84,503 research outputs found

    Handling Complexity in Modern Software Engineering: Editorial Introduction to Issue 32 of CSIMQ

    Get PDF
    The potential of the Internet and related digital technologies, such as the Internet of Things (IoT), cognition and artificial intelligence, data analytics, services computing, cloud computing, mobile systems, collaboration networks, and cyber-physical systems, are both strategic drivers and enablers of modern digital platforms with fast-evolving ecosystems of intelligent services for digital products. This issue of CSIMQ presents three recent articles on modern software engineering. First, we focus on continuous software development and place it in the context of software architectures and digital transformation. The first contribution is followed by the description of the basis of specific security requirements and adequate digital monitoring mechanisms. Finally, we present a practical example of the digital management of livestock farming

    An investigation into dynamical bandwidth management and bandwidth redistribution using a pool of cooperating interfacing gateways and a packet sniffer in mobile cloud computing

    Get PDF
    Mobile communication devices are increasingly becoming an essential part of almost every aspect of our daily life. However, compared to conventional communication devices such as laptops, notebooks, and personal computers, mobile devices still lack in terms of resources such as processor, storage and network bandwidth. Mobile Cloud Computing is intended to augment the capabilities of mobile devices by moving selected workloads away from resource-limited mobile devices to resource-intensive servers hosted in the cloud. Services hosted in the cloud are accessed by mobile users on-demand via the Internet using standard thick or thin applications installed on their devices. Nowadays, users of mobile devices are no longer satisfied with best-effort service and demand QoS when accessing and using applications and services hosted in the cloud. The Internet was originally designed to provide best-effort delivery of data packets, with no guarantee on packet delivery. Quality of Service has been implemented successfully in provider and private networks since the Internet Engineering Task Force introduced the Integrated Services and Differentiated Services models. These models have their legacy but do not adequately address the Quality of Service needs in Mobile Cloud Computing where users are mobile, traffic differentiation is required per user, device or application, and packets are routed across several network domains which are independently administered. This study investigates QoS and bandwidth management in Mobile Cloud Computing and considers a scenario where a virtual test-bed made up of GNS3 network software emulator, Cisco IOS image, Wireshark packet sniffer, Solar-Putty, and Firefox web browser appliance is set up on a laptop virtualized with VMware Workstation 15 Pro. The virtual test-bed is in turn connected to the real world Internet via the host laptop's Ethernet Network Interface Card. Several virtual Firefox appliances are set up as endusers and generate traffic by launching web applications such as video streaming, file download and Internet browsing. The traffic generated by the end-users and bandwidth used is measured, monitored, and tracked using a Wireshark packet sniffer installed on all interfacing gateways that connect the end-users to the cloud. Each gateway aggregates the demand of connected hosts and delivers Quality of Service to connected users based on the Quality of Service policies and mechanisms embedded in the gateway. Analysis of the results shows that a packet sniffer deployed at a suitable point in the network can identify, measure and track traffic usage per user, device or application in real-time. The study has also demonstrated that when deployed in the gateway connecting users to the cloud, it provides network-wide monitoring and traffic statistics collected can be fed to other functional components of the gateway where a dynamical bandwidth management scheme can be applied to instantaneously allocate and redistribute bandwidth to target users as they roam around the network from one location to another. This approach is however limited and ensuring end-to-end Quality of Service requires mechanisms and policies to be extended across all network layers along the traffic path between the user and the cloud in order to guarantee a consistent treatment of traffic

    A concept for modern virtual telecommunication engineering office

    Get PDF
    High-performance modern Internet allows internal delivery and complement of attractive (mobile) services in the same way and QoS that are in the LANs. The world economics is widely characterized nowadays via the stable trends that the large and mid-range companies and authorities let in ever greater extent to outsource own engineering services via external smaller service providers. A concept for a modern virtual telecommunication engineering office under use of Service-Oriented Architectures and Cloud Computing technologies has been offered. Multiple use cases for virtual telecommunication engineering office have been discussed. As a significant example, the CANDY Framework and Online Platform have been examined. The important development trends for the CAD for network planning regarding to the tool integration and effective access optimization have been discussed. The CANDY system has been represented as an exhibit at CeBIT 2007,2008, 2011 in Hannover

    Problems of training of future specialists in applied mechanics to use mobile and cloud technologies in their professional activities.

    Get PDF
    Метою статті є виділення мобільних і хмаро орієнтованих засобів, які доцільно використовувати для професійно-практичної підготовки майбутніх фахівців з прикладної механіки, та особливостей їх системного використання у вищих технічних навчальних закладах України. В роботі проаналізовано сучасні хмарні сервіси та мобільні програми, що можуть бути використані в професійній діяльності інженерів-механіків. Визначено, що використання хмарних сервісів Autodesk та їх інтеграція з хмарними сервісами Google є доцільним для професійно-практичної підготовки бакалаврів з прикладної механіки. Запропоновано модель єдиного доступу до хмарних сервісів загально-наукової, навчальної та професійної діяльностіFrom specialist required formed a high-level ICT competence, capability and ability to use existing software for solving problems using local resources and global computer networks, collaboration skills, the use of cloud and mobile technologies in engineering activity. In this regard, steadily growing requirements for Ukraine universities future engineer ICT training. Purpose. Allocation of mobile and cloud-oriented tools that should be used for professional and practical training of future specialists in applied mechanics and specifics of their use of the system of higher technical educational institutions of Ukraine. Methods. Analysis of educational programs, analysis of scientific literature, a survey of students and teachers, modeling. Results. The identified of influence cloud technology on methodical system of computing disciplines training for future professionals of applied mechanics. A model using Google Apps in training bachelors of applied mechanics and model of a typical access to cloud-oriented means of general scientific, educational and professional activities has been offered. Analyzed the current cloud services and mobile applications that can be used for the profession of mechanical engineers. Originality. A model using Google Apps in training bachelors of applied mechanics. A model of a typical access to cloud-oriented means of general scientific, educational and professional activities. Using of Autodesk cloud services and their integration with cloud services Google is appropriate for future specialists in applied mechanics professional and practical training model. Conclusion. It is proved that the use of Autodesk cloud services and their integration with cloud services Google is appropriate for future specialists in applied mechanics professional and practical training. Results of the study can be applied to vocational and practical training of students of other engineering specialties

    Place and role of cloud technology in the vocational and practical training of future specialists in applied mechanics

    Get PDF
    В роботі проаналізовано структуру ІКТ-компетентностей майбутніх інженерів-механіків. Визначено вплив хмарних технологій на методичну систему навчання інформатичних дисциплін майбутніх фахівців з прикладної механіки. Запропоновано модель використання Google Apps у навчанні бакалаврів з прикладної механіки та модель типового доступу до хмаро орієнтованих засобів загально-наукової, навчальної та професійної діяльності. Проаналізовано сучасні хмарні сервіси та мобільні програми, що можуть бути використані в професійній діяльності інженерів-механіків. Доведено, що використання хмарних сервісів Autodesk та їх інтеграція з хмарними сервісами Google є доцільним для професійно-практичної підготовки майбутніх фахівців з прикладної механіки.From specialist required formed a high-level ICT competence, capability and ability to use existing software for solving problems using local resources and global computer networks, collaboration skills, the use of cloud and mobile technologies in engineering activity. In this regard, steadily growing requirements for Ukraine universities future engineer ICT training. Purpose. Determine the place and role of cloud in professional practical training of future specialists in applied mechanics. Methods. Analysis of educational programs, analysis of scientific literature, a survey of students and teachers, modeling Results. The structure of ICT competence of Mechanical Engineers has been analyzed. The identified of influence cloud technology on methodical system of computing disciplines training for future professionals of applied mechanics. A model using Google Apps in training bachelors of applied mechanics and model of a typical access to cloud-oriented means of general scientific, educational and professional activities has been offered. Analyzed the current cloud services and mobile applications that can be used for the profession of Mechanical Engineers. Originality. A model using Google Apps in training bachelors of applied mechanics. A model of a typical access to cloud-oriented means of general scientific, educational and professional activities. Using of Autodesk cloud services and their integration with cloud services Google is appropriate for future specialists in applied mechanics professional and practical training model. Conclusion. It is proved that the use of Autodesk cloud services and their integration with cloud services Google is appropriate for future specialists in applied mechanics professional and practical training. Results of the study can be applied to vocational and practical training of students of other engineering specialties

    Place and role of cloud technology in the vocational and practical training of future specialists in applied mechanics

    Get PDF
    В роботі проаналізовано структуру ІКТ-компетентностей майбутніх інженерів-механіків. Визначено вплив хмарних технологій на методичну систему навчання інформатичних дисциплін майбутніх фахівців з прикладної механіки. Запропоновано модель використання Google Apps у навчанні бакалаврів з прикладної механіки та модель типового доступу до хмаро орієнтованих засобів загально-наукової, навчальної та професійної діяльності. Проаналізовано сучасні хмарні сервіси та мобільні програми, що можуть бути використані в професійній діяльності інженерів-механіків. Доведено, що використання хмарних сервісів Autodesk та їх інтеграція з хмарними сервісами Google є доцільним для професійно-практичної підготовки майбутніх фахівців з прикладної механіки.Introduction. From specialist required formed a high-level ICT competence, capability and ability to use existing software for solving problems using local resources and global computer networks, collaboration skills, the use of cloud and mobile technologies in engineering activity. In this regard, steadily growing requirements for Ukraine universities future engineer ICT training. Purpose. Determine the place and role of cloud in professional practical training of future specialists in applied mechanics. Methods. Analysis of educational programs, analysis of scientific literature, a survey of students and teachers, modeling Results. The structure of ICT competence of Mechanical Engineers has been analyzed. The identified of influence cloud technology on methodical system of computing disciplines training for future professionals of applied mechanics. A model using Google Apps in training bachelors of applied mechanics and model of a typical access to cloud-oriented means of general scientific, educational and professional activities has been offered. Analyzed the current cloud services and mobile applications that can be used for the profession of Mechanical Engineers. Originality. A model using Google Apps in training bachelors of applied mechanics. A model of a typical access to cloud-oriented means of general scientific, educational and professional activities. Using of Autodesk cloud services and their integration with cloud services Google is appropriate for future specialists in applied mechanics professional and practical training model. Conclusion. It is proved that the use of Autodesk cloud services and their integration with cloud services Google is appropriate for future specialists in applied mechanics professional and practical training. Results of the study can be applied to vocational and practical training of students of other engineering specialties

    Providing security and fault tolerance in P2P connections between clouds for mHealth services

    Full text link
    [EN] The mobile health (mHealth) and electronic health (eHealth) systems are useful to maintain a correct administration of health information and services. However, it is mandatory to ensure a secure data transmission and in case of a node failure, the system should not fall down. This fact is important because several vital systems could depend on this infrastructure. On the other hand, a cloud does not have infinite computational and storage resources in its infrastructure or would not provide all type of services. For this reason, it is important to establish an interrelation between clouds using communication protocols in order to provide scalability, efficiency, higher service availability and flexibility which allow the use of services, computing and storage resources of other clouds. In this paper, we propose the architecture and its secure protocol that allows exchanging information, data, services, computing and storage resources between all interconnected mHealth clouds. The system is based on a hierarchic architecture of two layers composed by nodes with different roles. The routing algorithm used to establish the connectivity between the nodes is the shortest path first (SPF), but it can be easily changed by any other one. Our architecture is highly scalable and allows adding new nodes and mHealth clouds easily, while it tries to maintain the load of the cloud balanced. Our protocol design includes node discovery, authentication and fault tolerance. We show the protocol operation and the secure system design. Finally we provide the performance results in a controlled test bench.Lloret, J.; Sendra, S.; Jimenez, JM.; Parra-Boronat, L. (2016). Providing security and fault tolerance in P2P connections between clouds for mHealth services. Peer-to-Peer Networking and Applications. 9(5):876-893. doi:10.1007/s12083-015-0378-3S87689395The Fifty-eighth World Health Assembly, Resolutions and Decisions. Document: A58/21. Available at: http://www.who.int/healthacademy/media/WHA58-28-en.pdf . [Last access: Dec. 30, 2014]World Health organization. Topics of eHealth. In WHO website. Available at: http://www.who.int/topics/eHealth/en/ . [Last access: Dec. 30, 2014]Pickup JC, Freeman SC, Sutton AJ (2011) Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 343:d3805Promotional Material Digital health: working in partnership. Department of Health. UK. (2014) Available at: https://www.gov.uk/government/publications/digital-health-working-in-partnership/digital-health-working-in-partnerships#digital-health---harnessing-technology-for-patient-benefit . [Last access: Dec. 30, 2014]eHealth for a Healthier Europe!– opportunities for a better use of healthcare resources. Available at: https://joinup.ec.europa.eu/sites/default/files/files_epractice/sites/eHealth%20for%20a%20Healthier%20Europe %20-%20Opportunities%20for%20a%20better%20use%20of%20healthcare%20resources.pdf. [Last access: Dec. 30, 2014]Adibi S (2012) Link technologies and BlackBerry mobile health (mHealth) solutions: a review. IEEE Trans Inf Technol Biomed 16(4):586–597Chiarini G, Ray P, Akter S, Masella C, Ganz A (2013) mHealth technologies for chronic diseases and elders: a systematic review. IEEE J Sel Areas Commun 31(9):6–18Lopes IM, Silva BM, Rodrigues JJ, Lloret J, Proenca ML (2011) A mobile health monitoring solution for weight control. In proceedings of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP 2011), Nanjing, pp 1–5Lopes IM, Silva BM, Rodrigues JJPC, Lloret J (2012) Performance evaluation of cooperation mechanisms for m-health applications. In proceedings of the 2012 I.E. Global Communications Conference (GLOBECOM 2012), AnaheimKyriacou EC, Pattichis CS, Pattichis MS (2009) An overview of recent health care support systems for eEmergency and mHealth applications. In proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), Hilton Minneapolis, pp 1246–1249Nkosi MT, Mekuria F (2010) Cloud computing for enhanced mobile health applications. In proceedings of the 2010 I.E. Second International Conference on Cloud Computing Technology and Science (CloudCom 2010), Indianapolis, pp 629–633Sultan N (2014) Making use of cloud computing for healthcare provision: opportunities and challenges. Int J Inf Manag 34(2):177–184Pandey S, Voorsluys W, Niu S, Khandoker A, Buyya R (2012) An autonomic cloud environment for hosting ECG data analysis services. Futur Gener Comput Syst 28(1):147–154Xia H, Asif I, Zhao X (2013) Cloud-ECG for real time ECG monitoring and analysis. Comput Methods Prog Biomed 110(3):253–259Bourouis A, Feham M, Bouchachia A (2012) A new architecture of a ubiquitous health monitoring system: a prototype of cloud mobile health monitoring system. arXiv preprint. Reference: arXiv:1205.6910Chen KR, Lin YL, Huang MS (2011) A mobile biomedical device by novel antenna technology for cloud computing resource toward pervasive healthcare. In proceedings of the 11th International Conference on Bioinformatics and Bioengineering (BIBE 2011), Taichung, pp 133–136Lacuesta R, Lloret J, Sendra S, Peñalver L (2014), Spontaneous ad hoc mobile cloud computing network. Sci World J (Article ID 232419): 1–19Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges (Chapter 14). In Mobile Networks and Cloud computing Convergence for Progressive Services and Applications. IGI Global. pp. 262–274. DOI: 10.4018/978-1-4666-4781-7.ch014Wan J, Zhang D, Zhao S, Yang LT, Lloret J (2014) Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges and solutions. IEEE Commun Mag 52(8):106–113. doi: 10.1109/MCOM.2014.6871677Rodrigues JJPC, Zhou L, Mendes LDP, Lin K, Lloret J (2012) Distributed media-aware flow scheduling in cloud computing environment. Comput Commun 35(15):1819–1827Dutta R, Annappa B (2014) Protection of data in unsecured public cloud environment with open, vulnerable networks using threshold-based secret sharing. Netw Protoc Algoritm 6(1):58–75Modares H, Lloret J, Moravejosharieh A, Salleh R (2013) Security in mobile cloud computing (Chapter 5). In Mobile Networks and Cloud computing Convergence for Progressive Services and Applications. IGI Global. pp. 79–91Mehmood A, Song H, Lloret J (2014) Multi-agent based framework for secure and reliable communication among open clouds. Netw Protoc Algoritm 6(4):60–76Mendes LDP, Rodrigues JJPC, Lloret J, Sendra S (2014) Cross-layer dynamic admission control for cloud-based multimedia sensor networks. IEEE Syst J 8(1):235–246Xiong J, Li F, Ma J, Liu X, Yao Z, Chen PS (2014) A full lifecycle privacy protection scheme for sensitive data in cloud computing. Peer-to-Peer Netw Appl 1–13Yang H, Kim H, Mtonga K (2014) An efficient privacy-preserving authentication scheme with adaptive key evolution in remote health monitoring system. Peer-to-Peer Netw Appl 1–11Silva BM, Rodrigues JJ, Canelo F, Lopes IM, Lloret J (2014) Towards a cooperative security system for mobile-health applications. Electron Commer Re 1–27Flynn D, Gregory P, Makki H, Gabbay M (2009) Expectations and experiences of eHealth in primary care: a qualitative practice-based investigation. Int J Med Inform 78(9):588–604Thampi SM (2010) Survey of search and replication schemes in unstructured P2P networks. Netw Protoc Algoritm 2(1):93–131Khan SM, Mallesh N, Nambiar A, Wright M (2010) The dynamics of salsa: a robust structured P2P system. Netw Protoc Algoritm 2(4):40–60Garcia M, Hammoumi M, Canovas A, Lloret J (2011) Controlling P2P file-sharing networks’ traffic. Netw Protoc Algoritm 3(4):54–92Lloret J, Garcia M, Tomas J, Rodrigues JJPC (2014) Architecture and protocol for InterCloud communication. Inf Sci 258:434–451Chowdhury CR (2014) A survey of cloud based health care system. Int J Innov Res Comput Commun Eng 2(8):5477–5481Ghosh R, Papapanagiotou I, Boloor KA (2014) Survey on research initiatives for healthcare clouds. Cloud Computing Applications for Quality Health Care Delivery. IGI Global 1–18Donahue S (2010) Can cloud computing help fix health care? Cloudbook J 1(6):1–6Deng M, Petkovic M, Nalin M, Baroni IA (2011) Home healthcare system in the cloud--addressing security and privacy challenges. In proceedings of the 2011 I.E. International Conference on Cloud Computing (CLOUD 2011), Washington, pp 549–556Wang X, Gui Q, Liu B, Chen Y, Jin Z (2013) Leveraging mobile cloud for telemedicine: a performance study in medical monitoring. In proceedings of the 39th Annual Northeast Bioengineering Conference (NEBEC 2013), Syracuse, pp 49–50Alamri A (2012) Cloud-based e-health multimedia framework for heterogeneous network. In proceedings of the 2012 I.E. International Conference on Multimedia and Expo Workshops (ICMEW 2012), Melbourne, pp 447–452Constantinescu L, Kim J, Feng DD (2012) Sparkmed: a framework for dynamic integration of multimedia medical data into distributed m-health systems. IEEE Trans Inf Technol Biomed 16(1):40–52Botts N, Thoms B, Noamani A, Horan TA (2010) Cloud computing architectures for the underserved: public health cyberinfrastructures through a network of healthatms. In proceedings of the 43rd Hawaii International Conference on System Sciences (HICSS 2010), Honolulu, pp 1–10Fan L, Buchanan W, Thummler C, Lo O, Khedim A, Uthmani O, Lawson A, Bell D (2011) DACAR platform for eHealth services cloud. In proceedings of the 2011 I.E. International Conference on Cloud Computing (CLOUD 2011), Washington, pp 219–226Ruiz-Zafra A, Benghazi K, Noguera M, Garrido JL (2013) Zappa: An Open Mobile Platform to Build Cloud-Based m-Health Systems. In proceedings of the 4th International Symposium on Ambient Intelligence (ISAmI 2013), Salamanca, pp 87–94Nijon S, Dickerson RF, Asare P, Li Q, Hong D, Stankovic JA, Hu P, Shen G, Jiang X (2013) Auditeur: a mobile-cloud service platform for acoustic event detection on smartphones. In Proceeding of the 11th annual international conference on Mobile systems, applications, and services. ACM, Taipei, pp 403–416Lloret J, Diaz JR, Boronat F, Jiménez JM (2006) A fault-tolerant P2P-based protocol for logical networks interconnection. In proceedings of the International Conference on Networking and Services (ICNS’06), Silicon ValleyLloret J, Palau C, Boronat F, Tomas J (2008) Improving networks using group-based topologies. Comput Commun 31(14):3438–3450Lloret J, Boronat Segui F, Palau C, Esteve M (2005) Two levels SPF-based system to interconnect partially decentralized P2P file sharing networks. In proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services.(ICAS-ICNS 2005), Papeete, p 39Cramer C, Kutzner K, Fuhrmann T (2004) Bootstrapping locality-aware P2P networkS. In proceedings of the 12th IEEE International Conference on Networks (ICON 2004), Singapore, pp 357–361FIPS 180-1 - Secure Hash Standard, SHA-1. National Institute of Standards and Technology. http://www.itl.nist.gov/fipspubs/fip180-1.htm [Last access: Dec. 30, 2014]Eastlake D., Jones P., US Secure Hash Algorithm 1 (SHA1),(2001). In IETF website, Available at: http://www.ietf.org/rfc/rfc3174.txt [Last access: March 20, 2015]Lacuesta R, Lloret J, Garcia M, Peñalver L (2011) Two secure and energy-saving spontaneous Ad-Hoc protocol for wireless mesh client networks. J Netw Comput Appl 3(2):492–50

    A formalized framework for mobile cloud computing

    Get PDF
    Mobile Cloud Computing (MCC) is an emerging paradigm to transparently provide support for demanding tasks on resource-constrained mobile devices by relying on the integration with remote cloud services. Research in this field is tackling the multiple conceptual and technical challenges (e.g., how and when to offload) that are hindering the full realization of MCC. The Networked Autonomic Machine (NAM) framework is a tool that supports and facilitates the design networks of hardware and software autonomic entities, providing or consuming services or resources. Such a framework can be applied, in particular, to MCC scenarios. In this paper, we focus on NAM’s features related to the key aspects of MCC, in particular those concerning code mobility capabilities and autonomic offloading strategies. Our first contribution is the definition of a set of high-level actions supporting MCC. The second contribution is the proposal of a formal semantics for those actions, which provides the core NAM features with a precise formal characterization. Thus, the third contribution is the further development of the NAM conceptual framework and, in particular, the partial re-engineering of the related Java middleware. We show the effectiveness of the revised middleware by discussing the implementation of a Global Ambient Intelligence case study
    corecore