5,372 research outputs found

    Rich Vehicle Routing Problems and Applications

    Get PDF

    A Business Process Management System based on a General Optimium Criterion

    Get PDF
    Business Process Management Systems (BPMS) provide a broad range of facilities to manage operational business processes. These systems should provide support for the complete Business Process Management (BPM) life-cycle (16): (re)design, configuration, execution, control, and diagnosis of processes. BPMS can be seen as successors of Workflow Management (WFM) systems. However, already in the seventies people were working on office automation systems which are comparable with today’s WFM systems. Recently, WFM vendors started to position their systems as BPMS. Our paper’s goal is a proposal for a Tasks-to-Workstations Assignment Algorithm (TWAA) for assembly lines which is a special implementation of a stochastic descent technique, in the context of BPMS, especially at the control level. Both cases, single and mixed-model, are treated. For a family of product models having the same generic structure, the mixed-model assignment problem can be formulated through an equivalent single-model problem. A general optimum criterion is considered. As the assembly line balancing, this kind of optimisation problem leads to a graph partitioning problem meeting precedence and feasibility constraints. The proposed definition for the "neighbourhood" function involves an efficient way for treating the partition and precedence constraints. Moreover, the Stochastic Descent Technique (SDT) allows an implicit treatment of the feasibility constraint. The proposed algorithm converges with probability 1 to an optimal solution.BPMS, control assembly system, stochastic optimisation techniques, TWAA, SDT

    Solution Repair/Recovery in Uncertain Optimization Environment

    Full text link
    Operation management problems (such as Production Planning and Scheduling) are represented and formulated as optimization models. The resolution of such optimization models leads to solutions which have to be operated in an organization. However, the conditions under which the optimal solution is obtained rarely correspond exactly to the conditions under which the solution will be operated in the organization.Therefore, in most practical contexts, the computed optimal solution is not anymore optimal under the conditions in which it is operated. Indeed, it can be "far from optimal" or even not feasible. For different reasons, we hadn't the possibility to completely re-optimize the existing solution or plan. As a consequence, it is necessary to look for "repair solutions", i.e., solutions that have a good behavior with respect to possible scenarios, or with respect to uncertainty of the parameters of the model. To tackle the problem, the computed solution should be such that it is possible to "repair" it through a local re-optimization guided by the user or through a limited change aiming at minimizing the impact of taking into consideration the scenarios

    Optimal Scheduling of Trains on a Single Line Track

    Get PDF
    This paper describes the development and use of a model designed to optimise train schedules on single line rail corridors. The model has been developed with two major applications in mind, namely: as a decision support tool for train dispatchers to schedule trains in real time in an optimal way; and as a planning tool to evaluate the impact of timetable changes, as well as railroad infrastructure changes. The mathematical programming model described here schedules trains over a single line track. The priority of each train in a conflict depends on an estimate of the remaining crossing and overtaking delay, as well as the current delay. This priority is used in a branch and bound procedure to allow and optimal solution to reasonable size train scheduling problems to be determined efficiently. The use of the model in an application to a 'real life' problem is discussed. The impacts of changing demand by increasing the number of trains, and reducing the number of sidings for a 150 kilometre section of single line track are discussed. It is concluded that the model is able to produce useful results in terms of optimal schedules in a reasonable time for the test applications shown here

    Dynamic pricing services to minimise CO2 emissions of delivery vehicles

    Get PDF
    In recent years, companies delivering goods or services to customers have been under increasing legal and administrative pressure to reduce the amount of CO2 emissions from their delivery vehicles, while the need to maximise profit remains a prime objective. In this research, we aim to apply revenue management techniques, in particular incentive/dynamic pricing to the traditional vehicle routing and scheduling problem while the objective is to reduce CO2 emissions. With the importance of accurately estimating emissions recognised, emissions models are first reviewed in detail and a new emissions calculator is developed in Java which takes into account time-dependent travel speeds, road distance and vehicle specifications. Our main study is a problem where a company sends engineers with vehicles to customer sites to provide services. Customers request for the service at their preferred time windows and the company needs to allocate the service tasks to time windows and decide on how to schedule these tasks to their vehicles. Incentives are provided to encourage customers choosing low emissions time windows. To help the company in determining the schedules/routes and incentives, our approach solves the problem in two phases. The first phase solves time-dependent vehicle routing/scheduling models with the objective of minimising CO2 emissions and the second phase solves a dynamic pricing model to maximise profit. For the first phase problem, new solution algorithms together with existing ones are applied and compared. For the second phase problem, we consider three different demand modelling scenarios: linear demand model, discrete choice demand model and demand model free pricing strategy. For each of the scenarios, dynamic pricing techniques are implemented and compared with fixed pricing strategies through numerical experiments. Results show that dynamic pricing leads to a reduction in CO2 emissions and an improvement in profits
    corecore