
ENERGY-NEUTRAL DATA DELIVERY IN

ENVIRONMENTALLY-POWERED WIRELESS SENSOR

NETWORKS

ALVIN CERDENA VALERA

(M.Sc., NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2015





DECLARATION

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly acknowledged

all the sources of information which have been used in the

thesis.

This thesis has also not been submitted for any degree in any

university previously.

ALVIN CERDENA VALERA

25 May 2015





Acknowledgments

This thesis is a culmination of several years of hard work that would not be possi-

ble without the guidance, help, support, and inspiration from many people. I am

using this opportunity to express my appreciation to everyone who supported me

throughout the course of my studies.

I wish to extend my gratitude to my supervisors, Prof. Wee Seng Soh and Dr.

Hwee Pink Tan, for their encouragement, ideas, and support in bringing this work

to completion. I would like to thank Prof. Soh for convincing me to pursue the

doctorate degree, for helping me in the application process, for taking time to

review my work and providing valuable feedback, and most of all, for giving me

direction when I felt lost.

I would like to express my appreciation to Dr. Tan, who is also my reporting

officer at the Institute for Infocomm Research (I2R), for allowing me to pursue this

degree in spite of the known challenges between balancing work and studies, for

always having time to read my manuscripts and providing constructive criticisms

that greatly improved my work, and most of all, for his support and encourage-

ment in times of difficulties.

I am grateful to all of my friends and colleagues at I2R, for their help and ideas

throughout the course of my work. I would like to specifically mention Hwee Xian,

Yunye, Huiguang, Xiaoping, Brian, Wai Leong, Shaowei, Ido, Pengfei, and the Sense

and Sense-abilities team, who in one way or the other, helped me in my studies by

attending my seminars, lightening my workload during examinations and paper

submission deadlines, and for giving me all the friendly advice about Ph.D. and

life in general.

i



ii ACKNOWLEDGMENTS

I would like to thank my son, Albert, for always including my studies in his

prayers, and for always being a good son in spite of my shortcomings. I will be

forever grateful and thankful to my loving and understanding wife, Karen, for

permitting me to embark on this difficult journey knowing that our other plans

would be temporarily put on hold, for giving me time to work at home and even

during our holidays, for staying up late at night with me during deadlines, for

encouraging and pushing to move on whenever I encounter difficult roadblocks,

and most of all, for for being there to comfort me in times of trouble.

Most especially, I thank the Lord Almighty for continuously and generously

supplying me with the needed wisdom and perseverance to bring this work to

full fruition.



Contents

Acknowledgments i

List of Symbols xiii

Summary xv

1 Introduction 1

1.1 Energy Harvesting in Sensor Networks . . . . . . . . . . . . . . . . 2

1.1.1 Energy Harvesting . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Energy Storage Technologies . . . . . . . . . . . . . . . . . . 3

1.2 Energy-Neutrality and Its Challenges . . . . . . . . . . . . . . . . . 5

1.2.1 Definition of Energy-Neutrality . . . . . . . . . . . . . . . . . 6

1.2.2 Dynamic Duty Cycling . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Dynamic Sleep Latency . . . . . . . . . . . . . . . . . . . . . 7

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Accomplishments and Contributions . . . . . . . . . . . . . . . . . . 9

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Review of Related Literature 13

2.1 Wakeup Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Data Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Asynchronous Schemes . . . . . . . . . . . . . . . . . . . . . 16

iii



iv CONTENTS

2.1.5 Periodic Synchronous Schemes . . . . . . . . . . . . . . . . . 19

2.1.6 Aperiodic Synchronous Schemes . . . . . . . . . . . . . . . . 29

2.1.7 Comparison Summary . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Routing Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Routing Metric Fundamentals . . . . . . . . . . . . . . . . . 34

2.2.2 Hop Count and Binary Link Abstraction . . . . . . . . . . . 35

2.2.3 Packet Loss-Aware Metrics . . . . . . . . . . . . . . . . . . . 36

2.2.4 Energy-Aware Metrics . . . . . . . . . . . . . . . . . . . . . . 39

2.2.5 Comparison Summary . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Bulk Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Bulk Transfer Fundamentals . . . . . . . . . . . . . . . . . . 43

2.3.2 Single Packet-Based . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3 Packet Train-Based . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.4 Comparison Summary . . . . . . . . . . . . . . . . . . . . . . 48

3 Energy-Neutral Scheduling and Forwarding 51

3.1 Models and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Energy-Harvesting Node Model and Duty Cycle . . . . . . . 54

3.1.3 Wakeup Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Dynamic Wakeup Scheduling . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Schedule Robustness . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Sequence-Based Wakeup Schedule . . . . . . . . . . . . . . . 62

3.2.3 Bit-Reversal Permutation Sequence . . . . . . . . . . . . . . 63

3.3 Low Latency and Reliable Forwarding . . . . . . . . . . . . . . . . . 68

3.3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.2 Expected Transmission Delay . . . . . . . . . . . . . . . . . . 69

3.3.3 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.4 Path Computation . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.5 Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.6 Reducing Control Overhead . . . . . . . . . . . . . . . . . . . 75



CONTENTS v

3.4 Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Energy Harvesting Source Model . . . . . . . . . . . . . . . . 78

3.4.2 Duty Cycle Controller Model . . . . . . . . . . . . . . . . . . 80

3.4.3 Network Parameters . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Scheduling Performance Comparison . . . . . . . . . . . . . 86

3.5.2 Routing Metric Performance Comparison . . . . . . . . . . . 90

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Dynamic Duty Cycle Allocation 93

4.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.2 Dynamic Wakeup Schedule Model . . . . . . . . . . . . . . . 98

4.1.3 Medium Access Control Protocol . . . . . . . . . . . . . . . . 98

4.2 Analysis of Wakeup Scheduling . . . . . . . . . . . . . . . . . . . . . 101

4.2.1 Intervals Between Wakeup Slots . . . . . . . . . . . . . . . . 101

4.2.2 Ideal Service Time . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.3 Service Time with Contention . . . . . . . . . . . . . . . . . . 105

4.2.4 Equal-Interval Wakeup Schedule . . . . . . . . . . . . . . . . 106

4.3 Optimal Duty Cycle Allocation . . . . . . . . . . . . . . . . . . . . . 108

4.3.1 Two-Hop Service Time . . . . . . . . . . . . . . . . . . . . . . 108

4.3.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 109

4.3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.4 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 111

4.3.5 Control Packet Piggybacking . . . . . . . . . . . . . . . . . . 112

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.1 Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 116

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



vi CONTENTS

5 PUMP-AND-NAP 125

5.1 Bulk Transfer In EPWSNs . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 PUMP-AND-NAP Design . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.3 Adaptive Capacity Control . . . . . . . . . . . . . . . . . . . 133

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.1 PUMP-AND-NAP Performance . . . . . . . . . . . . . . . . . 142

5.3.2 Energy Harvesting Experiments . . . . . . . . . . . . . . . . 149

5.3.3 Energy Harvesting Simulations . . . . . . . . . . . . . . . . . 153

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 Conclusion and Future Work 161

6.1 Dynamic Wakeup Scheduling . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Reliable and Low Latency Path Selection . . . . . . . . . . . . . . . 163

6.3 Dynamic Duty Cycle Allocation . . . . . . . . . . . . . . . . . . . . . 164

6.4 Sustainable Bulk Transfer . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5 Open Research Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A Publications 169



List of Figures

1.1 An example EPWSN deployment . . . . . . . . . . . . . . . . . . . . 2

1.2 Components of an EPWSN node. . . . . . . . . . . . . . . . . . . . . 3

1.3 Sleep latency between a transmitting and receiving node. . . . . . . 7

2.1 B-MAC operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 RI-MAC operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 A cycle with S slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Components of an S-MAC wakeup interval. . . . . . . . . . . . . . . 21

2.5 S-MAC operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 ASLEEP staggered scheduling . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Illustrating the packet pipelining technique. . . . . . . . . . . . . . . 46

2.8 Illustrating the packet bursting technique. . . . . . . . . . . . . . . . 48

3.1 Energy harvesting node model. . . . . . . . . . . . . . . . . . . . . . 54

3.2 Example of a receive wakeup schedule of v. . . . . . . . . . . . . . . 56

3.3 Model used in the derivation of expected sleep latency. . . . . . . . 58

3.4 Illustrating BRPS schedule generation. . . . . . . . . . . . . . . . . . 64

3.5 Example to illustrate the adverse effect of link quality obliviousness. 69

3.6 Solar energy harvesting source model. . . . . . . . . . . . . . . . . . 78

3.7 Solar irradiance data (at 6-minute resolution) from NREL Florida

Solar Energy Center on July 2 and July 8, 2000. . . . . . . . . . . . . 79

3.8 Hop count distribution of a typical scenario. . . . . . . . . . . . . . 82

3.9 Effect of duty cycle duration. . . . . . . . . . . . . . . . . . . . . . . 84

3.10 Effect of maximum retry limit. . . . . . . . . . . . . . . . . . . . . . . 86

vii



viii LIST OF FIGURES

3.11 Effect of slot discount factor. . . . . . . . . . . . . . . . . . . . . . . . 86

3.12 Packet delivery ratio of different scheduling schemes. . . . . . . . . 88

3.13 Scheduling error ratio of different scheduling schemes. . . . . . . . 88

3.14 End-to-end delay of different scheduling schemes. . . . . . . . . . . 89

3.15 Packet delivery ratio of different path metrics (in tandem with BRPS). 90

3.16 End-to-end delay of different path metrics (in tandem with BRPS). 91

4.1 Epoch, slot and time components of a slot. . . . . . . . . . . . . . . . 97

4.2 Energy harvesting node model. . . . . . . . . . . . . . . . . . . . . . 97

4.3 Receive wakeup schedule showing the intervals between wakeup

slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Service time in an empty queue. . . . . . . . . . . . . . . . . . . . . . 104

4.5 Service time in a busy queue. . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Simulation models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7 Validation of packet arrival probability and mean service time models.117

4.8 Hop count distribution of a typical simulation scenario. . . . . . . . 118

4.9 Performance of a simple static allocation scheme as a function of γ. 120

4.10 Performance of LSLOTALLOC as a function of β. . . . . . . . . . . . 121

4.11 Performance comparison between LSLOTALLOC and static scheme. 123

5.1 Pre-transmission overhead of a transmission from v to w. . . . . . . 128

5.2 PUMP-AND-NAP architecture. . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Modeling of the system for adaptive feedback control. . . . . . . . . 135

5.4 Duty cycle tracking performance of basic and wakeup-synchronized. 143

5.5 Relay capacity of basic and wakeup-synchronized. . . . . . . . . . . 144

5.6 Controller response when duty cycle target abruptly changes. . . . 145

5.7 Throughput performance of basic and wakeup-synchronized. . . . 147

5.8 Airtime usage of a packet train transmission. . . . . . . . . . . . . . 149

5.9 Energy harvesting experimental setup. . . . . . . . . . . . . . . . . . 150

5.10 Throughput comparison in indoor scenario. . . . . . . . . . . . . . . 152

5.11 Throughput comparison in outdoor scenario. . . . . . . . . . . . . . 152



LIST OF FIGURES ix

5.12 Voltage across the supercap, under 10 klux and 100 klux illuminance. 154

5.13 Throughput of PUMP-AND-NAP, packet train and Flush, and mean

time to relay node failure of the latter two, of a 5-hop bulk transfer,

as a function of energy harvesting rate. . . . . . . . . . . . . . . . . . 157

5.14 Throughput of PUMP-AND-NAP, packet train and Flush, and mean

time to relay node failure of the latter two, at harvesting rate of 6.5

mA, as a function of path length. . . . . . . . . . . . . . . . . . . . . 159



x LIST OF FIGURES



List of Tables

1.1 Efficiency of State-of-the-Art Energy Harvesting Technologies . . . 4

1.2 Comparison of Energy Storage Devices . . . . . . . . . . . . . . . . 5

2.1 Comparison of Wakeup Scheduling Schemes . . . . . . . . . . . . . 31

3.1 Summary of the Example Sequence for Generating Schedule . . . . 64

3.2 Upper Bound of the Expected Sleep Latency under Different Distri-

butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Comparison Between BRPS and ESC (Adjust and Shuffle) . . . . . . 87

xi



xii LIST OF TABLES



List of Symbols

u, v, w Variables to denote arbitrary nodes

Nv Single-hop neighbors of v

Pv Predecessor nodes of v for a given routing graph

Svt Successor node at v to sink node t

k Variable used to denote epoch or cycle

T Duration of a epoch

δv(k) Target duty cycle of v at epoch k

δ̂v(k) Measured duty cycle usage of v at epoch k

(u, v) Link from u to v

Pst Path from s to t

puv Packet delivery rate of link (u, v)

Wuv Sleep latency from u to v

Pr(A) Probability of A

E(X) Expectation of X

Var(X) Variance of X

U(a, b) Uniform distribution in [a, b]

S Number of slots in an epoch (in synchronized schemes)

τ = T
S

Slot duration (in synchronized schemes)

nv(k) Number of active slots in an epoch (in synchronized schemes)

rv(k) Number of receive slots in an epoch (in synchronized schemes)

tv(k) Number of transmit slots in an epoch (in synchronized schemes)

Γv(k) Wakeup schedule of v in an epoch (in synchronized schemes)

xiii



xiv LIST OF SYMBOLS



Summary

The use of energy harvesting to recharge energy stores can enable environmentally-

powered wireless sensor networks (EPWSNs) to operate perpetually without the need

for battery replacement which is not only laborious or expensive but outright in-

feasible in certain scenarios. Notwithstanding this advantage, EPWSNs face a

difficult challenge: the amount of energy available for consumption can be un-

predictable and variable over time. Thus, unlike battery-powered wireless sensor

networks that aim to conserve energy, the key objective in EPWSNs is to attain

energy-neutrality, a trajectory where the energy demand and supply are always

balanced. In this thesis, we have developed schemes to enable energy-neutral data

delivery in EPWSNs, addressing the problems posed by energy-neutrality includ-

ing dynamic wakeup scheduling, low latency and reliable path selection, dynamic

duty cycle allocation, and sustainable bulk transfer.

We have shown that the expected sleep latency of a dynamic wakeup schedule

is affected by the variance of the intervals between receive wakeup slots, i.e., when

the variance of the intervals is low (high), the expected latency is low (high). We

designed a scheduling scheme using the bit-reversal permutation sequence (BRPS),

with worst-case sleep latency slightly worse than the ideal scheme but is robust

to duty cycle changes than the latter. BRPS has a lower computational complex-

ity compared to Energy Synchronized Communication (ESC), a state-of-the-art

scheme for EPWSNs, but can closely match the latter’s latency performance and

exceed its packet delivery ratio.

To enable the selection of reliable and low latency paths, we have formulated

expected transmission delay (ETD), a metric which simultaneously considers sleep

xv



xvi SUMMARY

latency and packet loss. ETD is left-monotonic and left-isotonic and is therefore

guaranteed to yield consistent, loop-free and optimal paths. Simulations show

that compared with hop count and the state-of-the-art routing metric Expected

Transmission Count (ETX), ETD provides the best performance in terms of packet

delivery ratio and end-to-end delay.

In receive-centric wakeup scheduling schemes, the wakeup slots are meant

solely for reception. Hence, nodes that need to relay packets must address the

duty cycle allocation problem: how to apportion the duty cycle between packet re-

ception and transmission. Using the packet arrival probability and the expected

service time models that we have derived, we have formulated the duty cycle

allocation problem as a constrained non-linear optimization problem that seeks

to minimize the two-hop service time. We have developed LSLOTALLOC, a dis-

tributed low-complexity algorithm that uses linear search to find an optimal so-

lution to the problem. Trace-driven simulations show the significant performance

gain of LSLOTALLOC over a static allocation scheme in terms of end-to-end delay.

Finally, we have introduced PUMP-AND-NAP, a packet train forwarding tech-

nique for bulk transfer, that maximizes throughput while simultaneously enforc-

ing compliance to (dynamic) duty cycle limitations. PUMP-AND-NAP uses an

adaptive controller to periodically compute the maximum number of packets a node

can receive and transmit in a train, given its duty cycle constraint. Experimen-

tal results show that PUMP-AND-NAP enables sustainable bulk transfer at high

throughput compared to state-of-the-art schemes that greedily maximize through-

put at the expense of downtime due to energy depletion.



Chapter 1

Introduction

Wireless sensor networks (WSNs) are becoming ubiquitous because of their di-

verse applications in areas such as agriculture, environmental monitoring, indus-

trial and home automation, military, and structural health monitoring, to name a

few [12]. A critical issue that plagues many deployments, however, is the limited

lifetime problem due to the finite battery capacity of sensor nodes [107, 110]. For-

tunately, advances in energy harvesting and storage technologies are enabling the

deployment of environmentally-powered wireless sensor networks (EPWSNs), wherein

the sensor nodes harvest energy from the environment to recharge their batter-

ies or energy stores [65, 94, 107, 110]. By powering nodes with renewable energy,

EPWSNs can operate perpetually without the need for battery replacement which

is not only laborious or expensive but also infeasible in certain scenarios.

A typical EPWSN deployment consists of a set of sensor nodes placed around

a particular region of interest. A gateway node links up the EPWSN to a backend

server through a backhaul network. This setup is illustrated in Figure 1.1. Simi-

lar to battery-powered WSNs, the operation of EPWSNs can be decomposed into

three main parts: (i) sensing of physical phenomenon, including analog-to-digital

conversion and in some cases, signal processing; (ii) storage of digitized readings in

a local storage such as the sensor node’s random access memory or flash memory;

and finally (iii) transmission of readings to a gateway node, for eventual transmis-

sion to the backend server for further analysis and storage. In this thesis, we focus

1
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Figure 1.1: An example EPWSN deployment, with node 1 as the gateway and nodes 2–7
acting as sensor nodes. The gateway links up the sensor network to the backend server

through the backhaul network. This thesis focuses on the delivery or transfer of sensor

readings from the sensor nodes to the gateway.

on the third aspect, that is, the delivery of sensor data from every sensor node in

the network to a gateway node.

1.1 Energy Harvesting in Sensor Networks

To identify and understand the relevant issues that can affect the performance

of data delivery in EPWSNs, we briefly study energy harvesting and how it is

utilized in the context of wireless sensor networks. We describe the various com-

ponents needed to assemble an environmentally-powered wireless sensor node,

followed by a presentation of the current state in energy harvesting and storage

technologies.

1.1.1 Energy Harvesting

Energy harvesting, also referred to as “energy scavenging” in the literature, is the

process of converting ambient energy from the environment into electrical energy

to power devices such as sensor nodes and mobile electronics [94]. Figure 1.2

shows the various components of an EPWSN node: (i) energy harvester for con-

verting ambient energy to electrical energy; (ii) energy storage for storing harvested

energy; and (iii) sensor load which essentially consists of the sensor node electron-

ics (mainboard, microcontroller, radio, sensors and other peripherals). Because

ambient energy is readily available, energy harvesting could enable perpetual op-

eration without the need for battery replacement [107, 110].

There are numerous sources of ambient energy and they can be grouped into
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Figure 1.2: Components of an EPWSN node.

several classes according to their underlying physical process [94]:

• Mechanical: from sources such as wind, vibration, mechanical stress and

strain and human body movement;

• Light: from sunlight or room (artificial) light;

• Thermal: waste energy from engines, furnaces, heaters and friction sources;

• Electromagnetic: from inductors, coils, transformers and radio frequency

sources; and

• Others: from chemical and biological sources.

The conversion of ambient energy to electrical energy requires the use of an en-

ergy harvester or transducer. Table 1.1 provides a summary of achievable energy

harvesting rates of several state-of-the-art energy harvesting technologies [56, 74,

94, 110]. Solar energy, which is one of the most abundant and readily available

energy, can be harvested using photo-voltaic (PV) cells which can have 25% ef-

ficiency [74]. When such a PV cell is directly exposed to sunlight which has an

irradiance of 1000 W/m2 (this is a typical value of direct solar irradiance [3]), it

can potentially generate 250 W/m2 or 25 mW/cm2.

1.1.2 Energy Storage Technologies

Energy storage or buffer is an important component of an EPWSN node. It serves

two important functions [68]: (i) to act as storage for unused or excess harvested

energy; and (ii) to act as additional energy supply when load consumption is not

met by harvested energy. It is possible to power a sensor node directly from an
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Table 1.1: Efficiency of State-of-the-Art Energy Harvesting Technologies

Energy source Harvesting de-
vice / transducer

Efficiency Achievable harvest-
ing rate

Solar Photo-voltaic
cells

25% 25 mW/cm2

Indoor light Photo-voltaic
cells

25% 25 µW/cm2

Thermal Thermoelectric
generator

- 60 µW/cm2

Wind Anemometer - 1,200 mWh/day

Electromagnetic RF antenna - 10−5 – 0.1 mW/cm2

Indoor vibrations EM induction - 0.2 mW/cm2

Vibrations (walking) EM generator - 0.95 mW

Vibrations (running) EM generator - 2.46 mW

Heel strike Piezoelectric 7.5% 5 W

energy harvester without any energy buffer but its operation will be severely con-

strained. In particular, such a node can only operate when the amount of har-

vested power is greater than or equal to the required node consumption. When

the amount of harvested power is not sufficient, the node will not operate and the

harvested power will be wasted. In cases where the amount of harvested power

exceeds the node consumption, the excess will likewise be wasted.

Currently, there are two dominant energy storage technologies that can be uti-

lized in EPWSN [65, 68, 74, 109, 110, 137]: (i) secondary or rechargeable batteries;

and (ii) supercapacitors, also known as ultracapacitors or electrochemical double

layer capacitors. Although there are many types of rechargeable batteries available

in the market, nickel metal hydride (NiMH) and lithium ion (Li-ion) are consid-

ered to be more suitable for sensor nodes [109, 110].

As far as EPWSNs are concerned, the most important characteristics of an en-

ergy storage technology are energy storage capacity, number of full recharge cy-

cles, and self-discharge rate or leakage. Table 1.2 provides a comparison of sev-

eral energy storage devices in terms of the three characteristics [109]. In gen-
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Table 1.2: Comparison of Energy Storage Devices

Device Type Capacity
(mAh)

Recharge
cycles

Self-
discharge
rate

Maxwell
BCAP350

350F super-
capacitor

243 500,000 <30%/month

Maxwell PC10 10F super-
capacitor

6.9 500,000 <30%/month

Panasonic
HHR210AA/B

NiMH 2,000 300 <30%/month

Panasonic
CGR17500

Li-ion 830 500 <10%/month

eral, rechargeable batteries provide high energy capacity while supercapacitors

can provide low to moderate energy capacity. In terms of self-discharge rate, Li-

ion batteries are slightly better than supercapacitors. One major advantage of su-

percapacitors is the number of full recharge cycles which is three orders of mag-

nitude higher than that of rechargeable batteries. This has significant impact on

the lifetime of the storage device, enabling supercapacitors to last for 10-20 years

compared to a maximum of 5 and 3 years for Li-ion and NiMH, respectively [109].

1.2 Energy-Neutrality and Its Challenges

As enumerated by Akyildiz, et al. [12], sensor networks face numerous challenges

including highly dynamic network topology due to failure-prone nodes and wire-

less links, limited memory and processing power and most importantly, limited

network lifetime due to battery capacity limitations. Energy harvesting has the

potential to eliminate the problem of limited network lifetime but it poses a major

constraint on the amount and consistency of energy that can be supplied to the

sensor node. Unlike a battery-powered WSN node where the energy supply is

guaranteed (while its battery is not exhausted), the energy supply of an EPWSN

node can be unpredictable and varies over time [51, 61, 68].

In battery-powered WSNs, network protocols are designed to conserve as much
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energy as possible, knowing that the energy supply is finite and will eventually

be depleted. Network lifetime can be maximized by minimizing the energy con-

sumption of individual nodes while at the same time balancing the energy con-

sumption across nodes [15]. In EPWSNs where the energy supply can be replen-

ished, the notion of network lifetime is inappropriate and this renders energy con-

servation as an unsuitable design objective.

1.2.1 Definition of Energy-Neutrality

The new guiding principle in the design of EPWSN protocols is energy-neutrality

or energy neutral operation which consists of two simultaneous goals: (i) optimiz-

ing the network performance while (ii) ensuring that energy supply and energy

demand are balanced [51, 61, 68, 120, 137]. Several authors proposed essentially

the same idea using different terms, namely, “energy-neutrality” [68], “energy-

synchronized” [51], and “energetic sustainability” [80]. The key intuition behind

energy-neutrality is that by letting a node’s energy consumption to be equal to the

sustainable energy supply, then it will never run out of energy and will therefore

operate perpetually.

1.2.2 Dynamic Duty Cycling

To achieve energy neutral operation in the face of dynamic energy availability,

adaptive duty cycling algorithms have been proposed [61, 68, 120, 137]. Basically,

these algorithms aim to dynamically adjust a node’s duty cycle given its current

energy level, energy buffer capacity as well as current and future (predicted) har-

vesting rates. Duty cycling is not new and has been proposed as an energy con-

servation method in battery-powered WSNs because radio transceivers consume

significant amounts of energy even when idle [50,52,72,83,133]. Duty cycling itself

poses difficulties in the operation of networking protocols, and these are exacer-

bated with the addition of stochasticity.
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Figure 1.3: Sleep latency from a transmitting node v to a receiving node w. The latency
is incurred because v must wait for w to be awake before it can transmit its packet that

became ready earlier.

1.2.3 Dynamic Sleep Latency

Another challenge that directly impacts data delivery is sleep latency, a delay in-

curred due to the fact that a transmitting node must wait for the receiving node to

be awake before it can commence packet transmission [50,83,130]. Figure 1.3 illus-

trates the sleep latency from a transmitting node v to a receiving node w. In either

battery-powered WSNs and EPWSNs, sleep latency is a significant factor that con-

tributes to the high end-to-end delay in these deployments [50,51]. As it is mostly

determined by the duty cycle, in the context of EPWSNs which employ dynamic

duty cycling, sleep latency is also time-varying and is therefore more challenging

to address.

1.3 Problem Statement

The general objective of this thesis is to enable energy-neutral data delivery in

EPWSNs. More precisely, the thesis aims to enable the transmission of data from

the sensor nodes to a gateway, possibly through a multihop topology, while en-

suring that energy-neutrality constraints are satisfied. To achieve this objective,

we need to address the following problems:

Dynamic Wakeup Scheduling Duty cycling necessitates the use of a wakeup

schedule, indicating the times at which a node wakes up to listen for transmissions

from its neighbors. A key implication of dynamic duty cycling is that wakeup

schedules must also be dynamic. Most importantly, it must address the challenge

posed by dynamic sleep latency. While numerous wakeup scheduling schemes
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have been proposed for fixed duty cycling networks (e.g., [133], [83], [72], [52]), few

have been proposed for dynamic duty cycling networks [51]. A major limitation

of the scheme proposed in [51] is the requirement of a fixed routing graph, thereby

limiting its application to conventional single path routing schemes. In addition,

it also requires high memory and communication overhead.

Low Latency and Reliable Path Selection When a path needs to traverse mul-

tiple hops, determining the path that provides the least delay can be difficult be-

cause the nodes may have different instantaneous duty cycles and therefore pose

different sleep latencies. Existing metrics (e.g., hop count, ETX [31]) do not con-

sider sleep latency even though it is known to be a significant factor in the high

end-to-end latency in EPWSNs. An equally important criteria in path selection is

reliability which is mainly determined by the quality of the wireless links along a

path. We therefore need to formulate a metric that simultaneously considers sleep

latency and link quality to enable the selection of low latency and high reliability

end-to-end paths.

Dynamic Duty Cycle Allocation The duty cycle of a node denotes the fraction of

time that it can be active for data packet transmission and reception. Because duty

cycles are dynamic, we expect that a static allocation of receive and transmit duty

cycle will not provide the best performance. For instance, a node which has many

backlog data packets may choose to allocate higher duty cycle for transmission

than for reception. We therefore need to formulate a dynamic allocation scheme

that can optimally apportion the duty cycle between packet reception and packet

transmission.

Sustainable Bulk Transfer In many applications (e.g. [24,124]), sensor nodes are

tasked to record time-series data at high sampling rates, resulting in large or bulk

sensor data. Bulk transfer essentially refers to the delivery of bulk sensor data

from sensor nodes to a gateway. While several bulk transfer schemes have been

proposed [39, 40, 75, 100], they focus mainly on maximizing the throughput, ne-
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glecting the duty cycle constraints of sensor nodes. The use of existing schemes

may therefore cause uncontrolled and rapid draining of the energy reserves, lead-

ing to the temporary unavailability of nodes along the transfer path. Ultimately,

this will result in transfer disruptions which render the transfer of arbitrarily-sized

sensor data difficult, if not infeasible.

1.4 Accomplishments and Contributions

This thesis aims to develop data delivery schemes for EPWSNs that can achieve

performance requirements on reliability, end-to-end delay and throughput while

ensuring that energy-neutrality constraints are satisfied. To this end, this thesis

makes the following major findings and contributions:

• We have shown analytically that the expected sleep latency of a wakeup

scheduling scheme is related to the variance of the intervals between receive

wakeup slots. In particular, when the variance of the interval is low (high),

the expected latency is low (high). Hence, the ideal scheduling scheme is the

one where the receive wakeup slots are positioned at equal intervals since its

variance is 0. We have designed a sequence-based scheduling scheme that

uses bit-reversal permutation sequence (BRPS) and analytically obtained its

worst-case sleep latency which is slightly worse than the ideal scheme but

better than schemes where the intervals between receive wakeup slots are

distributed uniformly or exponentially. BRPS entails low storage and com-

munications overhead as the bit-reversal permutation sequence provides a

compact representation of dynamic wakeup schedules. Simulation results

show that BRPS provides low latency and can closely match the perfor-

mance of Energy Synchronized Communication (ESC) [51], a state-of-the-art

scheduling scheme for EPWSNs. Furthermore, BRPS’s robustness results in

lower scheduling error ratio which translates to better packet delivery ratio.

Aside from having a lower storage and communication overhead, BRPS also

has a lower computational complexity compared with ESC.
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• To enable the selection of low latency and high reliability paths among dy-

namically duty cycled nodes, we have formulated a metric called expected

transmission delay (ETD) which simultaneously considers sleep latency (due

to duty cycling) and packet loss. We have proven that the metric is left-

monotonic and left-isotonic, guaranteeing that its use in distributed algo-

rithms such as the distributed Bellman-Ford will yield consistent, loop-free

and optimal paths. Simulations show that compared with ETX and hop

count and used in tandem with BRPS, ETD provides the best performance

in terms of packet delivery ratio and delay.

• In the context of receive-centric wakeup scheduling schemes, there is a need to

apportion the duty cycle between packet reception and transmission, which

we refer to as the duty cycle allocation problem. We have derived analyti-

cal models for the packet arrival probability and the expected service time

in the presence of contention. Using these models, we have formulated

the duty cycle allocation problem as a constrained non-linear optimization

problem that seeks to minimize the two-hop service time. We have devel-

oped LSLOTALLOC, a distributed low-complexity algorithm that uses linear

search to find an optimal solution. Trace-driven simulation results show the

significant performance gain of LSLOTALLOC over a static allocation scheme

in terms of end-to-end delay.

• To address the problem of transferring bulk data in EPWSNs, we have pro-

posed PUMP-AND-NAP, a packet train forwarding technique that maximizes

throughput while simultaneously enforcing compliance to (dynamic) duty

cycle limitations. PUMP-AND-NAP employs an adaptive controller to period-

ically compute the optimal capacity, that is, the maximum number of pack-

ets a node can receive and transmit in a train, given its duty cycle con-

straint. The controller uses prior input-output observations (capacity allo-

cations and their corresponding duty cycle usage) to continuously tune its

performance and adapt to wireless link quality variations. Its use of local

information makes the controller easily deployable in a distributed fashion.
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We have implemented PUMP-AND-NAP in TinyOS and evaluated its perfor-

mance through experiments. Results show that PUMP-AND-NAP provides

high transfer throughput while it simultaneously tracks the target duty cy-

cle. More importantly, PUMP-AND-NAP enables sustainable bulk transfer

compared to state-of-the-art techniques that greedily maximize throughput

at the expense of downtime due to energy depletion.

1.5 Structure of the Thesis

This thesis begins with a survey of related literature in Chapter 2. The review

covers the state-of-the-art in wakeup scheduling schemes, routing metrics, and

bulk transfer schemes for wireless sensor networks. Our understanding of the ad-

vantages and disadvantages of these existing schemes will be useful in improving

their performance.

In Chapter 3, an energy-neutral wakeup scheduling and forwarding scheme

that addresses the deficiencies of existing schemes is presented in detail. A key

finding on the effect of the wakeup schedule on the expected sleep latency is

proven. Mathematical properties of the proposed wakeup scheduling scheme that

uses BRPS are established, while monotonicity and isotonicity proofs of the ETD

forwarding metric are shown in detail. Simulations are conducted to compare the

performance of BRPS with ESC, and ETD with hop count and ETX.

In Chapter 4, the duty cycle allocation problem is introduced. Using discrete-

time queueing theory and renewal theory, the packet arrival probability and the

expected service time in the presence of contention are derived. LSLOTALLOC,

a simple algorithm that solves the duty cycle allocation problem using the de-

rived analytical models, is presented and its desirable mathematical properties

are proven. Trace-driven simulations are then conducted to validate the packet

arrival probability model and compare the performance of LSLOTALLOC with the

best-performing static allocation scheme.

In Chapter 5, a packet-train forwarding technique for bulk data transfer is in-

troduced. The design of the scheme, known as PUMP-AND-NAP, uses the princi-
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ple of certainty equivalent to come up with an adaptive feedback control mecha-

nism. Experimental results characterizing the performance of PUMP-AND-NAP

are presented and discussed. Experiments involving a real energy-harvesting

node are also conducted, comparing the performance of PUMP-AND-NAP to that

of existing bulk transfer techniques.

Finally, in Chapter 6, the thesis concludes with a summary of the various ac-

complishments and contributions of this study. We also state several possible fu-

ture research in the area of energy-neutral data delivery in EPWSNs.



Chapter 2

Review of Related Literature

Energy neutral operation entails dynamic duty cycling and dynamic sleep latency

which pose difficult challenges on the design of data delivery schemes. In this

chapter, we present a survey of related work, focusing on the problems enumer-

ated in Section 1.3. In particular, we conduct thorough assessment, qualitative

analysis and comparison of state-of-the-art wakeup scheduling schemes in Sec-

tion 2.1, routing or forwarding metrics in Section 2.2 and bulk transfer schemes

in Section 2.3. Our main objective in this chapter is to determine the suitability

of these schemes in the context of EPWSNs, and pinpoint their weaknesses and

strengths.

2.1 Wakeup Scheduling

At the most fundamental level, wakeup scheduling schemes can be classified based

on their requirement for synchronization, i.e., synchronous or asynchronous. As the

name implies, synchronous scheduling schemes require that the time across nodes

are synchronized. On the other hand, asynchronous scheduling schemes do not

require any form of synchronization. Note that this section is an abridged version

of our survey paper [118].

13
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2.1.1 Considerations

Wakeup scheduling employed in EPWSNs must consider their unique character-

istics and the underlying challenges posed by environmentally harvested energy

supply. In the discussion of the various schemes, we examine how they measure

up against the following important considerations:

Adaptation to Environment Dynamics EPWSNs are highly dynamic in terms of

topology, energy supply, and data traffic among others [12]. Schemes that respond

to some or all of these dynamics are expected to perform better than those schemes

that are oblivious. But while some non-adaptive schemes can be easily modified

to respond to changes in the operating environment, others are not flexible and

are therefore not amenable for use in dynamic environments.

Latency-Aware Sleep latency is a delay incurred in duty cycling networks due

to the fact that a transmitting node must wait for the receiving node to wakeup

before it can commence packet transmission [50, 83, 130]. Sleep latency is a ma-

jor challenge in both battery-powered and environmentally-powered WSNs and

significantly contributes to the end-to-end delay [50, 51]. Schemes that explicitly

tackle latency perform better than latency-oblivious schemes, but the awareness

again comes at an additional cost.

Duty Cycle Range Certain WSNs operate in very low duty cycles and as such,

schemes that are designed with high duty cycle in mind may not work well in

these regimes. For instance, schemes that rely on random schedules may have

poor performance because the probability of the sender and receiver being awake

at the same time is low. On the other hand, scheduling schemes tailored for low

duty cycles may have poor performance in high duty cycle regimes.

Processing Complexity Because EPWSN nodes have limited processing capa-

bility [12], schemes that use complex algorithms may not be suitable. Their use

may require the deployment of special nodes with sufficient processing capability
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to perform the complex computations and this entails some form of centralized

processing.

Overhead and Scalability Finally, constraints on channel and storage capaci-

ties [12] imply that schemes must have low communication and storage overhead.

Sources of overhead are mainly schedule exchange and storage. Notice that high

overhead may imply that a scheme is not scalable in terms of the number of nodes.

2.1.2 Terminology

We put forth the following basic terms to avoid confusion in the discussions.

Definition 1 (Wakeup Interval). The time duration at which the radio is switched on

to enable the node to either receive or transmit packets. The literature sometimes refer to

this as active or on interval.

Definition 2 (Sleep Interval). The time duration at which the radio is switched off to

enable the node to conserve energy. The literature sometimes refer to this as inactive, off

or dormant interval.

Wakeup scheduling schemes can be broadly grouped into two types: those

that divide time into equal-length intervals called slots and those that treat time

as continuous. The above definitions are usually applied to unslotted schemes.

For slotted schemes, wakeup and sleep intervals are defined in terms of integer

number of slots.

Definition 3 (Wakeup Schedule). A sequence of wakeup and sleep intervals that is usu-

ally specified for one cycle and repeats every cycle until otherwise modified by the wakeup

scheduling scheme. This is sometimes referred to as sleep schedule or sleep/wakeup

schedule in the literature.

2.1.3 Data Exchange

The ultimate aim of wakeup scheduling schemes is to enable nodes to exchange

data during wakeup intervals. Most wakeup scheduling schemes use a simple
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design wherein every wakeup interval can accommodate at most one data frame

or packet. Several schemes have been proposed that can handle multiple data

frames or packets in every wakeup interval. In the former, wakeup schedules are

considered to be receive-centric, i.e., the specified wakeup intervals in the schedule

are meant for packet reception only1. In the latter, wakeup intervals are considered

bi-directional, i.e., wakeup intervals can be used for both packet transmission and

reception.

2.1.4 Asynchronous Schemes

Asynchronous schemes were the earliest protocols proposed for wakeup schedul-

ing. Their main distinguishing feature is that they operate in an asynchronous

manner, meaning that nodes wakeup to transmit without regard on whether other

nodes are awake to receive. Because of this, asynchronous schemes do not require

time synchronization. This is one of its major advantages because as Wu, et al. [127]

found in their study, efforts to periodically re-synchronize time across nodes can

entail significant energy consumption. Another major advantage of asynchronous

approaches is that they do not require any computation as well as communication

and storage overhead since no schedules are exchanged and stored.

One of the main challenges of asynchronous scheduling is how to exchange

data between two nodes which are not aware of each other’s wakeup schedules.

There are two major possible approaches to do this: (i) transmitter-initiated; and (ii)

receiver-initiated.

Transmitter-Initiated

In transmitter-initiated protocols, a transmitting node v transmits a special frame

to indicate to its neighbor nodes that it has data to transmit. When a neighbor node

hears the special frame in one of its wakeup intervals, it awaits for the transmission

of the data frame. A wakeup interval is receive-centric and can accommodate at

1In receive-centric wakeup scheduling schemes, a node u with data to transmit to v must wakeup
at an interval where v is awake as specified by the latter’s wakeup schedule. Note that this interval
at which u wakes up to transmit its packet is not considered part of its wakeup schedule.
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Figure 2.1: B-MAC operation. Nodes independently sleep and wakeup periodically but

with the same wakeup and sleep durations. When node v needs to send data (a packet
arrives from local application/higher layer), it must first send a preamble which should be at

least as long as the sleep duration TS (the check interval). When receiver node w detects

the preamble, it remains awake to receive the preamble and data. If a node wakes up and
does not detect a preamble within the wakeup duration TL, it goes back to sleep.

most one data frame. (It is possible for a wakeup interval to accommodate more

than one data frame depending on the data frame duration or the wakeup interval

duration. However, the use of preamble acts as a reservation mechanism whereby

only one node has the right to transmit one or more data frames within the wakeup

interval.)

B-MAC The first protocol to use this approach is the B-MAC [98] protocol. In this

protocol, nodes periodically wakeup for a duration of TL and sleep for a duration

of TS. TL is specified to be long enough for a node to detect the presence of a

special signal known as preamble. When a node v has data to send, it immediately

wakes up and transmits a preamble frame for a duration of TS followed by the

data frame. A node w that wakes up and detects the preamble will then remain

awake for the remaining preamble duration until it receives the data frame. This

process is shown in Figure 2.1.

B-MAC Enhancements B-MAC suffers from two major drawbacks. Firstly, send-

ing nodes must transmit a long preamble which must be at least TS, and secondly,

overhearing nodes (i.e., not the intended receiver) will also have to be awake dur-

ing the entire preamble transmission and possibly until data transmission is com-
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pleted. Several enhancements have been proposed to address these deficiencies.

X-MAC [21] tackles the long preamble problem by replacing it with a strobe short

preamble. In addition, the strobe preamble includes the intended receiver address,

thereby allowing overhearing nodes to go back to sleep the moment they receive a

strobe. BoX-MAC [87] further improves on X-MAC by replacing the short pream-

ble transmissions with data transmissions. This however assumes that data pack-

ets are short enough to be effective replacements of strobe preamble.

Receiver-Initiated

Receiver-initiated protocols essentially pass the burden of energy consumption for

the overhead from transmitters to receivers. That is, a receiving node w transmits

a special frame every time it wakes up to indicate to potential transmitters that it

is ready to receive data frames. When a node v has pending data to transmit, it

immediately wakes up and awaits for the transmission of the special frame from

its neighbors. The moment it receives the special frame from another node w for

which it has data to transmit to, v commences data transmission to w. Similar to

the transmitter-initiated protocols, a wakeup interval in receiver-initiated proto-

cols is receive-centric and can accommodate at most one data frame.

RI-MAC Nodes periodically sleep for a duration of TS and wakeup for a dura-

tion of TL. Whenever a node wakes up, it transmits a beacon to indicate to potential

transmitters that it is ready to receive data. If it does not receive a data frame af-

ter TL, it goes back to sleep. From a transmitter perspective, if a node v has data

to transmit, it waits for the beacon from the intended receiver before transmitting

its data. Figure 2.2 shows the operation of RI-MAC [112], the protocol that first

proposed this approach.

RI-MAC Enhancements Huang, et al. [62] proposed Receiver-Centric MAC (RC-

MAC) that exploits the underlying routing tree structure to coordinate the trans-

mission of a node’s children. The coordination is done by piggybacking the ID

of the next child that can transmit in the ACK. Meanwhile, Nguyen, et al. [90] ex-
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Figure 2.2: RI-MAC operation. Nodes independently sleep and wakeup periodically but
with the same wakeup and sleep durations. Whenever a node wakes up, it transmits a

beacon frame and stays awake for a duration of TL. It goes back to sleep if it does not
start to receive any data within TL. If node v has data to send, it waits for the beacon

before transmitting its data.

tended RI-MAC for EPWSNs by using the energy harvesting rate and the queue

length to adjust the duty cycle of the nodes.

2.1.5 Periodic Synchronous Schemes

Numerous synchronous schemes have been proposed because the use of time

synchronization somehow eases up the analysis and design of wakeup schedul-

ing schemes. Time synchronization in the context of wireless sensor networks

is a well-studied area and numerous protocols have been proposed for this pur-

pose [41, 42, 85, 93]. Most synchronous schemes operate periodically, i.e., a wakeup

schedule repeats every period, cycle or epoch until a change is made by the schedul-

ing algorithm. We present several of these schemes in this section. There are

however aperiodic schemes that do not employ periodic schedules, and we will

elaborate on them in Section 2.1.6.

Periodic wakeup scheduling schemes may operate either in a slotted or unslot-

ted manner. In the former, the cycle is essentially broken up into equal-length slots

as shown in Figure 2.3. Slotted cycles are usually employed by schemes that use

more than one wakeup instance per cycle.

The main problem in periodic wakeup scheduling is to determine which time
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Figure 2.3: A cycle with S slots.

interval (or intervals) in a cycle to activate so that a node can perform packet trans-

mission or reception. This problem may look trivial from a node-level perspective

but from a network-level point-of-view, selecting intervals across nodes to opti-

mize a certain performance metric can be difficult. To achieve a desired perfor-

mance, nodes must collaborate with each other in the process of schedule computa-

tion. We can divide the various schemes into five groups depending on the level of

collaboration: (i) neighbor-coordinated; (ii) path-coordinated; (iii) network-coordinated;

(iv) independent; and (v) centralized. The latter two are actually non-collaborative

approaches.

Neighbor-Coordinated

In this approach, a node establishes its own wakeup schedule by considering the

wakeup schedules of its adjacent or neighbor nodes. To be precise, a node v calcu-

lates its wakeup schedule by consulting the schedule of all nodes w ∈ Nv, where

Nv is the set of one-hop neighbors of v. This is obviously the easiest among the

collaborative schemes and requires the least effort.

The neighbor-coordinated schemes that we will be discussing in this survey

are receive-centric and every wakeup interval or slot can accommodate at most

one data packet.

S-MAC The simplest (and the first to be introduced) protocol that uses this ap-

proach is S-MAC [129]. As shown in Figure 2.4, the wakeup interval is divided

into three parts: (i) a portion for SYNC, (ii) a portion for RTS, and (iii) a portion

for CTS. S-MAC uses scheduled rendezvous communication scheme wherein nodes

exchange SYNC packets (in the first portion of the wakeup interval) to coordinate

sleep/wakeup periods. Before a node can send a SYNC packet, it must ensure
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Figure 2.4: Components of an S-MAC wakeup interval.

Figure 2.5: S-MAC protocol operation. In the first portion, w performs carrier sensing

(denoted by CS) before sending a SYNC packet. In the second portion, v sends an RTS

after performing carrier sensing. In the third portion, w sends back a CTS to v. After the
regular wakeup interval, v transmits its data while w continues to be awake to receive the

data.

that the channel is idle by performing carrier sensing. A node can either create its

own schedule or follow a neighbor’s schedule. When a node v has data to send

to w, it performs carrier sensing and if the channel is idle, v sends an RTS to w in

the second portion of the wakeup interval. If v detects the channel to be busy, it

goes back to sleep. Node w sends back an RTS in the third portion of the wakeup

interval. Data transmission occurs after the third portion of the wakeup interval.

Figure 2.5 illustrates the operation of the protocol.

S-MAC Enhancements Since the introduction of S-MAC, numerous improve-

ments have been proposed to make it more energy-efficient or adaptive to changes

in the network conditions. In Timeout MAC (T-MAC) [119], the wakeup interval

is shortened with the adoption of adaptive active time. Zheng, et al. [134] proposed

Pattern-MAC (PMAC) to address the issues of fixed duty cycle through exchange

of sleep-wakeup patterns. Dynamic S-MAC (DSMAC) [82] also attempts to make the

duty cycle of S-MAC to be more dynamic, albeit in a limited matter. Specifically,
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DSMAC allows the duty cycle to be either 0.1, 0.2, or 0.4.

ESC Energy-synchronized communication (ESC) [51] is one of the earliest wake-

up scheduling schemes proposed for EPWSNs. ESC operates in a slotted manner.

The key idea is simple: increase the number of wakeup slots when the energy

supply increases and conversely, decrease the number of wakeup slots when the

energy supply decreases. ESC refers to the former as (bursty) active instance in-

crement and the latter as (bursty) active instance decrement. To facilitate the in-

crement and decrement processes, ESC uses the notion of cross-traffic delay (CTD).

For a node v with predecessor nodes Pv and successor nodes Sv, the cross-traffic

delay at v is the expected delay of every packet from any node in Pv to any node in

Sv passing through v. CTD considers both sleep latency and retransmission delay.

The authors demonstrated that for given schedules of predecessors and succes-

sors of node v, the CTD at v is not affected when a packet reaches v as long as the

packet arrives within a certain interval. (An interval is just the contiguous set of

slots between any two consecutive wakeup slots of the combined wakeup slots of

Pv and Sv.) This observation termed as the stair effect was used by the authors

to design a localized O(1) algorithm for schedule adjustment that minimizes the

CTD at v. Note however that the O(1) complexity hinges on the assumption that

nodes use extremely low duty cycles.

Discussion S-MAC and its variants rely on periodic scheduled rendezvous for

synchronization, wherein the period or interval between rendezvous is determined

by the duty cycle. In dynamically duty-cycled networks, the periodicity of these

rendezvous will not hold and thus, communication among nodes will be difficult.

As such, employing S-MAC or any of its variants in EPWSNs will be extremely

challenging.

Meanwhile, ESC avoids the problem due to synchronization difficulties through

the exchange of wakeup schedules among nodes. This enables any node u that re-

ceives a wakeup schedule advertisement from another node v to know the exact

time instances at which v will be awake. ESC was designed for EPWSNs and
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as such, it adapts to changes in energy supply and more importantly, it mini-

mizes sleep latency through the generation of wakeup schedules that minimizes

the CTD. A major limitation of ESC is that it was designed for ultra low duty-

cycled nodes. In high duty cycle scenarios, ESC will require excessive overhead to

exchange and store wakeup schedules. In addition, the algorithm that computes

the minimal CTD wakeup schedule will no longer be O(1).

Path-Coordinated

As mentioned in Section 2.1.1, sleep latency is a major problem in duty-cycled

networks that significantly contributes to the end-to-end delay. Path-coordinated

scheduling was therefore proposed to allow nodes along a path to coordinate their

wakeup schedules such that packets traversing along the path will encounter as

little delay as possible. An important requirement of this scheme is that either (i)

a routing tree rooted at the sink node must already be in place; or (ii) nodes know

the location of the sink node and their respective location.

Except for the Adaptive Staggered Sleep Protocol (ASLEEP) [14], all the other

path-coordinated schemes were designed such that a wakeup interval or slot could

accommodate the reception of at most one data packet. In ASLEEP, the wakeup

interval duration is specified such that a node can communicate with all its child

nodes as well as its parent node.

Wakeup Patterns Keshavarzian, et al. [72] proposed several path-wide wakeup

schedule patterns that aim to minimize the end-to-end sleep latency from every

node to a common base station node (backward or uplink direction) and vice versa

(forward or downlink direction). In the discussion of the wakeup patterns, it is

assumed that the network is organized into levels, with the base station at level

0. The level of a node essentially indicates its minimum hop count to the base

station node. Let H denote the maximum number of hops (or maximum number

of levels) in the network.

Fully-Synchronized Pattern (FSP) In this pattern, all nodes in the network sleep
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and wakeup at the same time. Though this is strictly not a path-coordinated

pattern, it is used as the basis of the subsequent path-coordinated wakeup

schedules.

Shifted Even and Odd Pattern This pattern is derived from FSP by shifting the

wakeup pattern of the nodes in even levels by T/2.

Ladder Pattern This pattern is similar to the idea of green wave traffic light schedul-

ing, i.e., synchronizing traffic lights to turn green just in time for the arrival

of vehicles from the previous intersections. This pattern can also be derived

from FSP by shifting the wakeup schedule of nodes in level k by τ from that

of level k − 1.

Two-Ladders Pattern One problem of the ladder pattern is that only the latency

of the downlink traffic is reduced. To improve the latency of both traffic di-

rections, two-ladders pattern is proposed, combining a forward ladder with

a backward ladder. Note that nodes in the middle levels (i.e., nodes in levels

1, 2, 3, . . . ,H − 1) wakeup twice in every period T .

Crossed-Ladders Pattern This is an enhancement of the preceding wakeup sched-

ule pattern where the two ladders are crossed so that the same wakeup is

used for both downlink and uplink directions. The cross point can be in any

of the middle levels (i.e., levels 1, 2, 3, . . . ,H − 1).

In addition to the five wakeup patterns, Keshavarzian, et al. [72] also proposed the

multi-parent method which can be independently applied to any of the five wakeup

patterns. In terms of latency, the crossed-ladders and two-ladders pattern provide

the best performance for both uplink and downlink traffic. The ladders pattern

yields the same latency for downlink traffic but worse latency for uplink traf-

fic. Compared to the ladders pattern, the shifted even and odd pattern provides

slightly better latency for uplink traffic but worse latency for downlink traffic. Fi-

nally, FSP performs the worst for both traffic directions.
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Figure 2.6: ASLEEP staggered scheduling. Wakeup interval of any node can actually be

split into two parts which are called talk intervals. For node v in the figure, tv is meant for
talking to its children (one of which is u) while tw is meant for talking to its parent w.

ASLEEP Adaptive Staggered Sleep Protocol (ASLEEP) [14] uses a staggered ap-

proach wherein nodes at the lower levels in the routing tree wakeup earlier than

their ancestors. To clarify this, consider the wakeup schedules of nodes u, v, and

w as shown in Figure 2.6. In this illustration, u is a child of v and v is a child of

w. Note that the wakeup interval of any node can actually be split into two parts

which are called talk intervals. The first part is meant for talking to its children

while the second part is meant for talking to its parent. To establish a wakeup

schedule, ASLEEP uses two control messages known as direct beacon and reverse

beacon. The messages are used to propagate schedule information to downstream

and upstream nodes, respectively.

Staggered Wakeup Scheduling with Multiple Parents Unlike ASLEEP which

requires routing tree, Zhou and Medidi [136] proposed the use of location infor-

mation to derive a staggered wakeup schedule. Prior to the computation of the

wakeup schedule, the network is divided into concentric rings with the sink node

located at the center. Every node must be able to identify its ring level with respect

to the sink. Suppose that the K wakeup intervals in a cycle are {s1, s2, s3, . . . , sK},

then a node belonging to ring n would choose to wakeup in intervals {s1+n∆, s2+

n∆, s3+n∆, . . . , sK+n∆}where ∆ is an estimated packet transmission delay. One

advantage of using this approach is that a node belonging to ring level n can for-

ward its packets to any of the nodes in ring level n− 1, hence the approach is also

called multi-parent.
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Discussion A common advantage of path-coordinated schemes is that they pro-

vide low end-to-end sleep latency for all nodes in the network. However, the

need to perform path-wide coordination makes the adaptation of these schemes

to EPWSNs difficult. This is because a schedule change in one node causes all the

other nodes in the path to possibly re-compute their wakeup schedules. In highly

dynamic environments, this may lead to excessive communication and compu-

tational overhead and in the worst case, the scheduling algorithms may fail to

converge to an optimal schedule.

Network-Coordinated

In network-coordinated scheduling, all nodes in the network collaborate to arrive

at either a global wakeup schedule [81] or a per-node schedule that satisfies certain

optimality goals [83]. Note that network-coordinated scheduling may either be

distributed [81, 83] or centralized [55, 83]. In the latter, a single node is responsible

for computing the wakeup schedules of all nodes in the network or at least a subset

of nodes while in the former, every node is involved in the computation of their

respective wakeup schedules.

Except for Sense-Sleep Trees (SS-Trees) [55], all the other network-coordinated

schemes presented below were designed such that a wakeup interval or slot can

be used to receive at most one data packet. In the former, nodes can transmit or

receive one or more data packets in every wakeup interval.

GSA In the global schedule algorithm (GSA) proposed by Li, et al. [81], every

schedule is tagged with a schedule age which indicates how long a schedule has

existed in the network. Now consider a node v which uses a schedule with age

Av. When v receives a schedule from node w with age Aw and that Aw > Av, then

v adopts the schedule from w. GSA was proposed to enhance the performance of

S-MAC protocol, i.e., reduce the number of different schedules. This is because if

a node v has neighbors with different schedules (i.e., v is a border node), v must

wakeup in all of its neighbors schedules which will result in higher energy con-

sumption. Thus, by following the oldest schedule, after sufficient time, all nodes
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in the network will converge to a single schedule which is the oldest schedule.

Distributed DESS Lu, et al. [83] proposed two distributed algorithms to com-

pute a wakeup schedule that minimizes the end-to-end delay. More specifically,

the goal of the two algorithms is to find a single slot s ∈ {0, 1, 2, ..., S − 1} that

minimizes the end-to-end delay for every source-destination pair in the network.

The algorithms are called Local-Neighbor and Local-DV.

Centralized DESS Aside from the distributed DESS, Lu, et al. [83] also proposed

a centralized approach for computing wakeup schedule that minimizes sleep la-

tency. In particular, the goal of the algorithm is to find a slot sv ∈ [0, 1, 2, . . . , S −

1],∀v ∈ N that minimizes the delay diameter. The delay diameter Df induced by

a particular slot assignment f is defined as Df = maxv,w Pf (v,w), where Pf (v,w)

is the delay along the shortest delay path between nodes v and w under the given

slot assignment f .

Discussion For the distributed and centralized DESS schemes, the computation

of minimal sleep latency paths is a big advantage. However, this comes at a high

cost in terms of communication, storage and computational overhead. In gen-

eral, all the above-mentioned network-coordinated wakeup scheduling schemes

suffer from several drawbacks including long convergence time, high communi-

cation and computational overhead and low scalability. Between centralized and

distributed schemes, the latter schemes are more feasible as they do not require

the propagation of control information to a single node which can be prohibitively

expensive. Except for GSA, all the network-coordinated schemes presented above

can be easily adapted for dynamic wakeup scheduling. However, in highly dy-

namic environments, these schemes may fail to converge to an optimal wakeup

schedule. In the case of GSA, its objective is to come up with a common global

schedule which is opposite to the objective of dynamic wakeup scheduling.
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Uncoordinated

In uncoordinated or non-collaborative schemes, a node does not use schedule in-

formation from other nodes to compute its own wakeup schedule. Rather, a node

employs control theory, or other techniques that only require local information

(i.e., information within the node such as queue length or duty cycle.) This how-

ever does not mean that they are inferior to collaborative schemes. We discuss one

such scheme below which is receive-centric, i.e., every wakeup slot can accommo-

date the reception of at most one data packet.

Adaptive Duty Cycle Control with Queue Management Byun and Yu [22] pro-

posed the use of a control-based technique to dynamically adjust a node’s sleep

interval at every cycle (and hence its wakeup schedule). Let cv(k) denote the sleep

interval of a node v during the kth cycle. Then we have the following difference

equation that can be used as a basis for designing a feedback controller:

cv(k + 1) = cv(k) + β[qthv − qv(k + 1)]− γ[qv(k + 1)− qv(k)], (2.1)

where qv(k) is the queue length at node v during the kth cycle, qthv is a specified

queue length threshold for node v, and β and γ are control parameters that must

be chosen. Note that as the queue length becomes smaller than the queue thresh-

old, the sleep interval time increases linearly. Whereas, as the forward difference

of queue length exceeds zero (because the increased forward difference of queue

length induces a longer latency) the sleep interval time decreases. We highlight

that the scheme only requires the local queue length information.

Discussion Uncoordinated wakeup scheduling schemes have two major advan-

tages: (i) they do not require information from other nodes to compute their wakeup

schedules resulting in low communication overhead; and (ii) schedule changes in

other nodes will have no effect on a node resulting in low computational overhead.

As such, these schemes are very agile and are therefore suitable for EPWSNs. One

major disadvantage is that the schemes may generate wakeup schedules with high
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sleep latencies.

2.1.6 Aperiodic Synchronous Schemes

In periodic wakeup scheduling, a node’s wakeup schedule usually repeats every

cycle unless otherwise modified by the scheduling algorithm. In contrast, such

repetition does not occur in aperiodic wakeup scheduling because the decision

to wakeup or sleep in every slot is random. The aperiodic wakeup scheduling

schemes presented in this section use bi-directional wakeup slots. Recall that a

bi-directional wakeup slot can accommodate the transmission or reception of one

or more data packets.

Dai et al. Dai et al. [30] proposed several random wakeup scheduling schemes

where every node exchanges minimal schedule information with its neighbors to

determine whether they are asleep or awake in a particular slot. In particular, ev-

ery node exchanges its pseudo-random number generator (pRNG) seed and cycle

position. A node can be in any one of the following states in a slot: ON-RX, ON-

TX and OFF, with corresponding probabilities prx, ptx and poff = 1 − prx − ptx,

respectively. Note that with knowledge of the pRNG seed and cycle and the prob-

abilities, any node v will be able to know the state of any other node w.

Ghidini and Das Ghidini and Das [44] proposed a random scheme that does not

require any form of information exchange. Nodes therefore rely on the probability

of being simultaneously awake to effect data transfer. To motivate the design of

their random wakeup scheduling scheme, Ghidini and Das introduced the notion

of connection delay for nodes v and w which is the time interval between the current

slot and the first slot at which both v and w are simultaneously awake. A related

concept is connection duration which is the time interval between the first and the

last slot when v and w are simultaneously and continuously awake. The authors

proposed a Markov Chain-based duty cycling scheme with control vector [δ, τ, γ]T

where δ is the target duty cycle, τ is the slot duration, and γ is the memory coef-

ficient of the Markov Chain. The last parameter affects the transition probabilities
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α (transition probability from sleep to wakeup) and β (transition probability from

wakeup to sleep) as follows:

α = γδ (2.2)

and

β = γ − α. (2.3)

Note that γ ∈ [0, 1/(1 − δ)], and setting γ = 1 means that the decision at every slot

is totally independent from the previous decisions.

Discussion Aperiodic schemes are essentially random wakeup scheduling schemes

where the decision to sleep or wakeup is performed at the beginning of every slot.

As such, these schemes may potentially have higher computational overhead. But

because no schedule is exchanged among the nodes, communication overhead is

either zero or minimal. In terms of adaptability to dynamic environments, the

schemes proposed by Dai et al. [30] are not amenable for adaptation because of

their use of pRNG. Note that a node’s wakeup slots are determined by its pRNG

which is totally independent from the dynamics of the node’s environment. As

for the scheme proposed by Ghidini and Das [44], it can be easily adapted through

the control parameter δ. In terms of sleep latency, the use of random wakeup slots

in aperiodic schemes results in stochastic sleep latency as well. The scheme by

Ghidini and Das [44] is slightly better as it provides a mechanism to improve the

sleep latency, i.e., through the minimization of connection delay.

2.1.7 Comparison Summary

Numerous wakeup scheduling schemes have been proposed for wireless sensor

networks to address the unique challenges of duty-cycled node operation. We

have summarized recent results on wakeup scheduling and classified the various

approaches into two main categories, namely asynchronous and synchronous. Ta-

ble 2.1 enumerates the various wakeup scheduling schemes that were presented

in this section, consisting of MAC-layer and non-MAC-layer approaches. The ta-

ble also qualitatively assesses the schemes against the considerations discussed in
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Table 2.1: Comparison of Wakeup Scheduling Schemes

Scheme Dynamics
Adapta-
tion

Latency-
Aware

Duty Cy-
cle Range

Processing
Complex-
ity

Overhead

B-MAC [98] X M–H N L

X-MAC [21] X M–H N L

BoX-MAC [87] X M–H N L

RI-MAC [112] X M N L

RC-MAC [62] X M N L

S-MAC [129] L–H L M

T-MAC [119] L–H L M

PMAC [134] L–H M M

DSMAC [82] L–M (C) L M

ESC [51] X X L M M

FSP [72] L–H M M

Wakeup Patterns [72] X L–H M H

ASLEEP [14] X L–H M H

Zhou & Medidi [136] X L–H M H

GSA [81] L–H M H

Distributed DESS [83] X X L–H M H

Centralized DESS [83] X X L–H H H

Byun & Yu [22] X L–H H L

Dai et al. [30] U M M

Ghidini & Das [44] X L–H M L

N–None; L–Low; M–Medium; H–High; C–Coarse; U–Uncontrollable
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Section 2.1.1 to establish suitability for EPWSNs.

Asynchronous schemes were the earliest and simplest protocols proposed for

wakeup scheduling. A major advantage of asynchronous operation is the absence

of any form of time synchronization. Another major advantage of asynchronous

approaches is that they do not require any computational and storage overhead

since no schedules are stored. The only overhead is the transmission of special

frames (e.g., preamble or beacon) prior to data transmission. It is straightforward

to make asynchronous schemes adaptive to the dynamics of its operating environ-

ment. However, both transmitter-initiated and receiver-initiated protocols cannot

be used in the entire duty cycle range. One possibility to overcome this issue is to

fix the wakeup rate and allow the exchange of multiple packets in a single wakeup.

There is however a need to control the number of packets that can be exchanged

to satisfy energy-neutral constraints.

In contrast to asynchronous schemes, synchronous schemes require nodes to

be time synchronized. The majority of the proposed schemes presented fall un-

der this category and we divide them further into two major sub-categories de-

pending on the periodicity of the wakeup schedule. Most synchronous schemes

operate periodically, i.e., a wakeup schedule repeats every period, cycle or epoch

until a change is made by the scheduling algorithm. There are however schemes

wherein the decision to sleep or wakeup in every slot is random resulting in

aperiodic wakeup schedules. In periodic wakeup scheduling, the main prob-

lem is to determine a subset of time intervals within a cycle to wakeup so that

a node can perform packet transmission or reception. The selection of appropri-

ate time intervals is usually driven by an objective to optimize a certain perfor-

mance metric such as throughput or latency. Except for ESC which was specif-

ically designed for low duty cycle networks, all periodic schemes can support

low–high duty cycles. In terms of suitability for dynamic environments, path-

coordinated schemes are not amenable for adaptation to such environments. This

is because considerable coordination effort is needed to support dynamic wakeup

schedules. Meanwhile, network-coordinated and path-coordinated schemes re-



2.1. WAKEUP SCHEDULING 33

quire high computational complexity. Notably, neighbor-coordinated schemes

(except PMAC) entail low computational complexity. In terms of overhead, unco-

ordinated schemes entail the lowest overhead followed by neighbor-coordinated

schemes. Path-coordinated as well as network-coordinated schemes require higher

overhead because every node needs to coordinate their respective schedules with

a larger number of nodes.

As mentioned in Section 2.1.1, sleep latency is a major challenge in duty-cycled

networks. Path-coordinated schemes, including ESC and DESS appear to be head-

ing in the right direction as they address this particular problem. However, the de-

sign of these schemes suffer from one major flaw: they assume that packet trans-

missions are always successful. In practical sensor networks where wireless link

qualities have high variation, packet retransmissions are more the norm than the

exception. As such, the low latency advantage of path-coordinated schemes will

vanish in real-world deployments. Indeed, it might be difficult to have determin-

istic guarantees in stochastic environments.

Schedule representation is another important area that needs to be studied

further. Note that in most synchronized schemes, every node needs to store the

wakeup schedules of all its neighbors. Because sensor nodes have limited memory,

schedules must be represented in a compact manner. The most straight-forward

approach to represent a schedule is to use an S-bit array, where S is the number

of slots per cycle. A ‘0’ bit means that the corresponding bit position is a sleep slot

while a ‘1’ bit means that the corresponding bit position is a wakeup slot. Note

however that this approach is not scalable. If a scheme uses high value for S and

the network is dense, then considerable amount of memory is needed for schedule

storage.

Another important consideration that needs particular attention is load bal-

ancing, a technique that can be used to balance the energy consumption among

the nodes and can therefore increase the network lifetime [67]. While the scheme

by Byun and Yu [22] is load aware, none of the proposed schemes has considered

load balancing. To accomplish this, scheduling schemes may need to be coupled
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with the routing protocol or at least have knowledge of the underlying routing

graph.

2.2 Routing Metrics

A routing or forwarding metric is critical in optimizing the performance of data

delivery schemes. Because it determines the path to be used for data traffic, it must

be carefully designed such that the chosen path provides optimal performance

or satisfies the application requirements. In this section, we review the various

routing metrics that have been proposed for wireless sensor networks.

The routing metrics that are discussed in this section can be classified into three

classes, namely traditional, loss-aware, and energy-aware. The first class refers to

metrics developed for wired networks such as hop count. Loss-aware metrics

capture the impact of packet loss while energy-aware metrics consider the effect

of energy.

2.2.1 Routing Metric Fundamentals

A routing metric is used to select the least cost path from a source to a destination.

In proactive routing, least cost route selection normally employs the Bellman-Ford

[17] or Dijkstra’s [33] algorithms. In reactive routing, route selection is performed

as and when a route reply is received, i.e., a route is chosen if its cost is lower than

the existing route. Formulating a metric is hard because of the fact that it must be

able to capture the complex and dynamic characteristics of a link in a single scalar

cost [97].

Link Cost The notion of a “link” is not well-defined in wireless networks. For

the purpose of discussion, we define a wireless link as follows: we say that a link

(u, v) exists between nodes u and v if v can receive a fraction of transmissions from

u over a duration of time. We can associate a link cost to (u, v), which essentially

represents the cost of sending one packet from u to v as measured or computed at

u.
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Path Cost In wired networks, the path cost is normally the sum of the individual

link costs along the path [57, 84] or the sum of weighted costs [58]. This may not

be sufficient in EPWSNs because wireless links are not totally independent from

each other. Hence, the effect of link coupling also needs to be considered when

obtaining the path cost. We can associate a path cost which indicates the cost of

sending one packet over the path Pst from s to t computed at s.

2.2.2 Hop Count and Binary Link Abstraction

We first discuss hop count as it highlights the shortcomings of metrics that ignores

wireless link quality. Hop count is the simplest and most widely used metric

in many protocols including well-known mobile ad hoc network protocols such

as DSDV [96], AODV [95], and DSR [66] and WSN protocols such as Gradient-

Based Routing (GBR) [11] and IPv6 Routing Protocol for Low-power and Lossy

Networks (RPL) OF0 [114, 125].

For hop count, the cost of a link (u, v) from u to v as seen by u, denoted by cHC
uv ,

is simply

cHC
uv =



















1 if link (u, v) is “up”;

∞ if link (u, v) is “down”.

Hop count assumes that links are symmetric, hence, the link status of (u, v) is

taken to be the link status of the reverse link (v, u). The “up” and “down” link

status is referred to as the binary link abstraction. Nodes that can be reached by one

hop from u are called the neighbors of u. The cost of a path Pst from s to t is the

sum of the individual metrics, or simply the path length:

CHC
st =

∑

(u,v)∈Pst

cHC
uv

The binary link abstraction can cause difficulties in wireless networks. In wired

networks, link status is easily determined by means of periodic hello packets. Be-

cause wired links are highly reliable, the loss of one hello packet indicates that

the link is indeed “down” with very high probability. Unfortunately, this is not
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the case in wireless networks. Due to the lossy nature of wireless links [9], the

loss of one hello packet does not necessarily mean that the link is “down”. It

is indeed trivial to devise a “link quality thresholding” rule that declares a link

as “down” if more than a fraction of hello messages are not received. However,

this technique does not work well in wireless networks [9]. Several experiments

have confirmed that the binary link abstraction does not hold well in wireless net-

works [9,78], and that hop count performs poorly in real-world wireless multi-hop

networks [27, 28, 35, 71]. The main reason for this is that hop count often selects

paths with high loss rates that consequently degrade the network performance.

2.2.3 Packet Loss-Aware Metrics

Packet loss in wireless links is affected by many factors including data rate, trans-

mit power, noise, multi-path, and RF interference [9,53,92]. For networks with low

channel capacity, loss rate is also affected by packet size [63]. Given that loss rate is

difficult to directly measure because of the many factors that influence it, various

methods of estimation have been proposed. Some of the proposed estimators are:

Physical layer measurements (RSS, SNR, SINR, LQI) If readily provided by

the physical layer, these are attractive estimators because they do not require ad-

ditional measurement overhead. A model or mapping function is normally devel-

oped to transform the readings to packet delivery rate or throughput [77,101,132].

One drawback of this method is the hardware-dependence of the reliability and ac-

curacy of measurements. Another disadvantage is that packet loss rate may have

a weak correlation with physical layer measurements, as observed by De Cuoto et

al. [32].

Probed packet delivery rate (active probing) This method entails the exchange

of probe packets to measure packet delivery rate [31]. This is the most widely used

estimation approach by packet loss-aware and flow interference-aware metrics.

Packet transmission can either be broadcast (more common and less expensive)

or unicast. Unlike physical layer measurements which requires the formulation
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of a model, this method is straightforward as it only requires the calculation of

packet delivery ratio. It is also not hardware-dependent. However, probing is not

accurate for two main reasons: (i) for broadcast probing, the broadcast data rate

may be different from the unicast data rate; and (ii) the probe packet size is likely

to be different from actual packet size.

Actual packet delivery rate (“passive” probing) This method takes advantage

of the broadcast nature of wireless channels by basing the packet delivery rate on

actual data packets [69, 73]. Unlike the previous estimator, this one does not gen-

erate additional overhead. However, it has several disadvantages: (i) no measure-

ment is available from non-transmitting nodes (must resort to probing or other

means); (ii) if data is overheard (not intended for the listening node), the actual

data rate when sender transmits to the listening node may be different.

LQI-Based Metrics The introduction of IEEE 802.15.4 [7], which require imple-

mentations to provide a link quality indication (LQI), motivated the development

of several LQI-based metrics. According to the standard [7], the purpose of LQI

is to characterize the strength and/or quality of a received packet. LQI values are

expected to be within 0–255, with the higher value indicating better link quality.

The MultihopLQI metric [115] is one of the earliest metrics to take advantage of

this feature, and is implemented on top of the CC2420 radio [2] (an IEEE 802.15.4-

compliant radio that is used in many sensor motes). The receiver sensitivity of

CC2420 only allows the reception of packets with LQI at around 50 [2]. Suppose

that v received a packet from u with LQI luv. Then the cost of a link (u, v) using

LQI is

cmLQI
uv = {[r2(luv) >> 3]× r(luv)} >> 3,

where r(luv) = 80− (luv − 50) and >> denotes the right shift operator. The Multi-

hopLQI of a path Pst is simply the sum of all the individual link costs from s to t,

measured at s, given by

CmLQI
st =

∑

(u,v)∈Pst

cmLQI
uv .
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We note that the formulation of the link cost cmLQI
uv is chip-specific. This severely

limits the applicability of the metric, i.e., to network deployments employing the

CC2420 radio. Other LQI-based metrics include the ZigBee metric [8], MAX-LQI

and RQI [25], and LQI-based ETX [48].

Expected Transmission Count (ETX) As the name implies, ETX predicts the

number of data transmissions required to send a packet over a particular link,

including retransmissions. The metric, proposed by De Couto et al. [31] can be

considered as the ancestor of subsequent packet loss-aware metrics.

Given nodes u and v. Let puv denote the probability that a packet from u is

received by v. Likewise, let pvu denote the probability that a packet from v is

received by u. Assuming that each transmission is independent, the probability

that a packet sent by u is received by v and the acknowledgement by v is received

by u is puv ∗ pvu. Then the expected number of transmissions over the link (u, v) as

measured at u is:

cETX
uv =

1

puv ∗ pvu
.

To obtain the values of puv and pvu, probe packets are periodically broadcast by

the nodes. For example at node u, to get pvu, u simply counts the number of probe

packets received from v over a time window and divide it by the total number of

probe packets expected over the time window. puv can be obtained by u through

the probe packets received from v as v includes this value in its probe packets. The

ETX of a path Pst from s to t, measured at s is defined as the sum of the metric of

all the links in the route, or:

CETX
st =

∑

(u,v)∈Pst

cETX
uv .

One drawback of ETX is the generation of additional communication over-

head due to probe packets. The delivery rate probing scheme may also suffer

from instability and unreliability when the network load is heavy and highly vari-

able. While the formulation itself is stable as it does not consider load, the probing
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mechanism can be significantly affected by network load [105]. Another disadvan-

tage of ETX is the inaccuracy of measured delivery rates. The term puv is supposed

to account for data packet delivery rates while pvu is meant to capture the prob-

ability of delivering MAC acknowledgements. However, the measured delivery

rates correspond to probe (fixed-size broadcast) packets.

Notwithstanding these drawbacks, ETX have been demonstrated to outper-

form hop count in terms of throughput in several real-world testbeds [31,35]. The

improvement in throughput is significant for paths with more than two hops. This

may hint that ETX will become more useful as networks grow larger and paths be-

come longer. In the context of sensor networks, ETX is used by several protocols

including CTP [47], and RPL ETXOF [46]. In [47], results show that ETX signifi-

cantly outperforms MultihopLQI in terms of packet delivery ratio.

ETX Enhancements The dramatic performance advantages offered by ETX trig-

gered the development of several ETX enhancements. Expected Transmission

Time (ETT) [36] improves on ETX by considering the impact of multi-rate trans-

mission. Expected Transmission Count over Forward Links (ETF) [106] exploits

highly asymmetric links, a common phenomenon in low-power links. Modified

ETX (mETX) [76] improves response to short-channel variations while its related

metric Effective Number of Transmissions (ENT) [76] aids in the selection of paths

with bounded packet loss rate. Multicast ETX (METX) [104] and Success Probabil-

ity Product (SPP) [104] are targeted for multicast routing.

2.2.4 Energy-Aware Metrics

Energy is a very important resource in wireless sensor networks. As such, path

selection should also consider energy consumption and availability; otherwise,

paths with high energy consumption and low energy availability might be con-

sistently selected. In battery-powered sensors networks, this behavior will lead to

certain nodes running out of energy which can lead to network partitioning.
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Energy Metric One of the earliest works to consider energy in packet forward-

ing is Shah and Rabaey [108]. The authors proposed a link cost that considers the

energy required for transmission and reception across the link, including the re-

maining energy of the sender. Hence for a link (u, v), the cost from the perspective

of u, is given by

cEMuv = eαuvR
β
u,

where euv denotes the energy used to transmit and receive on the link, and Ru

is the residual energy of u, normalized to the initial energy of the node. Note

that for battery-powered nodes, Ru ≤ 1 since the battery level is non-increasing.

The parameters α and β are weighting factors that can be tweaked to trade-off

between energy consumption and energy availability, but which unfortunately

requires further study (i.e., the authors did not provide hints on how to adjust

the parameters given certain objectives). The path cost from s to t, as computed at

s, is given by

CEM
st = cEMsv + Cvt,

where Cvt denotes the average cost of reaching the destination through v, and is

given by

Cvt =
∑

w∈Svt

pwc
EM
vw .

Before discussing the significance of pw, we first discuss how packet forward-

ing is performed. To distribute packets according to residual energy, Shah and

Rabaey [108] proposed the use of probabilistic forwarding. When a node v has a

packet to forward, it randomly selects the successor node w from its successor set

Svt. The probability that w is selected, denoted by pw, is inversely proportional to

the cost of forwarding a packet through w, given by

pw =
1/cEMvw

∑

x∈Svt
1/cEMvx

.

Energy Metric Enhancements The energy metric, in tandem with probabilistic

forwarding, enables the network to attain a more balanced energy consumption
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and therefore longer network lifetime. Since its introduction, several extensions

and variations have been proposed to address some of the deficiencies of Shah

and Rabaey’s work. A natural extension, proposed by Wang et al. [121], combines

node residual energy with ETX with the aim of providing trade-off between en-

ergy consumption and path selection. A similar metric, proposed by Al-Jemeli et

al. [13], uses RSSI instead of ETX. Several energy-aware metrics [10, 19, 59, 111] in-

corporate load-balancing and QoS-related metrics such as delay and throughput.

Harvesting-Aware Metrics The energy-aware metrics in the preceding discus-

sions are designed with battery-powered WSNs in mind, hence their goal is to

either select paths that will consume the least power or paths with high energy,

or a trade-off between the two. In any case, the ultimate objective is to prolong

the network lifetime. However, as highlighted in Section 1.2, network lifetime

maximization is not a suitable objective in EPWSNs because of energy storage

recharging opportunities. Several harvesting-aware metrics have therefore been

proposed to exploit this important characteristic of EPWSNs.

Two of the earliest routing metrics to consider the impact of energy harvest-

ing are the routing metric for the GREES-L and GREES-M routing protocols [131].

These protocols are based on geographic routing, and hence the metric uses phys-

ical distance as one of the parameters. A major drawback of these metrics is that a

node u requires numerous information about every other node w in the successor

set, including the harvesting rate, consumption rate, times of last packet transmis-

sion and hello transmission, and distance to the sink. In addition, the metrics have

two parameters that need to be tuned.

Jakobsen et al. [64] introduced the notion of energy distance, which is essentially

the sum of the hop count of a path and a distance penalty term. The latter encapsu-

lates the amount of energy available on a node, and can be represented as a func-

tion that is monotonically decreasing with respect to the energy availability. For a

node u with energy availability eu ∈ [0, 1], where 0 means empty and 1 means full,

the distance penalty function must behave such that f(eu) −→ 0 when eu −→ 1

and f(eu) −→ ∞ when eu −→ 0. An example function proposed by Jakobsen et
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al. [64] is given below:

f(eu) =



















































0 c < eu ≤ 1

β e−c
b−c

b < eu ≤ c

(α− β) e−b
a−b

+ β a ≤ eu ≤ b

α 0 ≤ eu < a,

where a, b and c are different thresholds of energy availability while α denotes

the maximum penalty and β represents the penalty amplitude. Intuitively, paths

will lower energy will tend to have longer energy distance, and hence, packet

forwarding will favor paths with higher energy availability.

2.2.5 Comparison Summary

Routing metric plays a critical role in the performance of routing protocols. For-

mulating a metric is considered as the hardest problem in routing protocol design

because of the fact that it must be able to capture the complex and dynamic char-

acteristics of a link in a single scalar cost. Packet loss and energy availability are

two of the most important factors that affect data delivery performance in wireless

sensor networks.

Packet loss is affected by factors such as transmit data rate, transmit power,

noise, and multi-path fading. Given the complex interplay of these factors, several

loss rate estimation schemes have been proposed in the literature. MultihopLQI

and ETX are two of the implemented and widely-used metrics in sensor networks.

The former employs hardware-dependent link quality measurements while the

latter uses active probing to estimate the packet loss rate. Experiments have shown

that loss-aware metrics are significantly better than hop count in terms of packet

delivery ratio. One major disadvantage of loss-aware metrics, as far as wireless

sensor networks are concerned, is that they ignore the impact of energy.

In battery-powered sensor networks, metrics that consider energy consump-

tion and residual energy have been shown to significantly prolong the network
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lifetime. When combined with loss-aware metrics, these metrics can yield energy-

efficient and reliable data delivery. However, their underlying assumption that

energy is finite makes them unsuitable for EPWSNs. Of the schemes that we have

presented, the metrics for GREES-L and GREES-M, and the energy distance met-

ric seem to be better candidates for EPWSNs as they have been designed to be

aware of energy harvesting. However, a closer analysis shows that these metrics

are deficient in terms of the following:

• The GREES-L and GREES-M metrics require the exchange and maintenance

of numerous parameters for every forwarder node, entailing high communi-

cation and storage overhead. The metrics also require the physical distance

to the sink as it is designed for geographic routing.

• The energy distance metric is based on hop count which is already well-

known to perform poorly in real wireless sensor networks. While the au-

thors proposed a distributed algorithm to calculate the energy distance, it

was not shown whether the metric will yield consistent and loop-free paths.

• As mentioned in Section 1.2, sleep latency is a major challenge in EPWSNs.

None of these schemes have tackled this critical issue.

2.3 Bulk Data Transfer

To understand how bulk transfer protocols will perform in the context of EPWSNs,

we survey the state-of-the-art in bulk transfer. We categorize the various bulk

transfer schemes into two, namely, single packet-based, and packet train-based. The

ultimate aim of this section is to expose the shortcomings of existing bulk transfer

schemes when nodes perform dynamic duty cycling.

2.3.1 Bulk Transfer Fundamentals

Bulk transfer refers to the transmission of large amount of sensor data from a source

node to a destination node, typically a gateway or base station. Bulk transfer can

actually be performed using generic transport protocols (Wang et al. [122] provides
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a good survey on this subject) but specific application requirements and tight re-

source constraints in terms of memory, channel capacity and energy have led to the

development of specialized protocols for bulk transfers. In designing bulk transfer

schemes for EPWSNs, the following important factors must be considered:

Dynamic Duty Cycling Compliance As mentioned, EPWSNs employ dynamic

duty cycling to ensure energy neutrality. Bulk transfer schemes must therefore

operate such that the duty cycle constraints of every node (along the bulk trans-

fer path) are not exceeded. One main difference between battery-powered sensor

networks and EPWSNs is that in the latter, unused energy (in times when the

harvesting rate is high) will be wasted because of finite energy storage capacities.

Thus, bulk transfer schemes must find the maximum achievable throughput that

minimizes wastage. This is tantamount to saying that the bulk transfer must fully

utilize the duty cycle.

Reliability and Flow Control Current sensor network protocol stacks lack a

transport layer, hence, the bulk transfer scheme must implement its own relia-

bility mechanism to ensure that all fragments are delivered. In addition, it must

also implement some form of flow control to ensure that the network can accom-

modate its sending rate.

2.3.2 Single Packet-Based

Early bulk transfer schemes were heavily influenced by TCP, which can be consid-

ered a single packet-based scheme. In this scheme, the source splits the bulk data

into fragments, and each fragment is individually sent to the destination. The

main issue in single packet-based schemes is the determination of the interval in

between packet transmissions.

Koala Koala [88] is one of the earliest schemes for bulk transfer. It uses RTT

(round-trip time) to control the sending rate from the source to the sink. Specif-

ically, Koala sends packets at a rate of RTT/2, relying on its underlying flexible
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control protocol to provide the RTT measurements and reliability. The key idea

behind this sending interval is to ensure that a newly transmitted packet will not

in any way interfere with the previously transmitted one as the latter should have

already reached the sink. Koala also supports duty cycling and uses low-power

probing, a technique akin to beacon transmission in receiver-initiated MAC proto-

cols.

Unfortunately, RTT-based rate control performs poorly over long paths. Note

that in wireless sensor networks, the use of short-range radios enable some form

of spatial reuse. This basically means that node pairs that are out of range can

actually communicate with each other without causing packet collisions. Hence,

there are situations where the sender does not have to wait for the previously

transmitted packet to reach the sink. It can transmit the next packet as soon as its

transmission will not interfere with the last one.

Flush Flush [75] is one of the first bulk transfer schemes to take advantage of

spatial reuse. It introduced the idea of “pipelining” packets to improve through-

put, which is shown in Figure 2.7. To pipeline as many packets as possible, Flush

needs to know the interference range. This is difficult in practice because of the com-

plex radio propagation characteristics in real-world deployment environments. In

their work, the authors proposed a simple SNR thresholding approach to identify

“jammers”, i.e., nodes that can conflict with the transmission of another node but

their signal cannot be heard. Now, once every node knows the interference range

of every other node along a path, the sending rate can be maximized by using

the following two simple rules: (i) transmit when the successor node is free from

interference, and (ii) transmit at a rate below the successor node’s sending rate.

The first rule ensures collision-free transmissions, while the second rule is some

form of flow control to avoid swamping the next hop with traffic that it cannot

handle. For reliability, Flush uses a combination of end-to-end NACK (indicating

lost fragments) and link layer acknowledgements to reduce end-to-end NACK.
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Figure 2.7: Illustrating the packet pipelining from the perspective of node 1, as proposed in
Flush [75]. The interference range is 1, implying that a transmission by node 3 will reach

back node 2. As such, node 1 must wait for node 3 to complete transmission before it

can send its next packet. This is because if it transmits while node 3 is transmitting, its
transmission to node 2 will collide with node 3’s transmission.

Packets In Pipe (PIP) PIP [100] is another scheme that employs packet pipelin-

ing to improve throughput performance. PIP [100] took the idea of packet pipelin-

ing further through the use of a MAC protocol that is TDMA-based, centralized,

connection-oriented and uses multiple channels. PIP essentially aims to tightly

coordinate the packet pipelining from the source to the sink and further reduce

intra-flow and inter-flow interference. Although PIP significantly outperforms

Flush especially in transfers that involve longer paths, it may entail significant

overhead for synchronization and other coordination.

2.3.3 Packet Train-Based

Flush and PIP are designed to maximize throughput without regard to the energy

consumption of the sensor nodes. They need the radio to be turned on for the

entire transfer duration to achieve the desired packet pipelining effect. This is ob-

viously not suitable in EPWSNs where nodes are duty cycled for energy neutral

operation. To attain energy sustainability, bulk transfer schemes clearly need to
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operate on top of wakeup scheduling schemes. However, such an arrangement

poses difficulties on the single packet-based schemes. Note that in these schemes,

the transmitting node needs to transmit at regular intervals for optimum perfor-

mance. With wakeup scheduling, the transmitting node loses this control since it

can only transmits when the intended next hop is awake.

Certain types of wakeup scheduling schemes entail subtle problems for bulk

transfer schemes. As mentioned in Section 2.1.3, some schemes allow at most

one data packet per wakeup slot. For asynchronous schemes, single packet per

wakeup is highly inefficient as every packet needs to be preceded by some form of

overhead (i.e., preamble transmissions or listening for beacons). For synchronous

schemes, single packet per wakeup is also wasteful since wakeup slots are de-

signed to be larger than a single packet.

Fortunately, several wakeup scheduling schemes (e.g. X-MAC [21] and Con-

tikiMAC [38]) support multiple packets per wakeup. Such a transmission ap-

proach, which we refer to as packet train, can clearly remedy the deficiencies of

single packet-based schemes. Because wakeup scheduling somewhat limits the

opportunities at which nodes can exchange packets, it makes sense to transmit as

many packets as possible at every opportunity to improve efficiency. Duquennoy

et al. [39] observed this deficiency with the single packet-based scheme as they in-

troduced the first packet train-based scheme. They called their technique packet

bursting, which they defined as the rapid transmission of successive packets after

a single wakeup, in conjunction with the ContikiMAC [38] duty cycling. This is

illustrated in Figure 2.8. Note that unlike the other presented schemes in this sec-

tion, packet bursting is not complete, in the sense that it needs to be integrated

with a transport protocol such as TCP for reliability and flow control. Experimen-

tal results show that packet bursting in conjunction with duty cycling can provide

low power and high throughput performance.

Figure 2.8 illustrates the packet bursting technique performed across a single

hop. For bulk transfers that traverse multiple hops, packet train transmissions are

performed hop-by-hop, from the source until the destination. To illustrate, if a
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Figure 2.8: Illustrating the packet bursting technique. Sender node v transmits data frames
as preambles. Once receiver w wakes up and receives a data frame, it sends back an

ACK. Sender node v then transmits the next frame, and so on, until the last data frame.

It indicates whether or not there is a succeeding frame using the frame pending bit in the
IEEE 802.15.4 header.

source node 1 has bulk data to send to a destination node 5 which will traverse

through the path 1-2-3-4-5, then packet train transmission will be performed at

every hop, i.e., at 1-2, 2-3, 3-4 and 4-5. The key challenge of this approach is the

coordination in the hop-by-hop packet train transmissions to avoid both intra-flow

and inter-flow interference.

2.3.4 Comparison Summary

In this section, we have differentiated bulk transfer schemes based on how they

transmit packets. Single packet-based schemes transmit one packet per interval

while packet train-based schemes transmit back-to-back packets for every trans-

mission opportunity. Existing single packet-based techniques such as Flush and

PIP yield high throughput but they are not suitable for EPWSNs because they re-

quire 100% duty cycle.

To satisfy energy neutrality constraints, bulk transfer schemes must work hand

in hand with wakeup scheduling. From the perspective of a sending node, wakeup

scheduling limits the opportunities at which it can transfer packets to its next hop

node. Thus, sending one packet per wakeup is inefficient and that transmitting

back-to-back packets for every wakeup seems to be clearly advantageous. Such an

approach, which we call packet train-based, have been demonstrated by Duquen-

noy et al. [39] to result in low power high throughput bulk transfer. But while the

technique yields low energy consumption, the outcome is incidental rather than in-
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tentional, i.e., the use of packet trains does not actively control the energy usage to

be within specified bounds. In other words, the use of this scheme will not ensure

energy-neutrality.

In summary, existing bulk transfer schemes are oblivious of the duty cycle con-

straints of sensor nodes. Such blindness can cause uncontrolled and rapid drain-

ing of the energy reserves, leading to the temporary unavailability of nodes along

the transfer path. Ultimately, this will result in transfer disruptions which render

the transfer of arbitrarily-sized sensor data difficult, if not infeasible.
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Chapter 3

Energy-Neutral Scheduling and

Forwarding

A major challenge in both static and dynamic duty cycling networks is sleep latency

which is the delay incurred when a transmitting node must wait for the receiv-

ing node to wakeup before it can commence packet transmission [50, 83, 130]. In

battery-powered WSN where duty cycles are static, static wakeup schedules that

minimize sleep latency and end-to-end delay can be computed prior to the oper-

ation of the network [52, 83]. These pre-computed and fixed wakeup schedules

cannot provide optimal performance in EPWSNs where duty cycles are dynamic

and vary from node to node.

We therefore propose a dynamic wakeup scheduling scheme that enables ev-

ery node to compute a wakeup schedule according to their respective prevailing

duty cycle constraints. To reduce sleep latency, the scheme distributes the receive

wakeup slots to be as evenly as possible across every epoch. This exploits our

analytical result which states that the lower the variance of the intervals between

receive wakeup slots, the lower the expected sleep latency. To reduce the over-

head for storing and exchanging schedules, the scheme employs sequence-based

scheduling to represent dynamic wakeup schedules in a compact manner. The

resulting scheme uses bit-reversal permutation sequence (BRPS), and we analytically

obtain its worst-case sleep latency to be slightly worse than the ideal scheme but

51
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better than schemes where the receive wakeup slots are spaced uniformly or ex-

ponentially.

As BRPS can only reduce the expected sleep latency on a single hop basis, we

also propose a routing metric to enable the selection of multihop paths with low

end-to-end latency. The metric, which we call expected transmission delay (ETD),

simultaneously considers sleep latency and wireless link quality. We show that

the metric is left-monotonic and left-isotonic, proving that its use in distributed

algorithms such as the distributed Bellman-Ford algorithm will yield consistent,

loop-free and optimal paths.

The rest of this chapter is organized as follows: Section 3.1 discusses the mod-

els and assumptions that are used in the development of the proposed scheme.

Section 3.2 elaborates on the dynamic wakeup scheduling. It is also in this section

that we derive an important finding regarding the expected sleep latency entailed

by a dynamic wakeup schedule. Meanwhile, Section 3.3 provides a detailed pre-

sentation of the routing metric and forwarding scheme. The simulation models

and parameters are discussed in Section 3.4 while the simulation results are pre-

sented in Section 3.5. We finally summarize our findings and contributions in

Section 3.6.

3.1 Models and Assumptions

3.1.1 Network Model

We consider an EPWSN composed of N static nodes. No assumptions are made

on the deployment or distribution of the nodes over the area of interest so long as

the resulting network is connected. Every node is assigned a unique identifier and

has a finite queue which is used for storing packets that need to be forwarded.

Application and Traffic Model We consider an environmental monitoring ap-

plication wherein the sensor network is tasked to monitor the environmental con-

ditions (e.g., temperature, humidity, air quality) of an area of interest. Every node

performs periodic sensing every Ts which are sent to a common data collection
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point. Similar to prior works [50, 52, 83], we assume that the data generation rate

is low (i.e., Ts is large) and does not cause significant congestion and queueing de-

lay. Note that this assumption is reasonable as certain environmental monitoring

applications require at most 1 reading every 5 minutes [116].

Cross-Layer Implementation Approach The proposed scheme has two main

components: (i) a dynamic wakeup scheduling scheme; and (ii) a packet forward-

ing algorithm. In terms of implementation, the components are more appropri-

ately implemented in separate layers. The first component can be implemented in

the data link layer on top of a MAC protocol while the second component and can

be implemented in the network layer.

Slot Synchronization The proposed scheme operates in a slotted fashion, thereby

requiring slot synchronization or alignment. The slot duration is defined prior to

the operation of the network and is given by τ = T
S

, where T is the duration of

one cycle and S is the number of slots in a cycle. τ is defined such that it can ac-

commodate the transfer of one maximum-length data packet and a corresponding

ACK packet.

Medium Access Control and Link Estimation The proposed scheme requires

the underlying MAC to support broadcast and two-way handshake packet trans-

mission (unicast data followed by ACK). If the sending node fails to receive an

ACK, the MAC layer informs the network layer of the failure. In addition, we as-

sume that the underlying transceiver provides a link quality estimate. Note that

this assumption is reasonable since in the IEEE 802.15.4 standard [7], link quality

indication (LQI) is a feature required on radio transceivers.

Network Initialization As the proposed scheme focuses on the design of energy

neutral wakeup scheduling and forwarding, it assumes that the network has been

initialized, i.e., (i) every node v is assumed to have established its set of one-hop

neighbors Nv; and (ii) nodes have aligned their slots. We will not propose schemes
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Figure 3.1: Node model showing the duty cycle controller, which takes energy level Ev(k)
from the ambient energy source as input and provides the duty cycle δv(k) as output.

for accomplishing these functions but the reader can refer to existing work on

neighborhood discovery [86] and slot synchronization [29,43,85]. The latter meth-

ods also address the problem of drift due to low accuracy clocks or oscillators that

are used in sensor nodes.

3.1.2 Energy-Harvesting Node Model and Duty Cycle

Every node, except for the sink node, is powered by ambient energy and uses

adaptive duty cycling [51, 61, 68, 120, 137] to optimize its utilization of available

energy for communication. The sink node does not perform duty cycling (i.e., it is

always awake) and has unlimited energy supply.

Energy-Harvesting Node Model Figure 3.1 shows the energy-harvesting node

model used in this chapter. The duty cycle controller model, which is inspired

by [120], requires the energy level of the buffer Ev(k) as input and provides the

duty cycle δv(k) ∈ [0, 1] as control output2, where k denotes the cycle or epoch. In

simple terms, the duty cycle controller [120] chooses δv(k) as the duty cycle that

minimizes |E∗
v (k) − Ev(k)|, where E∗

v (k) is a preset target energy level. (A more

detailed discussion of this model is presented in Section 3.4.2.) In general, it can

be said that the resulting duty cycle δv(k) ∝ Ev(k).

Duty Cycle As mentioned, the duty cycle δv(k) indicates the fraction of time that

v can be active at k, i.e., all of its components (microcontroller, radio, sensors and

miscellaneous peripherals) are powered up. To emphasize, this means that each

2Of course, other controller models (which may require more information such as power require-
ments of transmission and reception, current harvesting rate, etc.) can also be used as long as they
can provide the energy neutral duty cycle which indicates the fraction of time that a node can be
active.
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of the components can have a duty cycle of δv(k). As our objective in this study

is to perform wakeup scheduling of the radio, from hereon, we will only consider

δv(k) as allocated to the radio component.

Transmit and Receive Slots Allocation At the kth cycle, the total amount of time

for the radio of v to be active is Tδv(k). As v must also perform relaying and not

just transmitting of its own readings, it must allocate a fraction of its active time

for reception as well. We propose the following simple allocation: First, v reserves

a certain amount of time for transmitting its own readings. If there is excess time, v

divides the remaining time such that the number of transmit and receive wakeup

slots are equal. The rationale behind this is to ensure that v will have a chance

to forward all packets generated (its own readings) and received within a cycle.

Note that if v allocates less transmit slots and more receive slots, then packets

will potentially accumulate if v receives more packets than its transmit slots. Let

nv(k) be the number of receive slots of v at k. If Ts is the sensing interval, then at

every cycle v has an average of T
Ts

readings which requires T
Ts
τ . Whereas, the time

needed for receiving and transmitting transit packets is 2nv(k)τ . Then Tδv(k) =

T
Ts
τ + 2nv(k)τ . Solving for nv(k) and forcing the result to be an integer, we obtain

nv(k) =



















⌊

T
2

(

δv(k)
τ
− 1

Ts

)⌋

if δv(k) >
τ
Ts

0 if δv(k) ≤ τ
Ts
.

(3.1)

3.1.3 Wakeup Schedule

A duty-cycled node requires wakeup schedules for data transmission and recep-

tion. When node v needs to forward a packet to node w, v needs to know the

receive wakeup schedule of w so that it can wakeup at the appropriate slot in the

future to perform the actual transmission. We define the receive wakeup schedule

as follows.

Definition 4 (Receive wakeup Schedule). Every node v has a receive wakeup schedule

Γv(k) for the kth cycle which contains nv(k) time slots indicating the times at which v
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Figure 3.2: An example of a receive wakeup schedule of v where Γv(k) = {1, 3, 5, 8},
S = 10 and T = 1 second. The shaded slots are the time slots where v listens for

transmissions from its neighbors.

wakes up to listen for transmissions from its neighbors. A receive wakeup slot is repre-

sented by an integer which ranges from 0 to S − 1. A number η ∈ Γv(k) means that v

should wake up in the interval [ητ, (η + 1)τ ] relative to the start of the cycle.

To clarify this definition, consider the receive wakeup schedule of node v,

Γv(k) = {1, 3, 5, 8} where S = 10 and T = 1 second as shown in Figure 3.2. It

must be noted that Γv(k) only contains the slots at which v wakes up to receive

packets from its neighbors. To transmit its packets, v can do so in any unused slot

β /∈ Γv(k) but must ensure that the intended receiver node w is awake to listen for

packet transmissions, i.e., β ∈ Γw(k).

We complete the discussion on wakeup schedule by considering the following

example. Suppose that v (with receive wakeup schedule given in Figure 3.2) in-

tends to transmit a packet to w which has a receive wakeup schedule of Γw(k) =

{1, 3, 4, 7}. Node v can choose either slot 4 or 7 to transmit its packet but it cannot

choose slots 1 and 3 because they are part of its own receive wakeup schedule. If

v chooses slot 4, then v must transmit the data packet the moment slot 4 begins

and should w correctly receive the data packet, it must send back an ACK packet

within the same slot. This is possible because the slot duration τ has been defined

to accommodate the transfer of one data packet and a corresponding ACK packet.

3.2 Dynamic Wakeup Scheduling

We now begin the development of a dynamic wakeup scheduling scheme that can

reduce sleep latency to the least extent possible. Because it has to be ultimately
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executed on sensor nodes which have limited computational power, we want the

scheduling scheme to have low computational complexity and low communica-

tion and storage overhead. We begin our discussion with a formal definition of

sleep latency as it is a key concept in the chapter.

Definition 5 (Sleep Latency). The sleep latency from node u to v, denoted by Wuv, is the

delay from the time that a packet becomes ready for transmission at u until the actual packet

transmission from u to v. The latency occurs because u must schedule its transmission in

the future when v is awake to receive its transmission.

As highlighted in Section 1.2, sleep latency is a major challenge in both battery-

powered and environmentally-powered WSN as it is the main cause of high end-

to-end delay. To reduce sleep latency, existing scheduling schemes [51, 52, 83] per-

form “tight” coordination wherein the receive slots of v are positioned at times

that are close to the receive slots of its successor node w. The key idea is that when

v receives a packet in its receive slot, it can quickly forward the packet to w thereby

reducing sleep latency3. While such an approach may work in perfect conditions,

it will face difficulties in situations where link qualities are not ideal. Because of

lossy links, v may not be able to successfully transmit at the “nearest” receive slot

of w. The retransmission of the lost packet will surely increase its delay which

depends on how the receive slots of w are distributed over the cycle. Furthermore,

because of the dependence of one node’s schedule on another node’s schedule, a

change in one node may unnecessarily trigger a change in the schedule of other

nodes.

We instead propose a “loose” coordination approach wherein the receive slots

of v are distributed as evenly as possible within the cycle duration T without re-

gard for the position of the receive slots of its neighbors. The basis of this simple

approach is the following lemma which shows that minimizing the variance of

intervals between receive slots leads to reduced sleep latency.

Lemma 1 (Expected Sleep Latency). Suppose that n is the number of receive wakeup

3This is possible because we assumed low data generation rate, i.e., no congestion and queueing
delay.



58 CHAPTER 3. ENERGY-NEUTRAL SCHEDULING AND FORWARDING

Figure 3.3: Model used in the derivation of expected sleep latency. Given a node with
n receive slots, Di is the interval between two successive receive wakeup slots, where

1 ≤ i ≤ n.

slots of node v at a particular cycle. Let Di denote the ith interval between two successive

receive wakeup slots, where 1 ≤ i ≤ n (c.f. Figure 3.3). Suppose that the packet ready

times at some neighbor node u is uniform in [0, T ]. Whenever u has a packet to transmit

to v, the expected sleep latency from u to v is

E(Wuv) =
1

2
E(D)

[

1 +
Var(D)

E2(D)

]

, (3.2)

where E(D) and Var(D) are the mean and variance, respectively, of all the intervals {Di}.

Proof. Suppose that intervals {Di} are independent and identically distributed

and let D be a random variable with distribution FD(x) and that Pr(Di ≤ x) =

FD(x), where 1 ≤ i ≤ n. With {Di} being an i.i.d. sequence of positive random

variables, we can use results from renewal theory, in particular renewal reward

processes (see [103], page 441) to obtain the expected sleep latency.

Let N(t) = sup{m ≥ 0 : Sm = D1 +D2 +D3 + ...+Dm ≤ t}. The sleep latency

from the current time t until the next receive wakeup slot at node v is simply the

residual time B(t) given by

B(t) = SN(t)+1 − t.

Since the packet ready times at node u are uniform, the expected sleep latency

from u to v, denoted by E(Wuv), is equal to

E(Wuv) = lim
t→∞

∫ t

0 B(τ)dτ

t

which is the average residual time. To obtain E(Wuv) using renewal reward theory,
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we simply associate a reward that is equal to the residual time B(t). Let R(t)

denote the total accumulated reward until time t. Then we have

R(t) =

∫ t

0
B(τ)dτ

Using Proposition 7.3 in [103] (page 433), we have

E(Wuv) = lim
t→∞

R(t)

t
=

E(R)

E(D)
, (3.3)

where E(R) is the expected reward per renewal cycle or interval and E(D) is the

expected duration of an interval. The former quantity can be easily obtained as

follows:

E(R) = E

{
∫ D

0
(D − t)dt

}

=
E(D2)

2
. (3.4)

Substituting (3.4) in (3.3), we have

E(Wuv) =
E(D2)

2E(D)
. (3.5)

Noting that E(D2) = E
2(D) +Var(D) where Var(D) is the variance of {Di}, we

finally obtain (3.2).

Note that the result in Lemma 1 is not unique to EPWSNs. In fact, a similar

result on bus waiting times have been shown in transportation studies [91]. The

above result can also be explained by the waiting time paradox (also known as

“inspection” paradox) [102] in renewal theory. In terms of packets, the paradox

states that it is more likely for a packet to become ready for transmission at a

larger interval than a shorter interval. The net effect is that the average waiting

time will be higher than the typical value.

For a cycle k with duration T and nv(k), (3.5) can be rewritten as

E(Wuv) =
T

2nv(k)

(

1 + C2(D)
)

, (3.6)
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where C(D) =

√
Var(D)

E(D) is the coefficient of variation. (3.6) seems to imply that

E(Wuv) can be reduced by decreasing the duty cycle duration T . Recall however

from (3.1) that nv(k) ∝ Tδv(k) which really implies that E(Wuv) ∝ 1
δv(k)

. Hence,

given a duty cycle to operate on, the only other way to reduce E(Wuv) is by re-

ducing the variance or the coefficient of variation of the interval between receive

slots.

Using Lemma 1, the ideal schedule is composed of equally-spaced receive

wakeup slots. For a node v with nv(k) receive slots, the schedule

Γv(k) =

{⌈

S

nv(k)

⌉

n, n = 0, 1, 2, ..., nv(k)− 1

}

(3.7)

is the most ideal as it provides zero variance. However, one major disadvantage

of (3.7) is that it is not robust to changes in nv(k). We shall discuss the notion of

schedule “robustness” in Section 3.2.1.

3.2.1 Schedule Robustness

Consider two consecutive cycles k and k + 1. Suppose that nv(k) 6= nv(k + 1),

then the receive slots in Γv(k + 1) may be entirely different from the receive slots

in Γv(k). The implication is that if some other node u fails to receive a schedule

update from v, u will transmit at a slot where v is not likely to be awake. We

formally define this concept as follows.

Definition 6 (Schedule Robustness). Given two cycles k and k′, where k 6= k′, nv(k) 6=

nv(k
′) and nv(k), nv(k

′) 6= 0, let ρ(k, k′) be defined as

ρ(k, k′) =
|Γv(k) ∩ Γv(k

′)|
min[nv(k), nv(k′)]

. (3.8)

A schedule Γv is robust if for any k and k′, ρ(k, k′) = 1.

Note that in general, 0 ≤ ρ(k, k′) ≤ 1. A schedule with ρ(k, k′) = 0 means that

the receive slots in Γv(k) are entirely different from Γv(k
′) while a schedule with

ρ(k, k′) = 1 means that the receive slots in Γv(k) and Γv(k
′) are the same except

for additional slots in one of the schedules.
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It is easy to see that the schedule defined in (3.7) is not robust according to Def-

inition 6. Consider two cycles k and k′. Let a = ⌈ S
nv(k)

⌉ and b = ⌈ S
nv(k′)

⌉. Without

loss of generality, suppose a > b and let m be the least common multiple of the

two numbers. Then Γv(k) ∩ Γv(k
′) = {mn,n = 0, 1, 2, ..., r − 1}. We then obtain

r as follows. Since a > b, then |Γv(k)| < |Γv(k
′)|. The maximum slot number in

Γv(k) is therefore the maximum possible common slot in the two schedules. That

is,

m(r − 1) ≤ a[nv(k)− 1]

r ≤ a[nv(k)− 1]

m
+ 1 (3.9)

Solving for ρ(k, k′) yields

ρ(k, k′) ≤ a

m
+

1

nv(k)

(

1− a

m

)

,

which can only be at most 1 when either a = m (i.e., the schedules are the same)

or nv(k) = 1 (i.e., one of the schedules has only one receive slot). The following

lemma clarifies why a robust schedule is desirable.

Lemma 2. Let k and k′ be two cycles where k < k′, nv(k) 6= nv(k
′) and nv(k), nv(k

′) 6=

0. Consider a node u with knowledge of Γv(k) alone and needs to transmit at k′. For a

robust schedule, the probability that u transmits at a slot where v is awake, denoted by

Pr(c), is given by

Pr(c) =



















1 if nv(k) < nv(k
′)

nv(k′)
nv(k)

if nv(k) > nv(k
′).

(3.10)

Proof. If nv(k) < nv(k
′), then the proof is obvious. The new schedule Γv(k

′) has

more slots and that Γv(k) ⊂ Γv(k
′). Since u knows Γv(k), it will transmit at η ∈

Γv(k)⇒ η ∈ Γv(k
′). Hence Pr(c) = 1.

If nv(k) > nv(k
′) the new schedule Γv(k

′) has fewer slots. Since u knows Γv(k)
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which has nv(k) slots and that nv(k
′) of these slots are contained in Γv(k

′), then

Pr(c) = nv(k′)
nv(k)

.

A subtle implication of Lemma 2 is that if a node u does not know the new

schedule of v but has knowledge of its old schedule, u can improve its chances of

successfully sending to v by being conservative with its estimate of the number of

slots in the new schedule.

3.2.2 Sequence-Based Wakeup Schedule

From Definition 4, we can view a receive wakeup schedule Γv(k) as a set of in-

tegers with cardinality of nv(k). Exchanging and storing raw schedules (i.e., the

entire contents of Γv(k)) may therefore entail high overhead especially if nv(k)

is high. To address this, we propose a sequence-based wakeup schedule pattern for

exchanging and storing schedules in a compact manner.

Definition 7 (Sequence-Based Wakeup Schedule). Let tn be an integer sequence that

satisfies the following conditions:

(a) 0 ≤ tn ≤ S − 1, n = 0, 1, 2, ..., S − 1

(b) tm 6= tn,∀m 6= n

A wakeup schedule of v at k is sequence-based if Γv(k) = {tn, n = 0, 1, 2, ..., nv(k)−

1}.

Conditions (a) and (b) will ensure that the generated sequence will contain

every possible slot number η = 0, 1, 2, ..., S − 1 exactly once. With a sequence-

based schedule, Γv(k) can be effectively specified by the tuple {tn, nv(k)}. If the

sequence tn is the same for all nodes, then only nv(k) is needed to completely

specify Γv(k). Another important property of a sequence-based schedule is that it

is robust according to Definition 6. We clarify this fact in the following lemma.

Lemma 3. A sequence-based wakeup schedule is robust.
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Proof. Let k and k′ be two cycles, where k 6= k′ and nv(k), nv(k
′) 6= 0. Without loss

of generality, assume that nv(k) < nv(k
′). Then Γv(k) = {tn, n = 0, 1, 2, ..., nv(k)−

1} and Γv(k
′) = {tn, n = 0, 1, 2, ..., nv (k

′) − 1}, that is, the two schedules have the

same terms up to nv(k) (since nv(k) < nv(k
′)). Hence, |Γv(k) ∩ Γv(k

′)| = nv(k).

Using (3.8), ρ(k, k′) = nv(k)/nv(k) = 1 for any k and k′.

3.2.3 Bit-Reversal Permutation Sequence

Definition 7 provides two conditions for an integer sequence tn to be usable as a

wakeup schedule generator. If we can obtain such tn, then the schedule is guar-

anteed to be robust. We have also shown in Lemma 1 that a schedule with low

variance can reduce the expected sleep latency. Thus, aside from satisfying the

two conditions in Definition 7, we must also formulate tn such that the generated

schedule yields the minimum variance.

To obtain a suitable sequence, we proceed as follows. Let S be the number of

slots in one cycle. If nv = 1 (we drop the parameter k in this discussion as it is

clear that we are at a specific cycle), then we can simply decide to position the slot,

which we label as η(0) at 0. (For the purpose of labeling the receive slots, we use

the notation η(i), where i is the index.) If nv = 2, then we just add an active slot in

the middle of the cycle at S/2 which we label η(1). If nv = 3, then we add a slot in

the middle of η(0) and η(1). This new slot labeled η(2) is at S/4. Figure 3.4 shows

an example up to nv = 8. Observe that for this method to work, S, S/2, S/4, S/8,

..., S/(S/2), S/S must be integers. In other words, S must be a power of 2.

Table 3.1 provides a summary of the slot positions using the method above.

We also show in columns 3 to 5 that when the numerator coefficient is represented

in 3-bit binary, its bit-reversal yields the index of the slot label (column 1). The

sequence in column 3 can be actually generated using bit-reversal permutation [70].

Definition 8. Consider an integer n ∈ [0, 2r − 1] with binary representation

(br−1, br−2, ..., b1, b0),
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Figure 3.4: Illustrating the idea behind the proposed sequence for generating wakeup

schedules.

Table 3.1: Summary of the Example Sequence for Generating Schedule

Label Slot position Numerator
coefficient

Numerator
coeffi-
cient (3-bit
binary)

Bit reversal and
decimal value

η(0) 0 0 000 000⇒ 0

η(1) S
2 = 4S

8 4 100 001⇒ 1

η(2) S
4 = 2S

8 2 010 010⇒ 2

η(3) S
2 + S

4 = 6S
8 6 110 011⇒ 3

η(4) S
8 1 001 100⇒ 4

η(5) S
2 + S

8 = 5S
8 5 101 101⇒ 5

η(6) S
4 + S

8 = 3S
8 3 011 110⇒ 6

η(7) S
2 + S

4 + S
8 = 7S

8 7 111 111⇒ 7
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where bi ∈ {0, 1}. Then its bit-reversal in r bits is

(b0, b1, ..., br−2, br−1).

If B(n, r) denotes the decimal value of the bit-reversal of n in r bits, then

B(n, r) =

r−1
∑

i=0

bi2
r−1−i.

We are now ready to generalize the method for obtaining the slot position of

η(n), n = 0, 1, 2, ..., nv − 1. Let S = 2s. Suppose that 2a−1 ≤ nv < 2a ≤ 2s. Then we

have

η(n) = B(n, a)
S

2a
= B(n, a)

2s

2a
.

It is straightforward to show that η(n) satisfies the conditions in Definition 7.

The minimum value of B(n, a) is the bit-reversal of 000 · · · 000 which is 0. Hence

the minimum value of η(n) is also 0. Whereas, the maximum value of B(n, a) is

the bit-reversal of 111 · · · 111 which is 2a − 1. Hence the maximum value of η(n)

is (2a − 1) 2
s

2a = 2s − 2s

2a ≤ 2s − 1. Also, every n has a unique a-bit representation.

Bit-reversal also yields a unique a-bit representation which yields a unique value.

Multiplying this value by 2s

2a does not affect its uniqueness. Hence, η(n) is an

admissible sequence.

Expected Waiting Time We now obtain the expected sleep latency that results

when bit-reversal permutation is used to generate a schedule. For conciseness, we

drop the parameter k in nv(k) as it is clear that the results apply to a specific cycle

or epoch k.

Theorem 1. The expected sleep latency incurred using a bit-reversal permutation se-

quence schedule is

E(Wuv) =
T

2nv

(

1 +
1

22a+1
(nv − 2a)(2a+1 − nv)

)

, (3.11)

where nv > 0 is the number of receive slots and a = ⌊log2 nv⌋.
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Proof. a = ⌊log2 nv⌋ ⇒ 2a ≤ nv < 2a+1. The first 2a slots divide T equally such that

the interval between slots is T/2a. The excess slots x = nv − 2a further divides x

of the 2a intervals into 2. Thus, finally there are 2x intervals with duration T/2a+1

and nv − 2x = 2a+1 − nv intervals with duration T/2a. Since E(D) = T/nv, the

variance Var(D) of the intervals is

Var(D) =

(

2nv − 2a+1

nv

)(

T

2a+1
− T

nv

)2

+

(

2a+1 − nv

nv

)(

T

2a
− T

nv

)2

=

(

1

22a+1

)(

T

nv

)2

(nv − 2a)(2a+1 − nv). (3.12)

Solving for C2(D) = Var(D)/E2(D) = Var(D)/(T/nv)
2 and substituting in

(3.6), we obtain (3.11).

Note that when nv is a power of 2, nv = 2a which causes the coefficient of vari-

ation to vanish. The following corollary further shows that C2(D) has an upper

bound and that E(Wuv) therefore has an upper bound.

Corollary 1. The expected sleep latency incurred using a bit-reversal permutation se-

quence schedule is bounded and 0.5 T
nv
≤ E(Wuv) ≤ 0.5625 T

nv
.

Proof. Since 2a ≤ nv < 2a+1, let d = 2a+1 − 2a = 2a. Then for 0 ≤ m < 2a, we

can rewrite (nv − 2a)(2a+1 − nv) as f(m) = (d −m)m = (2a −m)m = 2am−m2.

Solving for f ′(m) and f ′′(m),

f ′(m) = 2a − 2m

and

f ′′(m) = −2.

Since f ′′(m) < 0, f(m) is concave and setting f ′(m) = 0 will yield the maximum

value of f(m). Doing this gives us m = 2a−1. Hence, nv = 2a + 2a−1 will give the
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Table 3.2: Upper Bound of the Expected Sleep Latency under Different Distributions

Slot Distribution Upper bound

Ideal (equally-spaced slots) 0.5 T
nv

Bit-reversal permutation sequence 0.5625 T
nv

Uniform 0.6667 T
nv

Exponential T
nv

maximum C2(D). Therefore,

C2(D) =
(2a + 2a−1 − 2a)(2a+1 − 2a + 2a−1)

22a+1
=

1

8
= 0.125.

Substituting this in (3.11), we finally have the upper bound E(Wuv) = 0.5625 T
nv

.

In Table 3.2, we compare the upper bound of the expected sleep latency under

different distributions. For the uniform distribution, we let the slot intervals range

from 0 to 2T/nv such that the expected value is still T/nv . The coefficient of vari-

ation of exponential distribution is always 1. Note that bit-reversal permutation

sequence schedule yields lower expected sleep latency compared with uniform or

exponential.

Per Node Sequence The disadvantage of using the same sequence η(n) in all

of the nodes is that they will have common wakeup schedules. This is not a de-

sirable situation because more nodes may transmit at the same slot even though

their intended receivers are different. Although traffic flow is assumed to be low,

this may still result in higher occurrence of packet collisions. To reduce common

receive wakeup slots across nodes, we introduce an offset to η(n) for every node v

as follows,

tn = [v + η(n)] mod S,

where v is the ID of node v. The modulo operation is necessary to ensure that tn

does not exceed S − 1.
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Computational Complexity One of the key advantages of the proposed scheme

is its low computational complexity. As a matter of fact, it does not require the

computation of any schedule as it only needs to compute the number of receive

wakeup slots. Hence, its complexity is O(1).

Scheduling Overhead In terms of communication overhead, the advantage of

a sequence-based wakeup schedule is that for any node v in the network, it only

needs to send nv(k). In terms of storage overhead, the compact representation of

the wakeup schedule in terms of nv(k) requires considerably lower overhead com-

pared to schemes that require the storage of the entire schedule. If v has to store

the schedule of every neighbor, then the overhead of a sequence-based wakeup

schedule is O(|Nv|). Whereas, the overhead of schemes that require the storage of

entire schedules is O(|Nv |S), where S is the number of slots in the cycle.

3.3 Low Latency and Reliable Forwarding

So far, our development assumed that the links are ideal and that packet trans-

missions are always successful on the first attempt. However in practical deploy-

ments, links in wireless sensor networks are far from being ideal [50]. The impact

of lossy links is to essentially increase the expected sleep latency as will be shown

in the following motivating example.

3.3.1 Motivating Example

In the example shown in Figure 3.5, the number of receive wakeup slots of nodes 2

and 3 are indicated. pvw denotes the packet delivery probability from v to w. Thus,

we can see that the link (1, 3) has better quality than link (1, 2). If only sleep latency

were considered, then the selected forwarder would be node 2 since E(W12) =

T
2n2(k)

= T
32 < E(W13) =

T
2n3(k)

= T
16 . But because the delivery probability across

(1, 2) is only 0.4, this implies that a packet needs to be transmitted 1/0.4 = 2.5 on
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Figure 3.5: An example illustrating the adverse effect of neglecting link quality in forwarder

selection. pvw denotes the packet delivery probability from v to w.

the average4 before being successfully received by node 2. Hence, the total latency

would be roughly (2.5)E(W12) = 2.5T
32 . Whereas, for link (1, 3) which has a link

quality of 0.9, the total latency would be roughly (1.1)E(W13) =
2.2T
32 .

3.3.2 Expected Transmission Delay

The example above clearly shows that considering sleep latency alone in selecting

the next hop may result in poor performance. On the other hand, considering

link quality alone will also not necessarily lead to the best performance. This is

because the next hop node with the highest link quality might have a very high

sleep latency. We therefore define a new metric that combines sleep latency and

link quality.

Definition 9 (Transmission Delay). The transmission delay between adjacent nodes u

and v, denoted by Duv, is the delay from the time a packet becomes ready for transmission

at u until it is successfully received by v.

We now obtain the expected transmission delay (ETD) E(Duv) from u to v. For

a transmission to be deemed successful, the receiving node v must receive the

data packet and the sending node u must receive the corresponding ACK packet.

If puv and pvu are the two-way delivery probabilities of link (u, v), then a packet is

considered successfully transmitted with probability puvpvu. Following the same

argument as in [31], the expected number of transmissions is 1
puvpvu

. Given that

for every transmission attempt the delay is E(Wuv), we have

4This argument is explained as follows. Each transmission attempt across link (u, v) can be con-
sidered as a Bernoulli trial. Because the probability of success is puv, then from elementary proba-
bility, the expected number of transmission attempts is simply 1/puv .
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E(Duv) =
E(Wuv)

puvpvu
. (3.13)

Expected Transmission Delay of a Path Finally, the ETD of a path P from s to

t, denoted by E(Dst), is defined as the expected delay measured from the time a

packet becomes ready for transmission at s until it is successfully delivered to t.

This is simply given by

E(Dst) =
∑

∀(u,v)∈P

E(Duv). (3.14)

Distributed Calculation The search for the minimum ETD path from every sen-

sor node v to the data collection point t can be performed in a distributed manner

using the distributed Bellman-Ford algorithm. However, for such an algorithm to

yield consistent, loop-free and minimum cost paths, we have to show that the ETD

metric is both left-monotonic and left-isotonic [128].

Lemma 4. The ETD metric is left-monotonic and left-isotonic.

Proof. To show left-monotonicity, consider a path A from v to w with cost E(DA).

Suppose that we prepend a path C from u to v with cost E(DC). Then the cost

of the path from u to w through (C,A) is E(DCA) = E(DC) + E(DA). Clearly,

E(DA) ≤ E(DCA), proving its left-monotonicity.

To show left-isotonicity, consider two paths A and B from v to w with costs

E(DA) and E(DB), respectively, and with E(DA) ≤ E(DB). Now, suppose that we

prepend a path C from u to v with cost E(DC). Then the cost of the path from u

to w through (C,A) is E(DCA) = E(DC) + E(DA) while the cost of the path from

u to w through (C,B) is E(DCB) = E(DC) + E(DB). Clearly, E(DCA) ≤ E(DCB),

proving its left-isotonicity.

Before ending the discussion on ETD, we highlight the following important

differences between ETD and the energy-aware metrics presented in Section 2.2.4:

• ETD considers both sleep latency and packet loss. While several schemes

have incorporated the latter (notably MultihopLQI and ETX), none of the
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state-of-the-art routing metrics have included sleep latency in their respec-

tive formulations.

• Sleep latency implicitly considers energy availability and dynamic duty cy-

cling since sleep latency is inversely proportional to both, i.e., the higher the

energy and duty cycle, the lower the sleep latency.

• Unlike GREES-L and GREES-M that employ highly dynamic physical quan-

tities such as energy harvesting rate, energy consumption, and fraction of

energy used, ETD’s use of sleep latency as a proxy to energy availability not

only simplifies computation but also enhances its stability. Moreover, ETD

considers packet loss and does not require physical node locations.

• Unlike the energy distance metric, we have shown that ETD is left-monotonic

and left-isotonic, implying that it will yield consistent and loop-free paths.

More importantly, ETD does not require the formulation of a penalty func-

tion and also considers packet loss.

3.3.3 Protocol Overview

We now present the details of a forwarding scheme that incorporates the BRPS

and ETD to perform minimum-cost path computation and packet forwarding. As

a matter of notation, we maintain the variable naming conventions but affix the

node ID as superscript to indicate that a variable is maintained by a node.

State Variables and Data Structures Every node v maintains two global state

variables and a neighbor table. The global variables are Sv
vt and E(Dv

vt) which are

the ID of the next hop node and the minimum ETD, respectively, to the sink node

t. The neighbor table contains an information tuple (nv
u,E(Dv

vu),E(Dv
ut), p

v
vu, p

v
uv)

about every node u ∈ Nv, where nv
u is the number of receive slots of u, E(Dv

vu)

is the ETD from v to u, E(Dv
ut) is the minimum ETD from u to t, pvvu is the link

delivery probability from v to u and pvuv is the link delivery probability from u to

v.
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Initial Values After a node has completed performing neighbor discovery using

some suitable protocol (e.g., [86]), it initializes every neighbor information tuple

as follows: nv
u ← 0, E(Dv

vu) ← ∞, E(Dv
ut) ← ∞, pvvu ← 0, and pvuv) ← 0. More

importantly, it initializes its state variable E(Dv
vt) as follows:

E(Dv
vt) =



















0 if v is the sink node t

∞ otherwise.

(3.15)

Control Update and Node Update Slot At every cycle k, every node v must

broadcast an update packet UPDATE(nv(k),E(Dvt(k)), {puv(k),∀u ∈ Nv}) at a des-

ignated node update slot. For simplicity, we assign the slot (v mod S) as the node

update slot of v. Hence, every neighbor of v must wakeup at slot (v mod S) to lis-

ten for updates from v and must not use that slot for its own packet transmission.

Algorithm 1 Algorithm for processing an update packet.

1: if received UPDATE(nu(k),E(Dut(k)), {pwu(k),∀w ∈ Nu}) from u then

2: nv
u ← nu(k)

3: E(Dv
ut)← E(Dut(k))

4: pvvu ← pvu(k)

5: pvuv ← PHY LQI estimate of puv

6: else

7: nv
u ← ⌊αnv

u⌋

8: end if

Control Update Processing When v receives an update packet from u, it updates

the corresponding information tuple for u in its neighbor table as indicated in

lines (2)-(5) of Algorithm 1. Because the radio transceiver provides link quality

information, v can also obtain an estimate of pvuv. Studies [23, 54] have shown

that LQI is highly-correlated with packet delivery probability and can therefore

be used to obtain the latter. If v does not receive an update packet from u on its

designated slot, v sets nv
u ← ⌊αnv

u⌋, where 0 < α < 1. We refer to the parameter α
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as the receive slot discount factor. By conservatively estimating nu(k), v is essentially

improving its probability of successful transmission to u. This is possible because

of the robustness property of the scheduling scheme as shown in Lemma 2.

3.3.4 Path Computation

Algorithm 2 provides a listing of the algorithm that is executed at every node v to

obtain the minimum cost path from v to t. The algorithm is executed at the end of

every node update slot of every neighbor node u.

Infinite ETD to Neighbor u Lines (2)–(12) lists the steps that are executed when

the ETD to a neighbor node u becomes infinite. The ETD to u becomes infinite

whenever the number of receive slots of u becomes zero (which happens at initial

state or after several non-reception of update packets) or link delivery probabil-

ity estimates are not available. If u is the successor node to t, v searches for an

alternative neighbor w that provides the minimum ETD path to t.

Finite ETD to Neighbor u Lines (14)–(21) lists the steps that are executed when

the ETD to a neighbor node u is finite. Node v computes the ETD to u using

(3.13). If the resulting ETD through u is less than the current minimum ETD, then

u is chosen as the new next hop node and the corresponding ETD is set as the

minimum ETD from v to t.

Convergence Lines (5)–(11) and (18)–(21) ensure that after every execution of Al-

gorithm 2, v either has infinite cost to t or a finite cost which satisfies the following:

E(Dv
vt) = min

u∈Nv

[E(Dv
vu) + E(Dv

ut)] (3.16)

This equation is essentially the update rule of the distributed Bellman-Ford algo-

rithm [18]. Together with the initial values in (3.15) and neighbor update process-

ing in Algorithm 1, (3.16) ensures that the computation will converge to the correct

minimum cost within finite time [18].
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Algorithm 2 Distributed algorithm for path computation.

1: if pvuv = 0 or pvvu = 0 or nv
u = 0 then

2: E(Dv
vu)←∞

3: if Sv
vt = u then

4: E(Dv
vt)←∞

5: for w ∈ Nv\u do

6: M ← E(Dv
vw) + E(Dv

wt)

7: if M < E(Dv
vt) then

8: E(Dv
vt)←M

9: Sv
vt ← w

10: end if

11: end for

12: end if

13: else

14: a← ⌊log2 nv
u⌋

15: E(W v
vu)← T

2nv
u

(

1 + 1
22a+1 (n

v
u − 2a)(2a+1 − nv

u)
)

16: E(Dv
vu)← E(W v

vu)
pvuvp

v
vu

17: M ← E(Dv
vu) + E(Dv

ut)

18: if M < E(Dv
vt) then

19: E(Dv
vt)←M

20: Sv
vt ← u

21: end if

22: end if
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3.3.5 Packet Forwarding

Algorithm 3 lists the packet forwarding algorithm of the protocol. Upon receipt of

a data packet P from a neighbor node, from a local application, or from a previous

unsuccessful transmission, v checks if it has a path to the sink. If it has no path, v

drops P and the algorithm terminates. Otherwise, v checks the number of times

that P has been transmitted previously. If P has been transmitted more than L, P

is dropped and the algorithm terminates.

Slot Search If P is eligible for transmission, v searches for a time slot that is

closest to the current slot in the schedule of the next hop node w. Node v ensures

that a chosen transmit slot does not conflict with an update slot from a neighbor

node or that the slot is not in v’s own schedule. If a slot is found, P is scheduled

for transmission at the specified slot s + tmin. Otherwise, a scheduling failure is

considered to have occurred and P is dropped.

Packet Transmission At the appropriate slot, v wakes up to initiate the transmis-

sion of the scheduled packet P . The packet is sent unicast to w and v waits for an

ACK from w. When an ACK is received, v proceeds to schedule the next packet in

the queue, if there is any. When no ACK is received, the number of retries counter

r is incremented, and Algorithm 3 is invoked to try to schedule P again.

3.3.6 Reducing Control Overhead

As mentioned in the fourth paragraph of Section 3.3.3, every node in the network

needs to broadcast an update packet exactly once every epoch. For convenience,

every node v is assigned one update slot per epoch, in particular the slot (v mod S),

to transmit such control packet.

In addition to the dedicated slot for transmitting update packets, every node

must also wakeup at the update slot of all its known neighbors to know their

respective wakeup schedules and other protocol parameters. As such, a node v

may incur high overhead especially if it has a large number of neighbor nodes.
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Algorithm 3 Packet forwarding algorithm.

1: if E(Dv
vt) =∞ then

2: Drop P

3: return

4: end if

5: r ← Number of retransmissions of P

6: if r ≥ L then

7: Drop P

8: return

9: end if

10: s← Current slot

11: w ← Sv
vt

12: Γv ← {tn, n = 0, 1, 2, ..., nv(k)− 1}

13: Γw ← {tw(n), n = 0, 1, 2, ..., nv
w − 1}

14: tmin ←∞

15: for η ∈ Γw do

16: if η = u mod S, ∀u ∈ Nv or η ∈ Γv then

17: continue

18: end if

19: tdiff ← η − s

20: if tdiff ≤ 0 then

21: tdiff ← tdiff + S

22: end if

23: if tdiff < tmin then

24: tmin ← tdiff

25: end if

26: end for

27: if tmin <∞ then

28: Schedule P for transmission at s+ tmin

29: else

30: Drop P

31: end if
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In what follows, we describe several mechanisms that can be used to reduce

the overhead generated by the protocol:

Use Large Epoch Duration: Since update transmission and update reception

(from every neighbor) is done on a per epoch basis, increasing the epoch dura-

tion could lower the overhead. Note however that a large epoch duration may

slow down the convergence of the protocol, as shown in our simulation studies.

As such, this approach may only be suitable in situations where the energy har-

vesting rates do not change rapidly.

Receive Updates from Selected Nodes: If a node is within a large neighborhood,

it can limit its reception of update packets to a selected set of nodes. For instance,

a node can choose to only receive updates from neighbors with routing metrics

less than a certain threshold. This is because in the distributed computation of the

optimal path, the most suitable successor node (or set of nodes) is likely to come

from these nodes. The downside of this approach is that the set may turn out to

be empty, resulting in the node being unnecessarily isolated. Another drawback

is that due to changes in the environment, the optimal successor node may not be-

long to the chosen set, resulting in sub-optimal paths. Essentially, the challenge is

for every node to choose the appropriate routing metric threshold that can reduce

the set of nodes that it will listen to for updates.

Round Robin Listening: Another approach that can be employed to reduce the

overhead entailed by neighbor update reception is to perform round robin listen-

ing. Instead of waking up to all neighbor updates every epoch, a node can choose

to wakeup for at most n neighbors every epoch. If the node has more than n

neighbors, it will just schedule the update reception by waking up for the first n

neighbors in epoch k, the second n neighbors in epoch k + 1, and so on. The pro-

cess will then repeat after all neighbors have been “listened to”. Once again, this

approach may only work well in situations where the energy harvesting rates do

not change rapidly.
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Figure 3.6: Solar energy harvesting source model.

3.4 Simulation Models

To evaluate the performance of our proposed wakeup scheduling and forwarding

scheme, we implemented a simulation model of the proposed wakeup scheduling

and forwarding scheme in Qualnet [4], including other required components such

as energy harvesting source and duty cycle controller. We set the slot duration τ

to be 10 ms which is more than sufficient for the transmission of a 127-byte data

packet (the maximum payload of an IEEE 802.15.4 PHY frame is 127 bytes [7]) and

ACK.

3.4.1 Energy Harvesting Source Model

Figure 3.6 shows the energy harvesting source model which is composed of a solar

panel, a charging circuit, and a supercapacitor. This model captures the state-of-

the-art in circuit design for micro-solar energy harvesting systems [26, 74]. The

model requires solar irradiance data (in Watts per square meter) as input. For

this purpose, we used real solar data traces from the National Renewable Energy

Laboratory (NREL) [3]. We selected two days of solar radiation trace, representing

“sunny” and “cloudy” scenarios, which are shown in Figure 3.7. For each node,

the actual irradiance value used is a random number between the diffuse and

global irradiance values.

The solar panel is characterized by its surface area ASP and conversion effi-

ciency ηSP. The energy outputESP(k) of the solar panel at the kth epoch is given by

ESP(k) = ASPηSPEs(k), where Es(k) is the solar irradiance. Whereas, the charg-

ing circuit is characterized by its charging efficiency ηCC. The amount of energy

that reaches the supercapacitor is simply the output of the charging circuit which
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(a) “Sunny” scenario solar irradiance
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(b) “Cloudy” scenario solar irradiance

Figure 3.7: Solar irradiance data (at 6-minute resolution) from NREL Florida Solar Energy
Center on July 2 and July 8, 2000.
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is given by

ECC(k) = ηCCESP(k) = ηCCASPηSPEs(k) = ηEHEs(k).

We shall refer to ηEH = ηCCASPηSP as the effective harvesting efficiency. In the

simulations, we used ASP = 0.01 m2, ηSP = 0.1, and ηCC = 0.5, which yields

ηEH = 0.0005. Note that these values are conservative compared to what is cur-

rently available or achievable in the literature. For instance, current photovoltaic

cells can achieve as high as 25% energy conversion efficiency while state-of-the-art

supercapacitor charging circuits can attain as high as 89% efficiency [74]. We also

conduct simulations where ηEH is varied from 0.0001 to 0.0005. Finally, we used

25 Farad 4 Volt supercapacitor as energy buffer.

Before proceeding further, we would like to make the following remarks about

the effect of energy harvesting types and the suitability of the design. Note that

in this study, we selected solar energy to drive the simulations because real-world

sensor motes such as Waspmote [5] require modest energy (in the order of 10s to

100s of milliwatts) to deliver usable performance. Nevertheless, the schemes that

we have proposed (BRPS and ETD) are general and can be used in tandem with

any environmental energy supply. Note that in the development of these schemes,

we have not stipulated any strong assumptions or special requirements about the

underlying environmental energy supply. The resulting performance, however,

will depend on the gap between the amount of power that can be supplied by the

source and the node consumption. The lower the gap, the better the performance

because the sensor node can operate at higher duty cycles.

3.4.2 Duty Cycle Controller Model

The duty cycle controller is modeled after the LQ-Tracker algorithm proposed by

Vigorito et al. [120] to attain energy-neutral operation (ENO). Our main motiva-

tion for using LQ-Tracker is that it represents the state-of-the-art in adaptive duty

cycling algorithms and is easily implementable in simulations. We provide a brief

description of the controller below while interested readers can refer to [120] for a
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detailed discussion of the controller.

The controller’s objective is to achieve ENO-Max, which entails two simulta-

neous objectives: (i) to ensure that energy consumed is always less than or equal

to the energy harvested; and (ii) to maximize task performance by maximizing

energy consumption. To derive the adaptive control law, the authors modeled

the dynamics of the battery level as a first order, discrete time, linear dynamical

system with colored noise which conforms to

y(k + 1) = ay(k) + bu(k) + cw(k) + w(k + 1),

where y is the battery level, u is the control, w is a zero-mean input noise, and a, b, c

are real-valued coefficients. The objective of the control system is to minimize the

error |y(k)−y∗| for all k, where y∗ is the target battery level. Note that this objective

is equivalent to minimizing the average squared tracking error

lim
K→∞

1

K

K
∑

k=1

[y(k)− y∗]2 , (3.17)

which is the ENO-Max objective. The optimal control law that minimizes (3.17) is

u(k) =
y∗ − (a+ c)y(k) + cy∗

b
. (3.18)

The authors proposed an on-line algorithm based on standard gradient descent

techniques to estimate the coefficients a, b, and c.

3.4.3 Network Parameters

The network consists of 200 static nodes that are uniformly-distributed in a 500 m

× 500 m area. A single sink node is positioned at (0, 0), i.e., the bottom-left part

of the area. Figure 3.8 shows the histogram of hop count to the sink of a typical

scenario. We can see that the hop count ranges from 1 to 12 and that a large fraction

of nodes are 5 to 10 hops away from the sink. The positioning of the sink at (0, 0)

results in a challenging scenario where data traffic converges to a “narrow spot”
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Figure 3.8: Hop count distribution of a typical scenario.

in the network. Note that the hop count statistics were obtained using ETX as

the path metric. As such, the paths tend to be longer than expected, as ETX uses

wireless links that are usually shorter.

The sensor node is modeled after a Libelium Waspmote equipped with XBee-

802.15.4, an IEEE 802.15.4-compliant radio transceiver. The transceiver is config-

ured to send at a data rate of 250 kbps and a transmit power of 0 dBm. With

these configurations, the node consumes approximately 180 mW, 195 mW, and

240 µW in transmit, receive (active and idle), and deep sleep modes, respectively

at 4 volts [5, 6].

To model lossy wireless links, we modeled the packet reception model using

the bit-error (BER) based reception model that is available in Qualnet [4]. Briefly,

the model works as follows: (i) Upon receipt of a packet, the receiving node calcu-

lates the signal-to-interference plus noise ratio (SINR) of the received packet. (ii)

The BER table is then consulted to obtain the bit error rate, given the SINR. In our

simulations, we used the binary phase-shift keying (BPSK) error table. (iii) Let pb

denote the BER of the received packet. The packet reception success rate is then

computed as

Psuc = (1− pb)
M ,

where M is the packet length in bits. (iv) A random number R between 0 and 1
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(inclusive) is then generated. If R ≤ Psuc, then the packet is considered to be error-

free and is therefore successfully received. Otherwise, the packet is corrupted and

deemed not successfully received.

A constant bit rate (CBR) traffic generator is used to generate data traffic. Each

data packet is 64 bytes and every node (except the sink) generates data at intervals

of 60, 120, 180, 240, 300 seconds. These data generation rates are already consid-

ered to be high for certain environmental monitoring applications which require

around 1 sample every 5 minutes [116]. Packet generation times are randomly

staggered among different nodes. Each data point is obtained by averaging the re-

sults from 20 seed values, with every simulation run configured for 43,200 seconds

(12 hours) in simulation time.

3.5 Simulation Results

We first evaluate the effect of the three design parameters, namely, the duty cy-

cle duration T , maximum retry limit L, and receive slot discount factor α on the

performance of the proposed scheduling and forwarding scheme.

Duty Cycle Duration T To determine the effect of T , we varied the number

of slots per cycle T/τ , such that T/τ ∈ {256, 512, 1024, 2048, 4096}. Note that

these values are exact powers of two as required by the bit-reversal permutation

scheduling scheme. The smallest value of 256 is chosen since there are 200 nodes

in the network. This ensures that every node will have its own slot for transmitting

its update packet.

We first study the convergence time of the distributed path computation algo-

rithm. To measure the convergence time, we forced the nodes to use fixed duty

cycles throughout the simulation. The convergence time is affected by T since

each node sends updates at an interval equal to T . As shown in Figure 3.9(a),

the algorithm takes longer time to converge at higher T since the propagation of

updates is slower.

However, one advantage of using a larger T is that it reduces the occurrence of
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(c) Packet delivery ratio
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(d) End-to-end delay

Figure 3.9: Effect of duty cycle duration.
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scheduling failures (see Figure 3.9(b)). As discussed in Section 3.3.5, a scheduling

failure occurs when the forwarding algorithm fails to find a receive wakeup slot

at the intended receiver that does not conflict with neighbor update slots. Note

that when T is small (i.e., number of slots per cycle is small), there are fewer re-

ceive wakeup slots for the same duty cycle; hence the probability of successfully

obtaining a non-conflicting receive wakeup slot is lower.

Ultimately, the packet delivery ratio and end-to-end delay results (see Figures

3.9(c) and 3.9(d)) show that using a smaller duty cycle duration provides better

performance. The poor performance obtained when large T is used is due to

the effect of slow convergence time. Especially in conditions where duty cycles

are highly dynamic, slow convergence may result in the forwarding of packets

through sub-optimal paths.

Maximum Retry Limit L The maximum retry limit L determines the level of re-

liability provided by the forwarding scheme. The packet delivery ratio results (see

Figure 3.10(a)) demonstrate the positive effect of allowing higher number of re-

transmissions. The delivery ratio improves significantly when L is increased from

0 to 1; thereafter, the improvement is marginal. The downside of allowing higher

retransmissions is increased end-to-end delay (see Figure 3.10(b)). The increase is

more dramatic in the cloudy scenario; this is due to the fact that every packet re-

transmission incurs a higher latency because of the lower node duty cycles in the

cloudy scenario, in which the receive slots are generally spaced further apart.

Receive Slot Discount Factor α The receive slot discount factor α in the pro-

posed forwarding scheme is used to estimate the number of receive wakeup slots

of a neighbor node u when node v fails to receive an update from u. A value of

α = 0 implies that whenever node v fails to receive an update from node u, the

number of receive slots of u is set to 0 immediately, while α = 1 means that the

number of receive slots of u is retained without any change. We can see that these

values are extreme and as shown by the results (see Figure 3.11), using either 0 or 1

does not provide the best performance. The optimal performance can be obtained
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Figure 3.10: Effect of maximum retry limit.
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Figure 3.11: Effect of slot discount factor.

when α is around 0.8 – 0.9 for both the sunny and cloudy scenarios. Using a value

less than the optimal value underestimates the number of receive slots of u which

unnecessarily increases the sleep latency. Likewise, using a value greater than the

optimal value overestimates the number of receive slots of u which increases the

scheduling errors thereby increasing the latency due to retransmission.

3.5.1 Scheduling Performance Comparison

We now compare the performance of the proposed wakeup scheduling scheme

(bit-reversal permutation sequence based scheduling or BRPS) with the energy-

synchronized communication (ESC) scheme [51]. As mentioned in Section 2.1.5,

ESC is one of the first schemes proposed for EPWSNs and represents the state-of-
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Table 3.3: Comparison Between BRPS and ESC (Adjust and Shuffle)

Criteria BRPS ESC-ADJUST ESC-SHUFFLE

Storage overhead per neighbor O(1) O(n) O(n)

Communication overhead O(1) O(n) O(n)

Schedule computation complex-
ity

O(1) O(m) O(m)

Robustness Yes Yes No

the-art in dynamic wakeup scheduling. We implemented a simulation model of

ESC as described in [51] with the following notable features: (i) To reduce storage

and communication overhead, we represented the wakeup schedules as a bitmap

instead of an integer array. Hence, a cycle with 512 slots only requires 512/8 = 64

bytes regardless of the number of active slots. Using integers, a cycle with n active

slots requires 2n bytes. In the bitmap representation, a bit 1 at position i implies

that slot i is active whereas a bit 0 implies that slot i is inactive. (ii) To further

reduce communication overhead, schedule updates are piggybacked in neighbor

updates. (iii) In ESC, every node requires the packet ready times at its predecessor

nodes. As this is difficult to obtain a priori, we used the receive wakeup slots

of these predecessor nodes for this purpose. This is reasonable because packets

are most likely to become ready for transmission after a node wakes up in its

receive wakeup slot. (iv) We implemented both the adjustment-based approach

and the shuffle-based approach. Note that the former satisfies the properties of

robustness while the latter does not. Table 3.3 provides a brief comparison of BRPS

and the two variants of ESC. The variable n denotes the number of active slots

while m denotes the sum of the active slots of a node’s successors and the number

of packets sent by its predecessors. The scheduling computation complexity of

BRPS is O(1) because it only requires knowledge of the number of active slots.

Whereas, ESC requires O(m) as it computes the optimal wakeup slot positions by

considering all the individual active slots of a node’s successors and the packet

ready times at its predecessors.

In the comparison, we paired the above scheduling schemes with ETD. Note
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Figure 3.12: Packet delivery ratio of different scheduling schemes.
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Figure 3.13: Scheduling error ratio of different scheduling schemes.

that using other routing metrics (ETX or hop count) yielded inferior performance.

(Section 3.5.2 provides a comparison of the different routing metrics.) We fixed the

maximum retry limit L to 3 and the receive slot discount factor α to 0.8. The results

plotted in Figures 3.12 – 3.13 are the averages of the sunny and cloudy scenarios.

In terms of packet delivery ratio (see Figure 3.12), we can see that BRPS out-

performs ESC-SHUFFLE and ESC-ADJUST by 20% and 10%, respectively on the

average. We did not expect to see significant difference in the data delivery per-

formance because the schemes used the same routing metric. The performance

advantage of BRPS is due to its robustness and the frequency of schedule updates.

Note that the schedule information of BRPS (i.e., the number of receive wakeup

slots) is always included in every neighbor update. Because of the large overhead
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Figure 3.14: End-to-end delay of different scheduling schemes.

entailed by exchanging entire schedules in ESC, schedule updates are only trans-

mitted when schedule changes have occurred. The net effect is that both ESC vari-

ants have higher scheduling error, as shown in Figure 3.13. Between ESC-ADJUST

and ESC-SHUFFLE, we can see the significant benefit of robustness as the former

has significantly better performance.

In terms of delay (see Figure 3.14), we can see that the performance of BRPS

is well within the performance of the two ESC variants. ESC-ADJUST shows the

best performance while ESC-SHUFFLE shows the worst performance. The perfor-

mance difference between ESC-ADJUST and ESC-SHUFFLE can be attributed to

the robustness and non-robustness of the former and the latter, respectively. That

is, the non-robustness of the latter causes higher scheduling error ratio. A high

scheduling error ratio implies more packet retransmissions which naturally leads

to higher delay. Comparing BRPS and ESC-ADJUST, we can see that at moderate

harvesting efficiency values and packet generation rates, BRPS can closely match

the performance of ESC-ADJUST. We have expected both ESC variants to perform

well as they employ a high complexity algorithm to generate wakeup schedules.

The comparable performance of BRPS, despite its simplicity and low complexity,

is a strong demonstration of the validity of the theory behind its design. BRPS can

therefore be employed as an alternative to ESC for generating low latency wakeup

schedules, especially in sensor nodes that face severe resource constraints (com-
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Figure 3.15: Packet delivery ratio of different path metrics (in tandem with BRPS).

putation, memory, and channel capacity) or in situations where ESC is rendered

infeasible due to its high memory or communications overhead.

3.5.2 Routing Metric Performance Comparison

To complete our simulation studies, we compare the performance of the proposed

path metric (ETD) with ETX [31] and hop count in tandem with BRPS. Note that

the relative performance of the three metrics remain the same when they are re-

spectively paired with ESC-SHUFFLE and ESC-ADJUST. Likewise, the relative

performance of the scheduling schemes remain the same in each of the three met-

rics.

As in the scheduling performance comparison, we also fix the maximum retry

limit L to 3 and the receive slot discount factor α to 0.8. The results of the sunny

and cloudy scenarios are averaged to obtain the packet delivery ratio and end-to-

end delay results, which are shown in Figures 3.15 and 3.16, respectively. We can

see that in both performance metrics, ETD shows the best performance. Because of

its awareness of both sleep latency and link quality, ETD considerably outperforms

ETX and hop count by 10% and 60%, respectively, in most of the traffic conditions

and harvesting efficiency values.

The end-to-end delay results (see Figure 3.16) also show the significant advan-

tage of ETD over ETX and hop count. Note that ETD’s delay is less than 1/10
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Figure 3.16: End-to-end delay of different path metrics (in tandem with BRPS).

and 1/30 that of ETX and hop count, respectively. These results demonstrate the

significant impact of both sleep latency and link quality on end-to-end packet for-

warding. Note that ETX, a metric that considers link quality, performed much

better than hop count but still significantly behind ETD. These results strongly

suggest that blindness to sleep latency can cause considerable delay degradation.

3.6 Summary

In EPWSNs, low latency wakeup scheduling and packet forwarding is challeng-

ing due to dynamic duty cycling which necessitates the use of dynamic wakeup

schedules and poses time-varying sleep latencies.

We showed analytically that the expected sleep latency is affected by the vari-

ance of the intervals between receive wakeup slots: when the variance of the in-

tervals is low (high), the expected latency is low (high). This is because when the

intervals between receive wakeup slots are highly uneven, it is more likely for a

packet to become ready for transmission at a larger interval than a shorter inter-

val. We therefore introduced a scheduling scheme that aims to position receive

wakeup slots as evenly as possible. To reduce storage and communication over-

head, the schedule of a node is represented compactly using an integer sequence

formula.

We analytically obtained the worst-case sleep latency of a scheduling scheme
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that uses the bit-reversal permutation sequence (BRPS) and found it to be slightly

worse than the ideal scheme (scheduling scheme where the receive wakeup slots

are equally-spaced) but better than schemes where the intervals between receive

wakeup slots are taken from a uniform or exponential distribution. But while the

ideal scheme is not robust to changes in the duty cycle, the BRPS is robust.

A low sleep latency schedule does not necessarily lead to low end-to-end la-

tency paths because other factors such as link quality play a significant role in

the performance of packet forwarding. We therefore formulated a metric called

expected transmission delay (ETD) which simultaneously considers sleep latency

(due to duty cycling), and wireless link quality. We showed that the metric is left-

monotonic and left-isotonic, proving that its use in distributed algorithms such as

the distributed Bellman-Ford will yield consistent, loop-free and optimal paths.

We have conducted simulations to evaluate the performance of the proposed

schemes. We compared the performance of BRPS with ESC, a scheduling scheme

that represents the state-of-the art. Results show that BRPS provides low latency

and can closely match the performance of ESC. Furthermore, BRPS has a lower

scheduling error ratio which translates to better packet delivery ratio. Aside from

having a lower storage and communication overhead, BRPS also has a lower com-

putational complexity compared with ESC. Compared with ETX and hop count,

and used in tandem with BRPS, ETD provides the best performance in terms of

packet delivery ratio and delay.



Chapter 4

Dynamic Duty Cycle Allocation

The main objective of a wakeup schedule is to enable duty cycling nodes to ex-

change data packets. As elaborated in Section 2.1, numerous wakeup schedul-

ing schemes have been designed to allow the exchange of at most one packet

per wakeup interval or slot. In such schemes, a wakeup slot can be used either

for transmission, reception or both. Based on this, we can then classify wakeup

scheduling schemes into two categories based on the usage of a wakeup slot: (i)

bi-directional; and (ii) receive-centric.

Bi-directional Wakeup Schedule In this category, a wake-up slot can be used for

either reception or transmission. The actual usage is opportunistic: if a node has

data to transmit, it transmits during the wakeup slot; otherwise, the node listens

for transmissions from its neighbors.

Receive-Centric Wakeup Schedule In this category, a wakeup slot is intended

for reception only. A node with data to transmit simply waits for the next wakeup

slot of its intended receiver and performs the transmission within this wakeup

slot. Most wakeup scheduling schemes presented in Section 2.1 fall under this cat-

egory. The BRPS wakeup scheduling scheme introduced in the preceding chapter

also belongs to this category.

Note the most important difference between a bi-directional and a receive-

centric wakeup schedule: in the former, transmissions and receptions are both

93
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accounted for in the schedule whereas in the latter, only receptions are included.

This implies that a receive-centric scheme cannot use the entire duty cycle to gen-

erate wakeup schedules. Since packet transmissions are not accounted for in the

schedule, nodes that need to forward packets need to explicitly reserve a portion of

their duty cycle for transmission. Otherwise, such nodes run the risk of exceeding

their respective duty cycle allotments which may consequently lead to short-term

energy supply shortages. We refer to this apportioning of the duty cycle between

packet reception and transmission as the duty cycle allocation problem.

Unfortunately, current receive-centric wakeup scheduling schemes do not ad-

dress the problem of duty cycle allocation. In most of the proposed schemes

(e.g., [50,51,83]), it is implicit that the entire duty cycle is used for reception, leaving

no allocation for transmission. This approach is clearly not suitable for multihop

topologies where the nodes must also forward packets and not just perform packet

reception.

While the BRPS wakeup scheduling scheme allocates duty cycle for transmis-

sion, it uses a static approach wherein the duty cycle is divided equally (i.e., half

for reception and half for transmission). In practical settings where data traffic and

energy supply are dynamic, static allocation schemes will not be able to provide

the optimal performance. For instance, a node which has a lot of backlog data

packets may choose to allocate more duty cycle for transmission than for recep-

tion.

In this chapter, we investigate the duty cycle allocation problem in EPWSNs

and we make the following contributions:

Packet Arrival Probability Model The issue of packet contention in duty cycled

sensor networks have been largely sidestepped in the literature [50, 51, 83, 117].

In this chapter, we consider the impact of contention and using the CSMA/CA

method in IEEE 802.15.4 [7], we derive the packet arrival probability when several

nodes attempt to transmit in a wakeup slot of a receiver node.
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Service Time/Sleep Latency Model Using discrete-time queueing analysis, we

derive the service time of packets in the context of duty cycled nodes and in the

presence of contention. The service time is essentially equivalent to the sleep latency

which is a major challenge in EPWSNs. A key insight of our result is that the

variance of the intervals between the wakeup slots affects the service time, i.e., a

higher (lower) variance yields higher (lower) expected service time.

Optimal Duty Cycle Allocation Using the packet arrival probability and ex-

pected service time models, we formulate a constrained non-linear optimization

problem to apportion the duty cycle, with the objective of minimizing the two-hop

expected service time. We propose LSLOTALLOC, a distributed low-complexity al-

gorithm that linearly searches for the optimal solution of the problem. To the best

of our knowledge, this work is the first to propose a low-complexity algorithm for

computing the optimal duty cycle allocation.

Validation and Performance Evaluation Through simulations, we validate the

analytical models and evaluate the performance of LSLOTALLOC. Results show

the significant performance advantage of LSLOTALLOC over the static allocation

scheme in terms of delay. Notably, LSLOTALLOC’s delay is around half the delay

of the static allocation scheme in most scenarios.

The rest of the chapter is organized as follows. In Section 4.1, we introduce the

system models used in the chapter and present the derivation of the packet arrival

probability. In Section 4.2, we derive the expected service time using discrete-time

queueing analysis while in Section 4.3, we formulate the optimization problem

and propose the LSLOTALLOC algorithm. In Section 4.4, we present the simula-

tion models and the results of the model validation and performance evaluation.

Finally, we conclude the chapter in Section 4.5.
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4.1 System Models

4.1.1 General

The network is modeled as a tree T = (N , E) rooted at sink node t, where N is

the set of nodes and E is the set of edges. Edge (v,w) ∈ E if v and w can directly

receive packets from each other. The tree topology implies that every node v has a

set of predecessor nodes Pv and a single successor node w.

Epochs and Slots Similar to existing work [51, 113, 117], time is divided into

epochs. An epoch is further subdivided into S slots. The nodes employ a time

synchronization protocol (e.g., [29]) for slot synchronization or alignment. A slot

can be in one of three possible states: (i) active for data packet reception; (ii) ac-

tive for data packet transmission; or (iii) inactive. As shown in Figure 4.1, the slot

duration τ is designed to accommodate several time components, i.e.,

τ = τcr + τdata + τackto, (4.1)

where τcr is the contention resolution time, τdata is the time needed to send or

receive a maximum-length data packet, and τackto is the acknowledgment (ACK)

timeout. The usage of the time components τcr and τackto are discussed in Section

4.1.3. We make the following remarks about slots:

• When a slot is active for data packet reception, the node actually switches its

radio to transmit mode after it receives a data packet to send an ACK packet.

• In a similar fashion, when a slot is active for data packet transmission, the

node switches its radio to receive mode after it transmits a data packet to

listen for an ACK packet.

• τdata caters for the maximum-length data packet and as such, a portion of the

slot may be wasted in cases where the transmitting node sends shorter pack-

ets. To save energy, the receiving node may immediately go back to sleep

after receiving a packet and transmitting the corresponding ACK. Likewise,
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Figure 4.1: Epoch, slot and time components of a slot.

Figure 4.2: Energy harvesting node model. The focus in this chapter is the design of the

duty cycle allocator.

the transmitting node may immediately go back to sleep after receiving an

ACK.

Duty Cycle Every node v ∈ N uses the energy-harvesting node model shown in

Figure 4.2. The duty cycle controller performs adaptive duty cycling to ensure that

v is energy-neutral. It determines the operating duty cycle δv(k) which indicates

the fraction of slots in epoch k that v can be active for reception and transmission,

or

δv(k) ,
nv(k)

S
, (4.2)

where nv(k) ∈ [0, S] is the number of active slots of v in epoch k. The duty cycle

allocator, which is the focus of this study, is responsible for apportioning nv(k) into

two parts: rv(k) slots for reception and tv(k) slots for transmission. The quantities

rv(k) and tv(k) are used by the dynamic wakeup scheduler which is presented in

Section 4.1.2.



98 CHAPTER 4. DYNAMIC DUTY CYCLE ALLOCATION

4.1.2 Dynamic Wakeup Schedule Model

We now formulate a generic dynamic wakeup schedule model that captures the

essential elements of existing receive-centric wakeup scheduling schemes.

Receive Wakeup Schedule Whenever u needs to forward a packet to its suc-

cessor node v, u needs to know the receive wakeup schedule of v so that it can

wakeup at the appropriate slot in the future to perform the actual transmission.

We have formally defined this notion in Definition 4.

Transmit Wakeup Schedule The receive wakeup schedule only specifies the slots

at which v can receive packets from its predecessor nodes. If v is a relay node, it

must also wakeup to relay packets. To do so, v can use any slot s̄ /∈ Γv(k) but must

ensure that the intended receiver node w is awake to listen for packet transmis-

sions, i.e., s̄ ∈ Γw(k). We formalize this notion as follows:

Definition 10. The transmit wakeup schedule of a node v for epoch k consists of the slots

at which v wakes up to transmit its packets to its successor node w. It consists of at most

tv(k) slots.

The main difference between the receive and transmit wakeup schedules is

that the former can be completely specified prior to the start of an epoch while the

latter cannot be specified in any way. This is because packet transmissions by v

depend on the presence of packets in v and the receive wakeup schedule of the

successor node w, Γw(k).

4.1.3 Medium Access Control Protocol

Prior studies [51, 113, 117] have neglected the impact of packet collisions, arguing

that a very low sending rate will not lead to significant packet collisions. However,

as pointed out by Du, et al. [37], the use of synchronization increases the probabil-

ity of contention and as such, we must consider contention in the development of

our models.
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Contention Resolution The contention resolution process is modeled after the

CSMA/CA method in IEEE 802.15.4 [7]. With reference to Figure 4.1, the first part

of the slot (τcr) is meant to accommodate the contention resolution process. At

the start of a slot of node v, a node u with data to transmit to v selects a random

backoff between 0 and 2B − 1, where B = 3 is the default backoff exponent value.

At the end of its backoff period, u performs clear channel assessment twice. If the

channel is idle, u commences transmission; otherwise, it goes back to sleep and

repeats the same process in the next wakeup slot of v.

Channel Access Success Probability We will now derive the probability that

a packet transmitted by u ∈ Pv is successfully received by v in the presence of

contention in epoch k. Suppose that Pv ⊆ Pv have pending packets to be relayed

to v. Denote Dv as the (expected) number of packets that every node needs to

transmit to v. Then the probability that any of these nodes will access the channel

in a receive slot of v, denoted by pcav (k), is

pcav (k) = min

[

Dv

rv(k)
, 1

]

, (4.3)

where rv(k) is the number of receive slots allocated by v in epoch k. Note that (4.3)

implies that the packets are equally distributed among the nodes in Pv. This may

not be realistic but from an analytical point of view, such a situation will result in

the worst-case contention and the result will therefore be conservative.

Denote pcasv (k) as the probability of successful channel access in epoch k from

any of the nodes in Pv to v. Since all channel access attempts are synchronized, we

can obtain pcasv (k) as follows: a channel access attempt by a predecessor node u is

successful if exactly m nodes out of |Pv | access the channel but u selects a value

for its backoff counter that is unique and the lowest. Let Pr(E|M = m) denote

the conditional probability of this event. Supposing that Vx corresponds to the
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random backoff value selected by x ∈ Pv, we have

Pr(E|M = m) =

2B−1
∑

i=0

Pr(Vu = i)×
∏

x∈Pv\u

Pr(i+ 1 ≤ Vx ≤ 2B − 1)

=
2B−1
∑

i=0

1

2B

[

2B − (i+ 1)

2B

]m−1

=
1

2mB

2B−1
∑

i=0

[

2B − (i+ 1)
]m−1

. (4.4)

The probability that exactly m nodes out of |Pv| access the channel, denoted by

Pr(M = m; k), is simply

Pr(M = m; k) =

(|Pv |
m

)

[pcav (k)]m[1− pcav (k)]|Pv |−m. (4.5)

Using the law of total probability,

pcasv (k) =

|Pv|
∑

m=1

Pr(E|M = m)Pr(M = m; k). (4.6)

Packet Arrival Probability Denote pv(k) as the probability of one packet arrival

in a receive slot of v when rv(k) slots are allocated for packet reception. Neglecting

channel errors, v will receive a packet in a receive slot whenever a node u ∈ Pv
successfully accesses the channel. This is because if u wins in the contention pro-

cess, it will transmit exactly one packet. Thus we have

pv(k) = pcasv (k). (4.7)

Data Transmission Once u successfully acquires the channel, it commences data

transmission. For a unicast transmission from u to v, u waits for a corresponding

ACK within τackto. Node u subsequently informs the network layer whether the

transmission was a success (if it received an ACK from v) or a failure (if it did not

receive any ACK).



4.2. ANALYSIS OF WAKEUP SCHEDULING 101

4.2 Analysis of Wakeup Scheduling

Consider a node v with active predecessor nodes Pv and a successor node w. It

wakes up at predefined slots in Γv(k) to listen for transmissions. Whenever v has

a packet in its queue, it wakes up at the next earliest slot in Γw(k) to forward its

packet to w. The operation of v can therefore be modeled after a discrete-time

queue, where packet arrivals can occur at any slot in Γv(k) and packet departures

can occur at any slot in Γw(k). In the following analysis, we will derive the service

time in both ideal conditions and in the presence of contention.

Remarks To reduce notational clutter, we drop the parameter k (to denote epoch)

in the queueing analysis as it is understood that the analysis is within a single

epoch. We also stipulate that events, e.g., packet arrivals and service completions,

can only occur at the end of a slot.

4.2.1 Intervals Between Wakeup Slots

Before delving into the details of the model derivation, we first introduce an ide-

alization of the epoch duration. As presented in Section 4.1.1, an epoch has finite

duration consisting of S equal-length slots. To apply results from discrete-time

queueing theory and renewal theory, we idealize the epoch to contain an infinite

number of slots. Now, consider the receive wakeup schedule of a node w as shown

in Figure 4.3. We define the length of the ith interval in the schedule denoted by

Li, in terms of number of slots, as

Li , si+1 − si, (4.8)

where si and si+1 are consecutive receive wakeup slots of w. Let us assume that

{Li} are i.i.d. and taken from a random variable Gw with probability mass function

(PMF) gw(n) = Pr(Gw = n). We will see later that the distribution of {Li}, and

hence Gw, has a direct effect on the service time of packets emanating from any

node v that need to be relayed to w.
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Figure 4.3: Receive wakeup schedule showing the intervals between wakeup slots. Note

that the interval length Li includes slot si+1. This means that from the perspective of

a transmitter node v, a packet that becomes ready for transmission at slot si+1, which
according to our convention occurs at the end of the slot, is not eligible for transmission at

slot si+1. Rather, the packet has to wait until slot si+2.

4.2.2 Ideal Service Time

Because w is not always awake to receive packets, v needs to wait for the nearest

receive wakeup slot of w to transmit its packet. In queuing theory, service time

is defined as the time from the moment a customer starts to get served until its

departure. In the context of our problem, service time is the time (in slots) from the

moment a packet becomes ready for transmission at v until its successful reception

by w which is basically the sleep latency from v to w [117, 130].

Before proceeding further, we need to prove the following result about the

mean forward recurrence time of a discrete-time renewal process.

Lemma 5. Let {Sn, n ≥ 0} be a discrete-time renewal process, where Sn = L0+L1+L2+

. . .+Ln and {Li} is an i.i.d. sequence of non-negative integers, taken from a distribution

L. Then the mean forward recurrence time of this process is E[L(L−1)]
2E(L) , where E(L) denotes

the mean of L.

Proof. Suppose that in the current interval i, the interval duration or length is Li.

(Without loss of generality, we say that the current interval has Li slots.) Let K

denote the index of a randomly selected slot within interval i (i.e., K = 1 and

K = Li mean the first and last slots in interval i, respectively). Then by definition,

the backward recurrence time is K − 1. This is because at slot K , there are exactly

K − 1 slots prior to itself since the start of the interval.

To obtain the mean forward recurrence time (which is equal to the mean back-

ward recurrence time), we simply have to obtain E(K−1). There are several ways

to obtain this quantity but here, we use renewal-reward theory. To do so, we as-

sociate a reward that is equal to the backward recurrence time. This means that if
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slot k is chosen, then the corresponding reward is k−1. With this, the total reward

R within an interval with Li slots is

R = 1 + 2 + 3 + . . .+ Li − 1 =
Li(Li − 1)

2
.

Note that the maximum reward is Li − 1 which is obtained when the randomly

chosen slot k = Li. From renewal-reward, E(K−1) = E(R)/E(L). Hence, we have

E(K − 1) =
E[L(L− 1)]

2E(L)
.

Assuming that the queue follows a first-in first-out (FIFO) discipline, then a

packet is ready for transmission when it reaches the head of queue. Service time

is dependent on the state of the queue, as will be elaborated in the following:

Case 1: Empty Queue Upon Arrival As illustrated in Figure 4.4, when a packet

arrives at v and its queue is empty, the arriving packet can be immediately trans-

mitted at the next receive wakeup slot of w. Recall that Gw is the interval between

receive wakeup slots in Γw(k). Let E(S∗
v |Qv = 0) be the ideal conditional expected

service time at v when the queue is empty. Since Li ≥ 0 and {Li} are i.i.d., then we

can use renewal theory [16] to obtain E(S∗
v |Qv = 0). From Figure 4.4, we can see

that E(S∗
v |Qv = 0) is essentially the mean forward recurrence time of a discrete-

time renewal process, which from Lemma 5, gives us:

E(S∗
v |Qv = 0) =

E[Gw(Gw − 1)]

2E(Gw)
=

E(G2
w)− E(Gw)

2E(Gw)
. (4.9)

Case 2: Non-Empty Queue Upon Arrival When a packet arrives at v and its

queue is not empty, the arriving packet enters the queue and can only be processed

after the service completion of all earlier packets. This is illustrated in Figure 4.5.

In this case, the service time is determined solely by the interval lengths in Γw(k).

If E(S∗
v |Qv 6= 0) denotes the ideal conditional expected service time given that the
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Figure 4.4: Service time to send a packet from node v to w when the arriving packet p at

v encounters an empty queue.

Figure 4.5: Service time to send a packet from node v to w when the arriving packet p at v
encounters a busy queue. Since the queue is FIFO, the packets p1 – p4 in the queue are
serviced before p gets served. Note that the service time is exactly equal to one interval

length.

queue is not empty, then

E(S∗
v |Qv 6= 0) = E(Gw). (4.10)

Finally, we can obtain the unconditioned ideal expected service time at v, denoted

by E(S∗
v ), by using the law of total expectation. Let ρv be the utilization factor at v.

From elementary queueing theory [20], Pr(Qv = 0) = 1− ρv and Pr(Qv 6= 0) = ρv.

We therefore have E(S∗
v ) = (1 − ρv)E(S

∗
v |Qv = 0) + ρvE(S

∗
v |Qv 6= 0). Substituting

(4.9) and (4.10) into this yields

E(S∗
v ) = E(Gw)

[

1− ρv
2

c2Gw
+

1 + ρv
2

]

− 1− ρv
2

, (4.11)

where cGw
=

√

Var(Gw)/E(Gw) is the coefficient of variation of Gw.

Some insights provided by (4.11) are worth mentioning at this point. As ex-
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pected, E(S∗
v ) increases as E(Gw), the mean interval between the wakeup slots of

w, increases. Interestingly, E(S∗
v ) is also affected by the variations of the intervals

between wakeup slots Gw. In particular, a higher (lower) variance in Gw yields

higher (lower) expected service time. Thus, a simple way to reduce the E(S∗
v ) is

to generate wakeup schedule patterns wherein the receive slots are positioned at

equal intervals as this will cause cGw
to vanish.

4.2.3 Service Time with Contention

The preceding discussion assumes that a packet transmitted by v will always be

received by w in the first attempt. However, if several predecessor nodes of w are

contending for the channel, collisions may occur and v may need to transmit a

packet several times to be successfully relayed to w. Nevertheless, the expected

service time in the presence of contention, which we denote by E(Sv), can be ob-

tained by extending the preceding results.

To begin, denote ptxsw as the probability of successful packet delivery from v

to w in an epoch. This probability can be obtained as follows: Suppose that w

allocated rw slots for packet reception and every active predecessor node x ∈ Pw
needs to send Dw packets to w. If pw is the corresponding packet arrival proba-

bility in every receive slot of w, then w is expected to receive pwrw packets out of

|Pw|Dw. This yields

ptxsw =
pwrw
|Pw|Dw

. (4.12)

We remark that (4.12) is an approximation because it is actually dependent on

the retransmission limit. Recall that pw and Dw are interdependent and as the

retransmission limit is increased, both pw and Dw increase, albeit at different rates.

Case 1: Empty Queue Upon Arrival Let l denote the number of transmission

attempts at v for a particular packet. In the first attempt, the expected service time

is simply given by the ideal conditional expected service time at v when the queue

is empty, E(S∗
v |Qv = 0). In the nth transmission attempt, the expected service time



106 CHAPTER 4. DYNAMIC DUTY CYCLE ALLOCATION

will include (n− 1)E(Gw), hence,

E(Sv|Qv = 0, l = n) =
E[Gw(Gw − 1)]

2E(Gw)
+ (n− 1)E(Gw). (4.13)

Case 2: Non-Empty Queue Upon Arrival This case is straightforward because

at each attempt, the expected service time increases by E(Gw). Hence at the nth

transmission attempt,

E(Sv |Qv 6= 0, l = n) = nE(Gw). (4.14)

Using (4.13), (4.14) and the law of total expectation, the expected service time

from v to w conditioned on n transmission attempts, can be simplified to

E(Sv |l = n) = E(S∗
v ) + (n− 1)E(Gw). (4.15)

Let Pr(l = n) denote the probability that a packet is successfully transmitted on

the nth attempt. From elementary probability,

Pr(l = n) =
ptxsw (1− ptxsw )n−1

1− (1− ptxsw )L
, (4.16)

where L is the maximum transmission limit. Using (4.15) and (4.16), the uncon-

ditioned expected service time can be easily obtained by applying the law of total

expectation, that is,

E(Sv) =
L
∑

n=1

[E(S∗
v ) + (n− 1)E(Gw)]

ptxsw (1− ptxsw )n−1

1− (1− ptxsw )L
. (4.17)

4.2.4 Equal-Interval Wakeup Schedule

The insights provided by (4.11) motivates the use of wakeup schedule patterns

wherein the receive slots are positioned at equal intervals. We focus on this and

express (4.17) in terms of the wakeup scheduling parameter rv, i.e., the number of

receive slots in the schedule of v. For an equal-interval wakeup schedule, the coef-

ficient of variation cGw
vanishes, hence the ideal expected service time simplifies
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to

E(S∗
v ) = E(Gw)

[

1 + ρv
2

]

− 1− ρv
2

. (4.18)

Substituting (4.18) into (4.17), we can then get a closed form expression for (4.17)

using [126] as follows:

E(Sv) = E(Gw)

[

Qw − (1− ρv)

2

]

− 1− ρv
2

, (4.19)

where

Qw =
2

ptxsw

− 2L

[

1

1− (1− ptxsw ) L
− 1

]

. (4.20)

Note that when ptxsw = 1, then Qw = 2 and E(Sv) = E(S∗
v ) which is what we

expected.

By definition, the utilization factor is ρv = λv/µv, where λv is the packet arrival

rate at v, and µv is the service rate at v. Since the packet arrival probability in every

receive slot of v is pv, the expected number of packets to arrive at v in the epoch is

E(Av) = pvrv + dv, (4.21)

where dv is the expected number of self-generated packet arrivals. Note that dv is

independent of rv because v will always receive its self-generated packets regard-

less of rv. An epoch has S slots, hence the packet arrival rate is λv = E(Av)/S.

The service rate µv is simply the reciprocal of the service time E(Sv). Thus ρv =

E(Av)E(Sv)/S. Substituting this into (4.19) and solving for E(Sv) yields

E(Sv) =
S[E(Gw)(Qw − 1)− 1]

2S − [E(Gw) + 1]E(Av)
. (4.22)

Note that E(Gw) is simply the mean interval length between the receive wakeup

slots of w and this can be computed as E(Gw) = S/rw. Finally, we introduce the

mean service time function at v, denoted by Sv(rv, rw):

Sv(rv, rw) =
S[S(Qw − 1)− rw]

2Srw − (S + rw)(pvrv + dv)
. (4.23)
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4.3 Optimal Duty Cycle Allocation

We are now ready to tackle the problem of apportioning nv (the number of active

slots in an epoch) for packet reception and transmission. Our solution approach

will be as follows. First, we will formulate a constrained non-linear optimization

problem to minimize the two-hop expected service time of packets that are travers-

ing through node v. Second, we will develop LSLOTALLOC, an algorithm with

O(n) complexity that can search for the minimizer r∗ of the two-hop expected ser-

vice time. Finally, we will discuss several practical issues that must be considered

in the implementation of the proposed algorithm in real-world sensor networks.

As in the preceding section, we drop the parameter k (which denotes the current

epoch) to reduce notational clutter.

4.3.1 Two-Hop Service Time

When v allocates r slots for packet reception, it affects not only its own service

time but also the service time of all its active predecessor nodes u ∈ Pv. For every

node u, its expected service time is Su(ru, r), where Au is the expected number

of packet arrivals at u in the current epoch. If the fraction of packets transmitted

by u to v in the epoch is φu, then its total contribution to the two-hop service

time is φuSu(ru, r). Thus, the two-hop expected service time of packets traversing

through v, denoted by Tv(r) is

Tv(r) = Sv(r, rw) +
∑

u∈Pv

φuSu(ru, r). (4.24)

From the point of view of v, it actually does not need to know ru for every

predecessor node u. Rather, v only needs to have knowledge of the number of

packets that every node u expects to receive, i.e., E(Au). Thus, we can rewrite

(4.24) as

Tv(r) = Sv(r, rw) +
∑

u∈Pv

φuS[S(Qv − 1)− r]

2Sr − (S + r)E(Au)
. (4.25)
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4.3.2 Optimization Problem

If r slots are allocated for packet reception, nv − r slots are left for packet trans-

mission. With this allocation, the expected number of packets that v can receive is

simply rpv. Node v may also be generating its own data packets, denoted by dv.

The sum rpv + dv is essentially E(Av) which is defined in (4.21). To ensure that v

can relay all the received and generated packets to its successor node w, it must

allocate at least (rpv + dv)/p
txs
w transmit slots. Hence, r must be chosen such that

r + (rpv + dv)/p
txs
w ≤ nv. The optimization problem can be initially formulated as

follows:

minimize Tv(r)

subject to (1) r ≤ nv

(2) r + rpv+dv
ptxsw

≤ nv

(3) r ∈ Z
+

(4.26)

Constraints (1) and (3) specify the entire domain of the problem, which is the

set {1, 2, 3, ..., nv}, while constraint (2) is the traffic flow feasibility condition. Prob-

lem (4.26) is a mixed integer non-linear optimization problem, with the feasibility

set consisting of positive integers in a finite interval defined by the intersection

of the constraints. With this, we can combine constraints (1) and (3) to simplify

problem (4.26) as follows:

minimize Tv(r)

subject to r + rpv+dv
ptxsw

≤ nv

r ∈ {1, 2, 3, . . . , nv}

(4.27)
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Algorithm 4 LSLOTALLOC

1: Tmin ←∞

2: r∗ ← 0

3: for r ← 1 to nv do

4: if r + rpv+dv
ptxsw

> nv then

5: return r∗

6: end if

7: T ← Sv(r, rw) +
∑

u∈Pv

φuS[S(Qv−1)−r]
2Sr−(S+r)E(Au)

8: if T < Tmin then

9: Tmin ← T

10: r∗ ← r

11: end if

12: end for

4.3.3 Algorithm

Time and space complexities are important in EPWSNs because of the limited pro-

cessing and storage capacities of sensor nodes. Fortunately, the integer constraint

in problem (4.27) can be exploited to design a straightforward algorithm. The list-

ing in Algorithm 4 provides a pseudo-code of the LSLOTALLOC algorithm that

searches for the optimal solution r∗ by linear traversal of the set {1, 2, 3, . . . , nv}.

The algorithm is executed at the start of every epoch and independently by every

node v in the network.

Input Variables A node v that executes Algorithm 4 requires inputs from all its

active predecessor nodes u ∈ Pv and its successor node w. In particular, v requires

rw and ptxsw from w, as well as E(Au) from every predecessor node u. This can be

accomplished by requiring every node x in the network to broadcast a message

containing rx, ptxsx and E(Ax) once every epoch.

Estimation of Input Traffic Aside from input variables that are needed from its

neighbor nodes, v also needs to estimate the input traffic Dv and the respective
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contribution of every active predecessor node u, φu. For v to obtain Dv , since

every u ∈ Pv has pending packets,

Dv =
1

|Pv|
∑

u∈Pv

E(Au).

Whereas, φu can be calculated using

φu =
E(Au)

∑

x∈Pv
E(Ax)

.

Properties In the following, we will obtain the space and time complexities of

LSLOTALLOC.

Lemma 6. The space complexity of LSLOTALLOC is O(1).

Proof. The algorithm requires several variables that are re-used in every iteration

and not dependent on nv. Hence, the space complexity is constant.

Lemma 7. The time complexity of LSLOTALLOC is O(n) where n is the number of active

slots.

Proof. This is obvious since in the worst case, the algorithm traverses the entire

domain {1, 2, 3, . . . , nv}. Since every iteration requires constant computation and

the algorithm iterates for at most nv times its time complexity is linear with respect

to nv, or O(n).

4.3.4 Practical Considerations

Lemma 6 and 7 show that LSLOTALLOC has low-complexity and are good in-

dications about its suitability for implementation in resource-constrained sensor

nodes. However, two important practical issues need to be addressed: (i) ex-

change of parameters among nodes; and (ii) allocation strategy when the opti-

mization problem is infeasible.

Exchange of Scheduling Parameters As mentioned, every node v is required

to broadcast a message containing rv, ptxsv and E(Av). We need to ensure that
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the broadcasts will not collide with each other. As a matter of convenience, the

actual slot that v uses to broadcast the message is the slot number that corresponds

to its ID. This approach is similar to the strategy in [117] and reduces broadcast

collisions. Note that this requires the nodes to forgo any transmission in a slot s if

a node with ID s is one of their neighbors.

Infeasible Problem If the problem is not feasible because the input traffic is

higher than what a node can accommodate, LSLOTALLOC will not provide the

optimal allocation r∗. This happens when it is not possible to find r such that the

constraint r + (rpv + dv)/p
txs
w ≤ nv is satisfiable. A straightforward approach is

to allocate r = ⌊βnv⌋, where β ∈ (0, 1), for reception whenever the optimization

problem is infeasible. In the evaluation, we will study the sensitivity of LSLOTAL-

LOC with respect to β.

4.3.5 Control Packet Piggybacking

In Section 4.3.4, we highlighted the requirement of LSLOTALLOC to have access to

the most current variables (i.e., rv, ptxsv and E(Av)) for every neighbor node v along

the routing graph. Without these variables or when they are stale, LSLOTALLOC

may yield suboptimal results. As such, the performance of LSLOTALLOC is sen-

sitive to the loss of these information. Moreover, the need to separately exchange

these variables could entail high overhead.

To remedy these deficiencies, we propose the use of control packet piggyback-

ing, wherein a node v piggybacks rv, ptxsv and E(Av) in every data packet that

it transmits to its successor node, and to every acknowledgement packet that it

transmits to its predecessor nodes. Note that the inclusion of the three variables

only adds a few bytes to the data and acknowledgement packets. To illustrate, if

each of the variables was represented with a 16-bit number, then a total of 6 bytes

would need to be piggybacked. This approach clearly addresses the issue of high

control overhead. And as data and acknowledgement packets are sent several

times in an epoch, the loss is also mitigated.
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Note however that this technique will only work (i) when there are ongoing

data transmissions and (ii) when the MAC protocol can be modified to support

the piggybacking of additional information. The first point is not an issue since

LSLOTALLOC is designed to perform slot allocation when there is on-going data

traffic to the sink. If there is no data traffic, then the scheme can be configured to

output a default allocation. As for the second point, we can overcome the prob-

lem (of not being able to piggyback in the MAC acknowledgements) by disabling

MAC-layer acknowledgements and employing network-layer acknowledgements

which are more amenable to modifications.

4.4 Evaluation

In this section, we perform simulations using the Qualnet network simulator [4]

to (i) validate the analytical models for the packet arrival probability (4.7) and the

expected service time (4.23); and to (ii) determine the performance of LSLOTAL-

LOC.

4.4.1 Simulation Models

We implemented a simulation model of a dynamically duty cycled node in Qual-

net [4] as shown in Figure 4.6(a). Aside from LSLOTALLOC, the implemented

simulation components include the duty cycle generator, wakeup scheduling al-

gorithm, and collection tree routing protocol. We want to highlight the fact that

the Qualnet simulation model also implements the periodic transmission of over-

head packets as elaborated in Section 4.3.4. Thus, the simulation results take into

account the effect of such overhead in terms of energy consumption and packet

collisions.

Duty Cycle Trace To make the simulations realistic, a duty cycle trace from an

Arduino-based sensor node (cf. Figure 4.6(b)) is collected and used to drive the

network simulations. The node is equipped with a 5 Watt solar panel and a 2 Ah

lithium polymer rechargeable battery. The duty cycle of the node is controlled
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(a)

(b) (c)

Figure 4.6: (a) Qualnet simulation model; (b) Arduino node used to collect duty cycle

traces; and (c) Network topology used in the model validation.

using the LQ-Tracker duty cycle control algorithm [120] which is executed once

per minute.

Duty Cycle Generator The duty cycle trace is used to generate the duty cycle

δv(k) for every node v in the network. The trace is divided into segments such

that every segment is stationary. Time series analysis is employed and every seg-

ment is modeled as an autoregressive AR(1) process. The noise/error variance is

computed and is used to introduce random variations into every δv(k).

Equal-Interval Wakeup Scheduling The wakeup scheduling algorithm is re-

sponsible for selecting r out of S slots for packet reception. As highlighted in Sec-

tion 4.2.4, an equal-interval wakeup scheduling scheme can reduce the expected

waiting time. In the evaluation, we use this simple scheme as the focus of the

study is on the impact of r on the expected waiting time at v. The slot duration τ

is set to 10 ms while S = 500.
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Collection Tree Routing A simulation model of the Collection Tree Protocol [47]

is implemented using ETX as the routing metric. The forwarding engine is modi-

fied to control the time instances at which a node v can transmit its packet. Essen-

tially, the forwarding engine at v is only allowed to transmit at the beginning of

slots wherein its successor node w is awake.

4.4.2 Model Validation

To determine the validity of the packet arrival probability model (4.7) and the

expected service time model (4.23), we conducted simulations where rv is varied

for different (but fixed) values of input traffic Dv. The validation used the network

topology shown in Figure 4.6c. The results are taken from node v3 which has 10

predecessor nodes (labeled u1 – u10) and successor node w.

Figure 4.7(a) shows the packet arrival probability pv as a function of rv, com-

paring the model with the simulation results for four different Dv values. The

plots clearly show strong agreement between the model and simulation results.

Both results show that as rv increases, pv decreases. This is expected since for

a fixed input traffic Dv, the arrival probability in every receive slot drops when

there are more allocated receive slots. There is a slight difference in the results at

lower values of rv in the case of Dv = 15 and Dv = 20. The simulation results

show slightly higher packet arrival probability as compared to the model. This

difference is due to the conservative nature of the model and this property is mag-

nified at lower rv, i.e., the effect of contention is worse when there are fewer slots

for contention.

Figures 4.7(b) and 4.7(c) show the expected service time at v as a function of

rv for different transmission limit L values and different Dv values, respectively.

In Figure 4.7(b), we fixed Dv = 20 while in Figure 4.7(c), we used L = 3. Once

again, the results show a close agreement between the model and simulations.

Both results show that the service time increases as rv is increased and that the

increase is more noticeable at higher L or Dv values. The noticeably higher service

time results obtained using the model (in lower values of rv and higher values of
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Dv) can once again be attributed to the conservative nature of the model.

Before ending the discussion, we highlight the significance of the increasing

service time with respect to increasing rv. This is due to the fact that for a fixed

input traffic, v receives more packets when it allocates more receive slots. This

results in higher utilization factor ρv. The increasing service time is also a good

reason for considering the two-hop service time in the optimization problem. If

the problem was posed such that only v’s service time was minimized, then the

optimal solution would always be to allocate zero receive slots as this would pro-

vide the lowest service time at v. Note however that this allocation would incur

infinite service times for the predecessor nodes of v.

4.4.3 Performance Evaluation

We now proceed to evaluate the performance of LSLOTALLOC using a larger scale

wireless sensor network topology. To be precise, the network consists of 300 static

nodes that are uniformly-distributed in a 500 m × 500 m area. A single sink node

is positioned at (0, 0), i.e., the bottom-left part of the area. Figure 4.8 shows the

histogram of hop count to the sink of a typical scenario. We can see that the hop

count ranges from 1 to 12, with a tiny fraction even higher than 12 hops. Note that

a large fraction of nodes are 5 to 10 hops away from the sink. The positioning of

the sink at (0, 0) results in a challenging scenario where data traffic converges to

a “narrow spot” in the network. Note that the hop count statistics were obtained

using ETX as the path metric. As such, the paths tend to be longer than expected,

as ETX uses wireless links that are usually shorter.

The radio transceiver is configured to send at a data rate of 250 kbps and a

transmit range of 100 m. Data is generated by randomly-selected nodes which

generate variable bit rate traffic with mean packet inter-arrival time of 1 s for a

duration of 30 s. This bursty pattern mimics the traffic in event detection and

target tracking applications [123].

In the simulations, we modeled the physical layer after the bit-error (BER)

based reception model that is available in Qualnet [4]. As elaborated in Sec-
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Figure 4.7: Validation of packet arrival probability and mean service time models.
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Figure 4.8: Hop count distribution of a typical simulation scenario.

tion 3.4.3 this model uses probabilistic reception of packets based on the BER,

thereby simulating the effect of lossy wireless links.

The performance metrics of interest are the (average) end-to-end delay and

packet delivery ratio. Since the slot allocation algorithm is formulated to minimize

the two-hop service time, end-to-end delay is the primary metric of interest that

can indicate the effectiveness of LSLOTALLOC. Each data point is obtained by

averaging the results from 20 seed values, with every simulation run configured

for 7,200 seconds (2 hours) in simulation time.

Static Allocation

It is possible to implement a simple static allocation scheme such that the number

of receive slots rv(k) = ⌊γnv(k)⌋, where γ ∈ (0, 1). To determine if there is a γ that

optimizes the network performance, we ran simulations wherein γ is varied from

0.1 to 0.9.

Figures 4.9(a)–4.9(b) show the delivery ratio and delay, respectively, using four

duty cycle values. The results show that both metrics are affected by γ and that

there are indeed optimal values. In particular, it is apparent that the larger the

duty cycle, the larger the range for the optimal values. To illustrate, consider the

results for the duty cycles of 0.05 and 0.2. In the former, the delivery ratio peaks
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at around 0.6 ≤ γ ≤ 0.8 while the delay is minimal at γ = 0.6. In the latter, the

delivery ratio is optimal when 0.3 ≤ γ ≤ 0.8 while the delay is minimal when

0.2 ≤ γ ≤ 0.5.

To gain more insight into the performance of the scheme, we plot the fraction

of times that a node has pending packets in its queue but it ran out of transmit

slots. We refer to this condition as transmit slot shortage. Figure 4.9(c) shows the

transmit slot shortage for the static scheme and we can clearly see an increase in

the shortage at higher γ. This is understandable since when γ is high, a node

has more receive slots (and can receive more packets) and fewer transmit slots.

Note however that a non-zero shortage is not totally undesirable. Likewise, a

zero shortage is not totally desirable since it may mean that too few receive slots

are allocated resulting in negligible number of received packets that need to be

forwarded. To illustrate, consider the results for γ = 0.1 and γ = 0.6. The former

shows zero shortage while the latter shows roughly 10% shortage but yet, the latter

provides better performance in both metrics.

LSLOTALLOC Performance

In Section 4.3.4, we remarked that LSLOTALLOC may not be always feasible be-

cause nv(k) may not be enough to accommodate the expected input traffic to v.

In this case, r = ⌊βnv(k)⌋ slots are allocated for reception, where β ∈ (0, 1). In

terms of delivery ratio (cf. Figure 4.10(a)), LSLOTALLOC can obtain the optimal

value regardless of β, except when the average duty cycle is 0.05. This is because

at this duty cycle, a significant number of executions resulted in the problem being

infeasible.

The end-to-end delay seems to be more sensitive to β, with the extreme values

causing higher delay (cf. Figure 4.10(b)). The result for transmit slot shortage also

shows the same trend (cf. Figure 4.10(c)). These results indicate the importance of

having an appropriate allocation to handle infeasible cases. We can comfortably

set 0.3 ≤ β ≤ 0.6 to ensure both consistent end-to-end delay and transmit slot

shortage performance.
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Figure 4.9: Performance of a simple static allocation scheme as a function of γ.
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Figure 4.10: Performance of LSLOTALLOC as a function of β.
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Performance Comparison

We compare the performance of LSLOTALLOC and the static allocation scheme.

We use β = 0.6 and γ = 0.6 for the two schemes, respectively, since these parame-

ter values provide a good trade-off between the delivery ratio and the end-to-end

delay for both schemes. We varied the average duty cycle of the nodes from 5% to

15% and conducted tests with 1, 2 and 3 simultaneous source nodes.

Looking at the packet delivery ratio (cf. Figure 4.11(a)), we cannot see any sig-

nificant difference between the performance of the two schemes in all settings.

The results for the end-to-end delay however show a different picture. From

Figure 4.11(b), we can see that LSLOTALLOC significantly outperforms the static

scheme in almost all settings. To get a clear sense on the performance gain achieved

by LSLOTALLOC, we plot the ratio of the delay of LSLOTALLOC over the delay of

the static scheme in Figure 4.11(c). The ratio is less than 1 in all settings, indicating

that the delay of LSLOTALLOC is better than that of the static scheme. Notably, the

delay of LSLOTALLOC is around half the delay of the former in more than half of

the settings used.

There is an observable trend where the ratio decreases as the duty cycle in-

creases, reaching minima at a particular value, and increasing from thereon. This

behavior can be explained as follows: At lower duty cycles, the gain of LSLOTAL-

LOC is lower because the algorithm encounters significant infeasible traffic flow

conditions. Since most of the allocation will default to r = ⌊0.6nv(k)⌋ which is

the same as the static scheme, the performance gain is limited. As the duty cycle

rises, the frequency of infeasible traffic flow decreases, resulting in better perfor-

mance. The tapering of the performance advantage is due to the fact that at higher

duty cycles, the simple allocation is able to provide sufficient number of receive

and transmit slots with respect to the input traffic. However, LSLOTALLOC still

retains significant performance advantage as its delay is around half that of the

static scheme.

Figure 4.11(c) also indicates that the performance gain of LSLOTALLOC seems

to decrease as the number of source nodes increases. This observation is expected
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Figure 4.11: Performance comparison between LSLOTALLOC and static scheme.
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because as the number of source nodes increases, the number of infeasible traf-

fic flow conditions also increases. This leads to a reduction in the performance

gain, as elaborated in the preceding paragraph. In the worst case, i.e., when the

number of sources is sufficiently high to cause all problems to be infeasible, the

performance of LSLOTALLOC will be on par with that of the static scheme.

4.5 Summary

In environmentally-powered wireless sensor networks, the nodes employ adap-

tive duty cycling to optimize the utilization of dynamic energy supply and attain

energy-neutral operation. A node’s duty cycle indicates its budget for both packet

reception and transmission. In this chapter, we tackled the problem of apportion-

ing the duty cycle for packet reception and transmission in receive-centric wakeup

scheduling schemes. Using discrete-time queueing theory, we derived an analyt-

ical model for the service time (which also corresponds to the sleep latency) in

the presence of contention. We formulated the duty cycle allocation problem as a

constrained non-linear optimization problem that seeks to minimize the two-hop

service time. To search for the optimal allocation, we developed a low-complexity

algorithm called LSLOTALLOC and using trace-driven simulations, we demon-

strated that it significantly outperforms a static allocation scheme in terms of end-

to-end delay. Notably, LSLOTALLOC’s delay is around half the delay of the static

allocation scheme in most scenarios while maintaining the same packet delivery

ratio.

To the best of our knowledge, this work is the first to address the problem of

duty cycle allocation in receive-centric wakeup scheduling. Naturally, there are

many possible avenues for extension that can be undertaken in this area. Some

of the most important aspects that are worthwhile to investigate are (i) the impact

of link quality or channel errors; (ii) allocation strategies in the presence of non-

stationary duty cycles; and (iii) allocation strategies in non-tree-based network

topologies or multi-parent collection trees.



Chapter 5

PUMP-AND-NAP: Enabling

Sustainable Bulk Transfer

Applications such as indoor and outdoor environmental monitoring generate low

data rates, typically in the order of a few bytes to at most several tens of bytes

at every sensing interval. This essentially implies that every sensor reading can

be encapsulated in a single packet, or a couple of packets at the most. For such

applications, the data delivery objectives are to maximize the packet delivery ratio

and minimize the end-to-end delay.

There are however applications (e.g., volcano monitoring [124] and railway

bridge monitoring [24]), wherein the sensor nodes are tasked to record time-series

data at high sampling rates. Such tasks generate large or bulk sensor data, typ-

ically in the order of tens to hundreds of kilobytes. These bulk data need to be

transferred to a gateway (for eventual transmission to the backend, where fur-

ther processing and analysis can be undertaken). In bulk transfer, the objective

is rather different, in that the entire data needs to be completely delivered to the

gateway at the highest possible throughput. Bulk transfer in EPWSNs is challeng-

ing because as mentioned, nodes need to perform adaptive duty cycling to ensure

uninterrupted operation [68, 120, 137]. In other words, every node must strictly

operate according to a specified duty cycle, or risk downtime due to short-term

energy shortage.

125
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In this chapter, we tackle the problem of bulk data transfer in EPWSNs where

adherence to duty cycle constraints is a primary concern. While several bulk trans-

fer schemes have been proposed [39,40,75,100], they focus mainly on maximizing

the throughput, neglecting the duty cycle constraints of sensor nodes. The use of

existing schemes may therefore cause uncontrolled and rapid draining of the en-

ergy reserves, leading to the temporary unavailability of nodes along the transfer

path. Ultimately, this will result in transfer disruptions which render the transfer

of arbitrarily-sized sensor data difficult, if not infeasible.

We introduce PUMP-AND-NAP, a forwarding technique that uses controlled

packet trains to simultaneously maximize throughput and enforce compliance to

(dynamic) duty cycle limitations. At the heart of PUMP-AND-NAP is an adaptive

controller that determines a node’s optimal capacity, defined as the maximum num-

ber of packets the node can receive and transmit in a train within its duty cycle

constraints. The controller uses prior input-output observations (capacity alloca-

tions and their corresponding duty cycle usage) to continuously tune its perfor-

mance and adapt to wireless link quality variations.

We implement PUMP-AND-NAP in TinyOS [60] and perform experiments in

the Indriya testbed [34], a 139-node indoor testbed, to evaluate its performance.

Experimental results show that PUMP-AND-NAP can adaptively track duty cycles

and provide high bulk transfer throughput at the same time. More importantly,

we demonstrate in energy harvesting experiments that PUMP-AND-NAP can truly

enable sustainable bulk transfer compared to state-of-the-art techniques [39, 75]

that greedily maximize throughput at the expense of downtime due to energy

depletion.

The rest of the chapter is organized as follows. In Section 5.1, we elaborate on

the challenges that need to be address by bulk transfer schemes in the context of

EPWSN. In Section 5.2, we describe PUMP-AND-NAP in detail while in Section 5.3,

we evaluate its performance and compare it with existing bulk transfer techniques.

We conclude the chapter in Section 5.4.
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5.1 Bulk Transfer In EPWSNs

As highlighted in Section 2.3.3, bulk transfer schemes in EPWSNs need to work

with wakeup scheduling to support duty cycling. In this work, we motivate our

design using asynchronous schemes because as emphasized in Section 2.1.4, they

offer two distinct advantages over synchronous schemes: (i) they do not require

periodic re-synchronization which can entail significant energy consumption; and

(ii) they do not require the storage and exchange of wakeup schedules which can

entail significant memory and communication overhead. Nevertheless, our re-

sulting scheme can also be used on top of synchronous MAC protocols after slight

modifications.

Recall that in asynchronous schemes, a packet transmission is preceded either

by a beacon listening phase or preamble(s) transmission phase5. The former is em-

ployed in receiver-initiated schemes (e.g., [112]) while the latter is used in transmitter-

initiated schemes (e.g., [21,38,98]). Regardless, the transmitting node always incurs

this overhead before it can have the opportunity to transmit its packets. For sim-

plicity, we introduce a common term to refer to either overhead:

Definition 11 (Pre-transmission Overhead). The duration from the moment a trans-

mitting node v has a packet ready for transmission until the time the receiving node w

wakes up. During this time, v’s radio is active, either awaiting for a beacon (receiver-

initiated) or transmitting preamble(s) (transmitter-initiated).

Figure 5.1 illustrates the pre-transmission overhead, denoted by Θv, of a trans-

mission from node v to node w. Note that Θv is heavily influenced by the sleep

time TS. We will elaborate on this in the following discussion.

Now, consider a multi-hop bulk transfer from node s to t. Supposing that we

can modify the single packet-based schemes Flush and PIP to operate on top of an

asynchronous MAC, the fastest sending rate that a transmitting node v can achieve

is to transmit once every wakeup of its successor node w, or 1/(TL + TS) (cf. Fig-

ure 5.1). This is because v needs to wait for the ACK before it can transmit the next

5In [38], preambles are replaced by actual data packets.
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Figure 5.1: Illustrating the pre-transmission overhead of a transmission from v to w, de-
noted by Θv. The shaded boxes denote the wakeup intervals of w.

packet and obviously, it can only receive the ACK when w is awake. Because of

rate control, v does not transmit immediately (after receiving an ACK) and hence,

v goes back to sleep. Once v transmits later, it must wait again for w to be awake

to receive the ACK.

In addition to the low throughput, every packet transmission will have a very

high pre-transmission overhead. To see why this is the case, consider Figure 5.1.

The moment v becomes ready to transmit, it needs to wait for the next wakeup

interval of w, which is Θv seconds into the future. If the probability of a packet

becoming ready for transmission at v is the same any time, then

Θv ∼ U(0, TS), (5.1)

where U(0, TS) denotes the uniform distribution in [0, TS]. From (5.1), we can see

that on the average, the pre-transmission overhead is TS/2. Hence, transmitting a

single packet yields an average efficiency of τ/(τ + TS/2) = 2τ/(2τ + TS), where τ

is the transmission time of a packet.

The use of packet trains can clearly remedy the deficiencies of single packet-

based schemes. Because wakeup scheduling somewhat limits the opportunities

at which nodes can exchange packets, it makes sense to transmit as many pack-

ets as possible at every opportunity to improve efficiency. For clarity, we define

the notion of a packet train in the context of asynchronous wakeup scheduling as

follows:

Definition 12 (Packet Train). A series of packet transmissions, where only the first

packet transmission is preceded by a pre-transmission overhead.
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Note that if L packets are transmitted in a train, the average efficiency increases

to 2Lτ/(2Lτ+TS) while the throughput rises to L/(TL+TS) which is L times that of

the single packet transmission approach. One difficulty that immediately pops up

is what value of L should be used. We have therefore identified the first problem:

Problem 1. What packet train length should a transmitting node use, given the duty

cycle constraints of itself and the receiving node?

In single-hop scenarios, answering Problem 1 may be sufficient to achieve a

duty cycle-compliant bulk transfer. For multi-hop transfers, we need to consider

the operation of relay nodes. Consider a relay node v with predecessor node u and

successor node w. If v allocates its entire duty cycle for packet train reception from

u, then surely, it will use extra duty cycle (i.e., beyond its allocation) to forward

them to w. Thus, we have exposed the second problem:

Problem 2. For relay nodes, how should they allocate their respective duty cycles between

packet train reception and packet train transmission?

The bulk transfer may take considerable amount of time and during this, node

duty cycles as well as wireless link qualities may fluctuate. Thus, solving Problems

1 and 2 once is not sufficient. We state the final and third problem as follows:

Problem 3. Every node along the transfer path needs to periodically review the duty

cycle allocation (and hence packet train lengths) to adapt to changes in duty cycle target

and wireless link quality and attain optimal performance over time.

5.2 PUMP-AND-NAP Design

In the design of PUMP-AND-NAP, we focus on a single bulk transfer from s to t that

uses a path Pst. This is the usual modus operandi in data collection, as simultaneous

transfers cause inter-flow interference which can severely degrade the throughput

performance [75] and in severely-constrained sensor nodes, this may entail ex-

cessive resource consumption leaving insufficient resources for sensing and data

processing. The recommended strategy is to let the gateway or sink node initiate
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all data transfers to ensure that at most one transfer is on-going at any point in

time.

Epoch Time is divided into epochs with fixed duration T . Nodes need not be

synchronized, i.e., the start of epochs in nodes u and v need not occur simulta-

neously. The main reason for dividing time into epochs is to facilitate “periodic

review” of PUMP-AND-NAP operating parameters at the start of every epoch.

Target Duty Cycle Nodes employ adaptive duty cycling to balance the dynamic

energy supply and demand [68,120,137]. We let δv(k) denote the target duty cycle

of v in epoch k which indicates the fraction of time that v can be active for reception

and transmission. Note that δv(k) ∈ [0, 1].

Wakeup Scheduling Scheme PUMP-AND-NAP is designed to work with any

asynchronous scheduling scheme that supports back-to-back packet transmissions

or packet trains. We employ X-MAC [21] because of its implementation avail-

ability in TinyOS and more importantly, it supports packet trains. In the TinyOS

implementation, this is possible because a duty-cycled node waits for a specified

amount of time (DELAY AFTER RECEIVE) after its last packet reception before go-

ing back to sleep.

5.2.1 Architecture

Figure 5.2 shows the architecture of PUMP-AND-NAP with the major functional

blocks. The two main functions provided by PUMP-AND-NAP are hop-by-hop

packet train transmission using the pump and nap strategy, and dynamic com-

putation of packet train length using adaptive capacity control. The former will

be elaborated in Section 5.2.2 while the latter will be discussed in detail in Sec-

tion 5.2.3.

PUMP-AND-NAP is specifically designed for dynamic duty cycling sensor net-

works and as such, it is assumed that an adaptive duty cycle controller provides

the optimal operating duty cycle. Nevertheless, PUMP-AND-NAP can also be used
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Figure 5.2: PUMP-AND-NAP architecture.

even in static duty cycle scenarios, as will be elaborated at the end of this sec-

tion. In either case, PUMP-AND-NAP’s goal is to ensure that the radio duty cycle

will comply with the stipulated duty cycle to ensure long-term sustainability. To

perform packet forwarding, PUMP-AND-NAP requires knowledge of the succes-

sor node which can be obtained through a routing protocol. Finally, to control the

wakeup scheduling of the wireless transceiver and perform efficient packet trans-

missions, PUMP-AND-NAP relies on an asynchronous MAC protocol that supports

back-to-back packet transmissions.

5.2.2 Operation

PUMP-AND-NAP is a forwarding technique that can be used in conjunction with

existing bulk transport protocols. As such, PUMP-AND-NAP focuses on two areas:

(i) the computation of packet train lengths, and (ii) the manner by which packet

trains are exchanged at every hop, from the source to the sink. In what follows, we

describe the operation of PUMP-AND-NAP in a multihop bulk transfer from s to t

along a path Pst. We assume that every node has a queue for storing packets. We

also assume that the transfer has been initiated, and that every node v ∈ Pst has

started the operation of its adaptive controller, the details of which are presented

in Section 5.2.3. For now, it is sufficient to know that the adaptive controller is

responsible for computing rv(k) and tv(k) at every epoch k, the maximum number

of packets that v can receive and transmit, respectively, given its current duty cycle
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δv(k).

To commence the transfer, s starts a nap cycle timer which will time out after

T seconds (1 epoch). Node s then sends a train request to its successor node, say

v. When v receives the request, it sends back a train reply to s indicating rv(k), the

maximum number of packets that v can receive in the current epoch. Node s then

pumps at most ρs(k) packets back-to-back to v, where ρs(k) = min[ts(k), rv(k)].

After this pumping session, s takes a nap, i.e., stops transmissions until the next

cycle.

Basic Packet Train Forwarding

Let us look at how an arbitrary relay node v will perform packet transmissions.

After receiving a train of packets from its predecessor node u, v performs its own

pump-and-nap transmission strategy to its successor node w. That is, v sends a

train request to w. After receiving a train reply which indicates rw(k), v pumps at

most ρv(k) packets back-to-back to w, where

ρv(k) = min[tv(k), rw(k)],

and immediately takes a nap after this. Note a subtle difference between how s

and v performs the pump-and-nap strategy: while s uses a nap timer to trigger

pumping sessions, v does not employ any such timer. This is because v’s trigger

for its pumping session is the end of its packet train reception from its predecessor

node u. In the ideal case, the duty cycle usage of v, denoted by δ̂v(k), is

δ̂v(k) :=
τv(k)

T
, (5.2)

where τv(k) is the total time that v has been active. This includes the packet train

reception time from u, pre-transmission overhead, train request/reply overhead,

and packet train transmission time to w.
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Wakeup-Synchronized Packet Train Forwarding

In the preceding approach, v commences packet train transmission to w immedi-

ately after completing a packet train reception from u. Note that it is possible for v

to optimize its duty cycle usage by timing its transmission to begin at the moment

that w wakes up. This requires v to know the exact wakeup intervals of w. But for

transferring large bulk data, this overhead is justified because it will reduce, if not

eliminate, the pre-transmission overhead. This will result in v consuming a lower

duty cycle for the same packet train length.

Regardless of whether the basic or wakeup-synchronized packet train trans-

mission is employed, the hop-by-hop packet train transmission strategy is re-

peated until the sink node t. PUMP-AND-NAP relies on the link layer for relia-

bility and error detection. When a node v fails to receive an ACK after exhausting

the specified retransmission limit, the packet being transmitted is not dropped;

rather, v stops the packet train transmission and immediately takes a nap. Note

that when a packet train transmission is abnormally terminated due to such fail-

ures, the subsequent packet train transmission will commence from the last un-

successful packet.

5.2.3 Adaptive Capacity Control

We shall now discuss the design of an adaptive controller that can simultaneously

address the three problems posed in Section 5.1. In our design, we adapted the

methodology described by Goodwin and Sin [49]. First, we seek a dynamic model

that describes the evolution of the quantity that we want to control, i.e., the node

duty cycle usage. This dynamic model will contain an unknown system parame-

ter. Second, we formulate the problem as consisting of two parts: estimation of the

unknown parameter, and calculation of optimal control law using the parameter

estimate.

The motivating problem at node v is to determine rv(k) and tv(k), the max-

imum number of packets that v can receive and transmit, respectively, given its

current duty cycle δv(k). Taken together, the sum of rv(k) and tv(k) is the node
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capacity Cv(k), that is,

Cv(k) := rv(k) + tv(k).

The goal of the adaptive capacity controller is to let the duty cycle usage {δ̂v(k)}

track the target duty cycle {δv(k)}, for all epoch k, while at the same time maximize

{Cv(k)}.

Input-Output Model

As a matter of convention, we assume that control decisions are done at the start of

every epoch k. There is a unit epoch delay before the effects of the control decision

can be observed. Thus, if v decides to receive rv(k) packets and transmit tv(k)

packets at epoch k, we can only ascertain the corresponding duty cycle usage at

epoch k + 1, denoted by δ̂v(k + 1), which can be obtained by measuring the active

time of the radio and using (5.2).

If α and β are the duty cycle ‘consumed’ for every successful packet reception

and transmission, respectively, then δ̂v(k + 1) = αrv(k) + βtv(k). Note however

that this formulation ignores two overheads: (i) the pre-transmission overhead as

discussed in Section 5.1; and (ii) the duty cycle used for the intervals at which v

wakes up to listen for transmissions (for transmitter-initiated schemes) or transmit

beacons (for receiver-initiated schemes). Denoting Uv for the former and Lv for the

latter, we have

δ̂v(k + 1) = αrv(k) + βtv(k) + Uv(k + 1) + Lv. (5.3)

The parameter Lv can be treated as a constant since v incurs the same overhead at

every epoch. Because there is at most one packet train transmission every epoch,

the duty cycle usage of pre-transmission overhead is simply

Uv(k) =
Θv(k)

T
,

where Θv(k) is a random variable defined in (5.1). With this, Uv(k) is effectively

uniform in [0, TS/T ]. Note that the index of Uv is k + 1 because of the fact that
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(a) (b)

(c)

Figure 5.3: Modeling of the system for adaptive feedback control: (a) input-output model;
(b) simplified model; and (c) system with adaptive controller.

its effect is only measured together with the measurement of δ̂v(k + 1). Uv(k) can

actually be expressed as the sum of a constant and uniform random variable, that

is,

Uv(k) =
TS

2T
+Wv(k),

where Wv(k) ∼ U(−TS/2T, TS/2T ). Lumping together all the constants as K , (5.3)

can be rewritten as

δ̂v(k + 1) = αrv(k) + βtv(k) +Wv(k + 1) +K, (5.4)

where K := Lv + TS/(2T ). A block diagram representation of (5.4) is shown in

Figure 5.3(a).

Simplified Model

In what follows, we refine (5.4) to address important considerations such as queue

stability and capacity maximization.

Queue Stability Ensuring that queues are stable is important to reduce packet

loss due to buffer overflows. For the queue at v to be stable in the long-run, the

number of incoming packets must be at most equal to the number of packets that
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v can transmit [89], or

rv(k) ≤ tv(k). (5.5)

Capacity Maximization As mentioned, a key objective of the adaptive controller

is to maximize node capacity Cv(k). Given the constraint provided by (5.5), it is

easy to see that in order to maximize Cv(k), v must be allowed to receive as much

as possible. That is,

rv(k) = tv(k). (5.6)

From (5.6), by letting uv(k) denote either rv(k) or tv(k) and introducing a parame-

ter b, that is

uv(k) := rv(k) = tv(k), (5.7)

b := (α+ β), (5.8)

(5.4) can be rewritten as

δ̂v(k + 1) = buv(k) +Wv(k + 1) +K. (5.9)

We remark that as b encapsulates the “duty cycle cost” to successfully receive and

transmit a packet, it is affected by the variations of its incoming and outgoing

wireless links. For convenience, we make the following change of variables:

yv(k) := δ̂v(k)−K. (5.10)

Substituting this into (5.9) yields

yv(k + 1) = buv(k) +Wv(k + 1) (5.11)

which is our desired form and is pictorially depicted in Figure 5.3(b). Note that

the original control objective is to let {δ̂v(k)} track {δv(k)}, for all epoch k. But

because δ̂v(k) is ‘hidden’ in (5.11) due to the change of variables, we also define
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the following for convenience:

y∗v(k) := δv(k)−K. (5.12)

The above essentially means that the equivalent control objective is for {yv(k)} to

track {y∗v(k)}.

Estimation and Control

We shall now use (5.11) to obtain the optimal control uv(k) that maximizes the ca-

pacity of v while ensuring that the duty cycle usage {yv(k)} tracks the target duty

cycle {y∗v(k)}, for all epoch k. We structure the control system as in Figure 5.3(c). A

key component of the system is the parameter estimator, which is responsible for

estimating the value of b and essentially makes the controller adaptive. Because

(5.11) is linear and the “noise” term has zero mean (i.e., E[Wv(k)] = 0), the least

squares estimate of b, denoted by b̂, is given by [79]

b̂ =

∑k−1
i=0 yv(i+ 1)uv(i)
∑k−1

i=0 u2v(i)
. (5.13)

The optimal control law can be obtained by invoking the principle of certainty equiv-

alence [79]. It means that we use b̂ as though it were the true parameter b. Hence,

uv(k) can be obtained by replacing yv(k + 1) and b in (5.11) with y∗v(k + 1) and b̂,

respectively, and cancelling Wv(k). This yields uv(k) = y∗v(k + 1)/b̂. Noting that

uv(k) must be an integer, we simply take the floor and obtain

uv(k) =

⌊

y∗v(k + 1)

b̂

⌋

. (5.14)

Estimation and Control for Wakeup-Synchronized Scheme

The estimator b̂ in (5.13) and control law uv(k) in (5.14) are applicable when the ba-

sic packet train forwarding scheme is employed. When the wakeup-synchronized

approach is used, we need to slightly modify the parameter estimate and control

law. Note that in the latter, the pre-transmission overhead vanishes, hence, we can
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rewrite (5.9) as

δ̂v(k + 1) = buv(k) +Xv(k + 1) + Lv,

where Xv(k) denotes the uncertainty between the time that v commences packet

transmission and the exact time that w exactly wakes up. This uncertainty is

present because even though v transmits at the wakeup intervals of w, errors in

clocks of both v and w are still possible. Following the same arguments as in Sec-

tion 5.2.3 and assuming that Xv(k) are i.i.d. for all k with mean X̄v, the above can

be rewritten as

δ̂v(k + 1) = buv(k) + W̃v(k + 1) + K̃,

where W̃v(k) is a zero-mean random variable and K̃ = Lv + X̄v. We can therefore

define analogues of (5.10) and (5.12) as:

ỹv(k) := δ̂v(k)− K̃ (5.15)

ỹ∗v(k) := δv(k)− K̃ (5.16)

Finally, the parameter estimator for the wakeup-synchronized packet train for-

warding is given by

b̃ =

∑k−1
i=0 ỹv(i+ 1)uv(i)
∑k−1

i=0 u2v(i)
(5.17)

while the optimal control law is given by

uv(k) =

⌊

ỹ∗v(k + 1)

b̃

⌋

. (5.18)

We have just completed the design of the adaptive controller at v, which will

allocate uv(k) packets for both reception and transmission in the current epoch k.

To ensure that v can store all the packets in a train, it must limit the number of

packets that it indicates to its predecessor node to

rv(k) = min[uv(k), Q−Qv(k)],

where Q is the maximum queue size and Qv(k) is the queue length at v. Before
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ending the discussion, we remark the following desirable properties of the con-

troller.

Applicability to any node type The controller was initially designed for a relay

node v. However, the use of a single control uv(k) makes the model applicable

for the source and sink nodes as well. In the latter two types, uv(k) provides the

optimal transmit and receive allocations, respectively, without any change.

Adaptation to wireless link variations As mentioned, the parameter b encap-

sulates the effect of link quality variations. Since b is continuously estimated, the

control uv(k) also automatically adjusts to the link quality fluctuations.

Support for synchronous and asynchronous MAC Our design assumed that

the underlying MAC is asynchronous. By removing the third term (due to pre-

transmission overhead) in (5.3) and slightly re-defining yv(k) and y∗v(k), we can

use the controller in conjunction with synchronous MAC protocols.

Usability in static and dynamic duty-cycling In the development of the con-

troller, we did not make any assumption about the target duty cycle δv(k), other

than δv(k) ∈ [0, 1]. As such, the controller can also be used in situations where

δv(k) is constant, i.e., static duty cycling.

Supporting Simultaneous Transfers

At the start of Section 5.2, we remarked that PUMP-AND-NAP is designed to work

well in data collection scenarios wherein the bulk data transfer is managed by a

single entity (i.e., the gateway node) and that this single entity ensures that every

node in the network is involved in at most one bulk transfer. Nevertheless, PUMP-

AND-NAP can be extended to support simultaneous data transfers through the

following modifications.

Suppose that a node v is currently supporting a single bulk transfer, and it cur-

rently allocates rv(k) for reception and tv(k) for transmission. When v receives
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another train request, it simply divides rv(k) equally into 2. Likewise, if the succes-

sor node is different, v divides tv(k) equally into 2. This process can be repeated

for every new bulk transfer, dividing rv(k) and tv(k) equally among the distinct

number of predecessor and successor nodes, respectively.

We note that the above modifications pose some challenges on the performance

of the adaptive capacity controller especially in the case of the basic forwarding

scheme. This is because in the design of the controller, only one pre-transmission

overhead per epoch is considered. If a node v needs to perform packet train trans-

missions to several successor nodes, then every such successor node will entail a

pre-transmission overhead. As such, the extension of PUMP-AND-NAP to support

simultaneous bulk transfers will only work well for the wakeup-synchronized for-

warding scheme. The basic scheme can only be employed in scenarios where there

is a single data collection point.

5.3 Evaluation

To empirically evaluate PUMP-AND-NAP, we implemented it in TinyOS 2.1.2 [60]

and deployed in TelosB motes. Experiments to characterize the performance of

PUMP-AND-NAP and simulate energy harvesting scenarios were conducted in the

139-node Indriya indoor testbed [34] while energy-harvesting experiments were

conducted in indoor and outdoor locations.

PUMP-AND-NAP Implementation TelosB uses the CC2420 radio which is duty

cycled by a component called PowerCycle. To measure the duty cycle usage,

we implemented two event “hooks” that are invoked from PowerCycle, namely

radioStarted()and radioStopped() to indicate the exact instances at which

the radio is turned on and off, respectively.

To implement the wakeup-synchronized scheme, we used a readily-available

component in TinyOS called CC2420TimeSyncMessageC, which enables a node

v to inform another node u of the exact time at which an event has occurred. Note

that this timing information is piggy-backed in data packets, and thus, no addi-
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tional message overhead is generated. In our implementation, v always piggy-

backs its last wakeup interval in any data packet transmission. This enables a

receiving node u to deduce all future wakeup intervals of v, since TL and TS (cf.

Figure 5.1) are fixed.

Experiment Settings PUMP-AND-NAP and the underlying X-MAC protocol have

several important parameters that need to be specified prior to deployment. For

the X-MAC protocol, the wakeup interval TL is set to 15 ms while the sleep interval

TS is varied to 485, 235, and 110 ms. These values correspond to wakeup rates of

2, 4 and 8 wakeups/second, respectively. The 15 ms wakeup interval was chosen

because it provided a good trade-off between overhead and preamble reception

probability. For reliability, we used CC2420 software-based ACKs (default setting)

and set the retry limit to 7. The latter value was chosen to improve the reliability

of individual packet transmissions and to essentially reduce abnormal termination

of packet train transmissions. Note that the IEEE 802.15.4 standard [7] allows for

the retry limit to be chosen from 0 to 7, with 3 as the default value.

For PUMP-AND-NAP, the epoch duration T and packet buffer space Q are

the two key parameters. We chose T = 3 seconds in our evaluation. Selecting

a shorter T requires more frequent computations but faster reaction to environ-

mental changes while a longer T requires less frequent computations but slower

reaction to environmental changes. T also has a direct impact on the efficiency

of packet trains. A shorter (longer) T implies shorter (longer) packet trains and

therefore less (more) efficient. However, supporting longer packet trains requires

nodes to maintain larger packet buffer space. In this work, we used a buffer size

of 60 packets which was more than sufficient for the tested scenarios.

We focused our evaluation on the performance of the adaptive controller and

packet train forwarding scheme so we used fixed network topologies. In addition,

we used a packet size of 64 bytes for transmitting fragments of the bulk data,

which is generated on-the-fly at the source nodes.
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5.3.1 PUMP-AND-NAP Performance

Dynamic Performance

To evaluate the performance of the proposed controllers, we performed experi-

ments in the Indriya testbed [34] involving 3 nodes, namely a source, a relay, and

a sink. We selected 10 sets of combinations from the testbed, where the link deliv-

ery probabilities from source to relay, and from relay to sink were more than 0.8.

The source and sink duty cycles were fixed at 50% whereas the relay duty cycle

was changed every minute to a random value in [1%, 30%] that had not yet been

previously selected. This setup ensured that all possible duty cycle values in the

range were tested, and that the relay duty cycle was the bottleneck.

Figure 5.4 and 5.5 show the average duty cycle usage and relay capacity, re-

spectively, of basic and wakeup-synchronized approaches (as defined in Section 5.2.2)

under different X-MAC wakeup rates. The error bars indicate the 95% confidence

intervals. As far as tracking is concerned, we can see that both schemes can follow

the duty cycle target, except at lower duty cycles. The latter is due to the X-MAC

wakeup overhead and pre-transmission overhead (in the case of basic). To illus-

trate, at 4 wakeup/s, the wakeup overhead is (4×15)/1000 = 6%, hence we can see

in Figure 5.4(b) that the usage of wakeup-synchronized does not go below 6%. For

basic, there is an additional overhead of roughly TS/(2T ) = 235/(2 × 3000) ≈ 4%,

hence, its usage is 10% at the minimum. We want to highlight the importance of

duty cycle tracking in EPWSNs: if the usage is lower than the target, then it means

that the controller is not taking full advantage of the duty cycle. Whereas, if the

usage is higher than the target, then it means that the node is using up more duty

cycle than allocated. In the long run, this can cause the node to fail due to energy

depletion.

Another noticeable aspect is that basic shows higher variation especially at

lower wakeup rates while wakeup-synchronized provides highly consistent perfor-

mance regardless of the X-MAC wakeup rate. The higher variation of basic is ex-

pected because the uncertainty due to the pre-transmission overhead is signifi-

cantly higher than the clock uncertainty in wakeup-synchronized. Moreover, the
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Figure 5.4: Comparing the duty cycle tracking performance of basic and wakeup-

synchronized under different X-MAC wakeup rates.
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Figure 5.5: Comparing the relay capacity of basic and wakeup-synchronized under differ-

ent X-MAC wakeup rates.
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Figure 5.6: Snapshots of controller response when duty cycle target abruptly changes,

under different X-MAC wakeup rates.
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former is sensitive to the X-MAC wakeup rate, i.e., at lower wakeup rates, the

variation is higher because TS is larger (cf. Figure 5.1).

To emphasize the sensitivity of basic, we show snapshots of the controller re-

sponse when the duty cycle target changes abruptly from 15% to 25% (and vice

versa) every minute in Figure 5.6. Note the stable dynamic response of wakeup-

synchronized, regardless of the X-MAC wakeup rate. Compare this with basic which

is highly oscillatory because of the high pre-transmission overhead uncertainty.

The lower the wakeup rate, the higher the uncertainty which ultimately results in

wider oscillations.

With respect to the relay capacity, we can observe that both schemes provide

consistent (low variation) capacity. At lower duty cycles, both schemes yield neg-

ligible capacity because the X-MAC wakeup overhead and pre-transmission over-

head (in the case of basic) use up the entire duty cycle. The advantage of synchro-

nization is noticeable, as wakeup-synchronized shows better performance compared

to basic in all wakeup rates due to the elimination of pre-transmission overhead. Its

advantage is higher at lower wakeup rates because of the lower X-MAC wakeup

overhead in those settings. At 8 wakeup/s, the performance of both schemes are

comparable because the X-MAC wakeup overhead becomes dominant.

Multihop Performance

To see how PUMP-AND-NAP will perform in multihop deployments, we ran ex-

periments where the number of hops from the source to the sink is varied from 1

to 5 hops. For every hop count, we tested three duty cycle targets, namely 10%,

20%, and 30%. Each experiment was run for 1 minute and repeated 10 times. We

monitored the bulk transfer throughput, and these are shown in Figure 5.7. The

plots also show the 95% confidence intervals.

Except for the settings that yielded negligible throughput (caused by the usage

of the entire duty cycle for X-MAC wakeup overhead and pre-transmission over-

head), we can see a big drop from 1 to 2 hops for the rest, with the latter throughput

being just around half of the former. This is expected because for single hop trans-
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fers, the source does not need to allocate any duty cycle for reception and that it

can allocate its entire duty cycle for transmission. For 2–5 hops, the throughput is

almost the same for every scheme, due to the fact that the relay nodes are able to

maximize the allocated duty cycle. Once again, we can see the distinct advantage

of wakeup-synchronized, as its throughput is higher than basic especially at lower X-

MAC wakeup rates. The lower throughput of basic is due to the pre-transmission

overhead, which is relatively higher at lower wakeup rates.

The flat throughput results for 2–5 hops is counter-intuitive. We have expected

the throughput to decrease with path length because as the number of hops in-

creases, intra-flow interference due to contention worsens. To understand why

this is the case, we pictorially analyze the “airtime usage” of a 5-hop bulk transfer

in Figure 5.8. We define the airtime usage as the total time (in an epoch) that the

nodes used for transmission and reception of packet train from the source to the

sink. Suppose that the target duty cycle of all the nodes is 30%. Then node 1 will

allocate all of its duty cycle, i.e., 30% for packet transmission. Relay nodes 2, 3

and 4 will split their duty cycles accordingly, say 15% for reception and 15% for

packet transmission, for simplicity. Finally, sink node 5 will allocate its entire 30%

for packet reception. While node 1 can utilize 30% to transmit to node 2, it will

only be able to use 15% because node 2 limits the packet train transmission. Like-

wise, while node 5 can use 30% for reception, node 4 limits its usage to only 15%.

Thus, the total airtime usage is 60% of the epoch duration which is the sum of the

following: 15% from node 1 to 2; 15% from node 2 to 3; 15% from node 3 to 4; and

15% from node 4 to 5. We can use the same figure to analyze the airtime usage of

2, 3, and 4 hops to show that the airtime usage of these transfers are well below

100% and will therefore sidestep the problem of intra-flow interference. To clarify

why intra-flow interference will not occur, note that because the airtime usage is

below 100%, all packet train transmissions by nodes 2–4 have already completed

before node 1 initiates a new packet train in the next epoch.

We now want to emphasize the following: for all transfers involving 2, 3, 4

and 5 hops, the relay nodes limit the packet train size or duration to 15% of the
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Figure 5.8: Airtime usage of a packet train transmission from the source to the sink. If the

target duty cycle of the nodes is 30%, then each packet train requires 15% of the epoch.
Hence the total airtime is 4× 15 = 60% of the epoch duration.

epoch duration. Since the source is allowed to initiate 1 packet train transmission

every epoch, then the throughput is determined by the packet train duration. This

explains the flat throughput for 2–5 hops.

5.3.2 Energy Harvesting Experiments

Finally, we conduct experiments involving a real energy-harvesting node to de-

termine whether PUMP-AND-NAP can indeed provide sustainable bulk transfer.

The setup involves a 2-hop bulk transfer: the source and sink nodes are powered

through the USB port while the relay node uses energy-harvesting. Figure 5.9

shows the schematic diagram of the energy-harvesting relay node. It uses 4 solar

panels that can generate up to 22 mW of power, and a 1 Farad supercap as energy

store. BQ25504 EVM [1] is a power management circuit that controls the supercap

charging and energy supply to the mote. It is configured to charge the supercap

to 3.1 V. We implemented a simple voltage-duty cycle mapping to generate the target

duty cycle δ(k) at every epoch k, given by:

δ(k) = max[b(k) − 2.5, 0],
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Figure 5.9: Energy harvesting experimental setup.

where b(k) denotes the supercap voltage at epoch k. Note that this simple map-

ping allows a maximum duty cycle of 60% since b(k) ≤ 3.1. Note also that when

the supercap voltage is less than or equal to 2.5 V, δ(k) = 0. We made this stipula-

tion because based on observations, the mote does not function when the voltage

drops below 2.5 V. This simple mapping is definitely not optimal and as such,

we anticipate that PUMP-AND-NAP can benefit from more sophisticated adaptive

duty cycle schemes such those proposed in [68, 120].

We compare PUMP-AND-NAP with some of state-of-the-art bulk transfer tech-

niques presented in Section 2.3: (i) packet train-based transmissions which is em-

ployed in [39], and (ii) Flush [75]. For the former, we tested both unsynchronized

and wakeup-synchronized. Two energy harvesting scenarios were used: (a) indoor

scenario – solar panel was exposed to a lamp with 10 klux illuminance; and (b)

outdoor scenario – solar panel was exposed under direct sunlight with 100 klux il-

luminance. (The Extech HD450 Lux Meter was used to measure the illuminance.)

Every scheme was run 10 times, and every run was scheduled for at most 2 hours

for practical reasons. For fairness, all experiments under (b) were performed when

the sun was unobstructed by any cloud. We checked that the supercap was at 3.1 V

prior to the start of every run.

Rationale for Using 10 klux and 100 klux

We used these values because based on our measurements, outdoor daytime il-

luminance ranges from 10–100 klux during a fair sunny day. In [45], the authors
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have shown through measurements that for solar altitudes above 10 degrees, the

direct normal illuminance is more than 10 klux. It is easy to consistently obtain

100 klux outdoors, which happens when the sun is not obstructed by any cloud

at around 1-4 pm. It is however difficult to obtain a consistent 10 klux. Hence,

we performed indoor experiments with a lamp that was placed at a distance such

that the illuminance reaching the solar panel is around 10 klux. By choosing these

two values of illuminance, i.e., 10 klux and 100 klux, we can use the results to infer

that (i) the scheme should be able to provide sustainable bulk data transfer within

10–100 klux of illuminance or a fair sunny day, and (ii) the scheme automatically

adjusts the throughput according to the variations in energy availability (klux).

Experimental Results

Figures 5.10 and 5.11 show the throughput and mean time before the relay node

failed due to energy exhaustion, in indoor and outdoor scenarios, respectively,

with the error bars indicating the 95% confidence intervals. Note that p-train and

p-train (sync) denote unsynchronized and wakeup-synchronized packet-train for-

warding schemes, respectively. PUMP-AND-NAP is not included in Figures 5.10(b)

and 5.11(b) because it can achieve uninterrupted operation, i.e., it lasted for the en-

tire duration of the experiments (2 hours).

In either scenario, flush yields the highest throughput at around 28 pkt/s.

However, the transfer is short-lived, lasting for only 16.8 s indoors and 36.4 s

outdoors. Meanwhile, the use of packet trains can indeed improve the energy-

efficiency of bulk transfer. Although its throughput is slightly lower than flush by

at most 18%, p-train can last more than twice that of flush in both illuminance con-

ditions. Comparing p-train and wakeup-synchronized p-train, we can observe a

slight advantage of the latter. While both schemes yield comparable throughput,

the latter can last slightly longer by at most 17 s, due mainly to the energy savings

from pre-transmission overhead.

At this point, we highlight that our p-train implementation is sub-optimal com-

pared to the implementation in [39] because we used a burst duration of 1500 ms
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Figure 5.10: Throughput of PUMP-AND-NAP (basic and wakeup-synchronized), packet
train (unsynchronized and wakeup-synchronized) and flush, and mean time to relay node

failure of the latter two, in indoor scenario (10 klux).
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Figure 5.11: Throughput of PUMP-AND-NAP (basic and wakeup-synchronized), packet
train (unsynchronized and wakeup-synchronized) and flush, and mean time to relay node

failure of the latter two, in outdoor scenario (100 klux).
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and did not employ optimizations such as storage interleaving and multichannel

support. We expect that with these techniques, p-train can attain an even higher

throughput. Nevertheless, these techniques are not meant for intentional duty cy-

cle usage control and are therefore not expected to improve the sustainability of

the scheme. As for PUMP-AND-NAP, it is the only scheme that can provide unin-

terrupted transfer, regardless of illuminance and X-MAC wakeup rate. It accom-

plishes this by adjusting its throughput according to the energy availability. This is

evident in the results as we observe that the throughputs of both basic and wakeup-

synchronized in indoor experiments are around 1/2 that of outdoor experiments.

And though PUMP-AND-NAP’s best throughput is around 1/4 and 1/2 that of

p-train in indoor and outdoor scenarios, respectively, the transfer can last for an

indefinite amount of time. This will enable PUMP-AND-NAP to transfer bulk data

of any size. This is clearly not possible with either flush or p-train.

5.3.3 Energy Harvesting Simulations

To further study the effect of energy harvesting rate and path length in a controlled

setting, we perform simulations in the Indriya testbed [34], wherein the energy

harvesting and consumption processes are emulated.

Energy Harvesting Process

We model the energy harvesting process after the energy harvesting node shown

in Fig. 5.9. To characterize its harvesting process, the load (i.e., the TelosB mote) is

disconnected and the voltage across the supercap is sampled at every epoch (3 s),

as the solar panel is exposed to 10 klux and 100 klux light. The supercap is first

discharged to around 2 V prior to the characterization. Fig. 5.12 shows the voltage

over time across the supercap. We only consider the charging rate at and above 2.5

V because once a node goes below this voltage, it is considered non-operational.

Now, from elementary circuit theory,

I(t) = CdV (t)/dt,
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Figure 5.12: Voltage across the supercap, under 10 klux and 100 klux illuminance.

where V (t) is the supercap voltage at t, C is the capacitance, and I(t) is the current

flowing in or out of the supercap at t. Since C = 1, the harvesting rate is simply

I(t) = dV (t)/dt

or the slope of V (t). From Fig. 5.12, we can see that the voltage increases almost

linearly with time from 2.5–3.1 V, suggesting that the harvesting rate can be ap-

proximated by a constant value within this region. Using the measurements ob-

tained, the average charging current at 10 klux and 100 klux are 3.81 and 6.48 mA,

respectively. In the simulations, we vary the harvesting rate from 3.8–6.5 mA to

mimic the above conditions.

Energy Consumption Process

To emulate the energy consumption, we measured the current consumption of

TelosB at 3 V in three modes of operation and obtained the following: (i) MCU is

active and radio is in deep sleep: I1 = 2 mA; (ii) MCU is active and radio is in

receive mode: I2 = 23 mA; and (iii) MCU is active and radio is in transmit mode

at 0 dBm: I3 = 21 mA. These are similar to the findings in [99].

We implemented a TinyOS module to emulate the above harvesting and con-

sumption processes. Briefly, the supercap voltage V (k) evolves according to this

difference equation:

V (k) = QC(k − 1)−QD(k − 1) + V (k − 1), (5.19)
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where QC(k) denotes the charge accumulated at k due to the energy harvesting

process while QD(k) denotes the total discharge at k due to the energy consump-

tion process. Eq. 5.19 is the discrete version of the well-known relation

V (t) =
1

C

∫ t

t0

I(t)dt+ V (t0) =

∫ t

t0

I(t)dt+ V (t0)

since C = 1. To mimic the uncertainty in the harvesting process,

QC(k) = ICT + ω(k),

where IC ∈ [3.8, 6.5] mA is the simulated charging current, T is the epoch duration,

and ω(k) is a random number generated using the RandomC component. Note that

ω(k) ∼ U(−Ω,Ω), where Ω is chosen to capture the variability of the harvesting

rate on an epoch by epoch basis. We make this simplification because TinyOS

only provides modules that can generate uniformly distributed random numbers.

Meanwhile,

QD(k) = I1T + I2τrx(k) + I3τtx(k),

where τrx(k) and τtx(k) are the times spent in receive and transmit modes at epoch

k, respectively.

We ran simulations in the Indriya testbed [34] for PUMP-AND-NAP (wakeup-

synchronized), packet train (wakeup-synchronized) and Flush, and fixed the X-

MAC wakeup rate to 4 per second. Unlike the experimental setup in Section 5.3.2,

all nodes in the simulations are powered by energy harvesting. Every scheme was

run 10 times.

Influence of Energy Availability

To investigate the performance of the schemes with respect to energy availability,

we conducted testbed simulations where the harvesting rate is varied from 3.8–6.5

mA, representing the energy that can be scavenged from 10–100 klux. Fig. 5.13a

shows the throughput of the three schemes, while Fig. 5.13b shows the mean time

to failure of packet train and Flush. PUMP-AND-NAP is not included in the latter
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plot because it can sustain the bulk transfer indefinitely. The results are obtained

using a 5-hop bulk transfer. The error bars show the 95% confidence interval.

The throughput results suggest that PUMP-AND-NAP is the only scheme that

adapts to energy availability. While packet train and Flush respectively yields

the same throughput regardless of the harvesting rate, PUMP-AND-NAP shows a

throughput that increases as the harvesting rate increases. Specifically, its through-

put almost doubles from 5.5 pkt/s at 3.8 mA to 10.9 pkt/s at 6.5 mA. This im-

portant result demonstrates the effectiveness of employing the adaptive capacity

controller to automatically adjust the relay capacity of nodes according to what

energy availability can support.

In terms of the mean time to failure, we can observe that Flush performs poorly

compared to packet train. Moreover, its performance seems to be almost the same

regardless of the harvesting rate. A closer inspection of the results, however, reveal

that Flush slightly improves its performance from 24.6 s at 3.8 mA to 37.2 s at 6.5

mA. Whereas, the effect of harvesting rate is significantly noticeable in the case of

packet train. In fact, its bulk transfer at 6.5 mA lasts 334.8 s, almost three times that

at 3.8 mA which only lasts by 112.2 s. The advantage of packet train over Flush

can be attributed to its use of duty cycling.

Influence of Hop Count

Fig. 5.14a shows the throughput of the PUMP-AND-NAP, packet train and Flush,

as the number of hops between the source and the sink increases from 1 to 5.

Meanwhile, Fig. 5.14b plots the mean time to failure of packet train and Flush.

Once again, PUMP-AND-NAP is not included in the plot because it can sustain the

bulk transfer indefinitely. The results simulate 6.5 mA harvesting rate, which is

equivalent to the harvesting rate at 100 klux.

The throughput of packet train and Flush are comparable, and both show a

decline as the path length increases. This is expected because as the path length in-

creases, the increasing contention due to intra-flow interference causes these trans-

fer schemes to throttle down their respective sending rates. For PUMP-AND-NAP,



5.3. EVALUATION 157

4.1 4.7 5.3 5.9 6.5
0

5

10

15

Harvesting Rate (mA)

T
hr

ou
gh

pu
t (

pk
t/s

)

 

 

pump−and−nap
p−train
flush

(a) Throughput

4.1 4.7 5.3 5.9 6.5
0

100

200

300

400

Harvesting Rate (mA)

T
im

e 
to

 F
ai

lu
re

 (
s)

 

 

p−train
flush

(b) Mean Time to Failure

Figure 5.13: Throughput of PUMP-AND-NAP, packet train and Flush, and mean time to re-

lay node failure of the latter two, of a 5-hop bulk transfer, as a function of energy harvesting
rate.
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we observe a slightly different trend. We can see a big drop from 1 to 2 hops, with

the latter throughput being just around half of the former. This is expected be-

cause for single hop transfers, the source does not need to allocate any duty cycle

for reception and that it can allocate its entire duty cycle for transmission. For 2–5

hops, the throughput remains flat because of the effect of controller action to limit

the usage of the radio. Essentially, the duty cycle enforced is sufficiently low that

intra-flow interference is avoided.

With respect to the mean time to failure, Flush shows a flat response regardless

of the path length. This is because in Flush, the radios are always on, resulting

in roughly the same energy consumption regardless of the path length. As for

packet train, we observe an interesting trend where the nodes last longer as the

number of hops increases. This interesting result is due to the fact that as the

number of hops increases, the frequency of packet train transmissions decreases,

as evidenced by the decreasing throughput. This leads to the reduction of the

amount of time that the radios need to be active. In other words, the duty cycle

usage of packet train is highly dependent on the path length, with the duty cycle

usage decreasing as the number of hop increases. This indicates the possibility for

packet train to attain sustainable data transfer at a certain number of hops. We

however remark that such sustainability is achieved incidentally, compared with

the sustainability provided by PUMP-AND-NAP that is attained intentionally at all

hop counts.

5.4 Summary

This work addresses the problem of bulk data transfer in EPWSNs where duty

cycle compliance is critical. While several bulk transfer schemes have been pro-

posed in the literature, they focus mainly on maximizing the transfer throughput,

neglecting the duty cycle constraints of sensor nodes.

We proposed PUMP-AND-NAP, a packet train forwarding technique that uses

adaptive feedback control to calculate the optimal packet train length for both re-

ception and transmission. The adaptive feedback control aims to control the duty



5.4. SUMMARY 159

1 2 3 4 5
0

20

40

60

Number of Hops from Sink

T
hr

ou
gh

pu
t (

pk
t/s

)

 

 

pump−and−nap
p−train
flush

(a) Throughput

1 2 3 4 5
0

100

200

300

400

Number of Hops from Sink

T
im

e 
to

 F
ai

lu
re

 (
s)

 

 
p−train
flush

(b) Mean Time to Failure

Figure 5.14: Throughput of PUMP-AND-NAP, packet train and Flush, and mean time to

relay node failure of the latter two, at harvesting rate of 6.5 mA, as a function of path
length.
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cycle usage of a node, modeled as a linear system with zero-mean disturbance.

The latter is mainly due to the uncertainty induced by the pre-transmission over-

head in asynchronous wakeup scheduling.

The controller uses prior input-output observations (capacity allocations and

their corresponding duty cycle usage) to continuously tune its performance and

adapt to wireless link quality variations. Because of its reliance on local informa-

tion, the controller is amenable to distributed implementation. We implemented

PUMP-AND-NAP in TinyOS and evaluated its performance in real energy harvest-

ing experiments and testbed simulations. Results show that PUMP-AND-NAP pro-

vides high transfer throughput while it simultaneously tracks the target duty cy-

cle. More importantly, energy harvesting experiments show PUMP-AND-NAP is

the only scheme that can provide sustainable bulk transfer compared to the other

state-of-the-art techniques that we have tested, as the latter greedily maximize

throughput at the expense of high and uncontrolled energy consumption.



Chapter 6

Conclusion and Future Work

An environmentally-powered wireless sensor network is an ad hoc deployment of

sensor nodes powered by energy harvested from the environment. EPWSNs are

becoming more viable due to breakthroughs in energy harvesting technologies

and ultra low-power computing and communication devices. One of the major

appeals of EPWSNs is their potential to address the problem of limited lifetime

which is a major drawback of battery-powered wireless sensor networks. The uti-

lization of renewable energy can enable EPWSNs to operate indefinitely without

the need for battery replacement which is not only laborious or expensive but also

infeasible in certain scenarios.

But while energy harvesting can theoretically facilitate perpetual network op-

eration, it poses a major constraint on energy availability: the amount of energy

available for consumption at any given instant can be unpredictable and changes

over time. Thus, unlike battery-powered WSNs where the aim is to maximize

network lifetime through energy conservation, the key objective in EPWSNs is to

efficiently and adaptively utilize available energy to optimize the network perfor-

mance. The new guiding principle in EPWSNs is energy-neutrality or energy neutral

operation, which means balancing the energy demand and consumption while at

the same time optimizing a desired network performance objective. Energy neu-

trality in conjunction with dynamic energy supply entails two major challenges,

namely, dynamic duty cycling and dynamic sleep latency.

161
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In this thesis, we have tackled the problem of data delivery amidst energy har-

vesting nodes, following the design principle of energy-neutrality to enable sus-

tainable node operation while maximizing network performance. To this end, we

have proposed schemes for dynamic wakeup scheduling, reliable and low latency

path selection, dynamic duty cycle allocation and sustainable bulk transfer.

6.1 Dynamic Wakeup Scheduling

A major challenge in EPWSNs is sleep latency due to the fact that a transmitting

node must wait for the intended receiver node to be awake before it can commence

transmission. Our first contribution is therefore the design of a wakeup scheduling

scheme that not only supports dynamic duty cycling but also tackles the problem

of sleep latency. In addressing this issue, we have established an important result

to characterize the sleep latency that is entailed by a dynamic wakeup schedule.

We have demonstrated that the expected sleep latency is affected by the variance

of the intervals between the receive wakeup slots: When the variance of the in-

tervals is low (high), the expected latency is low (high). This is because when

the intervals are highly uneven, it is more likely for a packet to become ready for

transmission at a larger interval than a shorter interval. This result calls for the

design of wakeup schedules wherein the receive wakeup slots are positioned at

equal intervals. However, such a schedule is not robust to changes in the duty cy-

cle. We have therefore proposed sequence-based scheduling which is essentially a

method for representing a receive wakeup schedule using a mathematical integer

sequence. More than being robust, this scheme also allows wakeup schedules to

be represented in a compact manner, thereby reducing communication and stor-

age overheads.

We have introduced a particular sequence-based scheduling scheme that uses

the bit-reversal permutation sequence (BRPS). Through analysis, its worst-case ex-

pected sleep latency has been proven to be slightly worse than the ideal scheme

(i.e., a scheduling scheme where the receive wakeup slots are equally-spaced) but

better than schemes where the receive wakeup slots are spaced at intervals with
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uniform or exponential distributions.

We have performed Qualnet simulations to compare the performance of BRPS

with ESC, a scheduling scheme that represents the state-of-the art. Results show

that BRPS provides low latency and can closely match the performance of ESC.

Furthermore, BRPS has a lower scheduling error ratio due to its robustness prop-

erty, translating to better packet delivery ratio. Aside from having a lower storage

and communication overhead, BRPS also has a lower computational complexity

compared with ESC.

6.2 Reliable and Low Latency Path Selection

A low sleep latency schedule does not necessarily lead to low end-to-end latency

paths because wireless link quality plays a significant role in the performance of

packet forwarding. Our second contribution is therefore the formulation of a rout-

ing metric that simultaneously considers sleep latency and packet loss. Called

expected transmission delay (ETD), the metric is novel in the following manner: (i)

none of the state-of-the-art routing metrics have included sleep latency in their re-

spective formulations; (ii) while energy availability does not explicitly appear in

the formulation, it is encapsulated in the sleep latency; and (iii) unlike metrics that

employ highly dynamic physical quantities such as energy harvesting rate, energy

consumption, and fraction of energy used, ETD’s use of sleep latency as a proxy to

energy availability not only simplifies computation but also enhances its stability.

Two important properties that make ETD useful in many routing protocols are

left-monotonicity and left-isotonicity. With these properties, ETD can be employed

in any distributed algorithm that searches for the least cost path such as the dis-

tributed Bellman-Ford, and that its use is guaranteed to yield consistent, loop-free

and optimal paths. To take advantage of these properties, we have designed a dis-

tributed algorithm that searches for the path with the least ETD. Through Qualnet

simulations, we have shown that when compared with hop count and the state-of-

the-art routing metric ETX, ETD provides the best performance in terms of packet

delivery ratio and end-to-end delay.
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6.3 Dynamic Duty Cycle Allocation

Numerous receive-centric wakeup scheduling schemes have been proposed in the

literature. In such schemes, a wakeup slot or interval is meant for receiving pack-

ets only. Thus, a node that needs to perform packet relaying cannot use the entire

duty cycle to generate wakeup schedules and it needs to explicitly reserve a por-

tion of its duty cycle for packet transmissions. We refer to this apportioning of the

duty cycle between packet reception and transmission as the duty cycle allocation

problem.

Our third contribution therefore addresses the problem of dynamic duty cy-

cle allocation in the context of receive-centric synchronous wakeup scheduling

schemes. Synchronous schemes are more prone to contention because of synchro-

nized access to the medium. As such, we have investigated how packet contention

affects the packet arrival probability at a node that employs synchronous wakeup

scheduling. Using discrete-time queueing and renewal theory, we have derived

the service time of packets in the context of duty cycled nodes and in the presence

of contention. The service time is essentially equivalent to the sleep latency which

is a major challenge in EPWSNs. Our result essentially generalizes our key finding

about the expected sleep latency: in the presence of contention, the variance of the

intervals between the wakeup slots affects the service time, i.e., a higher (lower)

variance yields higher (lower) expected service time.

We have expressed the expected service time in terms of wakeup scheduling

parameters, in particular the number of slots to be apportioned in an epoch. A

closer inspection of the quantity reveals that when a node allocates a certain num-

ber of slots for packet reception, not only does it affect the service time of the

packets that it is relaying, but also the service time of the packets that its prede-

cessor nodes are relaying. This therefore led to the formulation of a non-linear

optimization problem that aims to minimize the two-hop expected service time.

By exploiting the integer constraints of the problem, we have proposed LSLOTAL-

LOC, a distributed low-complexity algorithm that linearly searches for the optimal

solution of the problem.
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Through extensive simulations in Qualnet, we have validated the analytical

models (packet arrival probability and expected service time). Moreover, we have

demonstrated the significant performance advantage of LSLOTALLOC over the

best-performing static allocation scheme in terms of delay. Notably, LSLOTAL-

LOC’s delay is around half the delay of the static allocation scheme in most scenar-

ios.

6.4 Sustainable Bulk Transfer

Our fourth and final contribution is on bulk data transfer in EPWSNs. We have

handled bulk data transfer separately because its objective is slightly different

from data delivery schemes for monitoring applications such as indoor and out-

door environmental or habitat monitoring. These applications generate low data

rates, typically in the order of a few bytes to at most several tens of bytes at ev-

ery sensing interval. For such applications, the data delivery objectives are to

maximize the packet delivery ratio and minimize the end-to-end delay6. In bulk

transfer, however, the objective is to deliver the entire bulk data which is typically

in the order of tens to hundreds of kilobytes, at the highest possible throughput.

Indeed, state-of-the-art bulk transfer schemes have been designed with this ob-

jective. But as we have found out, these schemes do not work well in EPWSNs

because throughput maximization without regard for energy availability leads to

uncontrolled and rapid draining of the energy reserves. This will lead to the tem-

porary unavailability of nodes along the transfer path. Ultimately, this will result

in transfer disruptions which render the transfer of arbitrarily-sized sensor data

difficult, if not infeasible.

We have therefore designed PUMP-AND-NAP, a forwarding technique that

uses controlled packet trains to simultaneously maximize throughput and enforce

compliance to (dynamic) duty cycle limitations. Two forwarding techniques have

been introduced, namely, a basic scheme that commences packet train transmis-

6We note that optimizing both objectives simultaneously is hard, so a trade-off is usually em-
ployed, depending on the application requirements.
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sions without regard for the wakeup schedule of the receiver, and a wakeup-

synchronized scheme that commences packet train transmissions when the re-

ceiver is known to be awake. While the latter looks attractive, it is more com-

plex than the former because it needs knowledge of the wakeup schedule of the

receiver which may entail some cost. However, in the case of long transfer dura-

tions, the latter may be more advantageous as it reduces energy wastage due to

pre-transmission overhead.

PUMP-AND-NAP uses an adaptive controller to determine a node’s optimal capac-

ity, defined as the maximum number of packets the node can receive and transmit

in a train within its duty cycle constraints. We have modeled the duty cycle usage

as a linear system with zero-mean disturbance and accordingly designed a cer-

tainty equivalent adaptive feedback controller. In essence, the controller uses prior

input-output observations (capacity allocations and their corresponding duty cy-

cle usage) to continuously tune its performance and adapt to wireless link quality

variations.

Finally, we have implemented PUMP-AND-NAP in TinyOS [60] and performed

experiments in the Indriya testbed [34], a 139-node indoor testbed, to evaluate its

performance. Our results show that PUMP-AND-NAP can adaptively track duty

cycles and provide high bulk transfer throughput at the same time. More im-

portantly, we have demonstrated in energy harvesting experiments that PUMP-

AND-NAP can truly enable sustainable bulk transfer compared to state-of-the-art

techniques that greedily maximize throughput at the expense of downtime due to

energy depletion.

6.5 Open Research Issues

This thesis focused on the challenges posed by the energy-neutral design principle

on data delivery schemes. Notwithstanding its contributions, we identify several

important research problems that need to be tackled to further enhance the perfor-

mance and robustness of data delivery schemes for EPWSNs.
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Wakeup Scheduling in the Presence of Mobility Many of the existing wakeup

scheduling schemes assume that the sensor nodes and sink are stationary. As the

use of EPWSNs become more prevalent, we expect EPWSNs to be employed in

scenarios where some or all of the nodes are mobile. There is therefore a need

to design wakeup scheduling schemes that can support node mobility. As far

as the existing schemes are concerned, asynchronous and non-collaborative syn-

chronous schemes are good candidates for these scenarios because their lack of

coordination requirement makes them robust to network topology changes. Note

that in the presence of node mobility, schemes that require coordination may not

converge to an optimal schedule or may generate excessive overhead.

Opportunistic Routing in Dynamic Duty Cycling Networks In this thesis, we

used conventional hop-by-hop packet forwarding, wherein the sending node ex-

plicitly specifies the successor node of every packet that it forwards. This ap-

proach, also known as best-path routing, may entail packet retransmissions or path

re-discoveries in the presence of highly variable links due to external interference,

multi-path fading and weather [135]. Opportunistic routing have therefore been

proposed to mitigate the above-mentioned issues. It takes advantage of the broad-

cast nature of wireless transmissions, whereby any node that overhears a packet

and has a better metric (with respect to a sink) than the sender can forward the

packet. Obviously, duty cycling will reduce, if not eliminate, the overhearing op-

portunities. Thus, for opportunistic routing to work in such scenarios, there might

be a need to coordinate the wakeup schedules such that overhearing is still possi-

ble.

Non-myopic Dynamic Duty Cycle Allocation The dynamic duty cycle alloca-

tion problem was formulated as a myopic optimization problem in Chapter 4, i.e.,

the apportioning only considers the current epoch. The myopic formulation is

warranted because regardless of the slot allocation at epoch k, the number of avail-

able slots for allocation in the next epoch k+1 is considered to be independent, i.e.,

not in any way affected by the prior allocation. However, in real energy-harvesting



168 CHAPTER 6. CONCLUSION AND FUTURE WORK

nodes, the number of slots for allocation at consecutive epochs are likely to be

correlated. Thus, it is possible to design non-myopic schemes based on Markov

decision process or dynamic stochastic optimization. Such approaches are more

complicated so there is a need to strike a balance between complexity and perfor-

mance.

Incorporating End-to-end Reliability and Rate Control in PUMP-AND-NAP We

have proposed PUMP-AND-NAP as a hop-by-hop forwarding technique that can

be used by nodes with (dynamic) duty cycle constraints. PUMP-AND-NAP re-

quires other functions to be complete, including end-to-end reliability and rate

control. For the former, we can use a NACK-based scheme similar to the one em-

ployed in Flush. As for the latter, there is a need for further study because rate

control and duty cycle compliance seem to be interdependent. Note that if the

sum of all duty cycle constraints along a path is less than 100%, rate control may

not be necessary. This is because even if every node maximizes its respective duty

cycle usage, the probability that two or more nodes will transmit at the same time

is still low. However, when the duty cycle sum is more than 100%, simultaneous

transmissions become more probable. In these cases, rate control needs to be en-

forced to avoid intra-flow interference. Indeed, determining when to apply or not

to apply rate control seems to be a crucial issue in EPWSNs.

Network-Level Energy Neutrality The thesis was motivated by the principle of

energy-neutrality, applied on a per-node basis. This approach might be too rigid,

as it essentially does not allow any node in the network to (temporarily) deplete

its energy store. In highly-dense deployments, this restriction may not be nec-

essary, as the network can still satisfy its mission even if a fraction of the nodes

are not alive. This calls for energy-neutral designs at the network level. There

are two important questions to answer: (i) what is the performance difference be-

tween protocols that use node-level energy-neutrality and protocols that employ

network-level energy-neutrality; and (ii) the added complexity and cost of proto-

cols that use network-level energy-neutrality.



Appendix A

Publications

Alvin C. Valera, Wee-Seng Soh, and Hwee-Pink Tan. Energy-Neutral

Scheduling and Forwarding in Environmentally-Powered Wireless Sen-

sor Networks. Ad Hoc Networks (Elsevier), vol. 11, no. 3, May 2013.

Alvin C. Valera, Wee-Seng Soh, and Hwee-Pink Tan. Survey on Wakeup

Scheduling for Environmentally-Powered Wireless Sensor Networks.

Computer Communications (Elsevier), May 2014.

Alvin C. Valera, Wee-Seng Soh, and Hwee-Pink Tan. On Duty Cycle

Allocation in Environmentally-Powered Wireless Sensor Networks. Ad

Hoc Networks (Elsevier), submitted, October 2014.

Alvin C. Valera, Wee-Seng Soh, and Hwee-Pink Tan. Pump-and-Nap:

Enabling Sustainable Bulk Transfer in Environmentally-Powered Wire-

less Sensor Networks. 2015 Twelfth Annual IEEE International Confer-

ence on Sensing, Communication, and Networking (SECON), submitted,

December 2014.

169



170 APPENDIX A. PUBLICATIONS



Bibliography

[1] BQ25504 Battery Management Evaluation Board. [Online]. Available:

http://www.ti.com/tool/bq25504evm-674 [Accessed: Sep 6, 2014].

[2] CC2420: Single-Chip 2.4 Ghz IEEE 802.15.4 Compliant and ZigBee Ready RF

Transceiver. [Online]. Available: http://focus.ti.com/docs/prod/

folders/print/cc2420.html [Accessed: May 31, 2012].

[3] National Renewable Energy Laboratory. [Online]. Available: http://

http://www.nrel.gov [Accessed: May 31, 2012].

[4] The Qualnet Simulator. [Online]. Available: http://www.

scalable-networks.com/products/developer.php [Accessed:

May 31, 2012].

[5] Waspmote Datasheet. [Online]. Available: http://www.libelium.com/

.../waspmote/waspmote-datasheet_eng.pdf [Accessed: May 31,

2012].

[6] XBee Datasheet. [Online]. Available: http://http://www.sparkfun.

com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf [Ac-

cessed: May 31, 2012].

[7] IEEE 802.14.5-2006 Specific Requirements Part 15.4: Wireless Medium Ac-

cess Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate

Wireless Personal Area Networks (WPANs), 2006.

[8] Zigbee Specification, versio r17, January 2008. ZigBee Alliance.

171



172 BIBLIOGRAPHY

[9] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level measure-

ments from an 802.11b mesh network. In Proc. ACM SIGCOMM, August

2004.

[10] K. Akkaya and M. Younis. An energy-aware qos routing protocol for wire-

less sensor networks. In Proc. IEEE ICDCS Workshops, pages 710–715, May

2003.

[11] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for

wireless sensor networks. Ad Hoc Networks, 3(3):325–349, May 2005.

[12] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor

networks: a survey. Computer Networks, 38(4):393–422, 2002.

[13] M. Al-Jemeli, F.A. Hussin, and B.B. Samir. A link-quality and energy aware

routing metric for mobile wireless sensor networks. In Proc. International

Conference on Intelligent and Advanced Systems, volume 1, pages 211–216, June

2012.

[14] G. Anastasi, M. Conti, and M. Di Francesco. Extending the lifetime of wire-

less sensor networks through adaptive sleep. IEEE Trans. Industrial Informat-

ics, 5(3):351–365, 2009.

[15] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Pas-

sarella. Energy conservation in wireless sensor networks: A survey. Ad

Hoc Networks, 9(3):537–568, May 2009.

[16] V.S. Barbu and N. Limnios. Semi-Markov Chains and Hidden Semi-Markov

Models toward Applications. Springer Science+Business Media, 2008.

[17] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[18] Dimitri P. Bertsekas and Gallager. Data Networks (2nd Edition). Prentice Hall,

2 edition, January 1992.

[19] Najet Boughanmi and Ye-Qiong Song. A new routing metric for satisfying

both energy and delay constraints in wireless sensor networks. Journal of



BIBLIOGRAPHY 173

Signal Processing Systems for Signal, Image, and Video Technology, 51(2):137–

143, 2008.

[20] Herwig Bruneel and Byung Kim. Discrete-time models for communication sys-

tems including ATM. Kluwer Academic Publishers, 1993.

[21] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. X-MAC: A

short preamble mac protocol for duty-cycled wireless sensor networks. In

Proc. ACM SenSys, 2006.

[22] Heejung Byun and Junglok Yu. Adaptive duty cycle control with queue

management in wireless sensor networks. IEEE Trans. Mobile Computing,

12(6):1214–1224, 2013.

[23] Q. Cao, T. He, L. Fang, T. Abdelzaher, J. Stankovic, and S. Son. Efficiency

centric communication model for wireless sensor networks. In Proc. IEEE

INFOCOM, 2006.

[24] Kameswari Chebrolu, Bhaskaran Raman, Nilesh Mishra, Phani Kumar

Valiveti, and Raj Kumar. Brimon: A sensor network system for railway

bridge monitoring. In Proc. ACM MobiSys, pages 2–14, 2008.

[25] B. Chen, K-K Muniswamy-Reddy, and M. Welsh. Ad-hoc multicast routing

on resource limited sensor nodes. In Proc. ACM REALMAN, 2006.

[26] Chien-Ying Chen and Pai Chou. Duracap: a supercapacitor-based, power-

bootstrapping, maximum power point tracking energy-harvesting system.

In Proc. ACM ISLPED, 2010.

[27] K.W. Chin, J. Judge, A. Williams, and R. Kermode. Implementation expe-

rience with manet routing protocols. SIGCOMM Comput. Commun. Rev.,

32(5):49–59, 2002.

[28] D. De Couto, D. Aguayo, B. Chambers, and R. Morris. Performance of mul-

tihop wireless networks: shortest path is not enough. ACM SIGCOMM Com-

put. Commun. Rev., 33(1):83–88, 2003.



174 BIBLIOGRAPHY

[29] Hui Dai and Richard Han. Tsync: a lightweight bidirectional time synchro-

nization service for wireless sensor networks. SIGMOBILE Mob. Comput.

Commun. Rev., 8:125–139, January 2004.

[30] L.L. Dai and P. Basu. Energy and delivery capacity of wireless sensor net-

works with random duty-cycles. In Proc. IEEE ICC, 2006.

[31] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path

metric for multi-hop wireless routing. In Proc. ACM MobiCom, 2003.

[32] D. De Couto, D. Aguayo, B. Chambers, and R. Morris. Effects of loss rate on

ad hoc wireless routing. Technical Report MIT-LCS-TR-836, MIT Laboratory

for Computer Science, March 2002.

[33] E.W. Dijkstra. A note on two problems in connection with graphs. Numerical

Mathematics, October 1959.

[34] M. Doddavenkatappa, M.C. Chan, and A.L. Ananda. Indriya: A low-cost,

3d wireless sensor network testbed. In Proc. TRIDENTCOM, 2011.

[35] R. Draves, J. Padhye, and B. Zill. Comparison of routing metrics for static

multi-hop wireless networks. ACM SIGCOMM Comput. Commun. Rev.,

34(4):133–144, 2004.

[36] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless

mesh networks. In Proc. MobiCom 2004, pages 114–128, New York, NY, USA,

2004. ACM.

[37] S. Du, A.K. Saha, and D.B. Johnson. Rmac: A routing-enhanced duty-cycle

mac protocol for wireless sensor networks. In Proc. IEEE INFOCOM, pages

1478–1486, 2007.

[38] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind, J. Eriksson, and N. Finne.
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[85] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flood-
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