
Mobile, Collaborative Augmented Reality using Cloudlets

Steven Bohez, Joeri De Turck, Tim Verbelen, Pieter Simoens and Bart Dhoedt
Department of Information Technology

Ghent University
Gaston Crommenlaan 8/201

9050 Ghent, Belgium
Email: {steven.bohez},{joeri.deturck},{tim.verbelen},

{pieter.simoens},{bart.dhoedt}@ugent.be

Abstract

The evolution in mobile applications to support
advanced interactivity and demanding multimedia fea-
tures is still ongoing. Novel application concepts (e.g.
mobile Augmented Reality (AR)) are however hindered
by the inherently limited resources available on mobile
platforms (not withstanding the dramatic performance
increases of mobile hardware). Offloading resource
intensive application components to the cloud, also
known as ”cyber foraging”, has proven to be a valu-
able solution in a variety of scenarios. However, also
for collaborative scenarios, in which data together
with its processing are shared between multiple users,
this offloading concept is highly promising. In this
paper, we investigate the challenges posed by offload-
ing collaborative mobile applications. We present a
middleware platform capable of autonomously deploy-
ing software components to minimize average CPU
load, while guaranteeing smooth collaboration. As a
use case, we present and evaluate a collaborative
AR application, offering interaction between users, the
physical environment as well as with the virtual objects
superimposed on this physical environment.

1. Introduction

In recent years, the mobile device market has been
one of the fastest growing market segments, and sales
predictions forecasting billions of smartphones and
tablets to be sold during 2013 [1] confirm this market
shows no sign of slowing down. The popularity of
these devices not only stems from their portability,
but also from their always-on nature, extensive con-
nectivity and thousands of easy-to-install applications.
These mobile applications have recently been evolving
towards fully interactive multimedia experiences, such

as immersive 3D games and design software. This evo-
lution is however hindered by the limited capabilities
of mobile devices, such as limited processing power
and battery capacity.

To cope with these resource limitations, cyber forag-
ing [2] was introduced, where infrastructure available
in the near vicinity of the user is used to offload
applications or parts thereof. Cyber foraging can be
realised by a cloudlet [3], consisting of a collection
of computing nodes (e.g. a server co-located with the
wireless access point) that are sharing their resources
with mobile terminals. Resource-intensive software
components can then be offloaded to a computing
node with ample free capacity, in order to reduce the
execution time [4], [5], energy consumption [6], and/or
improve throughput [7]. This set-up is similar to the
cloud but does not suffer from large network delay, so
it can be utilized to outsource delay-critical tasks.

Applications involving multiple users interacting
with each other, so-called collaborative applications,
are also getting more interest. Especially interactive
and collaborative applications such as AR are gain-
ing popularity fast (e.g. Niantic Labs’ Ingress [8]).
The cloudlet concept offers a number of opportunities
for collaborative applications: instead of only sharing
resources, users could also share results of calcula-
tions. In AR, for example, multiple users could use
and expand the same map of the environment (see
Section 3). However, none of the existing cloudlet or
cyber foraging systems exploit this opportunity.

In this paper, we extend the cloudlet framework
presented in [9], [10] to a “collaborative cloudlet”
system that provides support for collaboration from the
cloudlet middleware. Moreover, our system is capable
of autonomous configuration and will automatically
deploy components to minimize the overall load on
all devices and the bandwidth consumed, while taking
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Figure 1. Output of the Tracker, Mapper and Renderer and the final result with multiple users.

into account all necessary state synchronization. As
a use case, we developed a distributed AR game
capable of collaboration and basic interaction with the
environment.

2. Related Work

Early cyber foraging systems like Spectra [11] and
Chroma [12] required substantial effort from the de-
veloper and pre-installed routines on the fixed nodes.
In contrast, our solution does not require knowledge
of network topology and can perform code migration
at runtime.

Some systems use Virtual Machines (VMs) to
“copy” applications from mobile devices to infrastruc-
ture. The VM-based cloudlets in [13] and [14] will exe-
cute the entire application in the VM. CloneCloud [15],
on the other hand, uses profiling and code analysis
to decide where to execute each routine separately.
COMET [16] uses a Distributed Shared Memory
(DSM) approach which allows for easy migrating of
individual application threads between VMs.

Other recent approaches divide an application into
different software components of which the resource
intensive ones can be offloaded to infrastructure in
the local network to reduce load. Using components
instead of VMs provides more flexibility for appli-
cation deployment. Often, these components are the
methods themselves, such as in MAUI [6] and Scav-
enger [4]. These components can also be larger, such
as Open Services Gateway initiative (OSGi) bundles in
AlfredO [17] and AIOLOS [5]. Zhang et al. [18] use
RESTful services called weblets. The algorithms used
to partition the application are often based on well-
known graph-partitioning algorithms [19], although
e.g. [18] uses Naive Bayesian Learning techniques for
runtime optimization. An in-depth comparison of cyber
foraging and other mobile cloud computing systems is
given in [20], [21].

Apart from multimedia applications, collaborative
applications are also gaining interest. In collaborative

applications, also called groupware, users work to-
gether in a common context or state to accomplish
a common goal. Collaborative applications face addi-
tional challenges when executed in a mobile environ-
ment due to joining and leaving users. An example of
a middleware system specifically focused on collabo-
rative applications is MoCa [22].

No existing middleware framework however incor-
porates both aspects of cyber foraging and collabo-
ration. We believe that collaborative applications can
also benefit from the cloudlet concept by allowing
users to share both resources and results. We integrate
these concepts to adopt the component-based cloudlet
for collaborative applications, autonomously deciding
which components to offload or share.

3. Augmented Reality use case

A collaborative AR application is used for deter-
mining the main requirements of our framework and
for evaluation. An AR application integrates virtual
objects in (an image of) the real world [23]. Most AR
applications use markers to identify the position of the
user (camera), but there are also some methods that
work without a priori knowledge of the environment.
These algorithms create a map of the environment at
runtime and use this map to track the position of the
camera. Such a technique is described by Klein and
Murray, who introduced Parallel Tracking and Map-
ping (PTAM) [24]. This algorithm was later extended
by Castle et al. [25] who created Parallel Tracking
and Multiple Mapping (PTAMM) that allows using
multiple maps and automatic switching between these
maps.

As a use case, an AR application is presented
that is based on the PTAM algorithm (see [24] for
details). Fig. 1 shows the collaborative AR application
we developed: a simple game where every user can
control his own spaceship and can interact with other
users and the real environment. Fig. 1a shows the
recognized feature points, 1b is the map, on which
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Figure 2. The components of our use case.

Figure 3. The height and shadow of the spaceship
can be adjusted by using the information from the
HeightMapper.

the feature points are projected. By determining the
projection of the points, the position of the camera can
be found. The camera position is then used to render
the spaceship correctly, which can be seen in Fig. 1c.
Fig. 1d shows the application running on a mobile
device with multiple users visible. Users ”looking” at
the same map will appear in the same virtual space and
can e.g. race each other. The height of the spaceship
is adapted based on its position in the environment.

The application consists of the following compo-
nents, as shown in Fig. 2:

Mapper By matching feature points between multiple
keyframes of a video, the 3D position of the points
can be estimated to create a 3D map. The Mapper
receives new keyframes from time to time.

Tracker This component extracts feature points in
the current keyframe and aims to determine the
position of the camera. The position of the camera
can be calculated by matching 2D feature points
of the video with 3D points of the Mapper.

MapperProxy We extended PTAM to enable the use
of multiple maps and automatically switch be-
tween them. The MapperProxy coordinates map
selection between the different Mappers, the
Tracker and the Relocalizer.
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Figure 4. Architecture of the existing cloudlet
framework [9].

Relocalizer When the Tracker cannot find the position
of the camera, the Relocalizer makes a rough esti-
mation of the camera position based on keyframe
similarity. The Relocalizer is also responsible for
the automatic switching between different maps.

HeightMapper Interaction with the environment is
made possible by the HeightMapper component.
This component creates a heightmap from the
3D points of the Mappers. The height of the
spaceship is adjusted according to the estimated
ground level, as in Fig. 3.

Model This component keeps track of the position,
orientation and velocity of the spaceships.

VideoSource This component fetches videoframes
from the camera and sends them to the Tracker.

Renderer The videoframes and virtual 3D objects are
combined by the Renderer. The 3D objects are
aligned with the videoframes by using the camera
position of the Tracker.

This application has interesting characteristics and
requirements with respect to the framework. Some
components, like the HeightMapper and Mapper, are
very CPU intensive, while others have real-time con-
straints; i.e. the Tracker and Renderer should process
frames within 50 ms to achieve an acceptable user
experience. It is also necessary to be able to efficiently
exchange data between multiple users. When multi-
ple users run the application at the same location,
sharing data could also save computing power. The
HeightMapper is an example of this: by sharing data,
the heightmap of each map has to be constructed only
once instead of on every device.

4. Middleware architecture

Our middleware framework is an extension of the
previous work on cloudlets presented in [9], [10].
While this cloudlet framework already provides the
necessary functionality for offloading software com-
ponents, it lacks support for collaborative applications.
Fig. 4 shows the main parts of the framework archi-
tecture: components, Execution Environments (EEs),
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Figure 6. The three steps performed during shared offloading.

Node Agents (NAs) and a Cloudlet Agent (CA).
An application has to be split up in several loosely-

coupled components that offer and require certain ser-
vices (interfaces). These components are managed by
the EE, which can start and stop components, and also
makes sure that the components are linked together
according to their offered and required interfaces.
Components can be migrated from one EE to another.
Function calls to components deployed on remote EEs
are intercepted by proxies and executed using Remote
Procedure Calls (RPCs).

A device (PC, smartphone, server) is called a node
and is managed by a NA that can start and stop
EEs, and monitors the (virtualized) hardware it runs
on. The nodes in the same LAN network form a
cloudlet that is managed by a single CA, which is
chosen based on node speed (see Section 6.1). The
CA communicates with the NAs and collects all the
monitor information from the NAs and EEs. The CA
can use this information to decide whether it has to
offload certain components to achieve e.g. a lower
(global) CPU usage.

We extend this middleware framework in two im-
portant ways. First, we add support for collaborative
applications through a couple of mechanisms described
in Section 5. Second, we introduce an allocation algo-
rithm in Section 6 which will facilitate autonomous
cloudlet configuration by determining a suitable com-
ponent allocation and selecting the appropriate collab-
oration mechanisms.

5. Mechanisms for collaboration

To provide collaboration, sharing state between
clients is essential. We extended the existing cloudlet
framework with two mechanisms for collaborations
that enable multiple instances of the same component
to share data: synchronization and shared offloading.

5.1. Synchronization

Synchronisation is an active mechanism: messages
are exchanged to keep a consistent state among com-
ponent instances. We implemented a client-server syn-
chronization mechanism, where one instance of the
component is selected as a server. This instance holds
the “ground truth” state and is responsible for the
distribution of state updates. Fig. 5 shows this three-
step process. The clients push their changed state to
the server, after which the server merges the new state
with the existing state. At this time the server can
choose to buffer the update and check for consistency
with pending state updates. How conflicts are resolved,
is up to the application developer (see Section 7.1).
Finally, the server pushes the (corrected) state update
to all the clients if necessary, where the local state
is overwritten. More advanced techniques such as
incremental synchronization and revision histories are
currently not offered by the framework, but could be
implemented by the application developer.



5.2. Shared offloading

The second collaboration technique is shared of-
floading, where multiple application instances use a
single, shared component instance. This mechanism
builds on the migration feature already present in the
cloudlet framework, and is again performed in three
steps. First a shared instance is created. Depending
on the location of this shared instance, nearly every
method call will be an RPC. Only when the shared
instance is allocated on a user device, will there still
be local calls from the local components. Next, all
other instances will push their state so it can be merged
as specified by the application developer. Finally, all
references are changed to refer to the shared instance.
By sharing a component, its state will remain consis-
tent across all application instances and collaboration
is guaranteed. As no additional messages need to be
exchanged, this is a passive mechanism.

6. Allocation algorithm

Cloudlets offer a number of opportunities to change
component deployment, for example by migrating
components or by changing the collaboration mech-
anism. By moving a resource-intensive component
to a node with plenty of unused capacity, we can
reduce the load on mobile nodes. Manual configura-
tion is however impractical, therefore we adopted an
autonomous Monitor-Analyze-Plan-Execute (MAPE)
control loop [26], and developed a heuristic allocation
algorithm to autonomously find an optimal configura-
tion.

6.1. Model

The allocation algorithm is formulated as an opti-
mization problem based on a theoretical model of the
cloudlet in [10]. This model incorporates infrastruc-
ture, applications and behaviour and is extended to
incorporate the collaborative aspects, such as synchro-
nization servers and shared components.

6.1.1. Infrastructure. Every cloudlet consists of a
number of nodes d ∈ D. Each node has a number of
CPU cores, denoted by #CPUcoresd and each core
can handle a certain amount of load per unit of time,
the node speed CPUspeedd.

6.1.2. Applications. Each application on the cloudlet
consists of a number of active components c ∈ C.
Some of these components are synchronization servers
or shared instances, which are grouped in Hservers and
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Figure 7. The transformation from a sequence
diagram to separate sequences.

Hshared respectively. Furthermore, we define Xcd and
hij as

Xcd =

{
1 if c is allocated on d
0 otherwise

(1)

hij = 1−
∑
d∈D

Xcid ·Xcjd. (2)

Hence, Xcd represents an allocation matrix and hij
tells us whether ci and cj are allocated on different
nodes.

6.1.3. Behaviour. To model the behaviour, we intro-
duce the concept of a sequence: a specific succes-
sion of method calls along a certain path through
the control flow graph. Fig. 7 shows this concept.
A single sequence diagram containing a conditional
statement is split in two distinct paths or sequences,
only one of which will be followed at runtime. Each
sequence s ∈ S occurs with a certain frequency
#callss and contains a number of method calls mscicj

from component ci to cj . Every method has a certain
load loadmscicj

, an argument size Amscicj
, a result

size Bmscicj
and occurs #callsmscicj

times within the
sequence.

6.2. Objective

Based on this model, we minimize a weighted sum
of the average CPU usage of all devices in the cloudlet
and the required total bandwidth:

fobjective = α · CPUusageavg + β · bandwidth (3)

By minimizing this objective function, we not only
leverage the larger capacity of fixed nodes for reducing
load on mobile nodes, we also keep the necessary



bandwidth low. By adjusting the parameter α, we
are able to either put more emphasis on minimizing
average CPU load or on bandwidth usage.

To obtain CPUusageavg , we first calculate loadsd,
which is the load per unit of time generated by
sequence s on device d.

loadsd =
∑
ci∈C

∑
cj∈C

Xcjd · loadmscicj

·#callsmscicj
·#callss (4)

Summing loadsd over all sequences gives us loadd,
the total load per unit of time imposed on device d.

loadd =
∑
s∈S

loadsd (5)

This allows us to calculate the average CPU usage
on device d as:

CPUusaged =
loadd

CPUspeedd ·#CPUcoresd
(6)

The total average CPU usage is then given by:

CPUusageavg =
∑
d∈D

CPUusaged/#D (7)

The bandwidth used can be found by summing the
size of the argument and return values for each call that
is executed by components ci and cj that are allocated
on different devices (i.e. hij = 1).

bandwidth =
∑
s∈S

∑
ci∈C

∑
cj∈C

hij ·
(
Amscicj

+Bmscicj

)
·#callsmscicj

·#callss (8)

Additional constraints are added to the objective
function as not to exceed the single-threaded and multi-
threaded capacity of each node. As every method
within a sequence is executed sequentially, the load
of that sequence on a specific core cannot exceed the
speed of that core.

loadsd ≤ CPUspeedd,∀s ∈ S, ∀d ∈ D (9)

Similarly, the load of all the sequences in parallel
on a specific node, cannot exceed the total capacity of
that node.

loadd ≤ CPUspeedd ·#CPUcoresd,∀d ∈ D (10)

Algorithm 1 Simulated Annealing
Current← Initial
Best← Initial
T ← startTemperature(Initial)
L← epochLength(Initial)
repeat

for L times do
Select possible move k ← selectMove (Current)
Calculate gain G← g (k, Current)

if accepted with probability e
G
T then

Current← performMove (k, Current)
if f (Current) < f (Best) then

Best← Solution
end if

end if
end for
Decrease T

until the stop criterion is met
return Best

6.3. Heuristic

There are a number of possible actions to change
the allocation of the cloudlet: migrating components,
changing synchronization servers and switching be-
tween synchronizing and sharing. The number of valid
allocations scales approximately as O

(
DC
)
, where D

is the number of nodes and C is the number of compo-
nents. Algorithms to find the global optimum such as
a brute-force approach or Integer Linear Programming
(ILP) do not scale well with the infrastructure and
application size. Hence heuristics are required for
runtime optimization in realistic scenarios.

Inspired by the results presented in [19], Simulated
Annealing (SA) is adopted in our framework. This is a
move-based, intelligent random search using a control
factor defined as the temperature. The procedure is
shown in Algorithm 1. A randomly selected move is
accepted with probability exp (G/T ), where G is the
gain in the objective function by executing the move
and T is the temperature. Moves with a positive gain
will always be accepted, but a fraction of moves with
a negative gain will also be accepted depending on the
temperature. The algorithm advances through a number
of epochs, in which a fixed number (proportional to the
number of possible moves) of random moves are tested
with a fixed temperature.

A high initial temperature allows the algorithm to
explore a large area of the search space, while decreas-
ing the temperature geometrically as the algorithm
advances, ensures it converges to a local optimum.
The initial temperature is determined so that a given
fraction (typically > 60%) of moves with negative gain
is accepted for the initial solution. When the fraction of
accepted moves in a certain epoch falls below a given



threshold, a counter is increased. When this counter
exceeds another given stop threshold, the algorithm
terminates. As SA is stochastic, it also makes sense
to run the algorithm for multiple iterations and select
the most optimal solution found.

7. Implementation

To evaluate our design, we developed prototype
versions of the collaborative cloudlet framework and
the AR use case.

7.1. Collaborative cloudlet framework

The prototype of the cloudlet framework is devel-
oped in Java and is based on the OSGi specification.
OSGi already provides functionality for installing, re-
moving and moving components at runtime. Apache
Felix [27] is used as implementation of OSGi. The mi-
gration of components and remote execution of method
calls is made possible by an open source, lightweight
implementation of the OSGi Remote Service Admin
specification [28].

The synchronization mechanism is implemented
as an extension of the EE. In order to enable state
synchronization in a component, the application
developer has to provide the following three
methods: Serializable getState(), void
setState(Serializable state) and
Serializable mergeState(Serializable
state). The component can decide when to push its
state to the server by calling the syncNow method
on the EE. The mergeState method is called on
the server to combine the old and new states, after
which the server will call the setState method on
each client to push the new state.

When migrating a component, a suitable EE needs
to be selected in order to isolate different application
instances and shared or offloaded components on the
same node. When no empty EE is available, a new
one is created to host the instances needing isolation.
Shared offloading is implemented as migrating a com-
ponent to an EE where a component instance is already
active. When such a component instance is detected,
the state is merged using the mergeState method.
If no instance is active, a new one is started and its
state is set using setState.

The allocation algorithm is integrated into the CA.
The CA runs two control loops. A fast control loop
with period 5 s will gather the monitoring informa-
tion and process component properties to check for
shareable and offloadable components. A slow control
loop with period 30 s will execute the SA algorithm

and execute the necessary commands to configure the
cloudlet based on its solution. The slower loop allows
the cloudlet to stabilize after executing commands
so the next iteration will use valid monitoring infor-
mation. To cope with nodes joining or leaving the
cloudlet, an additional check in the fast loop will call
the SA algorithm immediately when the nodes have
changed.

7.2. Augmented Reality use case

The PTAM algorithm in [29], written in C++, is
split into different components (Mapper, Tracker and
Relocalizer) that are wrapped in Java using using Java
Native Interface (JNI), and in turn into OSGi bundles.
By providing binaries for multiple architectures in
the bundle, the components are still portable. The
MapperProxy component is added to the application
to be able to use multiple Mappers without having to
change the code of the Mapper.

The Mapper and HeightMapper are both com-
putationally intensive and can be offloaded. The
HeightMapper, Model and MapperProxy have a share-
able state. By sharing the state of the HeightMapper,
only one heightmap per Mapper has to be created,
otherwise every client creates all of the heightmaps
independently. The Model performs incremental syn-
chronization by only sending the position of the space-
ship tied to the local user. The Model is responsible
for the interaction between the spaceships and the
environment. When spaceships come in each other’s
vicinity, their height is adjusted to make sure they don’t
collide. The Model also fetches the ground level of the
spaceship’s position from the HeightMapper to adjust
the shadow and the height of the spaceship.

The HeightMapper will create a heightmap for each
Mapper instance based on its 3D pointcloud. To create
the heightmap, this pointcloud is projected onto the
ground plane. The projection is then triangulated after
which each triangle is assigned the minimum height
of its vertices in the original pointcloud. We use a
Delaunay-triangulation [30] to get a regular shape and
the incremental construction algorithm [31] to create
this triangulation in practical time.

8. Results

The evaluation is done in two parts. First, the
effectiveness of the allocation algorithm is determined
by comparing it to an optimal algorithm. By making
a trade-off between effectiveness and execution time,
we can determine the parameters of the algorithm.
Second, we evaluate the collaboration mechanisms and
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Figure 8. Comparison of the allocation algorithm
parameters and their influence on the effectivity
and execution time.

the allocation algorithm in a runtime scenario with the
use case application.

8.1. Allocation algorithm

In order to evaluate the performance of the allo-
cation algorithm, we will compare the SA technique
to an optimal brute-force algorithm. We consider both
effectiveness and execution time. The effectiveness is
defined as the fraction of the gain in the objective
function using the SA-approach to the one using the
brute-force approach. We generated and averaged over
500 randomly generated applications which reflect the
complexity of the AR use case. An average execution
time of 88 s for finding the optimal solution through
a brute force strategy motivates the need for a heuris-
tic approach. First, the necessary coefficients in the
objective function are determined using the optimal
algorithm. After setting α to 1, we tune the other
coefficients in such a way that the average CPU load
and bandwidth have the same weight and none of the
constraints are violated.

Secondly, the parameters of the SA algorithm are
refined in order to improve the quality of the solutions
obtained when running the SA algorithm for 1 s, as
this value allows to perform SA-based optimisation
at runtime. Fig. 8 shows the different parameters and
how they vary in both effectiveness and execution
time. The effects of these different parameter settings
are evaluated in reference to a default configuration,
which is the crossing point of all the curves. Due to
the stochastic nature of the algorithm, these values
are averaged over 10 runs for each configuration. The
default configuration gets an effectiveness of 82,5%
for an execution time of 105 ms. We observe that
changing the stop threshold increases the effectiveness

the most for the smallest increase in execution time.
By increasing this threshold, we get an effectiveness
of 98,6% for an execution time of 213 ms. Further
optimizations only result in excessive execution times
without significant improvement of the solution qual-
ity.

A hysteresis coefficient is added to ensure a certain
minimal amount of gain is achieved before applying
the solution. This will help to stabilize the cloudlet.
We observe that a coefficient of 5% has no significant
effect on the average effectiveness.

8.2. Augmented Reality use case

To evaluate the performance of the collaboration
mechanisms and the allocation algorithm on the use
case in a runtime scenario, two Android devices (Sam-
sung Galaxy SII with a 1.2 GHz dual-core ARM
Cortex-A9 and LG Optimus 2X with a 1 GHz Dual-
core ARM Cortex-A9) and an extra free node (Mac-
Book Pro with a 2.4 GHz Intel Core 2 Duo running
Ubuntu Linux) are used. These devices are connected
to a IEEE 802.11n wireless acces point with no other
wireless devices present.

There are two stages in the test: the shareable
components are first synchronized manually, and af-
terwards the allocation algorithm is activated. The
measured CPU usage and bandwidth is visible on
Fig. 9, as well as the important events. The allocation
algorithm decides in less than a second to offload the
HeightMapper and Mapper instances to the free node
(and does this consistently in multiple test runs); the
migration itself takes about 20 seconds due to pending
function calls to the HeightMapper. The CPU usage
decreases from 100% to around 85% on the Android
devices and increases on the server. The CPU usage
gain on Android is modest because there is no cap on
the Frames Per Second (FPS) and the Tracker profits
from the freed resources to process more frames.

Beside the CPU usage, we also monitored the exe-
cution times of the most important methods: those that
process map updates (in the Mapper and HeightMap-
per) and videoframes (in the Tracker). Fig. 10 shows
the average execution times and standard deviations
before and after the offloading. The Tracker component
is not offloaded, but the execution time decreases
by 41% due to the extra available CPU cycles after
offloading the Mapper and HeightMapper. The execu-
tion times of the Mapper and HeightMapper decrease
with 49% and 95% respectively, including the network
delay. The major difference in execution times of the
HeightMapper before and after offloading is caused by
the limited floating point support of ARM processors.
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Figure 9. The change in CPU usage and bandwidth in our testing scenario. At 30 s the map is initialised,
at about 90 s the allocation algorithm is activated. Offloading of the HeightMapper is completed 20 s later,
after which the Mapper is offloaded.

9. Conclusion

In this paper we proposed a mobile middleware
framework that extends the cloudlet concept to support
collaboration using two mechanisms: synchronization
and shared offloading. An AR application based on
PTAM was also extended to incorporate collaboration
and allow basic interaction between users and with the
environment. An allocation algorithm was designed to
allow autonomous configuration of the cloudlet.

By evaluating the framework we were able to deter-
mine the benefits and drawbacks of both collaboration
mechanisms. Which mechanism is more suitable de-
pends on constraints imposed on bandwidth, CPU load,
execution times and/or the migration of components.
We were also able to fine-tune the parameters in the
allocation algorithm to get the most effectiveness for
the given time frame. When running in combination
with the AR use case, we were able to decrease
execution times of key components by 41% to up to
95%, while still guaranteeing collaboration.
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