936 research outputs found

    Duty-cycled Wake-up Schemes for Ultra-low Power Wireless Communications

    Get PDF
    In sensor network applications with low traffic intensity, idle channel listening is one of the main sources of energy waste.The use of a dedicated low-power wake-up receiver (WRx) which utilizes duty-cycled channel listening can significantlyreduce idle listening energy cost. In this thesis such a scheme is introduced and it is called DCW-MAC, an acronym forduty-cycled wake-up receiver based medium access control.We develop the concept in several steps, starting with an investigation into the properties of these schemes under idealizedconditions. This analysis show that DCW-MAC has the potential to significantly reduce energy costs, compared to twoestablished reference schemes based only on low-power wake up receivers or duty-cycled listening. Findings motivatefurther investigations and more detailed analysis of energy consumption. We do this in two separate steps, first concentratingon the energy required to transmit wake-up beacons and later include all energy costs in the analysis. The more completeanalysis makes it possible to optimize wake-up beacons and other DCW-MAC parameters, such as sleep and listen intervals,for minimal energy consumption. This shows how characteristics of the wake-up receiver influence how much, and if, energycan be saved and what the resulting average communication delays are. Being an analysis based on closed form expressions,rather than simulations, we can derive and verify good approximations of optimal energy consumption and resulting averagedelays, making it possible to quickly evaluate how a different wake-up receiver characteristic influences what is possible toachieve in different scenarios.In addition to the direct optimizations of the DCW-MAC scheme, we also provide a proof-of-concept in 65 nm CMOS,showing that the digital base-band needed to implement DCW-MAC has negligible energy consumption compared to manylow-power analog front-ends in literature. We also propose a a simple frame-work for comparing the relative merits ofanalog front-ends for wake-up receivers, where we use the experiences gained about DCW-MAC energy consumption toprovide a simple relation between wake-up receiver/analog front-end properties and energy consumption for wide ranges ofscenario parameters. Using this tool it is possible to compare analog front-ends used in duty-cycled wake-up schemes, evenif they are originally designed for different scenarios.In all, the thesis presents a new wake-up receiver scheme for low-power wireless sensor networks and provide a comprehensiveanalysis of many of its important properties

    Wireless energy harvesting for Internet of Things

    Get PDF
    Internet of Things (IoT) is an emerging computing concept that describes a structure in which everyday physical objects, each provided with unique identifiers, are connected to the Internet without requiring human interaction. Long-term and self-sustainable operation are key components for realization of such a complex network, and entail energy-aware devices that are potentially capable of harvesting their required energy from ambient sources. Among different energy harvesting methods such as vibration, light and thermal energy extraction, wireless energy harvesting (WEH) has proven to be one of the most promising solutions by virtue of its simplicity, ease of implementation and availability. In this article, we present an overview of enabling technologies for efficient WEH, analyze the life-time of WEH-enabled IoT devices, and briefly study the future trends in the design of efficient WEH systems and research challenges that lie ahead

    A framework for multimodal wireless sensor networks

    Get PDF
    Wireless Sensor Networks are a widely used solution for monitoring oriented applications (e.g., water quality on watersheds, pollution monitoring in cities). These kinds of applications are characterized by the necessity of two data-reporting modes: time-driven and event-driven. The former is used mainly for continually supervising an area and the latter for event detection and tracking. By switching between both modes, a WSN can improve its energy-efficiency and event reporting latency, compared to single data-reporting schemes. We refer to those WSNs, where both data-reporting modes are required simultaneously, as MultiModal Wireless Sensor Networks (M2WSNs). M2WSNs arise as a solution for the trade-off between energy savings and event reporting latency in those monitoring-oriented applications where regular and emergency reporting are required simultaneously. The multimodality in these M2WSNs allows sensor nodes to perform data-reporting in two possible schemes, time-driven and event-driven, according to the circumstances, providing higher energy savings and better reporting results when compared to traditional schemes. Traditionally, sophisticated power-aware wake-up schemes have been employed to achieve energy efficiency in WSNs, such as low-duty cycling protocols using a single radio architecture. These protocols achieve good results regarding energy savings, but they suffer from idle-listening and overhearing issues, that make them not reliable for most ultra-low-power demanding applications, especially, those deployed in hostile and unattended environments. Currently, Wake-up Radio Receivers based protocols, under a dual-radio architecture and always-on operation, are emerging as a solution to overcome these issues, promising higher energy consumption reduction and reliability in terms of latency and packet-delivery-ratio compared to classic wake-up protocols. By combining different transceivers and reporting protocols regarding energy efficiency and reliability, multimodality in M2WSNs is achieved. This dissertation proposes a conceptual framework for M2WSNs that integrates the goodness of both data-reporting schemes and the Wake-up Radio paradigm--data periodicity, responsiveness, and energy-efficiency--, that might be suitable for monitoring oriented applications with low bandwidth requirements, that operates under normal circumstances and emergencies. The framework follows a layered approach, where each layer aims to fulfill specific tasks based on its information, the functions provided by its adjacent layers, and the information resulted from the cross-layer interactions.Doctor en IngenieríaDoctoradohttps://orcid.org/0000-0003-1346-6451https://scholar.google.com.co/citations?user=0I4kXQUAAAAJ&hl=enhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=000001365

    Wake-up receiver based ultra-low-power WBAN

    Get PDF

    Optimal power control in green wireless sensor networks with wireless energy harvesting, wake-up radio and transmission control

    Get PDF
    Wireless sensor networks (WSNs) are autonomous networks of spatially distributed sensor nodes which are capable of wirelessly communicating with each other in a multi-hop fashion. Among different metrics, network lifetime and utility and energy consumption in terms of carbon footprint are key parameters that determine the performance of such a network and entail a sophisticated design at different abstraction levels. In this paper, wireless energy harvesting (WEH), wake-up radio (WUR) scheme and error control coding (ECC) are investigated as enabling solutions to enhance the performance of WSNs while reducing its carbon footprint. Specifically, a utility-lifetime maximization problem incorporating WEH, WUR and ECC, is formulated and solved using distributed dual subgradient algorithm based on Lagrange multiplier method. It is discussed and verified through simulation results to show how the proposed solutions improve network utility, prolong the lifetime and pave the way for a greener WSN by reducing its carbon footprint

    Enhancing Mobility in Low Power Wireless Sensor Networks

    Get PDF
    In the early stages of wireless sensor networks (WSNs), low data rate traffic patterns are assumed as applications have a single purpose with simple sensing task and data packets are generated at a rate of minutes or hours. As such, most of the proposed communication protocols focus on energy efficiency rather than high throughput. Emerging high data rate applications motivate bulk data transfer protocols to achieve high throughput. The basic idea is to enable nodes to transmit a sequence of packets in burst once they obtain a medium. However, due to the low-power, low-cost nature, the transceiver used in wireless sensor networks is prone to packet loss. Especially when the transmitters are mobile, packet loss becomes worse. To reduce the energy expenditure caused by packet loss and retransmission, a burst transmission scheme is required that can adapt to the link dynamics and estimate the number of packets to transmit in burst. As the mobile node is moving within the network, it cannot always maintain a stable link with one specific stationary node. When link deterioration is constantly detected, the mobile node has to initiate a handover process to seamlessly transfer the communication to a new relay node before the current link breaks. For this reason, it is vital for a mobile node to (1) determine whether a fluctuation in link quality eventually results in a disconnection, (2) foresee potential disconnection well ahead of time and establish an alternative link before the disconnection occurs, and (3) seamlessly transfer communication to the new link. In this dissertation, we focus on dealing with burst transmission and handover issues in low power mobile wireless sensor networks. To this end, we begin with designing a novel mobility enabled testing framework as the evaluation testbed for all our remaining studies. We then perform an empirical study to investigate the link characteristics in mobile environments. Using these observations as guidelines, we propose three algorithms related to mobility that will improve network performance in terms of latency and throughput: i) Mobility Enabled Testing Framework (MobiLab). Considering the high fluctuation of link quality during mobility, protocols supporting mobile wireless sensor nodes should be rigorously tested to ensure that they produce predictable outcomes before actual deployment. Furthermore, considering the typical size of wireless sensor networks and the number of parameters that can be configured or tuned, conducting repeated and reproducible experiments can be both time consuming and costly. The conventional method for evaluating the performance of different protocols and algorithms under different network configurations is to change the source code and reprogram the testbed, which requires considerable effort. To this end, we present a mobility enabled testbed for carrying out repeated and reproducible experiments, independent of the application or protocol types which should be tested. The testbed consists of, among others, a server side control station and a client side traffic ow controller which coordinates inter- and intra-experiment activities. ii) Adaptive Burst Transmission Scheme for Dynamic Environment. Emerging high data rate applications motivate bulk data transfer protocol to achieve high throughput. The basic idea is to enable nodes to transmit a sequence of packets in burst once they obtain a medium. Due to the low-power and low-cost nature, the transceiver used in wireless sensor networks is prone to packet loss. When the transmitter is mobile, packet loss becomes even worse. The existing bulk data transfer protocols are not energy efficient since they keep their radios on even while a large number of consecutive packet losses occur. To address this challenge, we propose an adaptive burst transmission scheme (ABTS). In the design of the ABTS, we estimate the expected duration in which the quality of a specific link remains stable using the conditional distribution function of the signal-to-noise ratio (SNR) of received acknowledgment packets. We exploit the expected duration to determine the number of packets to transmit in burst and the duration of the sleeping period. iii) Kalman Filter Based Handover Triggering Algorithm (KMF). Maintaining a stable link in mobile wireless sensor network is challenging. In the design of the KMF, we utilized combined link quality metrics in physical and link layers, such as Received Signal Strength Indicator (RSSI) and packet success rate (PSR), to estimate link quality fluctuation online. Then Kalman filter is adopted to predict link dynamics ahead of time. If a predicted link quality fulfills handover trigger criterion, a handover process will be initiated to discover alternative relay nodes and establish a new link before the disconnection occurs. iv) Mobile Sender Initiated MAC Protocol (MSI-MAC). In cellular networks, mobile stations are always associated with the nearest base station through intra- and inter-cellular handover. The underlying process is that the quality of an established link is continually evaluated and handover decisions are made by resource rich base stations. In wireless sensor networks, should a seamless handover be carried out, the task has to be accomplished by energy-constraint, resource-limited, and low-power wireless sensor nodes in a distributed manner. To this end, we present MSI-MAC, a mobile sender initiated MAC protocol to enable seamless handover

    ENERGY-NEUTRAL DATA DELIVERY IN ENVIRONMENTALLY-POWERED WIRELESS SENSOR NETWORKS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore