1,777 research outputs found

    Laser sounding from space; report of the ESA Technology Working Group on Space Laser Sounding and Ranging

    Full text link
    The purpose and principles of spaceborne lidar are described, giving particular attention to candidates for space deployment, including simple backscatter lidar for measuring of cloud top height, cloud extend and optical properties, differential absorption lidar providing high vertical resolution measurements of humidity, temperature and pressure, a wind profiling lidar with the unique capability of improved weather forecasting and global dynamics, and a ranging and altimeter lidar for very accurate measurement of surface features, including ground, sea and ice cap height for solid earth studies

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: Final Report

    Get PDF
    The ESA CEOS Intercalibration project concentrated on important calibration activities addressing three key components of the ground-based network ground-truthing capacity in Europe, namely the Dobson/Brewer network of ozone spectrophotometers, the aerosol lidar EARLINET network and the UV-Vis MAXDOAS technique for air quality remote-sensing. This document summarizes activities and achievements during the third part of the ESA CEOS Intercalibration project. The period covered by this report extends from February 2012 until October 2012

    EARLINET: towards an advanced sustainable European aerosol lidar network

    Get PDF
    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.Peer ReviewedPostprint (published version

    Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications

    Get PDF
    The optical and microphysical properties of subvisual cirrus clouds are derived from ground-based polarization lidar, shortwave radiation flux, and solar corona measurements of two approximately 0.75 km deep cirrus located near the tropopause. The first cloud produced no visual manifestations under excellent viewing conditions, and the second appeared to be a persistent aircraft contrail that was generally visible except in the zenith direction. Average lidar linear depolarization ratios and volume backscatter coefficients for the two clouds were 0.19 and 0.35, and 0.6x10 to the -3 and 1.4x10 to the -3 /km sr, respectively. It is estimated that the zenith-subvisual cirrus contained ice crystals of 25 micron effective diameter at a mean concentration of 25/l and ice mass content of 0.2 mg/cu m. The threshold cloud optical thickness for visual-versus-invisible cirrus, derived from both broadband shortwave flux and 0.694 micrometer lidar data, is found to be tau sub c approx equal 0.03. Such tau values are comparable to those of 5 to 10 km deep stratospheric aerosol clouds of volcanic origin and polar stratospheric clouds, which are episodic in nature. Hence, we conclude that if these clouds are a fairly common feature of the upper troposphere, as recent SAGE satellite measurements would suggest, then the impact of natural and contrail subvisual cirrus on the planet's radiation balance may be relatively significant

    CEOS Intercalibration of Ground-Based Spectrometers and Lidars: First Progress Report

    Get PDF
    This document reports on activities and achievements obtained during the first part of the ESA CEOS Intercalibration project. The period covered extends from March 2009 until December 2009.This document is the first progress report of the CEOS Intercalibration of Ground-Based Spectrometers and Lidars project. It summarizes activities performed and results achieved within each team
    corecore