faster content sharing and to support more ad-hoc configuration. Our 
solution is based on Android devices. In Android OS there is not a default peer to peer 

Figure 8. The data flow graph of the tracking configuration for 
Studierstube AR setup (Schmalsteig & Reitmayr, 2005) 

 

Figure 9. Muddleware Components (Wagner & Schmalstieg, 2007) 
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communication support. Android Wi-Fi P2P uses Wi-Fi Direct which is not the technology 
we want as it allows to send only a limited amount of data, and only primitive data types. 
Another limitation of Wi-Fi Direct is that multiple connections are not allowed. That 
means if a device is connected to a session, it cannot connect to another one until it leaves 
the current session. WifiShoot and SuperBeam are applications that use Wi-Fi Direct and 
allow users to share files between Android devices. 

There are currently a few communication libraries for Android. Sip2Peer20 is an open 
source framework that can interact with a bootstrap server to receive a list of active peers 
and exchange ping messages with them. It is a heterogeneous peer to peer system that is 
available for mobile devices. 

PeerDroid21 is another tool that is a porting of JXME, a P2P infrastructure, protocol to 
Android platform. It allows developers to create applications for Android that uses the 
features of JXTA (Juxtapose, an open source P2P protocol) system interacting with other 
mobile terminals and other traditional peers, such as PC (Farber & Picone, 2010). 

AllJoyn22 is an open source project developed by Qualcomm, which provides a universal 
framework that enables communication among connected products. It is a cross platform 
product that is compatible with Windows, Windows Mobile, OS X, iOS, Linux and Android. 
AllJoyn allows for proximity peer to peer over various transports. It is mainly written in 
C++ and provides multiple language bindings. 

 

2.4. Content Generation 
 

Content generation is a major topic for content rich applications. Large applications 
require smoother graphics, while simpler graphics would be enough for small 
applications. Especially for AR applications, content creation is a necessary part of the 
development and testing life cycle but doesn’t have to be a visual feast for users (Wagner, 
2007). 

There are two types of content generation tools: creating/using professional tools and 
creating/manipulating predefined content in AR runtime. Virtual Reality Modelling 
Language (VRML) is a powerful 3D interactive representation language and is one of the 
most widely used graphic formats. Many AR and VR research projects still use VRML. 

MARS23 (Mobile Augmented Reality Systems) and DART24 (Designers Augmented Reality 
Toolkit) (MacIntyre, et al., 2003) target graphic artists and designers, more than 
programmers. These types of graphic tools offer a timeline on which a designer can create 
non-linear content. The Authoring Mixed Reality (AMIRE) also does not require 
programming. Graphical designers can create and test AR scenes because a change 
instantly appears on the screen. APRIL is an XML based scripting language which uses the 
aforementioned Studierstube library and adds high level concepts on top of it (Wagner, 

                                                           
20 https://code.google.com/p/sip2peer 
21 https://code.google.com/p/peerdroid 
22 https://www.alljoyn.org 
23 http://monet.cs.columbia.edu/projects/mars/mars 
24 http://ael.gatech.edu/dart 
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2007). Augment25 is a commercial product that allows users to place pre-generated 
virtual objects on top of an AR scene in real time. These objects, then, can be manipulated 
with a touch gesture. Unity 3D can also be a good content generation tool with the help of 
an AR framework. Vuforia, for example, supports Unity 3D integration. Developers can 
create a 3D world and augment it with the model he/she defines. Changes immediately 
appear on the panel. It is also quite easy to create static AR markers with Unity 3D. 

 

2.5. Conclusion 
 

In this chapter, we have identified and critically analysed the existing work which this 
thesis touches. Since the project combines different areas of AR, only the most relevant 
aspects have been examined here. In Section 2.1 we discussed in detail MIT Media Lab’s 
project SecondSurface, which is very close to our solution in terms of pose tracking and 
content creation. We showed that what differs with their solution to ours is the content 
distribution approach. In our project we propose to extend their work by creating a 
framework and by sharing the content in ad hoc manner. In Section 2.2 a long term project 
Studierstube has been examined. We then showed some of the content distribution 
methods on mobile devices in Section 2.3 and highlighted some popular content creation 
tools used in augmented reality applications in Section 2.4. 

We believe that there is an increasing popularity of mobile collaboration among end users 
and existing collaborative tools and applications in the AR field are not enough to make 
use of the increasing capabilities of handheld devices. Collaborative mobile augmented 
reality is now more suitable for everyday usage by regular users and existing projects 
cannot target end users since most of them mandate special setup.  

 

 

 

 

 

 

 

 

 

                                                           
25 http://augmentedev.com 
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3. Image Tracking 
 

Augmented reality on mobile devices requires accurate 6DOF pose tracking of real world 
objects. 6DOF (Six degrees of freedom) refers to the freedom of movement of a rigid object 
in three dimensional space26. Specifically, the body is free to move forward/backward, 
up/down, left/right combined with rotation about three perpendicular axes. Pose 
tracking, especially for mobile devices, must not have high requirements and be able to 
adapt to different conditions. 

A single camera mounted on a mobile devices is usually enough for mobile augmented 
reality configuration. The video stream from the camera is simultaneously used as a video 
background and for pose tracking of the camera relative to the environment. This inside 
out pose tracking needs to be executed in real-time with the limited computational 
resources of a mobile device (Wagner & Schmalstieg, 2009). 

In order to achieve robustness and performance, tracking rectangular fiducial markers is 
a common approach. Vuforia is a marker tracking library that we use in our 
implementation as the AR engine. The reason we choose Vuforia is that it supports a wide 
range of mobile platforms. 

Before tracking can be started, the camera on the device must be calibrated and passed to 
Vuforia so that an OpenGL projection matrix can be returned by Vuforia. We implemented 
our solution on Android. Beginning from Ice Cream Sandwich (API Level 14), Android 
provides a large set of camera calibration features. 

CameraCalibration camCal = CameraDevice.getInstance().getCameraCalibration(); 
Matrix44F mProjectionMatrix = Tool.getProjectionGL(camCal, 10.0f, 5000.0f); 

Camera calibration is passed to Vuforia API using the above code. The function 
getProjectionGL of the Tool class returns an OpenGL style projection matrix to be used 
later to multiply with the pose of detected trackable. The reason we need the projection 
matrix is that a smartphone’s screen is a 2D surface. A 3D scene rendered by OpenGL must 
be projected onto the device’s screen as a 2D image. GLProjectionMatrix is used for 
this transformation.  

Other parameters of this function are respectively near plane and far plane as shown in 
the figure 9. The viewing frustum is the region of space in the modelled world that may 
appear on the screen. The goal of view frustum culling is to identify what is inside the 
frustum and what is not. Only the objects inside the frustum are drawn on the screen. Near 
and far planes are the boundaries of this frustum.  

 

 

                                                           
26 http://en.wikipedia.org/wiki/Six_degrees_of_freedom 
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The Matrix44F in the above code snippet contains not only the perspective projection 
matrix but also focal length and principal point of the camera. As shown in the figure 1027, 
the three axes of the coordinate system are X1, X2 and X3. Axis X3 is pointing in the viewing 
direction of the camera and is the principal axis. The point R at the intersection of the 
optical axis and the image plane is the principal point. Image plane is located at distance f 
from the origin in the negative direction and it is called the focal length. 

 

 

 

 

 

 

 

After the camera is calibrated, the above tracking pipeline is executed for every new 
camera frame and gives an estimated pose, if a marker is detected. Despite the fact that 
Vuforia is partially an open source library, it is a bit like black box in the tracking side and 
doesn’t reveal much how its tracking modules work. Therefore, the figure 11 shows a 
general tracking pipeline, not specific to Vuforia.  

For image based tracking, fiducials are the real world objects that are used by the tracking 
system. Hence, first we need to detect these fiducials (Figure 12). There are various 
fiducial detection algorithms, but fundamentally they all work similarly. For example, 
Ababsa and Mallem (Ababsa & Mallem, 2008) present a robust circular fiducial detection 
technique that is based on edge following. The algorithm searches pixel by pixel for edges. 
To define an edge, they use constant thresholding which means less bright pixels than a 
certain threshold are considered as dark, and brighter ones as bright. If a dark-to-bright 
sequence is detected, this sequence is a candidate for a border. When the sequence closes 
a loop, borders are detected. Otherwise, the edge is eliminated. 

                                                           
27 http://en.wikipedia.org/wiki/Pinhole_camera_model 

Figure 10. Viewing Frustum (left), Geometry of Pinhole Camera (right) 

right 

Figure 11. Tracking Process 
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Despite the fact that Vuforia makes an important contribution in terms of tracking, for a 
marker to be able to detectable later on, the marker should have high number of features. 
Vuforia defines a term augmentable rating which means how well an image can be 
detected and tracked using the Vuforia SDK. 

 

 

 

For instance, the left image in the Figure 13 contains only two features for each sharp 
corner, since soft corners are not considered as features. The middle image contains no 
features as it contains no strong corners. The right image contains four features. 

 

 

 

 

Local contrast of the marker (Figure 15) is another feature that needs to be strong enough 
to be detected and tracked properly. 

 

 

Features should be evenly distributed, as shown in the Figure 16. The more balanced the 
distribution of the features in the image, the better the image can be detected and tracked.  

 

Figure 12. Fiducial Detection 

 

Figure 13. Marker Features 

 

Figure 14. Amount of Features in Markers 

 

Figure 15. Local Contrast of Markers 

 

Figure 16. Feature Distribution in Markers 
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Even if an image contains high number of features and strong contrast, repetitive patterns, 
referred to as aliasing, may make the tracking harder since recurring features show no 
unique pattern to detect (Figure 17). 

 

 

 

 

After fiducial detection step, what we have are closed polygons. However, they need to be 
rectangles to form a marker. In the next step, rectangles are detected using contours. For 
the pattern checking step, Vuforia provides three types of trackers (ImageTracker, 
MarkerTracker and TextTracker) which are extended from the base class Tracker.  

 

State state = Renderer.getInstance().begin(); // get the current state from Vuforia 
if(state.getNumTrackableResults() > 0) // contains a recently detected pattern 
{ 

// pattern detected, do something, render etc. 
} 
Renderer.getInstance().end(); // mark the end of the section (finish capturing) 
 

The above code snippet is an example of pattern detection in Vuforia. For every camera 
frame, the begin function of Renderer class is invoked which returns a State object. The 
State shows the trackable objects currently being tracked by the tracker (i.e. 
ImageTracker). When we detect the pattern we are looking for, the final step before 
rendering is estimating the pose relative to the marker. Similar to fiducial detection and 
pattern checking, there are various pose estimation algorithms, which all use the same 
basic concept: First an initial guess is created that estimates the trackable’s approximate 
position and orientation with respect to the camera. Next, this first estimate is refined 
iteratively until specific quality criteria are met or the maximum number of iterations is 
reached (Wagner, 2007).  

State state = Renderer.getInstance().begin(); 
if(state.getNumTrackableResults() > 0) 
{  

// estimate the pose 
TrackableResult tResult = state.getTrackableResult(0);         
Matrix44F modelViewMatrix =  
Tool.convertPose2GLMatrix(tResult.getPose()); 
float[] modelViewProjection = modelViewMatrix.getData() 
// now render using modelViewProjection 

} 
Renderer.getInstance().end(); 
 
 

With Vuforia this can be done using the above code snippet. Vuforia estimates the pose 
for us so that we can get it with getPose function. The resulting matrix representation is 
then converted to an OpenGL matrix in order to be able to render the model into the user’s 
view. 

Figure 17. Repetitive Features in Markers 
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In this chapter, we discussed how tracking of fiducial trackables work with some example 
codes of Vuforia AR engine. We presented, by referring to Vuforia, the tracking pipeline of 
augmented reality applications in detail, camera calibration needed to start a proper AR 
session, fiducial marker creation, pattern identification and pose estimation of detected 
trackables. Tracking is the fundamental step for all augmented reality applications. 
Considering the limited power of mobile devices, Vuforia thus makes an important 
contribution for AR systems running on mobile platforms. 
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4. Rendering and Content Generation 
 

Even though augmented reality systems does not focus too much on visuals, 
augmentation of reality is only possible with additional graphics.  This makes rendering 
another important aspect of augmented reality.  
 
In this chapter we outline the differences between software and hardware rendering, 
present the existing solutions for 2D and 3D graphics and then discuss how an augmented 
reality related content can be created with graphics libraries by showing example codes 
from our implementation. 
 

4.1. Introduction 
 

Computer graphics researchers mostly deal with low level graphic libraries such as 
OpenGL. The existing built in 3D graphic libraries on mobile platforms, such as Android 
Graphics, cannot usually meet the requirements of augmented reality systems.  OpenGL 
ES and Direct 3D mobile has become indispensable for 3D applications on mobile 
platforms (Android, iOS and Windows Mobile respectively). They are the only effective 
low level graphics libraries as of yet. 
 
Another solution for rendering on a mobile device is remote rendering. In remote 
rendering, a server with computationally high power undertakes the image generation 
task and sends final model to the mobile device (Wagner, 2007). Lamberti et al, for 
instance, proposed a system where a cluster of PCs is able to handle remote visualization 
sessions based on MPEG video streaming involving complex 3D models. The proposed 
framework allowed mobile devices such as smart phones to visualize objects consisting 
of millions of textured polygons at the server side and on multimedia capabilities at the 
client side (Lamberti & Sanna, 2007), assuming a very fast network connection. This is of 
course not very practical under low quality connection conditions. This thesis therefore 
focuses on native rendering. 
 

4.2. Software vs Hardware Rendering 
 

Rendering refers to the process of generating computer aided images with the help of 
computer programs. This can be performed through hardware or software rendering. 
Software rendering takes place exclusively via computer code or applications. Hardware 
rendering is performed through a computer chip that returns the images directly to the 
screen. 

Software rendering is processed without the help of any kind of hardware, and performed 
in the CPU, whilst hardware rendering relies on a graphical unit (GPU). Software 
rendering is slower than hardware rendering (Figure 18) because GPU is a specialized 
computing architecture designed from the ground up with rendering in mind and it can 
process large data blocks in parallel, which is crucial for algorithms used in computer 
graphics. Ideally, software rendering algorithms should be translatable directly to 
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hardware. However, this is not possible because hardware and software rendering use 
two very different approaches. In more detail: 

 Software rendering holds a 3D scene to be rendered, or some relevant 
sections of it, in memory, and samples it pixel by pixel. In other words, the 
scene is static and always present, but the renderer deals with one pixel at 
a time. 

 Hardware rendering works the other way around. All pixels are present at 
all times, but the rendering sees the scene one triangle at a time, loading 
each one into the frame buffer. The hardware has no notion of other 
objects, only one triangle is known at a certain time. 

 

 

 

 

 

Since our implementation is based on Android, we had to use the features offered 
by the Android platform. Beginning in Android 3.0 (API level 11), the Android 
rendering pipeline supports hardware acceleration. This means that all drawing 
operations that are operated on a canvas use the GPU. Because of the increased 
resources required that we mention above, applications with enabled hardware 
acceleration will consume more memory. 

 

4.3. OpenGL and OpenGL ES 
 

In low level rendering, the developer has full control over the process (Wagner, 2007). 
Objects are defined as a set of vertices and redrawn on each frame. Whatever the 
rendering system is, this approach is the lowest level. OpenGL and Direct3D Mobile are 
the most widely used low level graphics libraries. Direct3D Mobile is only available for 
Windows Mobile platform, it is thus not our main interest. 
 
Through OpenGL, 2D and 3D graphics can be created using a GPU. OpenGL benefits from 
the so called graphics pipeline, shown in the figure 19, to convert primitives (points, lines, 
etc.) into pixels. The main idea behind the pipeline is the following. First a number of 
vertices are entered from the left, loading them into the pipeline. Then, several 
intermediate steps are performed. At the end of the pipeline, we obtain the image we 
want.  

Figure 18. Software vs. Hardware Rendering on Android (Romain Guy, Android 
Accelerated Rendering Google I/O, 2011) 
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Vertex shader and Pixel shader are the only steps a developer can program in the pipeline. 
The rest of the steps in pipeline are done automatically. The shaders basically take the 
data to the GPU and tell it what computations would be carried out. 
 
OpenGL ES (OpenGL for Embedded Systems) is a subset of OpenGL. Even though it offers 
most of OpenGL’s functionality, it was designed to support embedded systems, such as 
smart phones, tablets, PDA’s, and video game consoles, therefore it is more lightweight 
than its ancestor. For example, each function that it provides can be directly mapped to 
the underlying implementation. That simplifies the driver development and reduces the 
driver’s code size (Lee & Baek, 2009). Moreover, some redundancies of OpenGL have been 
removed. 
 
There are wide range of higher level graphics libraries working on top of OpenGL ES, such 
as libGDX28 which is a very popular and up to date cross platform Java graphics 
framework, AndEngine29 which is a broad 2D game engine. We do not use a higher level 
library in our solution, but OpenGL ES 2.0 natively, as it is widely supported by most of 
the mobile devices in the market. 

 
public static final String CUBE_MESH_VERTEX_SHADER = " \n" + "\n" 
       + "attribute vec4 vertexPosition; \n" 
       + "attribute vec4 vertexNormal; \n" 
       + "attribute vec2 vertexTexCoord; \n" + "\n" 
       + "varying vec2 texCoord; \n" + "varying vec4 normal; \n" + "\n" 
       + "uniform mat4 modelViewProjectionMatrix; \n" + "\n" 
       + "void main() \n" + "{ \n" 
       + "   gl_Position = modelViewProjectionMatrix * vertexPosition; \n" 
       + "   normal = vertexNormal; \n" + "   texCoord = vertexTexCoord; \n" 
       + "} \n"; 
    
public static final String CUBE_MESH_FRAGMENT_SHADER = " \n" + "\n" 
       + "precision mediump float; \n" + " \n" + "varying vec2 texCoord; \n" 
       + "varying vec4 normal; \n" + " \n" 
       + "uniform sampler2D texSampler2D; \n" + " \n" + "void main() \n" 
       + "{ \n" + "   gl_FragColor = texture2D(texSampler2D, texCoord); \n" 
       + "} \n"; 

 

 

                                                           
28 https://github.com/libgdx/libgdx 
29 http://www.andengine.org 

Figure 19. OpenGL 2.0 Rendering Pipeline (taken from www.loria.fr) 
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The above code snippet shows two shaders that we use in our application to render a cube 
when a trackable surface is detected. 

Vertex shader: A vertex shader is run on each vertex to be rendered, meaning if we are 
rendering a sprite which contains only four vertices, a vertex shader will be run four times 
to compute the colour and other attributes for each vertex in the sprite. 
 
Fragment shader: A fragment shader is run on each pixel on the screen, meaning if we 
are rendering a high resolution full screen on an Android phone, this shader will be 
invoked 1920×1080 times. 
 
These shaders cannot exist alone, they need to be called together. They together form a 
program. First, a vertex shader defines the attributes for each vertex on the screen. Then, 
all pixels are divided into a subset of pixels which are executed with a fragment shader. 
Finally, resulting pixels are drawn on the screen. 

 
public class CubeObject extends MeshObject 
{ 
 private static final double cubeVertices[]  = { -1.00f, -1.00f, 1.00f, … }; 
 private static final double cubeTexcoords[] = { 0, 0, 1, 0, 1, 1, 0, 1, … }; 
 private static final double cubeNormals[]   = { 0, 0, 1, 0, 0, 1,  … }; 
 private static final short  cubeIndices[]   = { 0, 1, 2, 0, 2, 3, … }; 
 ... 
} 

 

In the above code snippet we show an example of how to define our model to be rendered 
on the screen. In this case, the model is a cube. The arrays that contain the cube’s 
information will be passed to OpenGL ES Renderer class’ glVertexAttribPointer 
function, which specifies the location and data format of the array of generic vertex 
attributes. 

 
for (Texture t : mTextures) 
{ 
  GLES20.glGenTextures(1, t.mTextureID, 0); 
  GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, t.mTextureID[0]); 
  GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, 

GLES20.GL_LINEAR); 
  GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER,  

GLES20.GL_LINEAR); 
 GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_RGBA, t.mWidth, 

t.mHeight, 0, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, t.mData); 
} 
 

After defining our cube model, we may optionally define a texture for that model. The 
Texture class in our application reads an image (.jpg or .png) from a file, converts it into 
a Bitmap, and then extracts the pixels in the Bitmap to an Integer array. Using this array, 
it creates a ByteBuffer, which then will be used by OpenGL ES Renderer to specify a two 
dimensional texture image with glTexImage2D function, and then bind it to our cube 
model with glBindTexture function, as shown in the above code snippet. 
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Next, since we are working on Android platform (4.4.2 more specifically), we need an 
interface between OpenGL ES and underlying native platform windowing system of 
Android. EGL (Embedded System Graphics Library) does this for us. It handles graphics 
context management, surface and buffer bindings, rendering synchronization and enables 
“high-performance, accelerated, mixed-mode 2D and 3D rendering” 30.  
 

public class SampleApplicationGLView extends GLSurfaceView{ 
 ... 
 public void init(boolean translucent, int depth, int stencil){ 
  ... 
  setEGLContextFactory(new ContextFactory());       
        setEGLConfigChooser(translucent ? new ConfigChooser(...)); 
  ... 
 } 
 private static class ContextFactory implements  

GLSurfaceView.EGLContextFactory{ 
        
public EGLContext createContext(EGL10 egl, EGLDisplay disp, 

EGLConfig eglConfig) 
        { 
        ... 
             EGLContext context;            
             ... 
             context = egl.eglCreateContext(disp, eglConfig,  

EGL10.EGL_NO_CONTEXT, att_list_gl20);         
             return context; 
        } 
    } 
} 
 
// In the main function (main Android activity) 
 
SampleApplicationGLView  mGlView = new SampleApplicationGLView(this); 
mGlView.init(translucent, depthSize, stencilSize); 
mGlView.setRenderer(mRenderer); 
addContentView(mGlView, new LayoutParams( // Layout Params )); 
 

This is an example of how a GLSurfaceView can be created, initialized and added into 
the main activity’s layout. It manages an EGL display, which enables OpenGL to render 
into our surface. Since it is an OpenGL related class, it accepts a user provided Renderer 
object, which does the actual rendering. The main advantage of this approach is that it 
renders on a dedicated thread to decouple rendering performance from the UI thread. 
 
CubeObject mCube = new CubeObject(); 
GLES20.glClearColor(0.0f, 0.0f, 0.0f, Vuforia.requiresAlpha() ? 0.0f : 1.0f); 
... 
int shaderProgramID = 
SampleUtils.createProgramFromShaderSrc(CubeShaders.CUBE_MESH_VERTEX_SHADER,  

CubeShaders.CUBE_MESH_FRAGMENT_SHADER);        
int vertexHandle = GLES20.glGetAttribLocation(shaderProgramID, "vertexPosition"); 
int normalHandle = GLES20.glGetAttribLocation(shaderProgramID, "vertexNormal"); 
int textureCoordHandle = GLES20.glGetAttribLocation(shadrProgrmID,"vertxTexCord"); 
int mvpMatrixHandle = GLES20.glGetUniformLocation(shaderProgramID, "mVpMatrix"); 
int texSampler2DHandle = GLES20.glGetUniformLocation(shadrProgrmID, "txSamplr2D");  

                                                           
30 http://www.khronos.org/egl 
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Now, before the final step that is the actual rendering of our cube model, what we have to 
do is initializing the rendering process. We do this by creating the cube object and 
initializing necessary handlers via the program that we create from shaders. These 
handlers will be used in the actual rendering, which is invoked on every frame. Realistic 
augmentation of a 3D environment can only be achieved if objects are continuously 
rendered in a manner consistent with their assigned location in a 3D space and the 
camera’s viewpoint (Kutulakos & Vallino, 1996). 
 
 
public class MyRenderer implements GLSurfaceView.Renderer 
{ 
   @Override 
   public void onDrawFrame(GL10 gl) 
   { 

SampleApplicationSession vuforiaAppSession = new  
SampleApplicationSession(this);   

Matrix.scaleM(modelViewProjection, 0, kCubeScale, kCubeScale, kCubeScale);            
float[] modelViewProjectionScaled = new float[16]; 
Matrix.multiplyMM(modelViewProjectionScaled, 0,  

vuforiaAppSession.getProjectionMatrix().getData(), 0, mVProject, 0); 
GLES20.glUseProgram(shaderProgramID);           
GLES20.glVertexAttribPointer(vertexHandle, 3, GLES20.GL_FLOAT, false, 0,  

mCube.getVertices()); 
GLES20.glVertexAttribPointer(normalHandle, 3, GLES20.GL_FLOAT, false, 0,  

mCube.getNormals()); 
GLES20.glVertexAttribPointer(textreCordHandle, 2, GLES20.GL_FLOAT, false, 0,  

mCube.getTexCoords());          
GLES20.glEnableVertexAttribArray(vertexHandle); 
GLES20.glEnableVertexAttribArray(normalHandle); 
GLES20.glEnableVertexAttribArray(textureCoordHandle);            
GLES20.glActiveTexture(GLES20.GL_TEXTURE0); 
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, mTextures.get(0).mTextureID[0]); 
GLES20.glUniformMatrix4fv(mvpMatrixHandle, 1,  

false,modelViewProjectionScaled, 0); 
GLES20.glUniform1i(texSampler2DHandle, 0); 
GLES20.glDrawElements(GLES20.GL_TRIANGLES, mCube.getNumObjectIndex(), 
GLES20.GL_UNSIGNED_SHORT, mCube.getIndices());           
GLES20.glDisableVertexAttribArray(vertexHandle); 
GLES20.glDisableVertexAttribArray(normalHandle); 
GLES20.glDisableVertexAttribArray(textureCoordHandle); 

    } 
} 
 

 
 
The code for the final step of rendering process is given above. Our renderer class 
implements GLSurfaceView which has the onDrawFrame function. This function is called 
on every frame and performs the AR content rendering. Inside the onDrawFrame function, 
if we find a detected pattern (we skip it above) the cube is drawn. A proper augmented 
reality system requires specifying three transformations that relate the coordinate 
systems of the virtual objects, the environment, the camera, and the image it produces 
(Kutulakos & Vallino, 1996). 
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Object to World  World to Camera  Camera to Image 

 

 

 

 

As we mentioned in the previous section, modelViewProjection is a 4×4 float matrix 
containing the pose of the trackable result. For each trackable detected and tracked by 
Vuforia, the SDK provides us with the pose of the trackable; the pose represents the 
combination of the position and orientation of the trackable local reference frame, with 
respect to the 3D reference frame of the camera (Vuforia API). We can extract this pose 
using the getPose function. The pose can be described by means of a rotation (3×3 
matrix) and translation (1×3 matrix or vector) that brings an object from a reference pose 
to the observed pose in 3D space.  
 

The rotation matrix determines the orientation of the camera and hence how the target is 
rotated with respect to the camera plane. The translation of the matrix describes the 
origin of the camera. This is the camera's position in the virtual 3D world. It says where 
the target is as seen from the camera. For example, a value of <0,0,0> means that camera 
and target are at the same position, whilst a value of <0,0,5> means that the target is 5 
units away into the viewing direction of the camera. 
 

 

 

 

This pose matrix specifies where the target is with respect to the camera and allows the 
system to render the AR content. However, it does not tell how the camera is placed with 
respect to the target (Vuforia API). If that is needed then the pose matrix needs to be 
inverted, which can easily be done by:   
 

[R | t]-1 = [RT | -RT t], where R: Rotation matrix, t: Translation matrix. 
 
 
First, we scale the matrix with a constant value (kCubeScale = 20.0f) so that it fits 
nicely with the target size. 
 
 
 
 
 
 

Figure 20. Object to Image Transformation 

 

Figure 21. Rendering Process 
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The final step involves multiplying the scaled matrix modelViewProjection by 
mProjectionMatrix that is the projection matrix of the camera (pinhole camera matrix). 
This multiplication gives us an array of float values (4×4 matrix) that will be used to 
update the specified uniform variable in the line below. 
 
 
GLES20.glUniformMatrix4fv(mvpMatrixHandle, 1, false,modelViewProjectionScaled, 0); 
 

 
After this line, what we get is something like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22. Rendering A Static Model 
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4.4. Content Generation 
 

Content creation for augmented reality systems is somewhat different from typical game 
development process. As we highlight in Section 2.4, the contents in today’s console 
games are a lot more extensive and complex compared to AR applications (Wagner, 
2007). The example cube model that we use in our implementation is statically defined 
inside the application and is rendered on every frame when the defined pattern is 
detected.  

Since this thesis focuses on the collaborative augmented reality (and thus involves 
multiple users), we need to add some kind of uniqueness to user behaviours. Our solution 
provides this by integrating a simple paint application to our AR process. User should be 
able to freely draw on the screen of their mobile devices and this path should appear as 
an augmentation on the target that the camera is looking for at that moment. Other users 
that are connected to the group should be able to see the generated content as the 
producer of the content sees it. 

To generate a consistent shared space, it is important that the virtually generated content 
is rendered in a spatially consistent manner across all devices. Our solution alters the 
matrix generated with the pixels that form the path to provide a natural feeling relative 
to the physical scale of the real world and the AR target. For instance the generated path 
bounces from the position of the device’s screen and slowly slides to the place where the 
trackable (virtual target) is located. This animation gives a feeling of transference from 
the screen to the physical world. To be able to do this, the generated pose matrix must be 
shared with other devices connected to the group. 

 

 

 

 

 

 

Content generation can be achieved in different ways. One of them is to declare UI 
elements statically in an XML file. Even though it is a static approach to generate content, 
the elements can be accessed inside the code and changed programmatically. The 
advantage of this approach is that it separates the presentation of our visuals from the 
code that controls its behaviour. Another approach is to instantiate the elements at 
runtime. The application can create View objects and manipulate their properties 
dynamically. Whenever user interacts with the screen, we can update the XML and pass it 
to the renderer which first has to parse it and then render the content on the screen. 

However, using these standalone approaches to generate content may suffer from 
performance issues that would make users feel the lack of synchronization and thus 

Figure 23. Collaboration of Co-located Devices (Kasahara, et.al, 2012) 
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degrade the feeling of naturalness because the camera surface is not a place that users can 
interact with. A better solution is to use them both to define a drawing layout on top of 
the camera surface. This layout and camera surface must be totally independent from each 
other and their behaviours must be controlled by different threads (Figure 23). When 
users interact with the screen, they will actually be interacting with this layout. The thread 
that controls the layout operations will pass the content data to rendering thread as it 
draws the content on the layout at the same time. When rendering is finished in the 
rendering thread, rendered content will be removed from the layout. All of these should 
be happen in a natural and very well synchronized way. 

 

 

 

 

 

 

 

 

 

The generated content’s (a path in our scenario) information should be sent to other co-
located devices as well as to the rendering thread. Our solution has a CustomPath class 
which extends from Android Graphics libraries’ Path class. The reason we do this is that 
the Path class cannot be serialized, as we will see its details later in this thesis. The 
CustomPath class basically has functions (move, lineTo, quadTo, etc.) related to 
movements of the path object. 

The path that user draws is captured in the onTouchEvent function. First, all points 
(screen locations) are captured, and then these points are connected through lines to form 
a proper path object. DrawingView class, which extends from Android’s View class, has a 
Canvas and a Bitmap. Every view class in Android has a default canvas which is drawn 
at the bottom of every other UI elements (but still on top of the camera view). Bitmap 
object can be considered as a pencil that draws on top of the canvas. Inside the onDraw 
function, which is called for every frame, we draw our default (blank) Bitmap object on 
the canvas, with the new paths if there is any. Below code snippet shows this process. 

 

public class DrawingView extends View{ 
 public DrawingView(Context context){ 
  ... 

} 
 public boolean onTouchEvent(MotionEvent event){ 
       float x = event.getX(); 

      float y = event.getY(); 
  if (event.getAction() == MotionEvent.ACTION_DOWN){ 

 // User has started a touch action 
path.moveTo(x, y); 
... 

}  

Figure 24. Content Generation 
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if (event.getAction() == MotionEvent.ACTION_MOVE){ 
 // Action keeps going 
 path.quadTo(mX, mY, (mX + event.getX())/2, (mY + event.getY())/2); 

... 
}   
if (event.getAction() == MotionEvent.ACTION_UP){ 
 // User has taken off his/her finger 
 path.lineTo(x, y); 
 ... 
}    

} 
@Override   

     public void onDraw(Canvas canvas){    
     canvas.drawBitmap(mBitmap, 0, 0, mPaint);     
        for (CustomPath pp : pathList){ 
         canvas.drawPath(pp, mPaint); 
        } 

} 
invalidate(); //Invalidates the whole view, and re-draws it according to changes 

} 
 

The problem with the path we form in the DrawingView class is that we cannot send it 
directly to the renderer since renderer expects a vertex list (an array of floats) relative to 
the world coordinates. We therefore need a mapping between the screen coordinates that 
the user touches and the world coordinates associated with the target. This 
transformation can be difficult to determine since screen coordinates can depend on the 
device’s screen size and other UI layout elements. Thus, we need to get raw coordinates 
with the below code. 

 
   
float xRaw = event.getRawX(); 
float yRaw = event.getRawY(); 

 

The getRaw functions returns the original raw X and raw Y coordinates of events. For 
touch events on the screen, in our case, this is the original location of the event on the 
screen, before it had been adjusted for the containing window and other views. 

 

 

 

 

 

 

Another problem with the points we get is that the coordinate system that Vuforia uses to 
calculate the size of a target is different than the device’s screen coordinate system as 
shown in the figure 25. The below code snippet shows an example of this conversion. 

Figure 25. Mapping from Android Screen Coordinate 
System to Vuforia World Coordinate System 
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Display display = getWindowManager().getDefaultDisplay();  
int width = display.getWidth();  // 1080.0f in our case 
int height = display.getHeight(); // 1920.0f in our case 

float xTransformed = y2 – height/2;  
float yTransformed = x2 – width/2;  
xTransformed = xTransformed * targetBuilder.getSceneWidth() / height; // 320.0f 
yTransformed = yTransformed * targetBuilder.getSceneHeight() / width; // 240.0f 
 

Before the final step which is rendering the path, we need to form the array of vertices in 
such a way the renderer expects. OpenGL ES Renderer draws a line by combining 
successive points (glDrawArrays). That means if we want to draw a rectangle, we must 
give the vertex array such that: 
 

{(x0, y0, z0), (x1, y1, z1), (x1, y1, z1), (x2, y2, z2), ...} 

 

Therefore, we add each point, which we get from the touch action and transformed into 
the world coordinates, into the vertex array twice, except the first one. 
 

if(vertexList.size() != 0) 
{          

vertexList.add(xRaw); 
vertexList.add(yRaw);          

} 
vertexList.add(xRaw); 
vertexList.add(yRaw); 

 

Since we are working on a 3D space but a line has no z-coordinate, inside the renderer 
class we add z = 0.0f for each vertex in the vertex list. So, the size of our paint vertex array 
would be (total size of vertex list × 3/2). Now we are ready to render the path as we do 
to render the cube (we also need to define two more shaders for line). The code below 
summarizes the process. 
 

float paintVertices [] = new float[getVertexList().size() + getVertexList.size()/2]; 

for (int i = 0; i < getVertexList().size()/2; ++i){ 
    paintVertices[paintCounter] = getVertexList().get(i*2); 
    paintVertices[paintCounter + 1] = getVertexList().get(i*2+1); 
    paintVertices[paintCounter + 2] = 0.0f; 
    paintCounter += 3;              
} 

public static final String LINE_VERTEX_SHADER = " \n" 
       + "attribute vec4 vertexPosition; \n" 
       + "uniform mat4 modelViewProjectionMatrix; \n" + " \n" 
       + "void main() \n" + "{ \n" 
       + "   gl_Position = modelViewProjectionMatrix * vertexPosition; \n" 
       + "} \n"; 
    
public static final String LINE_FRAGMENT_SHADER = " \n" + " \n" 
       + "precision mediump float; \n" + "uniform float opacity; \n" 
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       + "uniform vec3 color; \n" + " \n" + "void main() \n" + "{ \n" 
       + "   gl_FragColor = vec4(color.r, color.g, color.b, opacity); \n" 
       + "} \n"; 

 

GLES20.glUseProgram(vbShaderProgramID);                
GLES20.glVertexAttribPointer(vbVertexHandle, 3, GLES20.GL_FLOAT, false, 0,  

fillBuffer(paintVertices));                
GLES20.glEnableVertexAttribArray(vbVertexHandle);                
GLES20.glUniform1f(lineOpacityHandle, 1.0f); 
GLES20.glUniform3f(lineColorHandle, 1.0f, 1.0f, 1.0f);               
GLES20.glUniformMatrix4fv(mvpMatrixButtonsHandle, 1, false, modelViewProj, 0); 
GLES20.glLineWidth(lineWidth); 
GLES20.glDrawArrays(GLES20.GL_LINES, 0, paintCounter/3); 
GLES20.glDisableVertexAttribArray(vbVertexHandle); 

UserDefinedTargets.mChatApplication.newLocalUserPaint(vertexList); 

 

Parallel to the rendering process, we send our vertex list to other co-located devices, 
which will be discussed in detail in the next section.  

 

 

 

 

This chapter first discussed the existing solutions for rendering in an augmented reality 
system, showed low level graphical rendering libraries, and made comparisons between 
software and hardware rendering. We then presented some OpenGL features that can be 
used to render AR related models, and pointed out that OpenGL ES 2.0 is enough to meet 
the needs of augmented reality on mobile devices. We showed the close relation between 
pose tracking and the rendering process. Finally, we presented what the content 
generation methods are and how unique behaviours of users, such as drawing a path, can 
be rendered and augmented on an Android platform by giving example code snippets 
from our solution. 

 

 

 

 

Content Generation - while drawing on the drawing layout (left), 
content rendered (middle and right) 
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5. Content Distribution 
 

Content management and distribution has always been a hot topic of conversation among 
computer researchers, especially in the entertainment field such as game technology, live 
streaming media or social networks. Researchers have shown that multiplayer gaming is 
the area of PC based entertainment where the highest revenue is made. However, while 
designing such collaborative applications, there are many technical aspects concerning 
users, user interfaces, networks, clients and servers to be considered. Early multiplayer 
games with a limited number of players used peer to peer solutions. Today’s multiplayer 
computer games, on the other hand, have been designed for improved performance and 
scalable communication between collaborating players.  

In this section, we first define the term collaboration in the context of an augmented 
reality system and then show that collaboration can be provided in different ways. Later, 
we discuss which approach is more suitable for our solution and what AllJoyn, an existing 
solution for communication, can offer us by providing some code samples from our 
solution.  

 

5.1. Introduction 
 

Although the term collaboration means “to work together” in a general sense, it can mean 
more for the field of computers. As Silverman says, it is a system in which both parties are 
sharing the task work load at an equal level of cognitive difficulty (Silverman, 1992). 
Terveen makes it more specific by saying “collaboration requires communication and it 
must involve at least one human and one computational agent” (Terveen, 1995). 

Furthermore, the definition of the term becomes more specific when it comes to 
augmented reality. For example, there should be a shared space between co-located users 
where users can freely interact with a collective set of virtual objects in a 3D space.  

Through a collaborative augmented reality application,  

 Virtual objects that don’t exist in the real world can be seen, modified and/or 
manipulated through natural gestures 

 Real objects should be superimposed by virtual ones 
 Co-located users should be able to see each other and/or each other’s actions in a 

collaborative way 
 Users can control only her/his movements from her/his point of view 
 Generated content in the shared space must be the same for each user (single 

model) 
 Displayed content may be different for different users (multiple views) 

Within the boundaries of above key features of collaboration in AR systems, deciding how 
to provide a multiuser environment is a design choice. Although augmented reality 
focuses on visuals, collaboration can be done through, for example, audio. We can choose 
to distribute one or all of the following to provide cooperation between users: 
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 Static model (pre-loaded model, i.e. cube) 
 Dynamic model (interactive manipulation of shared content, i.e. touch path) 
 Target (trackable) 
 Pose data of dynamic model 
 Pose data of target 

We will analyse each of these in detail later in this thesis. 

As previously mentioned, there should be a real-time shared canvas to facilitate 
collaboration. Mobile devices become more suitable to generate this canvas as mobile 
technologies become more popular. However, there are some problems with mobile 
multi-user augmented reality applications, as Wagner says (Wagner, 2007). 

 Communication is not guaranteed to be always available. The connection that the 
application relies on can be high or low quality. The system should be able to 
support different kinds of connections. When the connection is lost, users should 
be able to leave and enter a session at any time (Barkhuus, et al., 2005).  

 Mobile devices that AR applications run on can differ greatly in terms of 
performance, user interface and portability. The variation of mobile devices makes 
it difficult to develop AR applications that rely on demanding networking modules. 

 In certain cases, user generated virtual content and real world content needs to be 
permanently stored somewhere (and possibly mapped to each other). This is very 
difficult as it requires a huge content load. 

 There shouldn’t be a great workload difference between co-located devices. 

An ideal network solution would allow mobile devices to use peer to peer connection as 
well as servers (Wagner, 2007). There are different network solutions that AR systems 
can use. 

 GPRS is a packet oriented mobile data service based on GSM networks. Compared 
to other solutions, it has the highest network coverage. Its major disadvantage is 
low response time and high cost. 

 Bluetooth is a wireless technology standard for exchanging data over short 
distances (up to 60 metres) between multi devices. Although there are no costs 
associated with running the network, range limitation may make it unsuitable for 
communication of devices. 

 WiFi is a local area wireless technology that allows a mobile device to exchange 
data using 2.4 GHz radio waves. The greatest advantage of this solution is that the 
technology is fully compatible to regular Ethernet systems. Its range is usually 
enough to meet the needs of an AR system (20-50 metres). 

 WiFi Direct, initially called WiFi P2P, is a WiFi standard that connects devices at 
typical WiFi speeds without requiring a wireless access point. The advantage of 
this infrastructure is that only one of the devices needs to be compliant with Wi-Fi 
Direct to establish a peer-to-peer connection. 
 

The networking solution should provide high coverage, low response time, high 
bandwidth and have low cost for maintenance purposes. We choose WiFi and WiFi Direct 
for now, despite the fact that we know our choice may be influenced by restrictions of the 
communication library that we use. 
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5.2. Client Server Model 
 

In the client server model, there is a server which handles the requests of clients and 
sends them back to the clients. For an augmented reality system, the tasks that the server 
handles may differ. 

 

 

 

 

 

 

 

 

 

As it can be seen in the figure 26, client server model can be used in three different ways 
in the context of collaborative AR. At the right side, all of the important steps of 
augmentation are done in the server. Such a design does not only require connection on 
each frame, but also requires sending video stream in both directions plus sending to the 
other devices. It therefore requires a powerful network connection and cautious use of 
the available network bandwidth (Singhal & Zyda, 1999). 

Despite the fact that today’s mobile devices have high processing power (some even have 
graphics processing units), the rendering task alone can be offloaded to server, by sending 
the pose data pre-calculated natively. Server renders the model and sends the final image 
to all co-located devices. 

The left figure shows an approach that the client sends the tracking task to the server, 
which returns the pose data when a pattern is detected. Other application related tasks 
and rendering are performed natively in the mobile device. This also requires frame by 
frame communication but relieves the burden of server and provides a more balanced 
network. Here, tracking load also can be divided. Client can handle predefined target 
tracking while server performs natural feature tracking. 

Cloud Recognition technology offered by Vuforia is an example of this approach. Although 
our initial goal was to provide the collaboration in a peer to peer fashion, we also use the 
server client approach in our solution. 

 

 

Figure 26. Ways of using Client/Server Model in collaborative AR 
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There are two different databases that Vuforia offers to developers. 

 Device Databases: Device Databases are stored on the device and can either be 
packaged with the application, or loaded to device storage at runtime from the 
server.  

 Cloud Databases: When there are large number of targets to track or targets are 
changing often, application can download them from the cloud database at 
runtime. It gives of course more flexibility since targets can be dynamic. Some extra 
information, such as metadata, can also be associated with targets. 

 
private static final String kAccessKey ="56aa452bbfab85fa0d9f694941ef5df5ddfbd5e"; 
private static final String kSecretKey = "c4d3257640a39a24552a86ca156e9005bf1c15e"; 

When developers register the target manager system, Vuforia gives access keys. We first 
create a TargetFinder object and then using these access keys we can connect to our 
database. 

 
TargetFinder targetFinder = imageTracker.getTargetFinder(); 
if (targetFinder.startInit(kAccessKey, kSecretKey)); 
{ 
    targetFinder.waitUntilInitFinished(); 
} 

targetFinder.startRecognition(); // remote tracking starts 

final int statusCode = finder.updateSearchResults(); 
        
// On every frame update, search if there is a new result 
if (statusCode == TargetFinder.UPDATE_RESULTS_AVAILABLE)  
{ 
    if (finder.getResultCount() > 0) // a pattern is detected online 
    { 
       TargetSearchResult result = finder.getResult(0); 
       if (result.getTrackingRating() > 0) 
       { 
          Trackable trackable = finder.enableTracking(result); 
       } 
    } 
} 

 
This does not work if there is no target in our database. Uploading a target image 
(trackable) using the target manager in Vuforia website is not the approach we want as it 
dramatically slows down the collaboration. So, we want to post a target at runtime using 
Vuforia Web Services API, by making an HTTP POST request to a specific Vuforia link. The 
request header includes the authorization fields, and declares an application/Json content 
type. The body of the request is a JSON object that defines the properties of the targets. 
After uploading the image to the database, other co-located devices access the metadata 
(that contains the pose data of the target) and update the application logic (i.e. rendering) 
according to the new information (Figure 27). 
 

Even though this seems a reasonable approach for distribution of the target, Vuforia Web 
Services does not immediately set the target status as active. That means when a client 
pushes the target it creates to the database, it is not instantly ready to be downloaded by 
co-located devices. In our experiments as of yet, it takes approximately 24 hours for a 
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target to be ready to be received again. Even if this duration was 5 minutes, for example, 
there would not be so much difference in terms of scientific point of view as long as it is 
not instant. 
 

 

 

 

 

 

 

 

 

Another approach, as shown in the figure 28, is to use device databases offered by Vuforia. 
This approach is different from Cloud Recognition such that the tracking step is done 
natively. The whole purpose of this method is to be able to send the target to other devices 
because we have some difficulties while multi-casting the target using P2P approach as 
we will see its details later. Even though, compared to the cloud recognition method, this 
approach gives better performance in terms of total download and upload time, it is still 
far from providing seamless real time augmentation effect. 
 

 

 

 

 

 

 

 

 

 
The main advantage of client server model is that the server stores all generated content. 
This means the content in the database is persistent and when a device detects a pattern 
match, it gets provided with all information that is linked with the object (Kasahara, et al., 
2012). Nevertheless, as we see using server client approach in a collaborative augmented 
reality application is not very useful to give users the feeling of naturalness as it may 
significantly suffer from the lack of instantaneous. Centralization of content is also 
another problem with that approach.  When server fails none of the devices can neither 
upload nor receive the content data (target data, pose data, or static/dynamic models). 
 

 

Figure 28. Distributing Dynamic Target Using Vuforia 
Wev Services API (Device Database) 

 

Figure 27. Distributing Dynamic Target Using Vuforia 
Wev Services API (Cloud Recognition) 
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These two approaches that we mention above consider distributing the target defined by 
a client device. Distribution of other AR related objects such as static or dynamic models, 
or pose data of target is not necessary to be considered because a target is typically more 
than 1000 times bigger than the others, and furthermore we don’t have difficulties to 
distribute them using a peer to peer fashion, as we analyse next. 

 

5.3. Peer-to-Peer Model 
 

In contrast to centralized client server model, individual nodes in the network act as both 
suppliers and consumers of generated content. Peer to peer networks are used by 
numerous applications, such as Torrent and Spotify. The most commonly known is file 
sharing, which made the model popular.  

There are both advantages and disadvantages in a P2P networks related to data backup, 
recovery, and availability. For example, in a real P2P network, because each device might 
be being accessed by other co-located devices, it can slow down the performance. In order 
to overcome this, our solution blocks the access if there is a peer in the group with newly 
generated content that has not been distributed to all peers yet. That means until the 
content has received by all peers in the group, nobody can generate a new content in the 
shared space. Besides all these, it would be unreasonable to expect more than 10-20 users 
to join a group at the same time in a collaborative augmented reality application. For such 
a limited number of users, implementing a server application is redundant. 

Despite its drawbacks, which we discuss in the evaluation section, its main advantages, 
such as easy setup, rapid prototyping, faster connection, and individual security 
permissions, make it a better candidate for a collaborative augmented reality system. 

As it can be seen in the figure 30, deciding what AR related objects to send to peers in a 
group is a design choice. While sending all of these objects is considered as a collaborative 
AR system, sending one of them can also be considered the same. Although, in our solution 
we implemented the support for sending all of them for experimental reasons, choosing 
one or two of them and sticking to design choice makes the whole system more consistent.  

Figure 29. SecondSurface Server System (Kasahara, et.al., 2012) 
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For example, if we allow both to send the static target and to generate a user defined target 
at runtime, design of the tracker might be too messy, and thus influences the renderer 
negatively as it cannot decide what to render. Likewise, if we allow to send both the static 
model and dynamically generated model at the same time, the renderer in the receiving 
client might not render properly. 

Another design choice here is to determine which peer (or peers) defines the target that 
tracker track against. If we let all peers in a session (in a group) to define a new target, 
that makes the system too complex as there is no centralized system in the model that 
controls the data mapping between the peers and contents generated by the peers. A 
trivial solution to this problem is allowing only the group owner to define the target. This 
makes the system a bit different than pure peer to peer model. In a pure P2P model all 
peers are at the same hierarchic level and have equal workload, whereas in our solution 
group owner acts like a server that distributes the target. However, in terms of content 
distribution, each peers can independently generate content and distribute it as long as 
there is a defined target. 

In this type of system, generating (and distributing) multi targets is also possible. Each 
peer can have a dataset that contains dynamically generated targets or static targets (a 
dataset containing both at the same time is a design issue that we discuss later). Each 
tracker of each peer recursively searches a match inside this target dataset. 

Editing an already generated content is very difficult in this scenario. Each peer would 
have to control its own actions together with counting (or somehow remembering) 
other’s actions since, as we discussed above, there is no centralized system that controls 
the mapping, but it is not our major concern.  

Another important point with this approach is view permissions of generated content. 
More specifically, peers should be able to decide who would see the content generated by 
itself. Although we did not add this feature, this is not too difficult to implement since each 
peer can receive the list of group members from the group owner when a new peer joins 
the session. If a peer has well-known (unique) names of other peers, it can put the ones it 
wants into a block list and send the content to the rest. 

Figure 30. Using P2P model to distribute AR related objects 
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Although the content is not stored in a database, we do not lose the content until a certain 
session is ended by the group owner. Until this time, peers should see all the content even 
if they leave and re-enter a session (unless they join another session within this period). 

To provide these features, we use an open source framework AllJoyn, developed by 
Qualcomm, which allows peers in a same network (using the same access point) to do 
simple communication operations such as seeing each other, advertising, handshaking 
and transmitting data over an interface. 

 

5.4. AllJoyn 
 

The AllJoyn is an open source cross platform communication library that lets developers 
create peer to peer applications over various transports by enabling applications to 
connect, control and share resources with applications on nearby devices. It is written in 
C++ at its core, and provides multiple language bindings and complete implementations 
across various operating systems and chipsets. One of the reason we chose to use the 
AllJoyn framework is that it provides an object-oriented approach to make P2P easy 
avoiding the need to deal with low level network protocols and hardware. Furthermore, 
it is optimized for and fully compatible with mobile platforms, particularly with Android. 

There are two major limitations of AllJoyn. The most important one is that although 
AllJoyn supports connections via WiFi, Bluetooth and 3G/4G, when WiFi is preferred, 
peers must be nearby, meaning they must be in the same network (they must use the same 
access point). 

 

 

 

 

 

 

 

 

The reason for this is that each peer in the AllJoyn framework has a unique (well-known 
name) that is distributed to the other peers when advertising. This unique name is 
composed of the package name of the application, the channel name and the media access 
control address (MAC). It therefore only allows connection in a local network. The 
advantage is that the AllJoyn can perform device discovery without using the internet as 
long as there is no wireless isolation (which blocks multicast packets) on the WiFi 
network to which the peer is connected. AllJoyn does not create an explicit limit on the 
distance between the devices. The maximum distance between devices in the context of 
AllJoyn is the range of the WiFi network to which these devices are connected (AllJoyn). 

Figure 31. AllJoyn Communication Process (taken from www.alljoyn.org) 
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Another limitation of AllJoyn in the context of this thesis is that it only allows sending of 
primitive types (or a container class that is made up of primitive types with annotations) 
over a bus interface. This means, for sending an object we first need to convert it into a 
primitive type, such as converting into a byte array, serializing, converting to a Json object, 
or to an XML string, etc. 

Although it’s not a major problem, AllJoyn can only handle a finite amount of combined 
data. This limit is defined to be 2^17 (131072 bytes, 128KB) (AllJoyn). If we want to send 
large amounts of data (e.g. more than one trackable at a time), we must divide the data 
into smaller sections. 

 

 

 

 

 

 

 

 

 

The figure 32 shows how we integrated AllJoyn API into our solution. When a peer 
generates a new content, 16 steps are performed until another peer receives the content. 
This is the ideal modular structure of a communication system in which each module has 
specific responsibilities. MainActivity is the highest level structure whereas the 
ZInterface is the lowest level. As you see in the figure, when a new message is 
generated, it is sent to the AllJoyn Framework in a top-down manner, and delivered to the 
receiver in a bottom-up manner. 

MainActivity is our Façade class. It handles every kinds of user commands. 
ZApplication serves as the Model of Model-View-Controller pattern for the application. 
It holds the global state for the application and starts the Android Service that handles the 
background processing relating to our AllJoyn connections. ZApplication always exists 
even if the application stops, as long as the application is not destroyed by Android OS. 
Therefore, it establishes a bridge between the AllJoynService and the MainActivity. 
AllJoynService handles the lower level networking processes that we do not want to re-
implement but only use. Finally, the ZInterface is a typical Java interface that defines the 
types of messages that can be sent over a bus.  

 
private BusAttachment mBus = new BusAttachment(app.PACKAGE_NAME, BusAttachment.RemoteMessage.Receive);   
 

Figure 32. Interaction sequence between peers 
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As shown in the above code snippet, there must be at least (usually at most) one 
BusAttachment object that a peer uses to connect with the other peers. This object must 
persist during the application lifetime. It is kind of a gateway between peers that handles 
all of the low level networking processes. This is the primary step to start advertising, 
discovering and communicating with other peers. 

 

private static final String NAME_PREFIX = "com.zframeworkexample"; 
String wellKnownName = NAME_PREFIX + "." + mChatApplication.hostGetChannelName(); 

 

We need to have a unique name, the above code snippet, to avoid random behaviour that 
can occur if multiple peers use the same name. If there are more than one peer using the 
same name, another peer in a discovery state randomly selects the one to which it should 
connect. In our solution we are using a Globally Unique Identifier (GUID) to provide peer 
uniqueness.  
 

Status status = mBus.advertiseName(wellKnownName, SessionOpts.TRANSPORT_ANY); 

 
After we create a bus attachment and have a well-known name, we need to advertise as 
shown in the above code snippet. The purpose of advertising is to give information about 
the peers and to determine what peers it would connect to.  
 

Status status = mBus.findAdvertisedName(NAME_PREFIX); 

 
Peers should enter a discovery state to find other peers. AllJoyn triggers a callback 
whenever an advertisement is received. For peers to discover each other they have to 
agree on: 

 Well-known name that will be advertised 
 Object path 
 Session port number that will be used 

 

private class ChatBusListener extends BusListener{ 
 public void foundAdvertisedName(String name, short transport, String namePrefix) { 
   ChatApplication application = (ChatApplication)getApplication(); 
   application.addFoundChannel(name); 
 } 
   
 public void lostAdvertisedName(String name, short transport, String namePrefix) { 
   ChatApplication application = (ChatApplication)getApplication(); 
   application.removeFoundChannel(name); 
 } 
} 

private ChatBusListener mBusListener = new ChatBusListener(); 

private void doConnect(){ 
mBus.registerBusListener(mBusListener); 

... 

} 
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BusListener listens for discovered peers and monitors sessions related to other peers. 
We first create a BusListener class that implements the necessary methods to find an 
advertised name. Next, the created object is registered with the BusAttachment. Calling 
the BusAttachment’s findAdvertisedName function makes our system ready to discover 
nearby peers. If a peer is detected, which starts with the same prefix, BusListener class’ 
foundAdvertisedName function is called. Even if the devices are running different Oss, 
they can discover each other. According to the AllJoyn API, “…because the AllJoyn 
framework supports multiple programming languages, applications can use the AllJoyn 
framework on different device operating systems and still be able to communicate” 
(AllJoyn). 
 
class ZService implements ZInterface, BusObject 
{ 
     public void Chat(String str) throws BusException {                                                                                               
        } 
 @Override 
 public void DrawingPath(double[] buff) throws BusException{ 
 }  
 @Override 
 public void TrackableSource(String ts) throws BusException{ 
 }  
} 
 

Our messages will be BusSignals multicasting in a specific session. To be able to send 
messages, we need a BusObject that will act as a signal emitter. BusObject allows be 
exchange of data and supports method interactions between connected peers. It is up to 
the developer what a BusObject should contain. The above code creates a BusObject that 
is aware of the bus signals in the ZInterface. A BusSignal defines a type of message to be 
sent. It is intentionally empty, since it acts as a signal emitter, it will never called explicitly. 
 
@BusInterface (name = "com.zframeworkexample") 
public interface ZInterface 
{ 
 @BusSignal(name = "Chat") 
    public void Chat(String str) throws BusException; 
  
 @BusSignal(name = "DrawingPath") 
    public void ChatPaint(double[] buff) throws BusException; 
  
 @BusSignal(name = "TrackableSource") 
    public void ChatTrackableSource(String ts) throws BusException; 
} 
 

Our ZService implements ZInterface that contains well-defined functions to provide 
the actual collaboration between peers. This interface may be defined in XML, inline code 
or a Java interface class (AllJoyn). 
 

 

 

 

 

 Figure 33. Peer interaction in sessions 
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The definition of a session means a group of peers connected to each other, as shown in 
the figure 33. The peer that creates a group (or a session) is the group owner (or the 
master), and the others are slaves. Each group has a group id. Peers can be a part of zero 
or more sessions at a given time. In the context of collaborative AR, let say peer 4 is the 
owner of Group C, and peer 3 is the owner of Group B. Peer 4 can define the target for 
Group C, but Peer 3 cannot, and vice versa. The distribution permission of a target (shared 
space) is controlled by the group owner.  When it comes to distribution of content 
(dynamic or static content), the scenario gets more complex. Peer 2, for example, is both 
in Group A and in Group B. When it generates a new content, it must first select the group 
that it wants to distribute. 
 

@BusSignalHandler(iface = "com.zframeworkexample", signal = "DrawingPath") 
public void DrawingPath(double[] buff){  
     String uniqueName = mBus.getUniqueName(); 
     MessageContext ctx = mBus.getMessageContext(); 
 
    if (ctx.sender.equals(uniqueName)){ 
        // dropped our own signal received on session + sessionId  
      return; 
    } 
    if (mJoinedToSelf == false && ctx.sessionId == mHostSessionId){ 

// dropped signal (not joined to self) received on hosted session + sessionId +  
      return; 
     } 
    String nickname = ctx.sender; 
    nickname = nickname.substring(nickname.length()-10, nickname.length()); 
        mChatApplication.newRemoteUserMessageDrawingPath(buff); 
} 

 
The code above defines a DrawingPath method which handles the received Android Path 
messages. BusSignal is executed on each peer that has already registered a 
BusSignalHandler. The execution of BusSignal is asynchronous, meaning there will 
be no response. If a peer is a part of a group, it receives the signal sent by co-located peers. 
Our DrawingPath function above invokes newRemoteMessageDrawingPath function, 
which is a part of an Observer Pattern. 
 

TheFacade.mChatApplication.newLocalUserDrawingPath( // send vertex list ); 
public synchronized void newLocalUserDrawingPath(double[] buff){ 

//addInboundItemPaint(buff); 
 if (useGetChannelState() == AllJoynService.UseChannelState.JOINED){ 
  addOutboundItemDrawingPath(buff); 
 } 
} 
private void addOutboundItemDrawingPath(double[] buff){//put the msg into “to be sent” list 
 if (mOutboundDrawingPath.size() == OUTBOUND_MAX){ 
  mOutboundDrawingPath.remove(0); 
 } 
 mOutboundDrawingPath.add(buff); 
 notifyObservers(OUTBOUND_CHANGED_EVENT_PAINT); 
} 

// registered dependents will get notified 
private void notifyObservers(Object arg){ 
     for (Observer obs : mObservers){ 
         obs.update(this, arg); 
     } 
} 
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As the above code snippet shows, when something happens in our main activity (i.e. a 
peer draws something on screen), the newLocalUserMessage function is invoked with 
parameters we want to send. As a typical Observer Pattern example, observers are 
notified with this new message.  
 
public synchronized void update(Observable o, Object arg){ 
        String qualifier = (String)arg; 
 ... 

if (qualifier.equals(ChatApplication.OUTBOUND_CHANGED_EVENT_DRAWING_PATH)){ 
    Message message 
mHandler.obtainMessage(HANDLE_OUTBOUND_CHANGED_EVENT_DRAWING_PATH); 

            mHandler.sendMessage(message); 
        } 
 ... 
} 

 
private Handler mHandler = new Handler(){ 
      public void handleMessage(Message msg){ 
         switch (msg.what){ 
  ... 
  case HANDLE_OUTBOUND_CHANGED_EVENT_DRAWING_PATH: { 
                 mBackgroundHandler.sendMessagesDrawingPath(); 
             }   
  ... 
 } 
} 
 

AllJoynService class, which handles the actual communication, is an observer and it 
also gets notified. We should have a Handler that runs at the background (the above 
code). It schedules (and enqueues) messages and runnables to be executed at some point 
in the future. 
 
public void sendMessagesDrawingPath(){ 
        Message msg = mBackgroundHandler.obtainMessage(SEND_MESSAGES_DRAWING_PATH); 
        mBackgroundHandler.sendMessage(msg); 
} 
public void handleMessage(Message msg){ 
       switch (msg.what) { 
  ... 
  case SEND_MESSAGES_PAINT: 
       doSendMessagesDrawingPath(); 
       break; 
  ... 

} 
} 
 
 

Both the above and the below codes show the final step which is to send the message using 
our BusSignal in the BusInterface. 
 
private void doSendMessagesDrawingPath(){        
        double[] buff; 
        while ((buff = mZApplication.getOutboundItemDrawingPath()) != null){ 
  if (mJoinedToSelf) { 
   if (mHostZInterface != null) { 
    mHostZInterface.DrawingPath(buff); 
   } 
  } else  { 
   mZInterface.DrawingPath(buff); 
  } 
   }} 
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The figure 32 summarizes all we discussed so far in this section. The design is flexible 
enough to support sending different message types, as we do in our implementation. 
Overloading BusSignals in the BusInterface, we are sending simple string messages 
for chat application, array of doubles that contains vertex list for drawing path (dynamic 
content), another array of doubles for cube (static content),   (converted from byte array) 
for static target, integer commands for playing audio and so on. As we will see in the 
limitations section, we had difficulties while trying to send our dynamic target (user 
defined target at runtime) as the target is an object of Vuforia Trackable class. AllJoyn 
allows sending of send primitive data types without requiring extra setup. Although it also 
supports to send complex objects, all fields of these objects must be annotated so that the 
AllJoyn Framework knows what to send (and how). When tracker detects a pattern match 
against a dynamic target, what we can get from Vuforia API is a TrackableSource object. 
Unfortunately, this object can neither be serialized nor parcelized. We tried to convert it 
into a primitive data type using third party parser libraries, such as XStream to convert to 
XML, Gson and Jackson to convert to Json object, Mongo DB to convert to Bson object. 
Unfortunately none of these approaches succeeded due to the fact that Trackable and 
TrackableSource are closest to the client code, and therefore their internal state is 
inaccessible. Although this is a limitation of Vuforia, there is no reason that our framework 
could not support exchanging trackables when such an option become if such an option 
become available in future releases. 
 

 

5.5. Conclusion 
 

Collaboration is an important part in today’s mobile applications such as games and social 
networks. It is foreseen by researchers (Billinghurst & Kato, 2002) that the popularity of 
collaboration in the context of augmented reality will keep being a paradigm shift. 
 
In this chapter, we first defined what the term collaboration can mean for augmented 
reality applications and then discussed the advantages and the drawbacks of two well-
known network models for our system: server-client and peer-to-peer. We showed how 
we could use AllJoyn, which is an open source communication framework that provides 
easy peer to peer collaboration, in our solution and gave AllJoyn related code samples 
from our implementation. 
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6. Solution 
 

In this chapter, we present our collaborative augmented reality solution. First, in section 
6.1 we compare some of the well-known augmented reality tools and highlight their 
similarities and differences regarding their suitability for our solution. In section 6.2, we 
give the overall structure of the solution together with its requirements. In the next four 
sections, from 6.3 to 6.7, we closely look at the modules in the structure with explanations 
of some important classes and functions. 

 

6.1. Comparisons of AR Libraries 

 

 Figure 34. Comparison of AR SDKs 

 



52 
 

Our solution relies on an augmented reality engine which works under our framework 
together with a communication library, such as AllJoyn. The figure 34 compares the most 
popular AR libraries according to the features they offer. For experimental purposes, we 
mostly use Vuforia in our solution. 
 

 

 

 

 

 

 

Wikitude31 is a mobile AR software which is developed by the Austrian company Wikitude 
GmbH and was first published in October 2008 as freeware. It displays information about 
the users' surroundings in a mobile camera view, including image recognition and 3D 
modelling. Wikitude was the first publicly available application that used a location-
based approach to augmented reality. For location based AR, the position and the 
orientation of virtual objects on the screen of the mobile device are computed using the 
device’s position (through GPS or WiFi), the direction in which the user is facing (using 
the compass) and accelerometer. The key element in the Wikitude World Browser is 
the location. In contrast to regular web pages, Wikitude is optimized for mobile location 
based usage. Since August 2012, Wikitude also offers image recognition technologies.  
Although Wikitude shows a great promise, as previously mentioned, location based 
augmented reality is not a major interest of this thesis. 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
ARMedia 3D SDK is a commercial augmented reality product that is based on a 3D model 
tracking approach. It does not just assume a planar scene (as is the case with a number of 

                                                           
31 http://en.wikipedia.org/wiki/Wikitude 

Figure 35. Wikitude World Browser in iOS 

 

Figure 36. ARMedia Applications 

 

Figure 37. ARMedia Architecture[4] 

 

http://en.wikipedia.org/wiki/Image_recognition#Recognition
http://en.wikipedia.org/wiki/3d_modeling
http://en.wikipedia.org/wiki/3d_modeling
http://en.wikipedia.org/wiki/Location-based_service
http://en.wikipedia.org/wiki/Location-based_service
http://en.wikipedia.org/wiki/Location-based_service
http://en.wikipedia.org/wiki/GPS
http://en.wikipedia.org/wiki/Wifi
http://en.wikipedia.org/wiki/Compass
http://en.wikipedia.org/wiki/Accelerometer
http://en.wikipedia.org/wiki/Location-based_service
http://en.wikipedia.org/wiki/Image_recognition#Recognition


53 
 

platforms), but also complex 3D objects. It is fully compatible with advanced authoring 
environments such as Unity 3D or with advanced graphic libraries such as 
OpenSceneGraph32. This gives developers a great flexibility to create high quality 3D 
content at runtime, unlike other AR libraries. As shown in the Figure 37, it has a modular 
architecture which separates image capturing, tracking and rendering modules. 
Developers can use only the tracking module or any combination of modules. As Vuforia 
does, The ARMedia SDK also allows to capture frames from the device camera and add 
them into the dataset which the tracker tracks against. With its modular structure and 
Android support (although minimum version supported is 4.0.3), it is a suitable AR engine 
for our framework. 
 
 

public ARMedia3DTracker(Activity ctx) // 3D tracker constructor 

public boolean isValid() // whether the tracker is valid or not 
public boolean isReady() // if the tracker is ready to track (ready to process any frame passed to  

the track(Frame) method) 
public boolean initTracker() // init the tracker with the previously chosen tracking configuration file 
public void cleanupTracker() // reset the tracker 
public void startTracker() // put the tracker in a state ready to track any provided frame 
public void stopTracker() // put the tracker in a paused state, the tracker ignores any passed frame 
public void track(frame) // examine the passed frame in order to retrieve a valid pose for 3D target 
public boolean isTracking() // if the tracker is currently tracking 
public void getPose(double[] pose_matrix) // retrieve the latest available pose for the 3D target  
public void getProjectionMatrix(double[] projection_matrix) // retrieve the camera proj matrix 

 

For example, some important tracking related methods in the ARMedia3DTracker module 
are given above. These methods look very similar to the ones in the Vuforia API (figure 
38), which we discuss in the Image Tracking Section. The only difference is that the track 
function expects to get a frame as a parameter, whereas each tracker in Vuforia has an 
associated dataset that the tracker tracks against. Instead of explicitly passing each frame 
to the tracker, we put them in datasets and the rest is handled by Vuforia API. Of course 
ARMedia’s approach gives more flexibility to developers since frames viewed through the 
camera can be interrupted and modified. Another advantage of the ARMedia framework 
is that there are lots of setter methods both in the tracking and the capturing modules, 
which enable the modification of target and content objects. 

 

 
 
 
 

                                                           
32 http://www.openscenegraph.org 

Figure 38. Pattern Detection code samples ARMedia (left), Vuforia (right) 
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Layar33 is a mobile augmented reality browser, like Wikitude, which is created by a Dutch 
company called Layar. Together with location based AR, it supports natural feature 
tracking. The architecture has five components: The Layar browser, which works on the 
mobile device of the user, The Layar server, The Layar publishing website, The Layar 
service providers and content sources (Figure 39). The Layar API is the interface between 
the Layar Server and the Layar Service Providers. Developers can create their own layers 
and submit them via the Layar Publishing Website to be added to the Layar service. The 
API is used to fetch live data about the layer (Layar). Although it is a very popular 
framework among creative advertisement companies, its structure is not compatible with 
our solution as it mostly depends on external services. 
    

 

 

 

 

 

 

 

 

Metaio GmbH34 is a Germany based company that developed Metaio SDK, which is one of 
the most popular and advanced AR libraries, and Junaio, which is an advanced (location 
based) mobile augmented reality browser. Unfortunately, however, there is not a free 
option of Metaio SDK. 

At the core of Metaio SDK there is AREL (Augmented Reality Experience Language) 
interpreter (Figure 40). It is a JavaScript binding of Metaio SDK’s API in combination with 
a static XML content definition (Metaio). With the help of AREL, creating platform 

                                                           
33 https://www.layar.com/augmented-reality 
34 http://www.metaio.com 

Figure 39. Layar Platform Architecture[33] 

 

Figure 40. Metaio Platform  Architecture[34] Figure 41. How AREL Works[34] 
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independent AR applications is possible. AREL puts HTML5 overlays into AR applications 
and provides easy GUI development. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
IGeometry createGeometryFromImage(String filepath, boolean displayAsBillboard) // Loads an image from a  

given file and places it on a generated 3D plane 
boolean loadEnvironmentMap(String folder) // Creates an environment map, which can be seen as a  

reflection on 3D geometries. 
boolean setTrackingConfiguration(String trackingConfig, boolean readFromFile) // Load a tracking  

configuration from an XML file. 
void setCoordinateSystemID(int coordinateSystemID) // Bind the 3D model to a specific coordinate system 
void getTrackingValues(int coordinateSystemID, float matrix, boolean preMultiplyWithStandardViewMatrix)  

// Allows to get state of tracking system for a given coordinate system compatible with OpenGL 
void startInstantTracking(String trackingMode, String outFile) // instantly start creating a tracking  

configuration based on camera image 
Vector2di startCamera(int index, int width, int height, int downsample) // Start capturing on a camera 
TrackingValues invertPose(TrackingValues inPose) // Invert the pose in the given TrackingValues. 
void getProjectionMatrix(float matrix, boolean rightHanded) // Allows to get the OpenGL projection  

matrix retrieved from camera calibration. 
Vector2d getScreenCoordinatesFrom3DPosition(int coordinateSystemID, Vector3d point) //Converts the    

given 3D point to screen coordinates. 

 

Some of the important functions from Metaio API are given above. The closely related 
signatures of these functions in Metaio SDK demonstrate its similarity to both the API’s of 
Vuforia and ARMedia. For example, startInstantTracking function in Metaio serves 
the same purpose as userDefinedTargets in Vuforia both of which create a new target 
on the fly. Metaio also allows the creation of a 3D target, commonly referred as a SLAM 
technology.  As we see in the figure 40, Metaio has also a modular architecture, like Vuforia 
and ARMedia. Rendering, tracking and capturing modules are separated from each other. 

 

final TrackingValues trackingValues = metaioSDK.getTrackingValues(1); 
if (trackingValues.isTrackingState()){ 
 // We detected a pattern, do something, render, play audio, etc. 
 float[] modelMatrix = new float[16]; 
 metaioSDK.getTrackingValues(1, modelMatrix, false, true); 
 metaioSDK.getProjectionMatrix(projMatrix, true); 
 ... 
 // Metaio does the mapping from world-to-camera coordinates for us, Vuforia  

does not do this, see Section 4.4 
 projMatrix[0] *= mCameraImageRenderer.getScaleX(); 
 projMatrix[5] *= mCameraImageRenderer.getScaleY(); 
 mCube.render(gl);}  

Figure 42. Types of Markers supported by 
Metaio API[34]  

 

Figure 43. Instant Tracking Sequence 
Diagram from Metaio[34] 

 

Figure 44. Pattern Detection code sample Metaio, see Figure 38 
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As we discussed, Wikitude and Layar mostly focus on location based augmented reality 
and Studierstube has not a modularized structure (see Section 2.2). In addition, 
Studierstube and ARToolKit does not support different language bindings. Therefore, they 
are not suitable for mobile AR development. Vuforia (Figure 45), Metaio and ARMedia are 
the most suitable AR libraries for our solution because of their modularized structure and 
mobile platform support. 

In conclusion, considering all the features offered by these libraries, it is fair to say that 
any augmented reality library that uses image based tracking and separates the image 
capturing, tracking and rendering modules is a good candidate to fit into our solution 
without requiring major changes. 

 

6.2. Overall Structure 
 

As we see in the previous section, most of the AR libraries have (at least) a capturing 
module, a tracking module and a rendering module. In our solution, the central 
component is the communication agent which sits on top of these modules and interact 
with them as shown in the figure 45. The major restriction of the collaboration agent is 
that these modules must be separated. 

 

 

 

 

 

 

Figure 45. Vuforia Architecture[8] 

 

Figure 46. Interactions with Collaboration Agent (CA) (left), Collaborative Architecture (right) 
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Since the collaboration agent interacts with the target (by creating and tracking against 
it), the content (by generating it) and the screen (by rendering on it), it consists of four 
modules:  

 Group (Session) Management 
 Map (Target) Management 
 Model (Content) Management 
 Interaction Management 

 

 

If we can ensure that these four modules of collaboration agent work in a modularized 
fashion, we can create a flexible collaborative mobile augmented reality framework that 
adapts different AR libraries such as Vuforia, Metaio and ARMedia. 

 

 

 

 

 
 

 
The Group Management Module is the interface between the communication library 
and the rest of the application. It interacts with the Façade, the Interaction Management 
Module and the Communication Library. Management of sessions between peers is the 
main responsibility of this module. 
 
The Interaction Management Module is the interface between the Group Management 
Module and the Content Management Module. It manages the interactions with the real 
world, such as generating a new content on top of a target. Whenever a new user 
generated content is created, letting the Group Management Module know about this 
content is its main responsibility. Besides this, it also forms the content data such that the 
renderer in the receiving peer does not require any additional OpenGL conversion and 
use the data as it is. 
 
The Content Management Module is the interface between the low level graphics 
library and the rest of the application. Rendering is the only responsibility of this module. 
 
The Target Management Module is the interface between the AR library and the rest of 
the application. It interacts with the Façade, the Content Management Module and the AR 
library. Its main responsibility is on the fly target creation and detection (tracking). 

Figure 47. Structure of the Collaboration Agent (CA) 

 

Figure 48. Overall Structure of the System (Green, Light Blue, Orange and Dark Blue 
represent the CA) 
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The Façade is the connector. It interacts with all these modules and acts as the bridge 
between them by transporting requests and responses. It handles user actions if it can, 
otherwise delivers them to the necessary units. 
 
In the collaboration agent pipeline, there are 17 steps.  

1. A device starts a session (becomes the group owner) 
2. Group owner advertises its unique name 
3. A peer discovers the group owner 
4. Handshaking is performed 
5. Group owner distributes the static target to peers (Optionally to a server) 
6. Group owner distributes the dynamic target (Optional) 
7. Group owner distributes the static content (Optional) 
8. Peers receive the static target 
9. Peers receive the dynamic target (If there is) 
10. Peers receive the static content (If there is) 
11. Each peer starts local tracking 
12. Each peer starts remote tracking (tracking in the server) 
13. If a peer detects (locally or remotely) a target (static or dynamic), it renders the content 

associated with the target 
14. Peers interact with a target (generate a dynamic content) 
15. The Peer, in the step 14, distributes the dynamic content and its pose data 
16. Peers receive the dynamic content and its pose data 
17. Go to step 11 

 

In order to understand how our structure works, consider the scenario below: 

Let’s say we have three peers Peer 1, Peer 2 and Peer 3 in the same network (GSM, WiFi 
or Bluetooth), but a session between these peers has not formed yet. Peer 1 has a static 
target and a static content. It starts a room and advertises its unique name so that other 
peers in the same network can find it. Peer 2 is in the discovery stage right now. It wants 
to see the room list currently available in the network and selects a room from the list. As 
soon as Peer 2 selects the room that the Peer 1 created, Peer 1 gets notified. Handshaking 
is done, Peer 2 joins the room and a session is formed between Peer 1 and Peer 2. Peer 1 
sends the static target (and optionally the static content) to Peer 2. At this point, Peer 1 
can also choose to upload the static content and static target into the server. When Peer 2 
receives the static target, it automatically starts the local tracking (Peer 1 has already 
started). Peer 2 is also connected to the server and remote tracking process is also started 
in the server. Right now both Peer 1 and Peer 2 both natively and remotely is tracking 
against a possible target. Remote tracking is done by sending each camera frame to the 
server and receiving an answer from the server. If tracker in the server detects a pattern 
match, Peer 2 (or Peer 1) natively renders the static content on top of the target. Likewise, 
if the tracker in the Peer 2 detects a pattern match, again the same static content is 
rendered on top of the found target (Here we can also render a different content). If Peer 
2 generates a new content on top of the static target, the content (and its pose data) is 
sent to Peer 1 and the renderer in the Peer 1 updates itself according the generated 
content. At this point, Peer 1 can choose to create a new target (dynamic target) at 
runtime. The new target is sent to Peer 2. Since there has not been an associated content 
with the new target, even if the tracker in Peer 2 detects this target, the renderer renders 
nothing until one of the peers create a new content on top of the new target. 
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6.3. Group Management 
 

The Group (Session) Management Module manages the sessions between peers. The first 
four steps of the collaboration agent pipeline are performed under the control of the 
group management module. It is the interface between the communication library 
(AllJoyn) and the rest of the application. It therefore: 

 Interacts with the Façade by sending the requests coming from the Façade class 
(such as view changes, initialization of a new group, a new peer joining the room, 
playing audio, etc.), and sends the responses back to the Façade class.  

 Interacts with the Interaction Management Module by transferring mostly user 
generated content to the AllJoyn API. 

 Interacts with the AllJoyn API by managing the communication logic between 
peers (such as connecting to a network, advertising the unique name of the group 
owner, discovering a unique name, determining the connection state (initialized 
or lost), agreeing on port numbers, deciding the types of messages that can be sent, 
sending the messages, sequencing the messages coming from different peers, etc.). 

 

 

 

 

 

 

 

 

 

Considering all of the above, it is almost obvious that there should be an Observer Pattern 
inside this module. There should be an observer and an observable interface, a 
hostActivity to start, stop, advertise the room, and an AllJoynService class that 
deals with all the lower-level network operations. Fundamentally, it is the Controller for 
the application. In our solution, we have the fifth class, which is called ZApplication. It 
serves as the Model for the application and what we end up with is the typical user 
interface design pattern Model-View-Controller (MVC) (View is the Façade class which we 
discuss later). This allows the UI to be independent from the AllJoynService (The 
Controller in MVC pattern). 

Android Activities, which are usually UI related classes and operated by Android OS, can 
be created and destroyed in unusual ways, such as when the device is rotated. 
ZApplication class extends from a special Android class Application and connects the 
whole application to the outside world. The importance of ZApplication class is that its 
lifecycle is consistent with the lifecycle of the whole application, meaning even if the 
activities are destroyed and recreated by the Android OS, the application object still exists. 

Figure 49. Group Management Module 
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We need this persistent Application object because Android activities cannot be saved 
(i.e. by serializing) and we are deeply paranoid that Android OS might interrupt the 
process by destroying and recreating our Activity objects.  

The Façade, the ZApplication and the HostActivity classes implement the Observer 
interface, whereas the AllJoynService class implements the Observable interface 
(Figure 49). Observers are registered with the Observable and are notified by the 
Observable when a state is changed. More specifically, the AllJoynService class 
maintains its dependents. 

 

6.4. Target Management 
 

The Target (Trackable/Map) Management Module manages the target creation and target 
exchanges between peers. Steps 5 to 12 in the collaboration agent pipeline are performed 
under the control of the target management module. It is the interface between the 
augmented reality library (Vuforia) and the rest of the application. It therefore: 

 Implements the tracking related functions in the Vuforia API and interacts with the 
Façade class by performing these functions through the commands of the Façade 
(such as loading and executing the tracker, initializing, starting, stopping, pausing, 
resuming the AR tracking operations, handling the camera initialization, setting 
the camera projection matrix, configuring the video background, etc.). 

 Interacts with the Model Management Module by sending the rendering related 
commands (such as saying when and where to render, which textures to be drawn 
on, initializing the screen configurations and dealing with screen orientation 
changes, etc.) 

 Interacts with the Vuforia API by making Vuforia perform the tracking properly. 
Since Vuforia is a large framework, the Target Management Module offloads to it, 
almost every piece of tracking task (such as complex math operations, matrix 
multiplications, conversion from pose data to matrices, rotation, translation and 
scaling camera matrices, dataset initialization, the current state information, pixel 
format, video mode, etc.).  

 

 

 

 

 

 

Figure 50. Target Management Module 
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Since Vuforia handles most of the tracking tasks, only one class is enough between the 
Vuforia API and the rest of the application. The SampleApplicationSession class 
standalone acts as the interface that tells Vuforia what to do, together with its two inner 
classes: InitVuforiaTask and LoadTrackerTask. An object of this class is passed both 
to the renderer and to the Model Management Module for proper screen initialization and 
rendering of content. Some of the important operations of the 
SampleApplicationSession class are given below. 
 
public class SampleApplicationSession implements UpdateCallbackInterface{ 

public void initAR(Activity activity, int screenOrientation) 
public void startAR(int camera) throws SampleApplicationException 
public void stopAR() throws SampleApplicationException 
public void resumeAR() throws SampleApplicationException 
public void pauseAR() throws SampleApplicationException 
public Matrix44F getProjectionMatrix() 
public void QCAR_onUpdate(State s) 
private void storeScreenDimensions() 
private void updateActivityOrientation() 
private void setProjectionMatrix() 
private void stopCamera() 
private void configureVideoBackground() 

} 

 
The most important function is QCAR_onUpdate, given below. This function is called by 
the Vuforia API implicitly on each camera frame. To put it more specifically, when the 
tracker in Vuforia finishes its tracking against a particular frame, it invokes this function 
by passing the current state information, State. The State object contains the tracking 
information (i.e. a pattern is detected or not) according to the latest camera frame. The 
Target Management Module passes this state to the Model (Content) Management module 
so that the Model Management Module updates the screen. Also, there are two inner 
classes in this class that deal with initializing Vuforia components and loading the tracker 
data.  
 
 
private SampleApplicationControl m_sessionControl; 
... 
@Override 
public void QCAR_onUpdate(State s) 
{ 
   m_sessionControl.onQCARUpdate(s); 
} 
 

 
 
 
 
 

6.5. Content Management 
 

The Content (Model) Management Module manages only rendering tasks. Thus, only the 
step 13 in the collaboration agent pipeline is performed under the control of the Content 
Management Module. It is the interface between the lower level graphics library (OpenGL 
ES 2.0), Vuforia API, and the rest of the application. It therefore: 
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 Interacts with OpenGL ES by initializing the rendering tasks, telling it how to 
render the content (and by compiling the shaders associated with the content). 

 Interacts with the Façade class by getting the content related information from it 
and sending the current rendering state. For example, when a target is detected, 
the Content Management Modules informs the Façade so that the Façade can 
perform additional operations (such as playing audio, or updating the layout). 
Since none of the classes in the module is an Android Activity, it cannot change the 
view or the layout of the application, instead this is the responsibility of the Façade. 

 Interacts with the Interaction Module by getting the generated contents (dynamic 
contents) and responding back. 

 Interacts with the Vuforia API by using its complex math and rendering tools. 

 

The SampleApplicationGLView class handles the initialization, configuration, and the 
maintenance of GLSurfaceView of the application. GLSurfaceView is an OpenGL view 
that is overlaid onto the existing activity’s layout and it is the surface that the renderer 
uses to render on. There are also static content related classes in this module: The 
MeshObject the CubeShaders, the CubeObject and the Plane. The purpose of these 
classes is defining the static content compatible with the OpenGL library, such as vertex 
count, shape and colour of the content, as we discuss in the Section 4.3.  The Texture class 
loads an image from a file and converts it into a ByteBuffer so that the renderer can use 
it to texture map an object. The SampleUtils class contains some useful functions such 
as for initializing and compiling the shaders, for checking OpenGL errors, for getting the 
orthogonalization matrix (used for converting from fractional to Cartesian coordinates). 
The RefFreeFrameGL class is used to render not the AR content but the layout related 
images, such as camera frame images, UI elements, and so on. It is therefore independent 
from the tracker. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Content (Model) Management Module 
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The RefFreeFrame class is the intermediary class between the Façade, the Target 
Management Module and the renderer. During the program lifecycle, the tracker can be 
in different states: idle, scanning, creating, success, and so on. For example, when a new 
target needs to be created (in the Façade), the RefFreeFrame class receives this 
command and updates the tracking status so that a new target can be properly created. 
The most important function in this module is the UserDefinedTargetsRenderer class. 
It deals with all the rendering logic by directly talking with the OpenGL library. It renders 
(or makes the OpenGL render) the static contents (the cube) as well as the dynamic ones 
(drawing paths), binds the textures with the contents. Since it is not an Android Activity 
class, it cannot directly change the application’s view. Just before it renders a content on 
the screen, it notifies the Façade (because the tracker detected a pattern) so that the 
Façade can do additional operations (such as playing audio). 

 

6.6. Interaction Management 
 

The Interaction Management Module manages both the static and user generated content 
and the users’ interactions with them. Thus, steps 14 to 16 in the collaboration agent 
pipeline is performed under the control of the Interaction Management Module. It is the 
interface between the Group Management Module and the Content Management Module. 
It therefore: 

 Interacts with the Façade by getting the content generated (or interacted with) by 
peers. 

 Interacts with the Group Management Module by passing it the user generated 
content data, its pose matrix and the target associated with the content. 

 Interacts with the Content Management Module by telling it the changes on the 
content. 

The interaction managements could be done in the Façade class, however, for the sake of 
modularization, we decided to separate it. It is the middle layer between the session and 
the content. When a peer wants to create a new content (or alter the existing one) on top 
of a particular target, the new content has to be distributed to co-located peers and 
eventually reaches to the Content Management Module. The request first comes to the 
Façade. It is then sent to the Group Management Module through the Interaction 
Management Module because we may want to change the request so that it is fully 
compatible with the Content Management Module. 

The CustomPath class extends from the Android Path class which encapsulates 
geometric paths consisting of straight line segments. The reason that we created a new 
class is that existing Android Path class is not serializable and AllJoyn API does not 
support distributing complex objects over the BusInterface. That means either we had 
to convert it to a primitive type, or serialize it somehow. We failed to use external parser 
libraries, such as Gson, Bson, XStream, for this purpose because all we got after the 
conversion were pointers pointing to junk memory locations. The serializable 
CustomPath class is like a container that simulates the actions of real path objects. 
Although the Android Path class contains many functions, we need only three of them. 
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Since we know which functions are needed to draw a path to the screen, we can store 
these functions in an array and simulate their behaviour with serializable inner classes. 

The DrawingView class is an Android View class which is responsible for drawing and 
event handling. For every touch gesture of the peer on the screen, a new CustomPath 
object is created. As long as the peer keeps drawing, the path segments are added 
successively and a line is formed. They are drawn on a Bitmap, then the Bitmap is drawn 
on the Canvas that is the background of every Android View object. 

The Interaction interface defines the type of interactions that can be performed on a 
user generated content, such as dragging and dropping, editing, deleting, rotating, and 
scaling, and the Interactor class implements these operations. When a peer interacts with 
a content, the updated version of the content (and its pose data) is sent to the Group 
Management Module so that the renderer updates the model. 

A crucial point here, as we discuss in the Section 4.4, we need a conversion from the screen 
coordinates to the world coordinates so that the renderer receives the correct vertex 
locations of the path. This conversion is also done in this module. 

 

 

 

 

 

 

 

 

6.7. Façade 
 

As its name suggests, The Façade is the front side of the application. It provides a 
simplified interface both to the modules and to the outside world. It can be considered as 
the Façade in the commonly used Façade Pattern. There is only one class in the Façade. 
Since it is the responsibility of the Façade to handle user interface related tasks, it extends 
from the Android Activity class, which is the only class that can change an application’s 
view. The Façade class deals with the application’s overall lifecycle, meaning the 
application is launched, created, started, resumed, run, paused, restarted, stopped and 
destroyed through the Façade class. 

 

Figure 52. Interaction Management Module 
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Although there are some exceptions in our solution, ideally, it is the junction point that 
each request and response coming from/to the aforementioned modules must stop by. In 
other words, none of the modules should directly talk to each other, but indirectly through 
the Façade. In addition to organizing the communications between modules, some other 
responsibilities of the Façade are: 

 Deciding what to be done when the application is launched, created, started, resumed, run, 
paused, restarted, stopped and destroyed 

 Deciding what to be done when the device’s screen configuration is changed 
 Loading textures 
 Listening gestures 
 Handling events (touch events, button clicks, etc.) 
 Showing error dialogs 
 Initializing AR tasks (initializing, deinitializing, loading, unloading, starting, stopping the 

trackers) 
 Connecting to the remote server and starting the tracker in the server 
 Deciding what to be done when AR is initialized 
 Deciding what to be done on each camera frame (i.e. when a pattern is detected) 
 Adding overlay views to the screen 
 Starting and updating the renderer 
 Starting building a target 
 Starting building a content 
 Deciding what to be done when a new content or a new target is received 
 Telling AllJoyn to update the channel state 
 Setting the application’s menu options and getting user commands 
 Playing sounds 

 

 

 

 

 

Figure 53. The Façade 
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6.8. Conclusions 
 

This chapter showed the approaches we took to the problem. It first critically compared 
the popular augmented reality libraries and stated that any modern AR library with the 
modularized capturing-tracking-rendering structure is a suitable candidate to fit into our 
solution. It gave the overall structure of our solution by explaining what are needed to 
create a collaborative mobile AR framework. Then, it described the each module in our 
solution and their interactions with each other by presenting some screenshots, class 
diagrams and code snippets from our application. 
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7. Evaluation 
 

In this chapter, we identify some metrics and evaluate our solution in terms of modularity, 

reusability, extensibility and reliability. We then show the limitations of current system. 

 

7.1. Modularity and Extensibility of the Resulting Code 
 

In the context of software design, much work has been done so far to define the 

modularity of a software system. Modularity simply refers to the way that a software 

design is decomposed into different subparts or modules. Sarkar, for example, states that 

modularity can be provided by dividing the software into logical modules, publishing APIs 

for each module, and then guarantying that the modules access each other’s resources 

only through the published interfaces (Sarkar, et.al., 2005). While authors vary in their 

definitions of modularity, they tend to agree on the concepts that lie at its heart; the notion 

of interdependence within modules and independence between modules (MacCormack, 

et.al., 2007). The former refers to high cohesion, whereas the latter refers to low coupling. 

However, the main problem with all the studies is the lack of a validated metric of 

modularity (Fenton, 1994).  

Although modularity is an important design notion for every kind of software system, it 

is vital for a framework. Since a software framework is designed to provide a generic 

functionality, it must be extensible and extensibility can be provided if and only if there is 

a low dependency between its modules and if each module has a specific responsibility. 

Even though the notions of low coupling and high cohesion apply more to classes, we can 

use them to evaluate our proposed solution’s modularity. 

Sarkar notes that modularization quality is not synonymous with modularization 

correctness (Sarkar, et.al., 2005). The correctness can be established by checking function 

call dependencies at compile time and at run time. If all intermodule function calls are 

routed through the published API, the modularization is correct. 

 

Figure 54. Dependencies between modules 
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For this purpose, we check if the modularization of our proposed solution is correct. We 

mentioned that each of the four modules, which are explained in the Chapter 6, has a 

specific task. Figure 54 shows an abstraction of the proposed solution’s class diagram. 

Nodes represent classes, dashed rectangles represent modules, and pentagons represent 

external libraries. For each module, each incoming response is delivered to a specific node 

whilst each outgoing request is routed through a specific node. So, assuming that the 

modularizations of external libraries are correct, modularization of our solution is 

correct. 

 

 

Since the Façade is an API, we can consider it as a hot spot, meaning the users can add 

their code (Pree, 1994). Therefore, if we ignore it, the rest of the modules have at most 

one dependency. This also proves the loose coupling between the modules. 

The figure 55 represents the internal connections within the modules. In order to 

measure the coupling value, we can consider completed graphs where every node is 

connected to every other node. A completed graph with n nodes is the most cohesive 

system possible with n nodes, where 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 =
𝑛(𝑛−1)

2
. Our proposed solution’s 

average cohesion value is 0.745, which is not undesirable. 

 # nodes # edges Max # edges Ratio 
Module 1 5 10 10 1 
Module 2 4 4 6 0.67 
Module 3 9 11 36 0.31 
Module 4 3 3 3 1 
Average    0.745 

 

In order to see the quality of the resulting code’s base, we use the following metrics: 

NOM: Number of methods – less is better 
LCOM: Lack of Cohesion of Methods – measures the correlation between and the local 
instance variable of a class. High cohesion indicates good class subdivision. Low cohesion 
increases complexity. 
HEFF: Halstead Effort – determines the effort required to maintain a program. The lower, 
the simpler the program is to change. 
UWCS: Unweighted Class Size – number of methods + number of attributes of a class. 
Smaller class size usually indicates a better designed system with better distributed 
responsibilities. There are no strict rules, but above 100 is not good. 

Figure 55. Interdependencies within the modules 
starting from left, module 1..4 
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RFC: Response for Class – number of distinct methods and constructors invoked by a 
class. If it is high, it means there is a high complexity. Usually it should not exceed 50.  
MI: Maintainability Index – determines how easy to maintain a body of code. 89 and below 
for low maintainability, 123 and above for high maintainability 
LOC: Lines of Code – less is better 

 

According to Pree, software frameworks consist of frozen spots and hot spots (Pree, 

1994). Frozen spots remain unchanged in any instantiation of the application framework, 

whilst hot spots represent the parts which the users (developers) are allowed to change 

by adding their own code, or overriding the existing code. To understand the extensibility 

of our solution, we have identified these hot & frozen spots. 

The Group Management Module is somewhat extensible. Most of the functions in this 

module are fundamental components (frozen spots) of the collaboration. However, users 

can define new message types (i.e. bus signals) to be sent over a bus interface and add 

new functionalities to sessions. 

The Interaction Management Module is fully extensible. Users can define new 

interactions in the interaction interface and implement them in the Interactor. Our custom 

path class is just an example. The solution allows to define new content types. 

 

 NOM LCOM HEFF UWCS RFC MI LOC 
Group Management Module        
AllJoynService 25 0.10 150197 68 29 81.60 490 
ZApplication 49 0.02 73919 84 7 140.42 391 
HostActivity 6 0.29 40213 21 7 93.09 173 
Observable 2 0.00 70 2 2 198.68 5 
Observer 1 0.00 54 1 1 146.31 4 
Target Management Module 

SampleApplicationSession 20 0.05 73354 33 21 111.46 256 
InitVuforiaTask 3 0.50 14347 4 3 101.57 66 
LoadVuforiaTask 2 0.00 4081 2 2 111.09 128 
Interaction Management Module 

DrawingView 11 0.11 55400 18 12 108.30  122 
CustomPath 29 0.08 17290 42    24 162.96 156 
Interactor 7 0.29 28717 22 8 111.08 110 
InteractorInterface 5 0.02 33 5 5 193.46 7 
Content Management Module 

UserDefinedTargetsRenderer 8 0.23 503170 27 8 62.27 254 
RefFreeFrame 16 0.15 40908 27 16 110.55 203 
RefFreeFrameGL 9 0.21 182597 30 9 90.24 216 
SampleApplicationGLView 10 0.33 2236 19 10 117.97 116 
SampleUtils 5 0.50 129687 6 5 38.25 133 
Texture 2 0.14 43427 9 2 35.15 67 
MeshObject 10 0.00 6809 10 10 180.83 55 
CubeObject 4 0.42 71526 12 4 76.45 93 
CubeShaders 0 0.00 2526 2 0 171.00 24 
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The Content Management Module is fully extensible. Since the rendering tasks are done 

here, changing the existing OpenGL code is straightforward. Also the super class mesh 

object allows to create new models to be rendered. Since it is not dependent on the Group 

Management and Interaction Management Modules, changes in this module do not 

require changes in the other ones. 

The Target Management Module is somewhat extensible. Since it depends on the 

features offered by Vuforia, it is not easy to make major changes. 

The Façade is fully extensible. It is the actual part of the solution where the user can do 

whatever he/she wants. 

 

 

7.2. Reliability 
 

Reliability refers to a measure for the probability of a software failure occurring. 

Measuring the reliability of a framework is not an easy task because the metrics usually 

are not well defined. Therefore, we measure the reliability of an application that is 

developed by using our solution. 

It is a P2P drawing application where multiple users can draw on the screen. A target is 

created together with the content when the user finishes drawing. The target and the 

content is distributed among co-located peers. To measure the reliability of this 

application, we identified some metrics: 

 Time to distribute the content (+ ACK) – TDC (ms) 

 Time to render the content – TRC (ms) (after tracking is started) 

 Time to distribute to target (+ ACK) – TDT (ms) 

 Number of peers - NOP 

 Content size – COS (total number of vertices, may be multiple contents) 

 Target size – TAS (number of pixels) 

 Number of targets – NOT 

 Number of contents – NOC (drawing path) 

We ran the application on 5 different Android devices. Our results showed that: 

 TDC is decreasingly growing as NOP grows 

 TDC is linearly growing as COS grows 

 TDC is increasingly growing as NOC grows 

 TRC is decreasingly growing as COS grows 

 TRC is increasingly growing as NOC grows 

 TDT is decreasingly growing as NOP grows 

 TDT is decreasingly growing as TAS grows 

 TDT is increasingly growing as NOT grows 
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Although we observed some performance issues as number of peers and/or number of 

contents increase, we did not report major functional problems while running our sample 

drawing application (figure 56). 

 

 

 

7.3. Limitations 
 

We have identified the following limitations of the current solution: 

 Although distributing the on-the-fly created target was one of our primary goals, 
we failed to do that, because of the low level reasons mentioned in the section 5.4 
and 6.6. However, this is due to the restrictions of the AR library (Vuforia) that we 
use in our implementation. 

 Our solution does not make the rendering easier because there is no high level 
interface above OpenGL library. This requires users to have an OpenGL 
background to some extent. 

 The solution requires Android API Level 14 and above. 
 The Interaction Management Module currently supports only two types of 

interactions. Some natural effects, such as drag and drop, are missing. 
 Our solution does not completely remove the need to understand the low level AR 

and communication libraries. 
 The communication library that we use (AllJoyn) allows to send only primitive 

types or containers containing primitive types. Therefore, just as we failed to send 
user defined targets, it is also not easy for developers to send complex objects. 
Some third party libraries, such as serialization, parcelization, converting to XML, 
or to a JSON object, should be used. 

 Editing an already generated content is currently not supported. 
 The tracker assumes that the real world is planar. Therefore, 3D tracking is not 

supported. 

Figure 56. Three Android devices running our sample drawing application 
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8. Conclusion and Future Work 
 

Although the popularity of augmented reality is increasingly growing among researchers 

and companies, developers and end users still cannot properly benefit from it because of 

the lack of tools and applications. This prevents AR from being a developer toy and thus 

it is considered as a niche technology. Existing AR systems, on the other hand, cannot 

target end users because of their complex setups and high requirements. For example, it 

is still quite intimidating for programmers who do not have computers graphics 

background or for those who do not want to deal with complicated AR components, such 

as image capturing, tracking or rendering. 

Due to the advancements in mobile technologies, mobile devices today are much more 

capable of running AR applications. We believe that collaborative mobile applications play 

a great role in the increasing popularity of mobile devices. Therefore, in this thesis, we 

stated that augmented reality has also a high potential to be combined with collaborative 

systems. Although single user AR has shown a great promise so far, just as it did to other 

technologies, collaboration can take AR one step further. 

For this purpose, we proposed a way to create a mobile collaborative augmented reality 

framework. We identified the elements required in the design and implementation on 

collaborative AR applications. 

Chapter 1 introduced the term augmented reality, gave some historical background, 

described the types of AR and presented our motivation. Chapter 2 closely looked at the 

existing works that are related to collaborative AR. Chapter 3 explained the pose tracking 

methods used in single user AR systems by often referring to Vuforia. Chapter 4 

emphasized some of the popular graphics libraries for augmented reality applications and 

showed how they can be used to generate runtime contents. Chapter 5 analysed the most 

suitable distribution methods for a collaborative AR system and explained how we used 

AllJoyn to provide ad hoc communication. Chapter 6 presented our solution by clarifying 

the each module of a collaborative AR application in detail. Chapter 7 identified the 

metrics to evaluate our approach in terms of modularity, extensibility, reusability, 

reliability and finally outlined the limitations of the proposed solution.   

We believe that our approach allows developers to easily create multi-user mobile AR 

applications in which the users can cooperatively interact with the real environment in 

real time. The proposed approach can increase the sense of collaborative spatial 

interaction without requiring complex infrastructure. Most importantly, assuming the 

given low level communication and AR libraries have modular structures, the proposed 

approach is also modular and flexible enough to adapt to their requirements without 

requiring any major changes. 

The proposed approach enables future work to be developed on top of our solution. It is 

extensible to the extent of communication and AR libraries. Future work may involve 3D 

tracking, natural feature tracking, natural interactions with the model, different types of 

content generation, target distribution and server implementation. 
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