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Abstract Mobile Cloud Computing (MCC) is an emerg-
ing paradigm to transparently provide support for demanding
tasks on resource-constrained mobile devices by relying on
the integration with remote cloud services. Research in this
field is tackling the multiple conceptual and technical chal-
lenges (e.g., how and when to offload) that are hindering the
full realization ofMCC.TheNetworkedAutonomicMachine
(NAM) framework is a tool that supports and facilitates the
design networks of hardware and software autonomic enti-
ties, providing or consuming services or resources. Such a
framework can be applied, in particular, to MCC scenarios.
In this paper, we focus on NAM’s features related to the key
aspects of MCC, in particular those concerning code mobil-
ity capabilities and autonomic offloading strategies. Our first
contribution is the definition of a set of high-level actions
supporting MCC. The second contribution is the proposal
of a formal semantics for those actions, which provides the
core NAM features with a precise formal characterization.
Thus, the third contribution is the further development of
the NAM conceptual framework and, in particular, the par-
tial re-engineering of the related Java middleware. We show
the effectiveness of the revised middleware by discussing the
implementation of a Global Ambient Intelligence case study.
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1 Introduction

Mobile Cloud Computing (MCC) is an emerging paradigm
for transparent elastic augmentation of mobile devices capa-
bilities, exploiting ubiquitous wireless access to cloud stor-
age and computing resources [25]. MCC aims at increasing
the range of resource intensive tasks supported by mobile
devices, with no or limited effects on their battery autonomy.
While the ever increasing communication capabilities avail-
able in mobile devices make viable offloading computation
and storage to remote services, several issues and challenges
are hindering the full realization of MCC. Among those, sig-
nificant are the lack of an agreed upon conceptual model for
MCC systems, the fact that most of current applications are
statically partitioned, the possibility of rapid changes in net-
work conditions and local resource availability, as well as
privacy and security concerns related to storing user data on
a remote cloud [15,16,24]. Moreover, as multiple offload-
ing approaches are possible [24] depending on the task and
context, autonomic computing techniques appear promising
to increase the robustness and flexibility of MCC systems
[10]. In particular, autonomic policies grounded on continu-
ous resource and connectivitymonitoringmay help automate
the context-aware selection and operation of offloading pro-
cedures.

The Networked Autonomic Machine (NAM) frame-
work [3] is a general-purpose conceptual tool to describe
distributed autonomic systems, and it is suitable for MCC
systems, as it supports code and data mobility concepts. The
Java implementation of a middleware based on NAM, called
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NAM4J, has been recently enhanced with support for code
mobility on mobile platforms. However, reasoning on MCC
issues and optimizing relevant mechanisms within NAM are
not an easy task, as the middleware contains too low-level
details, while the conceptual framework is too abstract.

The aim of this paper was to provide the NAM frame-
work with formal grounds, in order to fill the gap between its
implementation and its conceptual definition. In particular,
we focus on those aspects that are important for its adop-
tion in MCC scenarios. To this aim, we propose an approach
that synergistically combines foundational concepts from the
Theoretical Computer Science field, e.g., process calculi,
with practical issues from the Software Engineering field,
which concern the implementation of the NAM4J middle-
ware. Therefore, our goal is not to propose a theory that is an
end-in-itself, but a formal approach that endeavors to have
an impact on the actual MCC technology.

More specifically, we provide the NAM framework with
a formalization in terms of a transformational operational
semantics based on the Kernel Language for Agents Interac-
tion and Mobility (Klaim) [12]. Intuitively, such formaliza-
tion associates a Klaim term to any NAM construct. The use
of Klaim for this purpose is a natural choice, because it is a
linguistic formalism specifically designed to model distrib-
uted systems consisting of several mobile components which
interact throughmultiple distributed sharedmemories, called
tuple spaces. Its primitives allow programs to distribute/re-
trieve data and processes to/from the nodes of a network,
thus enabling data and code mobility.

In addition, we have revised the NAM conceptual frame-
work by equipping it with five different mobility primitives
that can be employed in the design and implementation of
MCC applications. Indeed, our first step has been the iden-
tification of this set of high-level primitives to be used in
NAM as first-class citizens, in order to allow developers to
directly focus on MCC concerns rather than their low-level
implementation. In fact, it is the duty of our formalization
to express them in terms of traditional primitives for code
mobility and coordination.

Moreover, driven by this formal treatment of the mobility
features of NAM,we have partially re-engineered its NAM4J
Java middleware, leading to an enhancement of its API sup-
porting MMC features and a clearer definition of the devel-
opment methodology. To experiment with the revised ver-
sion of NAM4J and to demonstrate its effectiveness, we have
implemented a practical illustrative example, where mobile
devices are used to collect and elaborate (possibly relying on
cloud resources) environmental data from local and external
sensors.

To sum up, the formalization process contributed to:
(1) the identification of a set of high-level MCC-oriented
primitives; (2) the refinement of the NAM framework to
include them and a formal characterization of its semantics;

and (3) the ensuing re-engineering of the NAM4J middle-
ware. Moreover, such a formalization effort paves the way
for the verification of qualitative and quantitative properties
of MCC systems, thus supporting a formal-based design of
autonomic context-aware offloading strategies.

Structure of the paper. The remainder of this paper is struc-
tured as follows. Section 2 presents a simplified description
of the NAM framework, tailored to our formalization pur-
pose. Section 3 describes NAM at work on an illustrative
example from the MCC domain. Section 4 outlines the main
features of Klaim, which are used in Sect. 5 to define a
formal semantics of NAM. Section 6 shows how the NAM
formalization has driven the re-engineering of the mobility
functionalities of NAM4J and demonstrates its effectiveness
by means of the implementation of the example introduced
in Sect. 3. Section 7 describes related work regarding MCC,
autonomic middleware, code migration, and their formaliza-
tion. Section 8 reports our conclusions and describes future
work. Finally, the complete Klaim-based formalization, as
well as related comments, is reported in the Appendix.

This work is an extended and revisited version of our for-
mer development introduced in [1]. This version of the paper
(1) provides a complete presentation of the Klaim-based
formalization, (2) illustrates the re-engineering effort of the
middleware mobility actions, (3) shows the NAM approach,
in particular the revised NAM4J middleware, at work on a
practical MCC example on Global Ambient Intelligence.

For the ease of reading, Table 1 lists the acronyms used
throughout the paper.

2 The NAM framework

A system of NAMs is a loosely connected network of hard-
ware/software entities, which provide or consume services.
In this paper, we focus on specific MCC features, such as
data and code mobility, and thus we only consider the set of
NAM concepts devoted to address them. Other NAM con-
cepts, such as service composition and interface compatibil-
ity, are also relevant for a comprehensive description ofMCC
scenarios, but are not MCC-specific. Therefore, we decided
to omit them, in order to focalize on mobility aspects. We
plan to include also those aspects in a future extension of the
NAM framework formalization.

In a NAM network, each device can host one or more
NAMs. Roughly, a NAM is a container of data and compu-
tational entities. Both application data and awareness data
are considered; the former is used for enabling the progress
of the NAM’s computation, while the latter provides infor-
mation about the environment in which the NAM is running
(e.g., sensor readings and context events) or about the status
of the NAM itself. Computational entities, instead, are ser-
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Table 1 List of acronyms

BH = Back action Handler

CH = Copy action Handler

Disp = Dispatcher

DST = Destination

GAmI = Global Ambient Intelligence

GH = Go action Handler

LPH = Local Policy Handler

LSH = Local Service Handler

KLAIM = Kernel Language for Agents Interaction and
Mobility

MCC = Mobile Cloud Computing

MH = Mobility Handler

MiH = Migrate action Handler

NAM = Networked Autonomic Machine

NAM4J = NAM for Java

OH = Offload action Handler

PH = Policy Handler

PMH = Policy and Mobility Handler

RPH = Remote Policy Handler

RSH = Remote Service Handler

SH = Service Handler

SRC = Source

vice threads exploiting functionalities provided by libraries
called functional modules.

More formally, a NAM is represented as a tuple nam =
〈nid,R,F ,P〉, where nid is the NAM identifier,R is a set
of physical resources, F = { f1, . . . , fm} is a set of func-
tional modules, and P is a set of NAM (self-management)
policies. Resources are, for example, CPU cycles, storage
space, network interfaces, etc. Each NAM is allowed to
directly access its own resources. Instead, remote resources
(of another NAM) are not directly accessible. Actually, a
NAM can only interact with the services exposed by other
NAMs. For this reason, the formalization described in this
work mostly focuses on services. We do not consider data as
a resource, and we assume it is always stored within func-
tional modules and moved accordingly. More general mod-
els including NAM data outside functional modules are out
of the scope and purpose of this paper, although we do not
envisage any issue in extending our formalization in such a
direction. The state of a NAM consists of the sets R, rep-
resenting available resources, and F describing functional
modules that currently reside on it. Autonomic policies are
a crucial means to support MCC, since they alleviate mobile
users frommanually starting/stopping applications, or appli-
cation modules, when their execution becomes too demand-
ing in terms of local resources. Specifically, a policy is an
Event-Condition-Action rule of the form (ev, co, act): the

occurrence of an event ev triggers the evaluation of the cor-
responding condition co and, in case of positive evaluation,
the action act is executed.

A functional module is a specialized module represented
as a tuple f = 〈fid,S,P f ,D, T 〉, where fid is the functional
module identifier, S is a set of bindings from service names
to methods of f implementing them, P f is a tuple contain-
ing functional policies of themodule (i.e., policies that define
module-specific actions to be taken when particular condi-
tions hold), D is a set of data available to the module, and
T is a set of threads currently run by the module itself. We
consider a service as an entry point for a functional module,
which has the role of aggregating functions and data to pro-
vide computational tasks. In otherwords, functions hosted by
functional modules are accessed by other (local or remote)
functional modules via services. To this purpose, when a
functional module receives a service request, it identifies (via
bindings in S) the corresponding local/remote method and
subsequently creates a thread implementing it. Events are
another form of entry points, but they differ from services
since a service request triggers a thread execution, while
an event triggers a policy evaluation and, possibly, a func-
tional or self-management action. In fact, while services are
specifically devised to support client–server communication,
events also enable publish–subscribe interactions. Specif-
ically, functional module policies P f = 〈Po,Pl ,Pr 〉 are
structured in three parts: Po are the on-site policies, active
when the module is not offloaded, while Pl ,Pr are the poli-
cies activated in the local and remote NAMs, respectively,
when the module is offloaded. The need of having local and
remote policies in offloading is motivated by the need of
evaluating events both locally and remotely. An example of
local event is the detection of decreasing connection quality,
triggering the recall of a remote module. Similarly, a remote
event can arise on lack of resources, triggering the decision
of sending the module back to the owner.

2.1 Mobility actions

Mobility is a fundamental aspect of NAM networks, since it
allows a dynamic reconfiguration of the system by moving
functional modules from NAM to NAM. We allow for five
different mobility actions: offload, back, go, migrate, and
copy. Figure 1 summarizes the four scenarios where these
actions can be used.

In the first scenario, nam1 is running short of resources
(such as battery or cpu) so it decides, according to its internal
policies, to move the code of functional module f to nam2

through an offload action. As an effect of this action, the
resource-consuming elements of f (i.e., data D and running
threads T ) are moved to nam2 and are regulated by specific
policies Pr (while, from now on, policies Pl are activated
and enforced locally to nam1). Therefore, f stops consuming
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Fig. 1 Allowed mobility actions

resources of the source and starts consuming the ones of the
destination. The entry points of f (i.e., the services specified
in S) are, instead, left on nam1. This choice is motivated by
the need of full offloading transparency, with respect to local
and remote modules that use services of f . This operation
requires the service bindings S on nam1 to be modified to
redirect service requests on nam2. If necessary, nam1 can
request to terminate the offloading of f by executing a back
action, which moves back the functional module f to nam1

and updates S and active policies consistently. Finally, in
the case nam2 decides it cannot provide hosting for f any
longer (e.g., nam2 is a cloud service and nam1 is running
out of credit), it can execute a go action which, again, moves
back the functional module f to nam1.

In the second scenario, we consider an autonomic func-
tional module f such as a crawler. In this case, the whole
functional module f (including services and service bind-
ings) can request to bemoved to anotherNAM.The container
nam1 moves f to nam2 by executing amigrate action. After
this action, no part of f (including services) is available on
nam1. Clearly, this action requires to update the set F1 of
functional modules on nam1, as well as the set F2 of func-
tional modules on nam2.

In the third scenario, we consider events such as down-
loading applications or libraries. After a request of nam2 for
module f , nam1 copies it on nam2 through a copy action.
As a consequence, nam2 can access the services of f locally,
without relying on nam1. This action modifies the set F2 of
functional modules on nam2.

Finally, in the fourth scenario, we consider operations that
move offloaded modules. A typical case can be the need
of moving an offloaded module from a NAM to another to
perform load-balancing. In the figure, nam2 hosts a module
offloaded by nam1 and decides it cannot offer hosting any
more. Thus it moves f to nam3 through a go action. This
operation moves all elements of f from nam2 to nam3 and
updates S on nam1 (the update of these bindings is repre-
sented in Fig. 1 by the dashed lines).

Note that, in actions back, go, migrate, and offload, the
execution of threads T of the module f is suspended and,
then, recovered in the remote location. Similarly, local data
D of the module are moved to the remote location. On the
contrary, in a copy action, we expect f has no track of pre-
vious execution on nam1. Therefore, the sets D of data and
T of threads are set to be empty in nam2.

A mobility action can be executed by a NAM on a
local functional module, for actions copy, go,migrate, and
offload, and on a remote functional module, for action back.

Notably, we currently do not allow to move services,
unless the whole module is moved, since we do not envisage
any benefit in the considered MCC application scenarios.
Anyway, moving services would be a much lighter opera-
tion, because it consists essentially in moving/copying just
the service name and updating the corresponding bindings.

3 Global Ambient Intelligence example

In this section, we show a simple, although quite realistic,
MCC illustrative example, based on the NAM framework,
described in Sect. 2 and formalized in Sect. 5. The aim is
to clarify the role of mobility actions and, in particular, how
policies permit to separate the decision-support logic from
the code implementing mobility actions.

Let us consider a mobile sensing application allowing to
retrieve and display different types of sensed information.
Users are enabled to access context events and services every-
where, at homeor outside, inmobility.Mobile devices carried
by users can be raw data sources, but also aggregated infor-
mation producers, which combine and process low-level data
coming from sensors distributed in the environment. Indeed,
the widespread and ubiquitous nature of mobile devices
makes them attractive as providers of information collected
from their rich equipment of sensors (camera, microphone,
GPS, etc.), and also from external sensors (placed on people,
or in the environment). We refer to such a mobile sensing
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Fig. 2 Screenshots of the GAmI application. The user is allowed to publish building descriptions, including their sensor equipments. Moreover,
the user can search for deployed sensors and obtain periodic updates of their measured values

Fig. 3 The structure of the NAM of the GAmI application

approach as Global Ambient Intelligence (GAmI). A practi-
cal use of the mobile sensing application could be related to
temperature monitoring and control, integrated with activity
recognition to improve the comfort of the user.

In a previous work [3], we illustrated an implementation
of such a GAmI application (see Fig. 2), using the basic
features of the NAM framework. As a step forward, now,
we illustrate the benefits of the MCC actions formalized in
this paper. The envisioned distributed GAmI application is a
NAM network, where each NAM can be provided with the
following functional modules (see also Fig. 3):

– ChordFunctionalModule ( fC )—it allows the NAM to
participate in a Chord overlay network [33], with Pub-
lish and Lookup services (sp and sl , respectively); Chord
is characterized by an appealing O(log N ) information
lookup performance, being N the number of nodes in the
network, thus allowing for highly scalable decentralized
applications;

– SensorFunctionalModule ( fS)—it uses the Publish
service of fC to share context events related to sensed
information;

– ReasonerFunctionalModule ( fR)—it uses the Lookup
service of fC to get context events of interest; to allow fC
also to behave in a proactive way, fR exposes a Notify
service (sn) that is called by fC when relevant context
events are produced either by fS , or by remote NAMs.

Among these functional modules, fR is the most demand-
ing in terms of CPU cycles, while fC is mostly bandwidth-
consuming, and fS is a thin software layer that consumes the
battery of the mobile device as long as it uses its local sen-
sors. To reduce the energy consumption, the best candidate
for being offloaded or migrated is fR , as fC must stay on the
mobile device for connectivity reasons, and fS can reduce
its operation rate. Instead, fR is always active, but it must
not necessarily run on the mobile device, to provide aggre-
gated sensing information to the user. It is worth noting that
copying fC to other NAMs allows to increase the size of the
Chord overlay network, which may be useful to balance the
communication and information storage workload.

Thus, we consider an Augmented Execution scenario [24]
in which a mobile device, hosting the GAmI NAM, is run-
ning short of a certain resource (e.g., battery power or CPU
cycles), while fR is performing its demanding task. In gen-
eral, an autonomic applicationwithMCCsupport (e.g., a sub-
scription to a cloud service) should react accordingly to the
situation, so that its task is completed successfully, evenwhen
local resources become insufficient, and without requiring
user intervention. In our scenario, possible decisions are to
offload fR for execution on the cloud service and to copy fC
for execution on another mobile node.

It is crucial to identify the responsibility of such decisions,
themechanisms to enact them, as well as the responsibility of
related mobility operations (e.g., back action). Regarding the
offloading decision, a reasonable solution within the NAM
framework is to rely on self-management policies. These are
entitled ofmonitoring events related to the state of the device,
in order to preserve a given quality of service or safety condi-
tions. Let us now start considering the role of policies of the
ReasonerFunctionalModule fR in our specific example.
Policies of fR are 〈Po,Pl ,Pr 〉, where:

Po = {(cpuLoadUpdate, load > 70%,offload(fid)),

(batteryChargeUpdate, charge ≤ 30%,offload(fid))}
Pl = {(wifiConnectionReport, quali t y < 4,back(fid))}
Pr = {(serviceQualityReport, quali t y < 7,go(fid))}
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with fid being the identifier of fR . On-site policies Po moni-
tor the availability of CPU and battery resources and, if nec-
essary, trigger the offloading action to reduce resource con-
sumption. Once offloading is completed, the policy handler
is split into a local and a remote handler (executing, respec-
tively, Pl and Pr ). The former (running Pl ) monitors the
quality of the wireless connection and decides (possibly, by
enacting some forecasting)when it is necessary to request the
module back from the cloud service because the connection
has become unreliable and in order not to loose the computa-
tion performed so far. The latter (running Pr ) resides on the
cloud service NAM and monitors the quality of the compu-
tation service. If not satisfactory (e.g., not sufficiently fast),
offloading may become a disadvantage and the module may
decide to go to another NAM, possibly its origin one.

Let us now consider the behavior of the remote cloud ser-
vice,which provides elastic resources to registered userswith
a positive credit balance. The cloud service provides the users
with one or more virtual machines running a cloned system
image. Themobile device is allowed to offload fR to a cloned
replica for remote execution, thus saving battery and time,
since the cloud will speed up the computation. As already
mentioned, the offloading process is started on the mobile
device by policies of the functional module fR . On the side
of NAMs hosted on virtual machines, policies perform other
monitoring tasks such as those described by the following
rules:

P = {(cpuLoadUpdate, load > 80%,LoadBalance),

( accountCreditReport_fid, credit = 0,go(fid))}
where CPU load is monitored and, if too high, a re-balancing
action is executed,moving a functionalmodule to another vir-
tual machine. Furthermore, for each hosted functional mod-
ule fid, the user credit is monitored and, if insufficient, the
module is sent back to the owner.

Regarding the policies of the ChordFunctionalModule
fC , among its on-site policies, the following ones regulate
its replication on other NAMs:

(chordWorkloadUpdate, workload > 70%, copy(fid′)),
(chordReq, true, copy(fid′))

with fid′ being the identifier of fC . The former policy moni-
tors the workload of the Chord module; if it is overloaded, a
copy action is executed to activate a newChord network node
in another NAM. The latter policy performs the same action
when a copy of the Chord module is explicitly requested by
another NAM that desires to be part of the Chord network.

Figure 4 illustrates a possible interaction, among those
allowed by the previously described policies. In partic-
ular, nam1 is hosted on a mobile device and either on
a cpuLoadUpdate event or on a batteryChargeUpdate
event the policies request an offload action of module fR .

Fig. 4 Possible evolutions of the scenario described in the illustrative
example

Therefore, the virtual machine hosting nam2 accepts mod-
ule fR (it may be running other modules). When offloading
is complete, all requests of service sn on nam1 are redirected
to nam2 for evaluation.

Weassume that the virtualmachinehostingnam2 becomes
overloaded, which triggers the action moving a functional
module to another NAM. This may cause in the underlying
cloud middleware the creation of a new virtual machine, but
these details are out of the scope of the NAM framework. In
Fig. 4, this balancing operation is illustrated as a go action
moving fR to nam3.

It may be the case that the user moves and the wireless
connection becomes weaker and unreliable. This is detected
by the local policy handler, as discussed previously. Thus, fR
is requested back by the owner nam1, so that the execution
can continue locally. Also, this event is illustrated in Fig. 4,
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Table 2 Klaim syntax

(Nets)

N ::= s ::ρ C
∣
∣ N1 ‖ N2

∣
∣ (νs)N

(Components)

C ::= P
∣
∣ 〈t〉 ∣

∣ C1 |C2

(Processes)

P ::= a
∣
∣ X

∣
∣ A(p1, . . . , pn)

∣
∣ P1 ; P2

∣
∣ P1 | P2

∣
∣ P1 + P2

∣
∣ if (e) then {P1} else {P2}
∣
∣ while (e) {P}

(Actions)

a ::= in(T )@�
∣
∣ read(T )@�

∣
∣ out(t)@�

∣
∣ inp(T )@�

∣
∣ readp(T )@�

∣
∣ eval(P)@�

∣
∣ newloc(s)

∣
∣ x := e

(Tuples)

t ::= e
∣
∣ �

∣
∣ P

∣
∣ t1, t2

(Templates)

T ::=e
∣
∣ �

∣
∣ ?x

∣
∣ ?l

∣
∣ ?X

∣
∣ T1, T2

by showing that fR goes from nam3 back to nam1, on the
mobile device.

Finally, the last situation described in Fig. 4 corresponds
to the copy of the ChordFunctionalModule fC to nam4,
running on another mobile device, due to, e.g., an explicit
request of the latter NAM.

4 KLAIM

In this section, we summarize the key features of the for-
mal language Klaim. It has been specifically designed to
provide programmers with primitives for handling physical
distribution, scoping, and mobility of processes. Although
Klaim is based on process algebras, it makes use of Linda-
like asynchronous communication and models distribution
via multiple shared tuple spaces.

Linda [19] is a coordination paradigm rather than a lan-
guage, since it only provides a set of coordination primitives.
It relies on the so-called generative communication para-
digm, which decouples the communicating processes both
in space and time. Communication is achieved by sharing a
common tuple space, where processes insert, read, andwith-
draw tuples. The data retrieving mechanism uses pattern-
matching to find the required data in the tuple space.

Klaim enriches Linda primitives with explicit informa-
tion about the locality where processes and tuples are allo-
cated. Klaim syntax1 is shown in Table 2.

1 We use a version of Klaim enriched with high-level features, such
as assignments, standard control flow constructs, and non-blocking

Nets N are finite collections of nodes composed by means
of the parallel operator N1 ‖ N2. It is possible to restrict the
scope of a name s by using the operator (νs)N : in a net of
the form N1 ‖ (νs)N2, the effect of the operator is to make
s invisible from within N1.

Nodes s ::ρ C have a unique locality name s (i.e., their
network address) and an allocation environment ρ, and host a
set of components C . The allocation environment provides a
name resolution mechanism by mapping locality variables l
(i.e., aliases for addresses), occurring in the processes hosted
in the corresponding node, into localities s. The distinguished
locality variable self is used by processes to refer to the
address of their current hosting node. Components C are
finite plain collections of processes P and evaluated tuples
〈t〉, composed by means of the parallel operator C1 |C2.

Processes P are the Klaim active computational units,
which canbe executed concurrently either at the same locality
or at different localities. They are built up from basic actions
a, process variables X , and process calls A(p1, . . . , pn), by
means of sequential composition P1; P2, parallel composi-
tion P1 | P2, non-deterministic choice P1 + P2, conditional
choice if (e) then {P1} else {P2}, iterationwhile (e) {P}, and
(possibly recursive) process definition A( f1, . . . , fm) � P ,
where A denotes a process identifier, while fi and p j denote
formal and actual parameters, respectively. Hereafter, we do
not explicitly represent process definitions (and their migra-
tion to make migrating processes complete) and assume that
they are available at any locality of a net. Notably, e ranges
over expressions, which contain basic values (booleans, inte-
gers, strings, floats, etc.) and value variables x , and are
formed by using the standard operators on basic values and
the non-blocking retrieval actions inp and readp (explained
below). In the rest of this section, we will use the notation �

to range over locality names s and locality variables l.
During their execution, processes perform some basic

actions. Actions in(T )@� and read(T )@� are retrieval
actions and permit to withdraw/read data tuples from the
tuple space hosted at the (possibly remote) locality �: if a
matching tuple is found, one is non-deterministically chosen,
otherwise the process is blocked. They exploit templates as
patterns to select tuples in shared tuple spaces. Templates are
sequences of actual and formal fields, where the latter are
written ?x , ?l or ?X and are used to bind variables to values,
locality names or processes, respectively. Actions inp(T )@�

and readp(T )@� are non-blocking versions of the retrieval
actions; namely, during their execution, processes are never
blocked. Indeed, if a matching tuple is found, inp and readp
act similarly to in and read and additionally return the value

Footnote 1 continued
retrieval actions, that simplify the modeling task. All such constructs
are directly supported byKlaim related tools (such as, e.g., the analysis
tool SAM [26]).
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true; otherwise, they return the value false and the execut-
ing process does not block. inp(T )@� and readp(T )@� can
be used where either a boolean expression or an action is
expected (in the latter case, the returned value is simply
ignored). Action out(t)@� adds the tuple resulting from the
evaluation of t to the tuple space of the target node identi-
fied by �, while action eval(P)@� sends the process P for
execution to the (possibly remote) node identified by �. Both
out and eval are non-blocking actions. Finally, actionnewloc
creates new network nodes, while action x := e assigns the
value of e to x . Differently from all the other actions, these
latter two actions are not indexed with an address because
they always act locally.

We conclude the section with a simple example aiming
at clarifying how the communication between two Klaim
nodes takes place. Let us consider the following Klaim net:

s1 ::{self �→s1} out(foo, 5)@s2; P1

‖ s2 ::{self �→s2} in(foo, ?x)@self; P2

Since the process in the node s2 is blocked, due to the block-
ing semantics of the retrieval action in, the only possible
evolution of the net is as follows:

s1 ::{self �→s1} P1

‖ s2 ::{self �→s2} (〈foo, 5〉 | in(foo, ?x)@self; P2)

That is, the action out is performed and, as a result, the tuple
〈foo, 5〉 is inserted in the tuple space of the target node s2.
Now, the presence of such a tuple in the local tuple space
triggers the execution of the action in:

s1 ::{self �→s1} P1 ‖ s2 ::{self �→s2} P2[5/x]
In fact, the template (foo, ?x) argument of the action in
matches the tuple 〈foo, 5〉, thus binding value 5 to the variable
x in the continuation process P2.

5 KLAIM-based semantics for NAM

This section discusses how, from an operational point of
view, a NAM network can be defined in terms of a Klaim
net. In particular, the aim of providing the semantics of
the NAM framework in terms of the Klaim formal lan-
guage is to clarify the relationship among functional mod-
ules, their related services, and the underlying middleware.
For the sake of readability, in this section, we omit the target
self from Klaim actions, by writing, e.g., in(T ) in place of
in(T )@self .

A NAM network consisting of a collection of NAMs
{nam1, . . . , namm} can be rendered in Klaim as the fol-
lowing net:

nid1 ::ρ1 (C1
T S | C1

P ) ‖ . . . ‖ nidm ::ρm (Cm
T S | Cm

P )

where nidi is the identifier of nami andρi stands for {self �→
nidi }. Intuitively, each NAM 〈nid,R,F ,P〉 is modeled by
a Klaim node with tuple space CT S and running processes
CP .

The tuples stored inCT S represent data local to functional
modules in F , availability of resources in R, messages to
denote service requests or events, code of functional modules
inF , and commands to instrument the forms ofmobility sup-
ported by the framework.We adopt the following convention
about tuples: the first field of each tuple is a tag string indicat-
ing the tuple’s role; e.g., tuple 〈srvReq, sid, data, nidSRC 〉
denotes a service request containing the identifier of the
requested service, input data, and the identifier of the NAM
invoking the service.

The processes in CP , performing the computational tasks
and the self-management of the NAM, are defined as the
following parallel composition:

Disp | PMH | F1 | . . . | Fk

where:

– Disp is a dispatcher of service requests to the appropriate
functional modules;

– PMH is the policy and mobility handler that is in charge
of enforcing the NAM policies P and executing the
mobility commands;

– Fj includes the processes modeling the functional mod-
ule f j in F with identifier fid, i.e., the service handler
(SH ) and the policy handler (PH ) of the functionalmod-
ule, and a number of threads (T ), each of which serving
a specific service request:

SHfid | PHfid | T 1
fid | . . . | T h

fid

In the rest of this section, we provide some details on the
processes mentioned above.

5.1 NAM control

The process that models the service request dispatcher of a
NAM is defined as follows:

Disp =
in(srvReq, ?sid, ?data, ?nidSRC);
read(srvBinder, sid, ?fid, ?nidIMP);
if (nidIMP == self)

then{out(srvAssign, sid, fid, data, nidSRC)}
else {out(remoteSrvAssign, sid, fid, data, nidSRC)@nidIMP};

Disp

This process cyclically reads (and consumes) a service
request, determines the NAM hosting the functional mod-
ule implementing the service (which can be either the NAM
enclosing the dispatcher itself or a remoteNAM), and sends a

123



SOCA (2015) 9:229–248 237

service assignment to such a NAM. More specifically, a ser-
vice binder tuple of the form 〈srvBinder, sid, fid, nidIMP〉,
stored in the consideredNAM, is used to identify (via pattern-
matching) the NAM nidIMP providing the implementation
of module fid exposing service sid. Depending on whether
nidIMP is the local NAM or not, either a local service assign-
ment (tagged by srvAssign) or a remote one (tagged by
remoteSrvAssign) is generated.

The process that models the policy and mobility handler
of a NAM is as follows:

PMH = MH + ∑

(ev,co,act)∈P
in(event, ev); if (co) then {Pact }; PMH

Mobility commands are dealt with by the mobility handler
(MH, illustrated in Sect. 5.3), while policies by the policy
handler. The latter is rendered as a choice composition of
the processes modeling Event-Condition-Action rules of the
NAM policies P . In particular, an event ev (retrieved by an
in) triggers the execution of the process Pact , realizing the
action act , provided that condition co is satisfied.

Note that the PMH component enacts mobility actions or
policies in a mutually exclusive way. This means that the
policy and mobility handler processes only one event at the
time, in order to avoid interferences among the executions of
differentmobility actions, andwith the evaluation of policies.

5.2 Functional module control

Every functional module f has a service handler SHfid that
has two roles: (1) to react to service assignments, by creating
a thread that serves the corresponding service request, and
(2) to change state accordingly to mobility requests.

The following Klaim code models these behaviors:

SHfid =
in(srvAssign, ?sid, fid, ?data, ?nidSRC);
START_THREAD(sid, fid, data, nidSRC);
SHfid

+ in(copySH, fid, ?nidDST ); eval(SHfid)@nidDST ;
SH f id

+ in(migrateSH, fid, ?nidDST ); eval(SHfid)@nidDST
+ in(offloadSH, fid, ?nidDST ); eval(RSHfid)@nidDST ;
LSHfid

On arrival of a service assignment (srvAssign) for fid, the
service handler creates a thread with the following parame-
ters: the service identifier sid, the module identifier fid, the
data for the computation, and the client identifier nidSRC .
We discuss code for thread creation later on. In case of a
copy request (copySH) for fid to nidDST destination, the ser-
vice handler copies itself to nidDST by using the eval action
and returns to its previous state. In case of a migrate request
(migrateSH), the service handler behaves similarly, except
that it stops its execution. An offload request (offloadSH)

behaves differently: It first starts a remote service handler
RSHfid at location nidDST and then switches to execute a
local service handler LSHfid . We now introduce the code of
these two processes:

LSHfid =
in(backSH, fid, ?nidDST );
out(remoteBackSH, fid)@nidDST ;
SHfid

RSHfid =
in(remoteSrvAssign, ?sid, fid, ?data, ?nidSRC);
START_THREAD(sid, fid, data, nidSRC);
RSHfid

+ in(remoteBackSH, fid)

+ in(goSH, fid, ?nidDST ); eval(RSHfid)@nidDST

After offloading, service requests are forwarded to the remote
NAM nidDST by the dispatcher process Disp. Therefore, the
solely role ofLSHfid is to react to a back request (backSH) by
informing the remote NAM (by a remoteBackSH request)
and returning to (normal) state SHfid . On the other side,
the remote service handler RSHfid has three possible behav-
iors. The first reacts to a (forwarded) remote service assign-
ment (remoteSrvAssign), by creating a thread to serve the
request, and returns to its initial state. The second receives a
(forwarded) back request (remoteBackSH) and terminates
the RSHfid process. The last behavior reacts to a go request
(goSH) to nidDST by creating a remote service handler to
location nidDST and terminating. Notice that this case is acti-
vated only if the destination NAM nidDST of the go action is
not the functional module owner (i.e., the offloader), other-
wiseRSHfid would become SHfid . This check is performed by
the process triggering the goSH action, which is themobility
handlerMH that we will discuss in Sect. 5.3. Clearly, after a
go action, service requests are forwarded to the new NAM,
where the remote service handler is active. This redirection
requires the update of the service bindings, which is again
taken care of by the mobility handler process.

Before discussing mobility actions in further detail in the
next section, we briefly illustrate how threads are created:

START_THREAD(sid, fid, data, nidSRC) =
read(srvImpl, sid, fid, ?Code);
tid := getFreshId();
out(thread, fid, tid);
eval(Code(tid, data, nidSRC, fid))

By using the service identifier sid, the implementation
(Code) of that service in the functionalmodulefid is retrieved
from a tuple tagged srvImpl. Then, a new thread identifier
t id is created and registered as a thread of fid. Finally, the
thread Code(t id, data, nidSRC, fid) is executed locally. The
thread registration phase (with its unique id) is required to
be able to retrieve and move running threads of a functional
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module when offload/migration of this module is performed.
We expect the thread to know the identifier of the service
client (nidSRC), to be able to reply to it, and its own identifier
tid to be able to unregister on task completion and to react
on migration/offloading requests. We assume the thread user
code is instrumented accordingly (and, possibly, automati-
cally).

The policy handler PHfid executes policies similarly to
PMH , by using triples (ev, co, act) in the on-site policy Po

of fid. Furthermore, it reacts to mobility actions identified
by tuples with tag in {backPH,copyPH, goPH,migratePH,
offloadPH}. In particular, similar to the service handler, in
the case of an offload request, it first starts a remote pol-
icy handler RPHfid (which executes the functional module
remote policy Pr ) and then switches to execute a local pol-
icy handler LPHfid (which executes the functional module
local policy Pl ).
To ease the reading, we relegate the code of processes PHfid ,
RPHfid , and LPHfid to the Appendix.

5.3 Mobility handler

The mobility handlerMH executes in mutual exclusion with
NAM policies. It is structured as follows:

MH = CH + MiH + OH + BH + GH

where CH is the copy action handler, MiH is the migrate
action handler, OH is the offload action handler, BH is the
back action handler, and GH is the go action handler. We
now illustrate the Klaim code for the offload action handler,
then we briefly describe how the other actions are handled.
The interested reader can find the correspondingKlaim code
in the Appendix.

OH =
in(offloadReq, ?fid, ?nidDST );
out(offloaderNAM, f id, self)@nidDST ;
UPDATE_BINDER(fid, nidDST );
MOVE_IMPLEMENTATION(fid, nidDST );
TRANStoREM_SRVASSIGN(fid, nidDST );
MOVE_THREADS(fid, nidDST );
out(offloadSH, fid, nidDST );
out(offloadPH, fid, nidDST );
PMH

On arrival of an offload request (offloadReq2), the han-
dler first informs the remote NAM nidDST that its NAM

2 It is worth noticing that an offload request as received by the offload
action handler contains more information (in particular, the identity of
the destination NAM) with respect to the corresponding actions spec-
ified in the policies (see Sect. 3). We assume indeed that this level of
transparency is properly managed by the processes modeling the exe-
cution of policy actions (i.e., processes Pact within PMH).

(self) is the owner (offloader) of the functional module fid,
by adding a tuple tagged by offloaderNAM. Then, it updates
the binder for each service in fid with the new information
that the module is at location nidDST . Afterward, itmoves the
implementation of each service (that is, the code associated
with each service in the functional module) to nidDST . Each
service assignment which has not been served yet is trans-
lated into a remote request and sent to nidDST . Threads are
moved to nidDST by creating a moveThread tuple for each
thread identifier t id. Each thread is then expected to react
to this mobility request accordingly. Finally, offload requests
are sent (locally) to the service handler and to the policy han-
dler by using offloadSH and offloadPH requests, respec-
tively, indicating the destination NAM nidDST . We have seen
in the previous section how SHfid reacts to these requests.
Finally, the control returns to PMH where either a policy or
a mobility request is handled.

The copy action handler CH (whose code is given in the
Appendix), on arrival of a copy request (copyReq), performs
three operations: (1) it copies all binders by setting the remote
NAM as the fid location, (2) it copies the implementations,
and (3) it sends copy requests to the service andpolicyhandler
by using copySH and copyPH.

The migrate action handler MiH (whose code is given in
theAppendix), on arrival of amigrate request (migrateReq),
performs five actions: (1) it moves all binders by setting the
remote NAM as the fid location, (2) it moves the implemen-
tations, (3) itmoves the service assignments, (4) itmoves the
threads, and (5) it sends migrate requests to the service and
policy handler by using migrateSH and migratePH.

The back action handler BH (whose code is given in the
Appendix), on arrival of a back request (backReq), simply
sends to the remote NAM a go request with destination self .

Finally, the go action handler GH (whose code is given
in the Appendix) has two possible behaviors. The first is
performed on the remote NAM, on arrival of a go request
(goReq): (1) it retrieves the identity of the local NAM (using
a tuple tagged by offloaderNAM), (2) sends a notification
(goNotification) to the local NAM with the new location
(NAM2) so that it can update service bindings accordingly,
(3) moves implementation and threads to the new location,
and (4) if the new destination NAM2 is the originator of the
offload, then it is indeed a back action, and it simply sends
back requests to the service and policy handler and translates
remote service assignments to local ones. Otherwise, it per-
forms three sub-steps: (4.i) it informs NAM2 of the offloader
identity using the offloaderNAM tuple, (4.ii) it sends go
requests to the service and policy handler by using goSH
and goPH, and (4.iii) it moves remote (not yet served) ser-
vice assignments. The second behavior of GH is performed
on the local NAM and reacts to goNotificationmessages by
updating service binders to point to the new NAM (possibly,
self).
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Fig. 5 NAM4J layer stack

6 Formalization at work on NAM4J

NAM4J is a Java middleware which has been specifically
developed to implement NAM-based autonomic systems. A
layer stack showing the role ofNAM4J in a networked system
is depicted in Fig. 5. Basically, NAM4J runs in a Java Virtual
Machine.

Developers willing to build NAM4J-based applications
are required to perform a few steps, reported in the follow-
ing. The first step is the extension of the NetworkedAu-
tonomicMachine class. Each NAM node has an instance
of such a class, which provides data structures and meth-
ods to manage all the general activities that characterize
the NAM (e.g., loading, specific functional modules). The
next step is the definition of the functional modules through
the extension of the FunctionalModule class. Such modules
are then linked to the main class of the system through the
addFunctionalModule(FunctionalModule) method pro-
vided by theNetworkedAutonomicMachine class. Finally,
developers define the exposed services through the exten-
sion of the Service class. As for the functional modules,
which are linked to the class extending NetworkedAuto-
nomicMachine, services have to be linked to functional
modules through the addConsumableService(Service)
and addProvidedService(Service) methods provided by
the FunctionalModule class. As described in Sect. 2, each
node can only access its own resources, while the interaction
with resources of other nodes happens through the respective
services.

For example, a NAM interfaced to a number of sensors,
measuring different physical quantities,may expose a service
for each of them. The services providing sensor data related
to a given environment (e.g., temperature, humidity, pres-
sure) may be grouped by a single functional module, whose
purpose is to describe the overall state of the environment.
Interested nodes can access them through the respective ser-
vices.

In rest of the section, we illustrate how we have updated
NAM4J, in accordance with the Klaim-based semantics for

the NAM framework illustrated in Sect. 5. Moreover, we
revisit our illustrative example, to show how it has been
implemented by means of the updated NAM4J middleware.
The source code of the middleware and the example imple-
mentation can be browsed on the NAM4J project’s web site.3

Prior to the re-engineering, the middleware only included
two methods to, respectively, request and send code as jar
or dex files. The receiving NAM node subsequently added
the included classes to the classpath at runtime and began
the code execution. Such a mechanism represented a basic
implementation of the copy mobility action. During the re-
engineering, we developed several new classes grouped into
the mobility package. Such classes represent the handler, the
server-side implementation, and the client-side manager for
every mobility action, plus the server-side mobility engine
and actions manager. Specifically, the ServerMobilityAc-
tionManager class implements the server-side management
of the mobility actions and instantiates the proper Action-
Implementation object which manages the identification
of the code to be migrated and its offloading to the client.
The ActionManager class for a specific action implements
the client-side behavior by managing the code reception, its
runtime adding to the classpath, and its subsequent execu-
tion. More details regarding the new classes are given in the
following.

Concerning service interaction, we have implemented the
dispatcher described in Sect. 5. Specifically, we have defined
the IDispatcher interface, which must be implemented by
classes characterized by different dispatching algorithms
(according to the Strategy pattern [18]). We have also imple-
mented a basicDispatcher class, provided with a queue that
handles incoming service requests, an algorithm that assigns
service requests to local or remote functional modules, and
a threadpool that handles incoming messages from remote
NAMs.

Figure 6 illustrates how service requests are managed by
the basicDispatcher provided byNAM4J. It is assumed that
a discovery module is able to find the NAMs that are able to
serve a request—either the local one, or remote ones. The dis-
covery module selects a NAM among those offering a func-
tional module capable of dealing with the service request and
inserts the request in the queue associated with its dispatcher.
Then, there are two different cases of service request assign-
ments. In the first case (Fig. 6, step 5.1), the destination func-
tional module is local. Thus, theDispatcher calls the srvAs-
sign() method on the ServiceHandler of the chosen func-
tional module. TheServiceHandler then calls execute() on
the destination functional module, passing the description of
the requested service. The destination functional module has
a threadpool, to handle incoming execution requests. Once
a requested execution completes, a reply is returned to the

3 https://code.google.com/p/nam4j/source/browse/.
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Fig. 6 Operations of the basic Dispatcher provided by NAM4J

interested functional module, i.e., the functional module that
initially sent the service request to theDispatcher. In the sec-
ond case (Fig. 6, step 5.2), the destination functional module
has been previously offloaded to a remote NAM. Thus, the
service request is sent to a remote ServiceHandler, which
then calls execute() on the destination functional module,
passing the description of the requested service. Once the
requested execution completes, a reply is directly returned to
the interested functional module. Notably, discovery func-
tionalities and details concerning services provision consid-
ered here are out of the scope in the formalization, which
mainly focusses on mobility actions semantics.

Then, we have implemented an IMobilityEngine interface
and a basicMobilityEngine classwhichmanages the offload-
ing, copy, or migration of a functional module. As illustrated
in Fig. 7, depending on the case, the MobilityEngine inter-
acts with the most suitable MobilityHandler (in this case,
the State Pattern is used [18]). Let us focus on the CopyAc-
tionHandler. It is provided with a queue, to handle incoming
copy requests. Once a request exits the queue, the CopyAc-
tionHandler performs the following actions:

1. tells the remote NAM that a functional module f is going
to be copied;

2. tells the ServiceHandler associated with f that f is
going to be copied to the remote NAM, in order to create
also a copy of the ServiceHandler;

3. sends the binaries of f and the copy of the ServiceHan-
dler to the remote NAM;

4. activates f and its ServiceHandler in the remote NAM.

Fig. 7 Operations of the basic MobilityHandler provided by NAM4J
and details of the copy action

6.1 Implementation of the illustrative example

This section describes an example in which two NAM nodes
interact through the copy mobility action. To better explain
the steps performed during the implementation, several code
examples are provided. Thus, the section represents a brief
tutorial on how to implementNAM-based applications, using
NAM4J.

With reference to the code available online, package
it.unipr.ce.dsg.examples.migration includes theTestCopy-
Action class, which represents a demo for the copymobility
action, based on the example described in Sect. 3. NAM
n1 acts as a client and requests a module ChordFunc-
tionalModule to a known NAM n2, which acts as a server.
Such a functional module will allow n1 to enter the Chord
network and start interacting with the other nodes. More-
over, for illustration purposes, as presented by Listing 6.1,
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n1 requires a generic functional module and a generic ser-
vice,which are described by theTestFunctionalModule and
TestService classes of the same package. The request for
ChordFunctionalModule has two null values as second and
third parameters, since no service is required to be copied,4

while the second request has the name and the identifier of the
required service. Such parameters are String arrays, as they
specify the list of names and identifiers for all the required
services.

caption

1 /* Request Chord functional module */
2 migration.startCopyAction("

ChordFunctionalModule",
3 null ,
4 null ,
5 Platform.DESKTOP);
6

7 /* Request a functional module and a Service
*/

8 migration.startCopyAction("
TestFunctionalModule",

9 new String [] { "
TestService" },

10 new String [] { "
serviceId" },

11 Platform.DESKTOP);

The it.unipr.ce.dsg.nam4.impl.mobility package con-
tains five abstract classes, which provide the base structure
for the server-side mobility action handlers. Such classes
implement the Runnable interface, so that the management
of each action happens in a separate thread. The package
also includes five classes, which extend the aforementioned
abstract classes to provide a default implementation, and
theServerMobilityActionManager class, which accepts the
action requests and instantiates the suitable implementation
class.

Currently, just the copy action has been implemented by
the CopyActionImplementation and ClientCopyAction-
Manager classes, which provide server-side and client-side
management methods, respectively.

To request the execution of a copy action, the Net-
workedAutonomicMachine class provides the startCopy-
Action method reported in Listing 6.1. Such a method takes
as parameters the name of the main class of the functional
module to be copied (the corresponding jar will be found
by inspecting the local libraries, using reflection), optional
service names and ids to be copied along with the functional
module, and the platform on which the client is running—
either ANDROID or DESKTOP. The server uses the first
parameter to scan its own jar or dex files and find the
one to be sent. The last parameter is mandatory, because
the Android Dalvik Virtual Machine requires dex archives

4 For the sake of simplicity, the formalization does not consider the
possibility of copying a functional module without the associated ser-
vices. However, we do not envisage any difficulties on modeling this
feature.

instead of the more common jars. Listing 6.1 presents the
code that instantiates ClientCopyActionManager and del-
egates its execution to a thread of a pool. The Action.COPY
parameter is a string identifying the required mobility
action.

caption

1 public void startCopyAction(
2 String functionalModule ,
3 String [] service ,
4 String [] serviceId ,
5 Platform clientType) {
6 ClientCopyActionManager ccam = new

ClientCopyActionManager(this ,
7

functionalModule ,
8

service ,
9

serviceId ,
10

clientType ,
11

Action.COPY);
12 poolForClientMobilityAction.execute(

ccam);
13 }

As shown by Listing 6.1, ClientCopyActionManager’s
runmethod, which is executing on a NAM acting as a client,
calls the findRemoteItem method, which opens a socket
connection to a known NAM acting as a server. The client
then sends over the socket the Action.COPY string, its plat-
form type, and the name of a class that identifies the required
functional module, as shown by Listing 6.1. If the user asks
for one or more services, the method repeats the request
sequence for each of them—see the for cycle at line 12,where
requiredServiceClass is the array of required services.

caption

1 FunctionalModule fm = (FunctionalModule)
findRemoteItem(

2

requiredFmClass ,
3 clientType ,
4

MigrationSubject.FunctionalModule ,
5 action);
6

7 nam.addFunctionalModule (fm);
8

9 /* Check if the client asked for one or more
services of the functional module to

get copied */
10 if (requiredServiceClass != null) {
11

12 for (int g = 0; g < requiredServiceClass.
length; g++) {

13

14 String currentServiceClassName =
requiredServiceClass[g];

15 String currentServiceId =
requiredServiceId[g];

16

17 if (currentServiceClassName != null &&
currentServiceId != null) {

18

19 /* Obtaining the Service */
20 Service serv = (Service)

findRemoteItem(
21 currentServiceClassName ,
22 clientType ,
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23 MigrationSubject.SERVICE ,
24 action);
25

26 /* Adding the Service to the
functional module */

27 fm.addProvidedService(
currentServiceId , serv);

28 }
29 }
30 }

Listing 6.1 presents the code that allows for server-side
management of incoming requests, by passing each one to a
ServerMobilityActionManager instance.

caption

1 Socket cs = null;
2 ServerSocket ss = null;
3 ss = new ServerSocket(serverPort);
4

5 while (true) {
6 cs = ss.accept ();
7 poolForServerMobilityAction.execute(new

ServerMobilityActionManager(cs , this));
8 }

As previously stated, ServerMobilityActionManager’s
run method receives the requested action name and instan-
tiates the corresponding management class, as illustrated by
Listing 6.1.

caption

1 switch (action) {
2 case COPY: {
3

4 copyActionImplementation = new
CopyActionImplementation (this.nam , is ,
os);

5

6 Thread copyActionThreadStart = new
Thread(copyActionImplementation );

7

8 copyActionThreadStart.start ();
9

10 break;
11 }
12 /* ... */
13 }

Finally,CopyActionImplementation’s runmethod iden-
tifies thedex or the jar file by searching for the requested class
name inside all the Java archives owned by the node, and sub-
sequently performs the main activity of the copy action, i.e.,
it sends on the socket a description of the functional module,
or service, and the file itself.

7 Related work

This section discusses related work in the fields of
MCC, autonomic middleware, code migration, and their
formalization.

7.1 Mobile cloud computing

Many approaches to MCC have been proposed in the liter-
ature. In [24], three reference MCC approaches are identi-
fied. They differ in the granularity of the offloading process
(ranging from device cloning to application partitioning and
migration) and in the degree of involvement of the cloud.
With Augmented Execution, some or all of the tasks are
offloaded from themobile device to the cloud,where a cloned
system image of the device is running. The results from
the augmented execution are reintegrated upon completion.
Elastically Partitioned Applications can improve their per-
formance by delegating part of the application to remote
execution on a resource-rich cloud infrastructure. A Spon-
taneous Mobile Cloud represents a group of mobile devices,
connected by means of an infrastructure (WiFi, 3G, etc.) or
in ad hoc mode, that serve as a cloud computing provider by
exposing their computing resources to other mobile devices.
In a recent work [21], we have proposed a fourth approach,
called Hybrid Mobile Cloud, which consists of two or more
mobile devices that collaborate with the support of a remote
cloud. Suppose that Bob wants to offload a task to the mobile
node ofAlice, but the latter has a different hardware and oper-
ating system, for which the code cannot be directly migrated
from Bob’s device to Alice’s one. Thus, the latter gets the
code (in a suitable bundle) from the cloud. If data and exe-
cution state are necessary, Bob directly sends them to Alice,
with a direct device-to-device communication.

In thiswork,wehave considered anAugmentedExecution
case study to illustrate our formalization. In the near feature
we plan to extend our study to the other three approaches.

For further details on themotivations underlying theMCC
paradigm, concerning, e.g., energy saving and increase of
performance, we refer the interested reader to the seminal
work [25] on offloading. For surveys on the current state-
of-the-art on MCC approaches and technologies, we refer to
[15,16,24].

7.2 Autonomic middleware

Autonomic Computing brings together many sub-fields of
computer science, with the purpose of creating comput-
ing systems that manage themselves. Autonomic principles
should also drive MCC systems, where mobile devices have
to monitor themselves and take (or not) offloading deci-
sions. A widely known model for autonomic control loops is
MAPE-K [22], characterized by the following steps:Monitor
(bymeans of sensors), Analyze, Plan, and Execute (bymeans
of effectors), using a shared base of Knowledge. Among
available MAPE-K implementations, the Autonomic Com-
puting Toolkit is a collection of self-managing autonomic
technologies [28]. Also, the ABLE Toolkit [6] offers auto-
nomic management in the form of a multi-agent architec-
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ture, in which the autonomic manager is an agent or a set of
agents. Kinesthetics eXtreme [23,32] is an implementation
of the MAPE-K loop, whose main purpose is the addition of
autonomic properties to legacy systems.

In ourwork, themain ingredientwe borrow from theAuto-
nomic Computing domain is the use of policies for monitor-
ing the system execution and its working environment, and
hence performing the appropriate adaptation actions when
needed. Typically, these policies are expressed as Event-
Condition-Action (ECA) rules. The ECAparadigmwas orig-
inally introduced for active databases [11] and then applied
to the design of policy languages. Although recently more
sophisticated forms of policies have been considered for sup-
porting Autonomic Computing, as, e.g., in [14], we preferred
here to rely on ECA rules to keep this aspect of our formal
development clearer, but still effective.

With respect to MAPE-K and derived approaches, the
NAM framework we consider (and improve) in this work is
somehow less constrained—for example, the use of a knowl-
edge base is not mandatory. The NAM approach is directed
to the development of distributed middleware—conversely,
networks are not considered in MAPE-K. Like MAPE-K,
NAM is not tight to a specific implementation. NAM4J is
the current Java-based incarnation, but nothing prevents one
from developing other NAM-based software tools.

7.3 Code migration

Code mobility is the capability to dynamically reconfigure,
at runtime, the bindings between the software components
of the application and their physical location within a com-
puter network [9]. Two possible scenarios exist: (1) strong
mobility, if units are allowed to move their code and execu-
tion state to a different location and (2) weak mobility, if a
unit executing in a certain location is allowed to dynamically
bind to code coming from a different site (i.e., the execution
state is not moved). In Java, migrating the code segment and
the data space of a thread is feasible, while relocation of the
execution state of a thread to another Java Virtual Machine
(JVM) is still debated in the mobile code community. Strong
mobility support has been provided in [8] to server applica-
tions, by extending the scheduler of the IBM Jikes Research
Virtual Machine (RVM). Unfortunately, this approach can-
not be applied to mobile platforms. Regarding Android, for
example, the Dalvik Virtual Machine cannot be replaced by
the Jikes RVM. Other researchers chose to deal with Java
strong mobility from the inside, by modifying the bytecode
interpreter to keep track of the execution state [7,34]. Nei-
ther this approach can be applied to applications running
on mobile devices. On the iOS platform, strong mobility is
unfeasible, due to the SDK constraints imposed by Apple.
Coming from our previous experience with the SP2A mid-
dleware [2], NAM4J currently supports only weak mobility,

while strong mobility is work in progress. Anyway, in our
NAM formalization, we have already considered both forms
of mobility.

7.4 Mobile and autonomic computing formalizations

In the literature, many linguistic formalisms for modeling
different forms of mobility are proposed. Most of them are
based on π -calculus [29], which in its standard definition
directly allows only the mobility of links between linked
processes (process mobility is enabled in the higher-order
variant of the calculus). Some of such formalisms, namely
Klaim, Dπ , Djoin, andAmbient, are surveyed and compared
in [17]. Among themwe have selectedKlaim as basis for our
formalization because, besides (strong and weak) mobility
mechanisms, it provides a natural way to model the architec-
ture of NAM-based systems. In particular, a NAM network
is rendered as a network of Klaim nodes. Each node is then
equipped with a tuple space modeling data local to func-
tional modules, availability of resources, messages, code of
functional modules, and mobility commands. The processes
running on nodes represent both service threads and NAM
management components (i.e., the dispatcher, the policy and
mobility handler, and the functional modules).

Regarding autonomic computing, most of the proposals
in the literature still concern full-fledged programming lan-
guages rather than foundational models. Some proposed for-
malisms, as in [4,5,35], are inspired by chemical and bio-
logical phenomena. A formalism closer to programming lan-
guages, following a process calculi approach and based on
Klaim, is SCEL [14]. Although SCEL is equipped with con-
structs for dealingwith autonomicity, itmainly provides com-
munication primitives for dealingwith ensembles that are not
relevant for our study and make the operational semantics
much more complex. In more practical terms, SCEL is not
currently equipped with verification tools, which we plan to
use to analyze MCC-based applications. Instead, Klaim has
the advantage of conveniently enabling themodeling of auto-
nomic features (as shown in [20]) and, moreover, of coming
with software tools that support various forms of analysis.

A combination of both mobility and autonomicity is nec-
essary for proper modeling of MCC scenarios. Therefore,
Klaim turns out to be a natural choice for this task.

8 Conclusions

We have formalized a framework and some key primitives
to support the design of MCC systems. Specifically, we have
adopted NAM as a conceptual model for MCC and Klaim
as a formalization language. In particular, we have clarified
the role of policies as means to enact autonomic and context-
aware mobility strategies. Moreover, we have shown our for-
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mal approach at work on an illustrative example, including
not only offloading but also other cost- and reliability-driven
strategies.

Regarding futurework,weenvisage the following research
lines. First, we plan to apply existing analysis tools for ver-
ifying MCC systems specified at high level of abstraction.
The choice of Klaim has the advantage of supporting this
task bymeans of the SAM tool [26]. The challenge here is the
identification of relevant and desirable properties for MCC.

We also intend to thoroughly analyze issues about costs
of data transmission, which may affect the decision whether
to offload or not a computation to another NAM. Currently,
they can be dealt with using policies. Indeed, policies act as
evaluation points that can take into account cost issues. For
example, a policy can include some conditions involving data
transmission aspects (e.g., WiFiConnectionQuali t y <

4, FunctionModuleSi ze > 15MB, etc.). However, the
evaluation of a policy is based on the current status of the
system and of its environment. Amore sophisticated decision
support could be defined by exploiting the model provided
by the Klaim-based semantics. In particular, the stochastic
extension of Klaim [13], accepted as input by SAM, per-
mits enriching Klaim models with stochastic aspects that
enable the evaluation (possibly, at runtime) of performance
and other quantitative parameters. In this way, cost aspects
would be expressed in terms of stochastic parameters of the
model, and model checking techniques would be exploited
to support effective decision making in mobility strategies,
by taking into account also future actions to perform and
conditions to meet. NAM4J could be used to extract infor-
mation from execution traces, to determine the appropriate
parameters for the stochastic models.

Another research direction we plan to pursue concerns the
extension of the language for expressing policies. Currently,
the NAM framework relies in policies defined as Event-
Condition-Action rules, and an implementation of theMobil-
ity Engine based on Drools5 is going to be introduced in
NAM4J. Although this is a well-known and largely adopted
approach, it has some limitations, mainly concerning policy
compositionality. Thus, we will consider languages devised
for expressing more structured and sophisticated forms of
policies, such as XACML [31] and FACPL [27].

Last but not least, we are interested in the formal speci-
fication of stateful services in NAM. Currently, we consider
stateless services, i.e., they do not keep track of previous
interactions with clients. However, as we stated in Sect. 2,
services are just entry points to functional modules. Thus,
nothing prevents to have stateful services, if the associated
functional modules take into account previous executions—
as suggested, for example, by the Web Service Resource
Framework (WSRF) [30].

5 https://www.jboss.org/drools/.

Appendix

In this appendix we report and briefly comment the entire
Klaim specification of the NAM framework formalization.
We start by reviewing the various kinds of tuples used to
synchronize the NAMs and to realize mobility actions.

Control tuples

Service identifiers are bound to functional modules that can
offer those services and may be located in a local or remote
NAM; services are implemented within a functional module
by a process Proc:

〈srvBinder, sid, fid, nid〉 〈srvImplem, sid, fid, Proc〉

Services are accessed through a service request and then
dispatched to a specific functional module fid by a service
assignment, if it is a local module, or by a remote service
assignment if it is an offloaded module:

〈srvReq, sid, data, nid〉
〈srvAssign, sid, fid, data, nid〉
〈remoteSrvAssign, sid, fid, data, nid〉

Whenever a functional module is offloaded, the host NAM
is aware of the identity nid of the offloading NAM so that it
is able to send the module back to the owner on need:

〈offloaderNAM, fid, nid〉

Mobility actions are initiated by (five possible) mobility
requests, issued by (NAM or functional module) policies:

〈backReq, fid, nid〉 〈copyReq, fid, nid〉 〈goReq, fid, nid〉
〈migrateReq, fid, nid〉 〈offloadReq, fid, nid〉

When the mobility handler reacts to mobility requests, it
sends appropriate mobility commands to the service handler
of the corresponding functional module:

〈backSH, fid, nid〉 〈copySH, fid, nid〉 〈goSH, fid, nid〉
〈migrateSH, fid, nid〉 〈offloadSH, fid, nid〉 〈remoteBackSH, fid〉

and to its policy handler:

〈backPH, fid, nid〉 〈copyPH, fid, nid〉 〈goPH, fid, nid〉
〈migratePH, fid, nid〉 〈offloadPH, fid, nid〉 〈remoteBackPH, fid, nid〉

Running threads are associated with a functional module and
have their own unique identifier t id, used when migrating or
offloading the module:

〈thread, fid, tid〉

When a migrate/offload action is performed, move requests
are issued for each thread:

〈moveThread, tid〉

We expect that thread code is suitably instrumented to handle
these move requests and threads behave accordingly.
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NAM control

On arrival of a service request, the dispatcher chooses the
appropriate functional module to provide the service:

Disp =
in(srvReq, ?sid, ?data, ?nidSRC );
read(srvBinder, sid, ?fid, ?nidIMP);
if (nidIMP == self)

then{out(srvAssign, sid, fid, data, nidSRC )}
else {out(remoteSrvAssign, sid, fid, data, nidSRC )@nidIMP};

Disp

The policy and mobility handler runs policies and realizes
mobility actions:

PMH = MH + ∑

(ev,co,act)∈Pn
in(event, ev); if (co) then {Pact }; PMH

MH = CH + MiH + OH + BH + GH

The copy action handler, on arrival of a copy request, copies
all binders by setting the remote NAM as the fid location,
copies the implementations, and sends copy requests to the
service and policy handler:

CH =
in(copyReq, ?fid, ?nidDST );
COPY_BINDER(fid, nidDST );
COPY_IMPLEMENTATION(fid, nidDST );
out(copySH, fid, nidDST );
out(copyPH, fid, nidDST );
PMH

The migrate action handler, on arrival of a migrate request,
moves all binders by setting the remote NAM as the fid loca-
tion, moves the implementations, the service assignments,
and the threads, and sends migrate requests to the service
and policy handler:

MiH =
in(migrateReq, ?fid, ?nidDST );
MOVE_BINDER( f id, nidDST );
MOVE_IMPLEMENTATION(fid, nidDST );
MOVE_SRVASSIGN(fid, nidDST );
MOVE_THREADS(fid, nidDST );
out(migrateSH, fid, nidDST );
out(migratePH, fid, nidDST );
PMH

The offload action handler has been discussed in the paper:

OH =
in(offloadReq, ?fid, ?nidDST );
out(offloaderNAM, f id, self))@nidDST ;
UPDATE_BINDER(fid, nidDST );
MOVE_IMPLEMENTATION(fid, nidDST );
TRANStoREM_SRVASSIGN(fid, nidDST );
MOVE_THREADS(fid, nidDST );
out(offloadSH, fid, nidDST );
out(offloadPH, fid, nidDST );
PMH

The back action handler BH , on arrival of a back request,
sends to the remote NAM a go request with destination
self :

BH =
in(backReq, ?fid, ?nidDST );
out(goReq, fid, self)@nidDST ;
PMH

The go action handler has two possible behaviors. The first
is performed on the remote NAM and, on arrival of a go
request, retrieves the identity of the offloader NAM, sends
a notification (goNotification) to the offloader NAM with
the new location (NAM2) so that it can update service bind-
ings accordingly, and moves implementation and threads
to the new location. If the new destination NAM2 is the
offloader itself, then it is indeed a back action, and it sim-
ply sends back requests to the service and policy handler,
and translates remote service assignments to local ones. Oth-
erwise, it performs three sub-steps: (i) it informs NAM2

of the offloader identity using the offloaderNAM tuple,
(ii) it sends go requests to the service and policy handler,
and (iii) it moves remote (not yet served) service assign-
ments. The second behavior of GH is performed on the
local NAM and reacts to goNotificationmessages by updat-
ing service binders to point to the new NAM (possibly,
self).

GH =
in(goReq, ?fid, ?nidDST );

in(offloaderNAM, fid, ?nidOFF );
out(goNotification, self, fid, nidDST )@nidOFF ;
in(goACK, fid);
MOVE_IMPLEMENTATION(fid, nidDST );
MOVE_THREADS(fid, nidDST );
if (nidDST == nidOFF )

then {
out(backSH, fid, nidDST );
out(backPH, fid, nidDST );
TRANStoLOC_SRVASSIGN(fid, nidDST )

} else {
out(offloaderNAM, fid, nidOFF )@nidDST

out(goSH, fid, nidDST );
out(goPH, fid, nidDST );
MOVE_REMOTESRVASSIGN(fid, nidDST );

};
PMH

+ in(goNotification, ?nidSRC , ?fid, ?nidDST );
UPDATE_BINDER(fid, nidDST );
out(goACK, fid)@nidSRC ;
PMH

Functional module control

The service assignment handler, in its normal mode opera-
tion, has been described in the paper:

123



246 SOCA (2015) 9:229–248

SHfid =
in(srvAssign, ?sid, fid, ?data, ?nidSRC );
START_THREAD(sid, fid, data, nidSRC );
SHfid

+ in(copySH, fid, ?nidDST ); eval(SHfid )@nidDST ;
SH f id

+ in(migrateSH, fid, ?nidDST ); eval(SHfid )@nidDST

+ in(offloadSH, fid, ?nidDST ); eval(RSHfid )@nidDST ;
LSHfid

In the paper, we have also discussed the behavior of the ser-
vice assignment handler in its offloaded mode operation:

LSHfid =
in(backSH, fid, ?nidDST );
out(remoteBackSH, fid, nidDST )@nidDST ;
SHfid

RSHfid =
in(remoteSrvAssign, ?sid, fid, ?data, ?nidSRC );
START_THREAD(sid, fid, data, nidSRC );
RSHfid

+ in(remoteBackSH, fid, _)

+ in(goSH, fid, ?nidDST ); eval(RSHfid )@nidDST

Similar to the service assignment handler, the policy handler
has a normal mode operation, where policies in PN are exe-
cuted on local events and mobility actions are handled in a
similar way:
PHfid =

∑

(ev,co,act)∈PN

in(event, ev); if (co) then {Pact }; PHfid

+ in(copyPH, fid, ?nidDST ); eval(PHfid )@nidDST ;
PHfid

+ in(migratePH, fid, ?nidDST ); eval(PHfid )@nidDST ;
+ in(offloadPH, fid, ?nidDST ); eval(RPHfid )@nidDST ;
LPHfid

In offloaded mode, the policy handler splits into a local and
a remote handler, reacting to local and remote events:
LPHfid =

∑

(ev,co,act)∈PL

in(event, ev); if (co) then {Pact }; PHfid

+ in(backPH, fid, ?nidDST );
out(remoteBackPH, fid, nidDST )@nidDST ;
PHfid

RPHfid =
∑

(ev,co,act)∈PR

in(event, ev); if (co) then {Pact }; PHfid

+ in(remoteBackPH, fid, _)

+ in(goPH, fid, ?nidDST ); eval(RPHfid )@nidDST

Also in this case, mobility actions are handled similarly to
the service handler.

Macros

We now illustrate some macro code that helps improv-
ing code readability and performs crucial operations of the

mobility handling process. In these macros, we use thewhile
construct with the non-blocking variants of in/read as argu-
ment, so we are ensured to consider each tuple of interest
at least once. In case of read argument, we assume that the
semantics of while ensures that each tuple is considered at
most once. Notably, the while loops in our macros code are
ensured to terminate, due to a disciplined use of the consid-
ered tuples and appropriate boolean conditions on some of
their fields.
Service binders can be moved, copied, and updated:

MOVE_BINDER(fid, nidDST ) =
while (inp(srvBinder, ?sid, fid, ?nidIMP))

{out(srvBinder, sid, fid, nidDST )@nidDST }

COPY_BINDER(fid, nidDST ) =
while (readp(srvBinder, ?sid, fid, self))

{out(srvBinder, sid, fid, nidDST )@nidDST };

UPDATE_BINDER(fid, nidDST ) =
while ( inp(srvBinder, ?sid, fid, ?nidIMP) && nidIMP ! = nidDST )

{out(srvBinder, sid, fid, nidDST )}

In the first case, each binder is deleted locally and writ-
ten in the remote location, with a pointer to the remote
implementation (we move implementations accordingly).
In the second case, we do not consume local binders,
but we still update the implementation location in the
copy. In the third case, we change the implementation
location by replacing those binders that still point to the
local implementation (we assume nidIMP and nidDST are
different).
Service assignments can be moved (in their local and remote
variants) and also translated from local to remote and
back:

MOVE_SRVASSIGN(fid, nidDST ) =
while (inp(srvAssign, ?sid, fid, ?data, ?nidSRC ))

{out(srvAssign, sid, fid, data, nidSRC )@nidDST }

MOVE_REMOTESRVASSIGN(fid, nidDST ) =
while (inp(remoteSrvAssign, ?sid, fid, ?data, ?nidSRC ))

{out(remoteSrvAssign, sid, fid, data, nidSRC )@nidDST }

TRANStoREM_SRVASSIGN(fid, nidDST ) =
while (inp(srvAssign, ?sid, fid, ?data, ?nidSRC ))

{out(remoteSrvAssign, sid, fid, data, nidSRC )@nidDST }

TRANStoLOC_SRVASSIGN(fid, nidDST ) =
while (inp(remoteSrvAssign, ?sid, fid, ?data, ?nidSRC ))

{out(srvAssign, sid, fid, data, nidSRC )@nidDST }

Local to remote translation is necessary to move not-yet-
served requests in offloading/migration, so that no request
is lost. Similarly, remote to local translation is used when
offloading is terminated, in a back action.
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Implementations can simply be moved or copied:

MOVE_IMPLEMENTATION(fid, nidDST ) =
while (inp(srvImplem, ?sid, fid, ?Proc))

{out(srvImplem, sid, fid, Proc)@nidDST }

COPY_IMPLEMENTATION(fid, nidDST ) =
while (readp(srvImplem, ?sid, fid, ?Proc))

{out(srvImplem, sid, fid, Proc)@nidDST }

Finally, we consider macros to handle threads. These can
only be moved or started (forced termination is not allowed):

MOVE_THREADS(fid, nidDST ) =
while (inp(thread, fid, ?tid)){

out(moveThread, tid, nidDST );
out(thread, fid, tid)@nidDST }

START_THREAD(sid, fid, data, nidSRC ) =
read(srvImpl, sid, fid, ?Code);
fresh(tid);
out(thread, fid, tid);
eval(Code(tid, data, nidSRC , fid))

Moving threads of a functional module during offloading
or migration is performed by retrieving (and deleting) each
thread identifier associated with that module, sending a
moveThread message (thus relying on the thread ability
to react to these requests), and registering the thread in the
remote location.
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