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Abstract

In recent years, companies delivering goods or services to customers have been under

increasing legal and administrative pressure to reduce the amount of CO2 emissions

from their delivery vehicles, while the need to maximise profit remains a prime

objective. In this research, we aim to apply revenue management techniques, in

particular incentive/dynamic pricing to the traditional vehicle routing and schedul-

ing problem while the objective is to reduce CO2 emissions. With the importance

of accurately estimating emissions recognised, emissions models are first reviewed

in detail and a new emissions calculator is developed in Java which takes into ac-

count time-dependent travel speeds, road distance and vehicle specifications. Our

main study is a problem where a company sends engineers with vehicles to customer

sites to provide services. Customers request for the service at their preferred time

windows and the company needs to allocate the service tasks to time windows and

decide on how to schedule these tasks to their vehicles. Incentives are provided to

encourage customers choosing low emissions time windows. To help the company in

determining the schedules/routes and incentives, our approach solves the problem

in two phases. The first phase solves time-dependent vehicle routing/scheduling

models with the objective of minimising CO2 emissions and the second phase solves

a dynamic pricing model to maximise profit. For the first phase problem, new so-

lution algorithms together with existing ones are applied and compared. For the

second phase problem, we consider three different demand modelling scenarios: lin-

ear demand model, discrete choice demand model and demand model free pricing

strategy. For each of the scenarios, dynamic pricing techniques are implemented and

compared with fixed pricing strategies through numerical experiments. Results show

that dynamic pricing leads to a reduction in CO2 emissions and an improvement in

profits.
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1. INTRODUCTION

1 Introduction

1.1 Background

Carbon dioxide (CO2) is the second largest abundance greenhouse gases (GHG),

and therefore its increase in the atmosphere has caused environmental concerns in

two major ways. The first concern is that CO2 emissions directly contribute to

global warming. Professor Pachauri, the 2007 Nobel Peace Prize winner, said that

the doubling of CO2 concentrations in the atmosphere compared to pre-industrial

levels could potentially contribute towards a global temperature rise between 1.5 ◦C

and 4.5 ◦C (Harrabin, 2013). The excess CO2 emissions from human activities have

already increased ocean temperatures, melted snow and ice, raised sea levels and in-

creased climatic extremes. According to an article on the National Geographic web-

site (National Geographic, nd), effects and possible future effects of global warming

caused by GHG emissions include ice melting, the population of Adelie penguins on

Antarctica decreasing dramatically, some butterflies, foxes, and alpine plants need-

ing to immigrate to more northern or to higher, cooler areas, increased worldwide

precipitation (rain and snowfall), and bugs booms. If global warming continues at

its current rate, it is anticipated that floods and droughts will happen more often,

hurricanes and tsunami will become stronger, diseases will spread and ecosystems

will also change. The second major concern is that CO2 emissions could also cause

an increase in ocean acidification since it dissolves in water to form carbonic acid.

Ocean acid will lead to a mass extinction of some species, as 24 million tons of CO2

emissions resulting from industrial activities are absorbed into the sea every day

(BBC News, 2014).

As the effects of increases in CO2 emissions in the atmosphere can lead to

major problems, companies are now under pressure to reduce the level of CO2 emis-

sions associated with their operations enforced by new legislation and policies. As an

outcome of the Paris climate conference (COP21) in December 2015, 195 countries

all over the world agreed on the first-ever universal, legally binding global climate

deal, in which the European Union (EU)’s target is to reduce emissions by at least

1



1. INTRODUCTION

40% by 2030. The Kyoto Protocol, an international agreement on Climate Change,

commits its Parties to work towards an internationally binding target to reduce

emissions (Breidenich et al., 1998). During the second commitment period from the

1st January 2013 to the 31st December 2020, 37 countries and the European Com-

munity are required to reduce GHG emissions by at least 18% by the year 2020 in

comparison to the level of 1990. The Climate Change Act of 2008 legally commits

the UK to reducing emissions by at least 80% by 2050 in relation to the level of

1990 (Giddens, 2009). Among GHG, CO2 emissions is the most concerning one as it

can lead to global warming and directly threaten people’s health. Emissions levels

of individual companies will also influence the company’s reputation and customers’

perceptions.

Policies that are directly related to a company’s profitability involve carbon

taxation. A carbon tax is a tax levied on the carbon content of fuels, which is

a form of carbon pricing and trading. It is one potential way to reduce GHG

emissions, as burning fuels accounts for a large amount of total GHG emissions

from human activities. Many countries such as the Organisation for Economic Co-

operation and Development (OECD) countries have implemented carbon taxes, but

most emissions-related taxes are levied on energy products or vehicles, rather than

CO2 emissions directly. This may be because it is hard to measure emissions simul-

taneously. In the UK, car holders are required to pay vehicle tax each year based

on a fixed vehicle rate rather than total emissions car holders produced when they

use their cars. The rate of vehicle tax for cars depends on engine size and carbon

dioxide emissions rate. For example, petrol and diesel cars registered after 1st March

2001 with CO2 emissions rate of 166 g/km-175 g/km, which are band H cars, will

pay £205 annually (GOV.UK, 2017). On 1st January 2014, Mexico City imposed

a tax on several types of fossil fuels, including gasoline, averaging $3 per ton of

CO2. However, the estimations of the amount of CO2 are highly uncertain. With

technology development, humans can more accurately measure the exact amount of

CO2 emissions from daily activities. A direct tax on CO2 emissions produced can

therefore be put into force in the near future. Even without the carbon tax, there

2



1. INTRODUCTION

is an economic cost associated with CO2 emissions as the amount of CO2 emissions

is directly related to energy consumption and the company’s goodwill. Also, con-

gestion pricing is used in some cities where a higher price for public roads usage is

applied at peak hours to encourage a more efficient use of public roads, to smooth

traffic and to reduce emissions. This may encourage companies to also smooth their

delivery schedules. Hence emissions cost could now be taken into consideration into

the profit calculation by delivery companies.

Companies that want to reduce CO2 emissions first need to understand where

these can be emitted from. The Intergovernmental Panel on Climate Change WMO

and UNEP (2007) has concluded that the main contributor to increased CO2 levels

in the atmosphere is the burning of fossil fuels. In 2016, the UK transportation

accounted for 32% of all the UK greenhouse gas emissions, with around 90% of all

transport emissions coming from road transportation according to Department for

Business, Energy & Industrial Strategy (2016). The situation was similar in the

United States, where road transportation accounted for 78% of the emissions pro-

duced by all transportation modes, and the percentage of total GHG emissions from

transportation rose from 24.9% to 27.3% between 1990 and 2005 (Ohnishi, 2008).

Therefore, to reduce emissions levels to meet this legislation, it is important to pay

attention to the road transportation sector. In Zanni and Bristow (2010)’s study on

CO2 emissions from London transportation, they cited several regulations related

to reducing emissions in the London area. The Greater London Authority launched

a plan, which contained the details of policy initiatives aimed at reducing the city’s

carbon emissions. This plan demonstrated the necessity of a 60% reduction in CO2

emissions in London by 2050 and identified transport as one of the key areas where

significant CO2 emissions savings must be made (Greater London Authority, 2007).

In 2008, Transport for London released the London Freight Plan, which set a target

of saving 0.7 million tons of CO2 per year from the road transportation sector by

the year 2025 (Transport for London, 2008).

It is important to find means to reduce CO2 emissions in road transportation
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through the company’s daily operations, e.g. in their vehicle routing and plan-

ning. The traditional vehicle routing problems (VRP) either in theory or in practice

mainly have the objective to minimise total travel distance or travel time or the

number of vehicles used. CO2 emissions minimisation is hence a new objective to

be considered. Although green logistics has gained increasing awareness from the

governments and service provisioning companies, recognising that the traditional

distribution and production logistics is not sustainable in the long term, challenges

in such transformation are firstly the design of operationally efficient and accurate

approach of CO2 emissions calculation and secondly the smooth adoption of CO2

awareness in planning decisions across actors (Zhou et al., 2017). Based on empir-

ical studies, various models have been developed to more accurately estimate the

amount of CO2 emissions generated from vehicles. CO2 emissions are affected by

travel speed, travel distance, vehicle types and many other factors, where speed

plays an important role, hence in literature, green vehicle routing and scheduling

problem mostly consider a time-dependent travel speed setting. Then having access

to data of the real-life travel speed at different times on different roads is vital for

an accurate estimation of CO2 emissions. A speed profile based on historical data

is necessary for vehicle routing and scheduling planning purpose, for post analysing

this profile the real-life travel speed could be read from telematics devices installed

on vehicles. Also, road distance between locations and vehicle types are needed to

calculate the emissions of a route. Different vehicle types can have different emis-

sions models as there are slightly different ways to categorise them based on the fuel

type, vehicle size and age. The vehicle routing problem itself is a non-deterministic

polynomial-time (NP)-hard problem which is difficult to solve, and industrial ap-

plications demand a solution algorithm to solve the problem efficiently and within

a reasonable time. Research has been carried out on solution algorithms such as

heuristics, metaheuristics and hybrid methods, not only for green VRP but for all

variants of VRP.

Reducing emissions is not only a task for companies, it is the responsibility

of the customers as well. The environmental concerns among the public are in-
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creasing every year, and the demand for green consulting services and solutions are

fast growing. Based on Blue & Green Tomorrow (2017), the green business sector

generated £12 billion of revenue in the UK alone. However, most companies are

making enough revenue and therefore have a relatively small appetite for green ser-

vices or solutions. They have doubts about whether green brand perception is worth

the efforts. Hemsley (2014) stated that 95% of individuals value the importance of

protecting the environment when they make purchase decisions and it is often a

consideration secondary to price according to a study by TNS global. Customers

also think that the effectiveness of green products or services should be the same

as their counterpart is less eco-friendly options. There are even customers who are

willing to pay more for environmentally friendly products or services, and Laroche

et al. (2001) profiled those types of customers to be females, married and with at

least one child living at home. As a summary, companies should make efforts to be

perceived as a green brand and this strategy could be beneficial.

Supermarkets which provide online grocery shopping and home delivery ser-

vices often encounter with the problem of sustainable delivery. You may have expe-

rienced that when you check out after shopping online the website will ask you to

book a delivery time window normally one-hour or two-hour in length (e.g. Tesco,

Sainsbury) and some supermarkets offer a fixed price for all time windows but the

majority apply differentiated or dynamic pricing to different delivery options. Take

Sainsbury as an example, the delivery charge is between £1 and £7 for orders over

£40 and £7 for orders under £40. In order to reduce the company’s carbon foot-

print and save fuel, Sainsbury now provides new eco-friendly green time windows

and they are marked with a green van icon. Those options are available during

non-congested/off-peak hours and the prices for those options are observed to be

cheaper. After customers choose this time window, they will receive an acknowl-

edgement message in thanks for booking an environmentally friendly delivery time

window. In this way, protecting the environment is a cooperation job of both the

business and customers. Inspired by this idea, revenue management techniques

could be applied to green delivery services which will help the business reduce CO2
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emissions by cooperating with their customers.

1.2 Aims of the research

The main aim of the research is to apply revenue management techniques, in par-

ticular incentive/dynamic pricing to the traditional vehicle routing and scheduling

problem when the objective is to reduce CO2 emissions for a field service providing

company. There are other greenhouse-effect gases whose emissions also contribute

to global warming. In this thesis, the focus is on CO2 emissions only. However, the

methodology may be applied to all these gases. The emissions in such cases can

be measured in CO2 equivalent units. To achieve this goal, we plan to carry out a

series of approaches.

CO2 emissions are directly related to fuel usage, so saving emissions means sav-

ing fuel cost and increasing the company’s profitability. This can be any company

that provides installation and maintenance services at customer sites, for example,

a telecommunication company. The service is provided at the customer site by engi-

neers, each with a vehicle. Normally, customers are required to be physically present

during the service for safety and security reasons. It is similar to the grocery deliv-

ery service in that it requires customers to be physically present. Customer orders

arrive dynamically through the company’s booking website or telephone centre. A

customer will book a time window for receiving the service. A time window is a

period of time within which the service must start, e.g., a two-hour time window

such as 9:00am-11:00am. We plan to schedule the service tasks and the vehicle trav-

elling to reduce CO2 emissions whilst maximising profits by influencing customers’

choice of time windows through dynamic pricing instead of fixed price. The price

will reflect the cost of the delivery option, which is calculated using the cost of CO2

emissions, as the cost of engineer wages is fixed, the only cost varying with a de-

livery option is emissions cost or fuel cost. A cost value is assigned to each unit

of CO2 emissions. Environmental sustainability is a concern for all, hence the dis-

counted delivery windows will be tagged as green/environmentally friendly windows

showing the amount of emissions that can be saved by choosing such options, and
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this may further influence customers to choose these time windows. The problem

considered here is common for services in which there are many competitors and

customer retention is important. For example, this may apply to home delivery

or pick-up services, as well as installation or maintenance services. This research

develops a general solution framework with two stages for this type of problems.

The first phase deals with the scheduling and routing decisions. The second phase

makes pricing decisions using the emissions costs obtained in the first phase. This

framework is applied throughout the whole research for different problem settings

or scenarios.

It is important to understand how to estimate CO2 emissions from vehicles

and what are the factors that affect CO2 emissions. There are several emissions

models based on literature reviews. This thesis plans to compare those models and

choose one that is relatively accurate and does not require data that is difficult to

obtain. A related question can then be raised - what is the difference between travel

time or travel distance objectives with the CO2 objective? We plan to justify that

there is a conflict between these traditional objectives and CO2 objective, so that

this research is different from those investigating vehicle routing problems to reduce

travel time or travel distance.

As traffic conditions have a significant influence on CO2 emissions, the amount

of emissions generated per travel is modelled as being time-dependent to capture

congestion patterns, as well as the travel time per travel. In order to capture the

real-life traffic conditions and to build a speed profile for a geometric area, travel

data of various real-life journeys are collected to compute the travel speed for each

hour. We plan to build a CO2 emissions profile for each local area of business. Data

collection will be carried out for this research from a field service provider. Travel

journals of engineers will be collected. In total, 121 days engineer travel journals,

from 2nd July 2016 to 10th November 2016, covering five geometric areas (domains)

in the UK. An hourly travel speed profile is constructed for these five domains, based

on the travel speed profile we will convert this into an hourly emissions rate profile,
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which is new in literature.

Travel distance is another common factor that affects CO2 emissions. Several

options can be chosen to estimate this, for example, an adjusted version of straight

distance between two locations, or calling some web services to get the road distance,

such as Google Maps APIs. Using Google maps may be a problem for an online

industrial sized problem as each web service call will cost a small amount of time,

so in this case, it will be necessary to have an estimation function of road distance.

In this research, we plan to provide an algorithm to estimate distance using latitude

and longitude and compare the estimations with the distance provided by Google

Maps, to demonstrate its accuracy. The proposed approach is to generate a data

sample of road distance between pairs of locations using Google Maps APIs. Basic

linear regression techniques will be applied to get a linear model to estimate distance.

Information on the vehicle types can be obtained from the company as they

have the number plate and vehicle model information of all their vehicles. With this

information, we will build an application to automatically map all these characteris-

tics to translate to a suitable emissions function. With all the above functionalities

(i.e., speed profile, distance estimation and vehicle type), we plan to develop a con-

crete CO2 emissions calculator for vehicle routing problems, which is a stand-alone

Java application.

In this thesis, the vehicle routing and scheduling problem with time-dependent

travel speed and time window constraints and its variants are considered, where the

objective is to generate the minimum CO2 emissions route plans. We plan to con-

struct new mathematical models for different scenarios and problem settings, and

solve those models with the software Xpress Optimiser first. However exact method

can only solve small sized problems to optimality and the computational time can

be quite long. The advantages of using exact methods are to test the correctness of

the mathematical formulation, and it provides global optimal solutions which will

work as benchmarks for other solution methods for small test cases.
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As the problem of interest is an online pricing problem, customers will not be

willing to wait for minutes to get a response. This requires a fast and efficient solu-

tion algorithm. Metaheuristics methods are often applied to this type of problems.

For the first phase time-dependent vehicle routing and scheduling problem with

time window constraints, different metaheuristics methods will be implemented and

compared on real-life test cases. They are tabu search algorithms with random

neighbourhood generators, variable neighbourhood search, two variants of variable

neighbourhood search (VNS) algorithms: variable neighbourhood descent (VND)

and reduced variable neighbourhood search (RVNS), and simulated annealing (SA)

and its variants. In this thesis, we plan to compare the performance of those meta-

heuristics on our test cases and for small test cases with global optimal solutions

given by software solvers.

For time-dependent VRP, there is a sub-problem of the optimal start travel to

the next customer time once the engineer finishes the job at the current customer

site. Traditionally, vehicles will start travelling to the next customer immediately

after the job finishes. For time-dependent settings, an engineer may wait at a cus-

tomer site for a short while to avoid congestion period. We plan to develop a

dynamic programming algorithm to solve the sub-problem and optimise the start

travel time of each journey. To reduce the computational time and boost the perfor-

mance of algorithms for online problem, parallel computing could be used. Modern

PCs have a parallel processor structure with several computing cores that support

multi-threading and task parallelism. As the computational complexity of real-life

VRPs and parallel nature of the metaheuristics method apply in our case, it is ben-

eficial to use parallel computing to boost system performance.

Several different pricing models will be considered. There are various ways

to model customer demand, and one way is a linear demand model. Based on the

customer’s first preference, the probabilities for the customer to choose each time

window are estimated by the triangular distribution. Another way is to use a discrete
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choice model which has been widely studied and applied in customers’ choice of dif-

ferent transportation modes (Li, 2011). For non-linear optimisation problems, Lingo

optimiser provides a generalised reduced gradient (GRG) algorithms. Newton-based

algorithms and its modifications are commonly used to solve nonlinear optimisation

problem, as well as searching based heuristics such as the differential evolutionary al-

gorithm. This research plans to provide different ways to model customer’s demand

for online service time window booking for different real-life situations. Like the

first phase model, comparisons between algorithms are investigated, and the most

suitable algorithm should be fast and relatively good in solution quality. Numerical

experiments are carried out to test the performance of dynamic pricing policies; a

reduction in CO2 emissions and an improvement in profits are expected. To test

the performance of the models the experiments are replicated numerous times as

probabilistic demand model are used, and there are uncertainties when simulating

customers’ choices.

We will also explore a demand model free dynamic pricing policy called in-

centive sharing policy for the problem when the historical information of customer

purchasing behaviour is limited. In a similar booking process as before, a customer

makes a request online or by phone but at least one day before the service day

instead of on the same day. The routing and scheduling decisions are determined

the night before or at the beginning of the service day. Instead of providing a list

of available options and their corresponding prices, customers are asked to choose

a preferred time window and then be asked if they would like to participate in the

green delivery program, by which they will provide alternative time windows too,

either on the same day or another day. Incentives will be given to customers who

are flexible to participate in the green delivery option. The delivery time window

will be confirmed on the day of the delivery or the night before. This is similar

to real life practice. The incentives are calculated as the additional profit gained

from using this approach, compared to traditional practice where customers are

all served according to their initial preference. Furthermore, incentives are equally

shared among customers who participate in the green delivery program and those
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that do not will receive service at their initial preferred time windows. For customers

who participate in the program but are scheduled for service at their initial prefer-

ence, incentives will not be rewarded. Simulations are implemented to measure the

benefits of the incentive sharing policy for green delivery services.

1.3 Overview of the thesis

This thesis contains eight chapters. This chapter serves as an introduction of back-

ground information highlighting the importance of reducing CO2 emissions in com-

panies’ road transportation operations, with the pressure of laws and regulations and

as well as the increasing customers’ perceptions of green products or services. There

is a direct relationship between CO2 emissions and fuel consumptions, unlike other

types of emissions. So saving CO2 emissions is also saving fuel and money. Studies

also show that the majority of customers value the importance of environment when

making purchase decisions just second to price and there are customers even willing

to pay more for greener products or services. These all support the ideas of using

dynamic pricing to shift customer demand when they choose delivery time window

online, and reduction in emissions and improvement in profits are expected. This

chapter also describes the data collection and outlines the approaches to address the

problem in this thesis as well as solution methods.

In Chapter 2, literature related to this research is reviewed. It includes the re-

search topics around green vehicle routing problems which are mainly time-dependent

vehicle routing problem, dynamic programming algorithm on optimising start travel

time, solution algorithms of green vehicle routing problems, CO2 emissions models,

and revenue management in time slots booking.

In Chapter 3, the critical elements of the tool for calculating CO2 emissions

are demonstrated, including speed profiles, road distance estimation algorithm and

vehicles’ details such as vehicle type and fuel type etc. mapping to emissions for-

mulas. The accuracy of the emissions calculator is tested through road trips and

comparing with mechanical information provided by vehicle manufacturers. In this
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chapter, the objectives of minimising travel time and the objectives of minimising

emissions are compared, and conflicts are identified under specific scenarios. The

business impact of CO2 emissions calculation is also demonstrated.

In Chapter 4, we propose a new approach to the problem which applies low-

emissions vehicle scheduling techniques with dynamic pricing to reduce CO2 emis-

sions and maximise profit for service delivery booking. When a customer requests for

service with a preferred time window, the company will provide the customer with

different service time window options and their corresponding prices. Incentives are

included in the prices to influence the customer’s choice to reduce CO2 emissions.

To help the company in determining the incentives, our approach solves the problem

in two phases. The first phase solves time-dependent vehicle scheduling models with

the objective of minimising CO2 emissions and the second phase solves an improved

dynamic pricing model to maximise profit. A linear demand model is considered

in this chapter. The approach will be tested through numerical experiments using

software solver.

In Chapter 5, we discuss and determine the solution algorithms for the first

phase problem to be used in this research by comparing the state of art solution

algorithms in literature.

In Chapter 6, we extend the problem discussed in Chapter 4 to a vehicle rout-

ing problem with real road distance. Once a new customer arrives, the system first

solves a time-dependent vehicle routing problem with the objective of minimising

CO2 emissions (GTDVRP) for each time window that is available. We propose

a new mixed integer linear programming (MILP) formulation of the GTDVRP. It

will be solved by using a parallel variable neighbourhood search heuristic with dy-

namic programming procedure to optimise the start travel time. Then for each

available option, the minimum additional cost for including this customer will be

calculated. In the second phase, a price will be calculated for each option by solv-

ing a discrete choice pricing model based on the additional costs calculated using
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phase one model. The pricing model is a non-linear programming model, and the

demand function follows a multinomial logit (MNL) model. The MNL model will be

solved by differential evolution method. The whole booking system supports a time

rolling mechanism. And the solution engine takes a parallel variable neighbourhood

search algorithm. The solution framework is tested through one-month simulation

experiments. By applying dynamic pricing techniques compared to the fixed price

strategy, reduction in CO2 emissions and improvement in profits are observed.

In Chapter 7, a demand model free incentive sharing pricing policy for green

delivery service is proposed. This problem can be formulated as a multiple time

windows VRP as in a MILP format. Two scenarios are considered, one with all time

windows on the same day and the other with the preferred time window and alter-

natives being on different days. Two new MILP models are formulated accordingly

and solved by Xpress optimiser for small test cases. Simulations are carried out for

bigger size test cases using a self-adaptive simulated annealing algorithm. Benefits

of this policy are measured by CO2 emissions, total profits and other traditional

performance measures such as travel distance, and travel time.

Chapter 8 gives conclusions, summarises contributions and indicates future

research topics.
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2 Literature review

This research aims to explore applying dynamic pricing techniques to shift customers

demand towards greener delivery options, e.g. a less congested delivery time win-

dow, for online service booking. Therefore two main streams of literature need to be

reviewed. The first stream is literature on green scheduling and routing problems,

and models used to estimate CO2 emissions. The second stream is literature on

revenue management or dynamic pricing theory and its applications, especially in

the area of online retailing or online service booking.

The rest of chapter is organised as follows. Section 2.1 reviews literature

of green vehicle routing and scheduling problem, including vehicle routing prob-

lem with time windows (VRPTW), CO2 emissions minimisation time-dependent

VRPTW (TDVRPTW), multiple time windows vehicle routing problem and depar-

ture time optimisation in TDVRPTW. The state of the art solution algorithms for

VRPTW are reviewed in Section 2.2. The methods to estimate CO2 emissions from

vehicles are introduced in Section 2.3. Section 2.4 reviewed articles applying revenue

management techniques in vehicles delivery. Finally, concluding remarks are given

in Section 2.5.

2.1 Green vehicle routing and scheduling

As regulations related to environmental issues are increasing in prevalence, the con-

cept of Green Logistics is playing an essential role in the transportation operations

of companies (Sbihi and Eglese, 2007). Initial works in this area (e.g., Apaydin and

Gonullu, 2008; Ubeda et al., 2011, 2014; Li et al., 2015) have primarily focussed on

reducing the total distance travelled to reduce the overall emissions. However, CO2

emissions are not only influenced by travel distance, but by many other factors, such

as road characteristics, vehicle speeds and load. In the rest of the thesis, emissions,

carbon dioxide emissions and CO2 emissions will be used interchangeably to mean

the same thing unless stated otherwise. According to Eglese and Black (2010), the

travel speed is an important factor that should be considered. During times of con-
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gestion, vehicles generate much more emissions than when moving at the free-flow

speed. Vehicle acceleration and deceleration also increase emissions levels, and it

is important to measure time-dependent travel speeds to capture congestion situ-

ations. Palmer (2007) stated that congestion period generates the highest level of

CO2 emissions.

Congestion is defined in urban mobility study by Texas Transport Institute as

vehicles drive at a much slower speed than road speed limit, which is caused by heavy

traffic, or narrow roadways, or fewer lanes in operation due to road construction or

accident (Barth and Boriboonsomsin, 2008). In this study, we only consider the

first situation, because the later ones are unpredictable and happen occasionally.

In urban areas, there are usually two periods where road users experience heavy

traffic and congestions on major roads, and they are called peak hours or rush

hours. They are when people travel to work or back from work. Therefore, time-

dependent vehicle routing problem (TDVRP) emerges. It is much like traditional

vehicle routing problems (VRP) but the travelling times between nodes depend on

the time of the day, such as in the cases of peak and off-peak times.

2.1.1 VRPTW and its variants

Traditional VRP focuses on the economic impacts of vehicle routes, meaning that

the routes are designed to minimise total distance travelled, minimise total travel

time, or minimise the number of vehicles used. The basic problems in vehicle routing

class include the VRP with capacity, the VRP with time windows, the VRP with

Backhauls and the VRP with pickup and delivery (for details refer to Toth and Vigo,

2014). In this thesis, we will be focusing on the VRP with time windows and its

variants. The graph theoretic problem definition is as follows: Let G = (V,A) be a

complete graph, where V = {v0, . . . , vn} is the vertex set and A = {(vi, vj)|vi, vj ∈

V, i 6= j} is the arc set. Vertices v1, . . . , vn represent customers, and each customer

i has a non-negative demand di and a time interval [ai, bi]. There is also a service

time si occurs at each customer i. v0 represents the depot and d0 = 0. Each arc in

A is associated with a non-negative cost Cij, which represents the cost of travelling
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from vertex vi to vertex vj. In this thesis, we study a VRP problem with known

cost matrix satisfying

Cik + Ckj ≥ Cij, ∀vi, vj, vk ∈ V (2.1)

The cost may be related to distance, time or emission. Equation (2.1) is called the

triangle inequality and required by some algorithms for VRP, such as Clarke and

Wright’s saving algorithm (1964). Note that the above condition is not restrictive

for our problem because the indirect path via k would be chosen in case the direct

path has a higher cost. There are m vehicles parking at depot v0, and they could be

identical (homogenous VRP) or different (heterogeneous VRP). The VRP consists

of finding a set of m vehicle routes that has a minimum total travelling cost. At the

same time, the following conditions are met: (1) Each vehicle starts and ends at the

depot; (2) Each customer v1, . . . , vn can only be visited once by one vehicle; (3) For

each customer vi, the service starts within the time window interval [ai, bi].

There are some variants of VRPTW in the area of green VRP literature, and

these variants are developed according to real-life applications and new operational

considerations. In this thesis, emphasises will be given to time-dependent VRPTW

and multiple time-windows VRPTW.

2.1.2 Time-dependent VRPTW in green VRP

Most existing studies on Green VRP do not use a time-dependent setting, although

they recognise the importance of speed in determining vehicles’ emissions. They

assumed that vehicles can travel at an emissions minimising speed, but in real-life,

vehicles must move at the flow of traffic, especially in urban areas, where speeds are

variants and time-dependent. It implies that urban road has a speed limit. During

regular hours, traffic flow is at the rate of the speed limit, and during rush hours, the

travel speed is much slower. The difference in emissions levels or fuel consumptions

between using a constant speed and using a variable speed can be up to 40% (Van

Woensel et al., 2001; Akcelik, 1982). With technologies development, time-varying

transit times of road segments can be recorded and analysed, for example, by using
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remote vehicle tracking technique. In literature, some studies built up a speed or

transit time lookup table/profile for each period in a day, and this is assumed the

same for all road links (Figliozzi, 2010). Some studies had access to real-time road

network data and had different profiles for different road links (Qian and Eglese,

2016; Ehmke et al., 2016).

The time-dependent travel speed is modelled by discretising the day into some

time buckets (one-hour duration or simply morning, midday and afternoon), and

then assign a unique mean speed value to each bucket. Figliozzi (2010) discretised

the planning horizon into five time-intervals and associated each time interval with

a mean speed value, which was artificially generated to reflect different traffic con-

ditions. Qian and Eglese (2016) and Ehmke et al. (2016) divided a day into 24 and

15 time slots 1 respectively, and the travel speeds for each time slot for each road

segment were estimated using real-life travel data, assuming a stable traffic condi-

tion in each time slot. Ichoua et al. (2003) divided a planning horizon into three

time zones, morning, midday and afternoon, and arbitrarily applied a correction

factor to free flow speed for each time zone to represent different traffic congestion

conditions. Van Woensel et al. (2008) used a queueing model to create a function

for time-dependent travel times for congestion. The method was based on the re-

lationship between traffic flow, speeds and density under a stable traffic condition,

which resulted in a speed-flow diagram following Greenshield (1935). It provided a

new method for situations where time-to-time speeds data is unavailable, but traffic

flows data can be easily obtained. They used real-life traffic data in Belgium. Their

queueing model speeds were compared to three time-zones speeds, time-independent

speeds, and the results showed that queueing model speeds best matched real-life

travel speeds. Van Woensel et al. (2008) applied a tabu search heuristic to solve the

TDVRP, and a 2-opt neighbourhood constructor was used. They found out that

comparing to time-dependent speeds, using constant speed would produce unrealis-

tic route solutions in a congested traffic environment.

1Time slot is used to describe time interval associated with time-dependent travel speeds, while
time window is used to describe customers booking option.
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Eglese et al. (2006) recognised that the travel time or travel speed of a jour-

ney in a road network depend on the time of the day, the day of the week and the

season of the year. As there are trackable patterns of traffic congestion throughout

the year, those patterns can be measured and recorded for route planning. In their

research paper, they developed a time-dependent travel time database called Road

TimetableTM using real-world data of road network in the north west of England.

Such a database will greatly benefit the study of real-life time-dependent vehicle

routing and scheduling problems, as speed plays an important role in calculating

emissions accurately. This inspired us to construct a similar travel speed profile and

an emissions rate profile of each hour for weekdays based on the data we collected.

Figliozzi (2010) first introduced the emissions vehicle routing problem (EVRP)

with time-dependent travel speeds, which typically represents real-life varying traf-

fic conditions, hard time windows, as well as capacity constraints. A mixed integer

programming model with two objectives: minimising the number of vehicles and

minimising emissions cost was formulated. The amount of emissions was modelled

using the MEET project method (Hickman et al., 1999). The MEET method cal-

culated emissions based on road speeds. Time-dependency of speeds was modelled

through discretising the planning horizon into five-time intervals and each time in-

terval was associated with a mean speed value, which was artificially generated to

reflect different traffic conditions, categorised as uncongested, somewhat congested

and congested traffic conditions. Each congested traffic condition had two congested

periods mimicking morning and evening peak hours. In the emissions cost objec-

tive function, emissions cost was calculated as an estimated market price of CO2

emissions multiplied by the amount of CO2 emissions. This market price may not

be accurate as it is hard to predict the economic cost of emissions unless an emis-

sions tax is officially launched. Another possible way to price emissions was shown

in Franceschetti et al. (2013). They used fuel price to represent emissions price.

Figliozzi (2010) applied an iterated route construction and improvement heuristic

algorithm first to solve vehicles number minimisation problem and then using this

fixed number of vehicles, solve emissions minimisation vehicle routing problem to
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minimise emissions cost. Numerical experiments were conducted on Solomon bench-

mark problems. Results showed the potential to significantly reduce emissions with

a minimal or even null increase in other routing costs.

Jabali et al. (2012) presented a time-dependent green vehicle routing model

and solved it using a tabu search procedure. The emissions per kilometre were mea-

sured using a function of speed, as provided in the MEET report (Hickman et al.,

1999). These authors set up a speed and travel time profile for a planning horizon,

i.e. 6:00am to 12:00am. In their model, there were two main congestion periods;

morning and afternoon, and they discovered that reduction in emissions could lead

to an increase in the travel time.

Maden et al. (2010) also constructed a time-dependent VRSP using real-life

data for a vehicle fleet delivering electrical wholesale items in the South West of the

UK. They created a road timetable that stores the shortest travel times between

customers at different start times, and compared the results of using road timetable

data with constant speed, and found out a 7% reduction in CO2 emissions.

Bektaş and Laporte (2011) measured speed as a continuous variable instead of

level-based values. They constructed a pollution routing problem with energy-based

emissions model proposed by Barth et al. (2005). The thermal energy generated by

vehicles is based on travel speeds, travel distance, vehicle types, road characteris-

tics, vehicle gross weight (vehicle net weight plus payload) and engine efficiency.

They investigated the relationship between travel speeds and fuel consumptions. In

their optimisation model formulation, the travel speed depended on a road type is

an average of the minimum and the maximum travel speeds allowed on that road

segment. They developed an integer linear programming model with a generalised

cost (emissions, fuel costs and driver’s wages) minimisation objective. The con-

straints considered were vehicle capacity and time windows. Optimisation software

CPLEX was applied to solve this problem. They found out that there are conflicts

between minimisation objectives of distance, fuel costs, drivers’ wages and emissions.
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Many researchers found out that there are conflicts between emissions minimisation

objective and traditional objectives, such as travel time minimisation and travel

distance minimisation. Palmer (2007) showed through experiments a 4.8% reduc-

tion in emissions using emissions minimisation as objective compared to using travel

time minimisation. However, there was a 3.8% increase in travel time. Jabali et al.

(2012) showed a similar result with 11.4% reduction in emissions and 17.1% increase

in travel time. Ehmke et al. (2016) showed that the reduction in emissions is pro-

portionally larger than the increase in travel durations. Comparing to traditional

objectives of VRP, minimising emissions is achievable at a relatively low expenses

of other costs. Similar results can be seen in Qian and Eglese (2014). There is still

a trade-off between objectives, and a solution approach is to apply multi-objective

methods. Multi-objective decision making with green aspects can be seen in the

research of Jemai et al. (2012) and Demir et al. (2014).

Demir et al. (2012) proposed a pollution routing problem with Barth and

Boriboonsomsin (2008)’s emissions model. They solved the problem in two phases,

the first phase solved a VRPTW using an adaptive large neighbourhood heuristic

and the second phase solved a speed optimisation problem to determine the optimal

travel speed on each road segment. The travel speed was assumed to be in the range

of 20 km/h to 90 km/h. However, in real-life travel speed is not usually a decision

variable, and a driver has to drive up to the speed of the travel flow for safety reasons.

Ehmke et al. (2016) studied a capacitated VRP to minimise time-dependent

emissions in urban areas in Stuttgart, Germany. To capture the time-dependency of

travel speed on each road, a day was divided into 24 one-hour time buckets, e.g. 6

am to 7 am. Instances were derived from real road network in Stuttgart, Germany

with 230 million speed observations. This dataset was collected during the years

between 2003 and 2005, and details of this dataset can be found in Lorkowski et al.

(2004). When the traversing along a road segment happens at 6:30 am, the average

speed observations during 6:00am to 7:00am on this road segment would be used.

The emissions model used in Ehmke et al. (2016) was the Comprehensive Emissions
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Model (CEM) (Barth et al., 2005). They chose this model as they wanted to study

the impact of vehicle load factors on vehicle emissions levels. It is one of the ad-

vantages of CEM model over other emissions models in literature, which it counts

for the impact of vehicle load on the amount of emissions. The solution method

applied was LANTIME tabu search algorithm adopted from Maden et al. (2010),

which was designed for solving time-dependent VRP. This algorithm requires an ini-

tial solution, which was constructed using Solomon’s insertion heuristic (Solomon,

1987). Furthermore, neighbourhood constructors used in tabu search were Adapted

Cross Exchange, Unsertion/Removal, One Exchange, and Swap. The cost/objective

function considered was the total amount of emissions. However, when searching for

the optimal solution, a solution in the neighbourhood with fewer vehicles used was

always considered a superior or a better solution regardless of its emissions level. An

interesting finding was there are conflicts between emissions minimisation objective

and travel time minimisation objective.

Qian and Eglese (2016) studied a CO2 emissions minimisation vehicle routing

problem with time-varying travel speed. Test cases were generated on a London

road map with real traffic data collected by traffic information company, ITIS Hold-

ings. They had access to traffic speeds data for each road segment. Also, there

were multiple possible road links that connect two customers’ sites like in real-life,

so path selection was part of the decision problem. The majority of literature in this

section assumed travel speed for a certain period is constant, and it is the speed of

traffic flow at that time. However, vehicle speed could be slower than current traffic

flow speed. For example, if the current traffic flow speed is 100 km/h, a driver could

drive at 78 km/h assuming this is the most fuel efficiency speed. Qian and Eglese

(2016) treated the travel speed as a decision variable, ranging up to the current

maximum traffic flow speed on the link travelled. Furthermore, a limit on waiting

time at customer site was applied. They implemented a column generation based

tabu search algorithm and showed that with path selection and speed optimisation,

2-3% emissions could be saved compared with always using fastest path and traffic

flow speeds. However, if within a speed range emissions level is not very sensitive to
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speed change, setting travel speeds to traffic flow speeds will give a good solution as

well. It is interesting that allowing more waiting time at the customer site will save

2-3% emissions. The computational time was more than 20 hours for 25 customer

cases, and they simplified the algorithm by solving a distance minimisation VRP

first, and then applied speed optimisation and path selection only at the final step.

Results showed to be similar to the original solution with only five minutes solution

time. It maybe still not applicable for online problems which required much shorter

reaction time. This work is an extension of Qian and Eglese (2014)’s work with the

same problem setting, but different solution approaches. In Qian and Eglese (2014),

they proposed a time-increment-based dynamic programming method. Dynamic

Programming method is widely used in time-varying travel speed vehicle routing

problems. In time-varying speed road-network, departure time is a vital factor that

determines the emissions of travel. It will influence the solution quality as well (Van

Woensel et al., 2008).

There are other types of GVRP which do not reduce emissions through re-

ducing fuel consumption. They studied vehicles using emissions-free energy such

as electric vehicles. These types of vehicles need to recharge often. It formulates

a different kind of problem considering locations of charge station. This kind of

problem is not discussed in this research. To reduce road transportation emissions,

researchers focus on developing a fuel-efficient engine, electric vehicles, hybrid ve-

hicles and alternative fuels. Some of the technologies are in their early stage and

won’t be ready to be put into implementation shortly. Some techniques start to

enter the market, for example, the electric vehicle brand - Tesla. Electronic vehicles

generate zero emissions, but the price of electric cars is much higher. The major-

ity of road users still use fossil fuel vehicles, and it takes time for these vehicles to

depreciate fully. Furthermore, electric vehicle technology is premature. The earli-

est predicted time for electric vehicles to fully cover the market is probably 2025

(Kordic, 2016). Hence the short term solution is to reduce emissions from road

transportation through creating emissions reduction routes.
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2.1.3 Multiple time windows vehicle routing problem with time window

constraints

In Chapter 7, we will propose an incentive sharing pricing policy for green de-

livery service, where customers have an initial preferred time window and several

alternatives. A multiple time windows VRP problem is formulated. There is little

literature on multiple time windows VRP, and this topic has not received much

attention. However, real-life applications do exist, such as in the delivery of furni-

ture or electronic products where customers occasionally provide a choice of time

periods, or in long-haul transportation (Belhaiza et al., 2014). It was first intro-

duced in Favaretto et al. (2007), and they studied a problem where each customer

has one or many time windows and would be visited periodically. The objective

was to minimise the total weighted time of both travelling and waiting time. A

mixed integer linear programming model was formulated which is similar to tradi-

tional VRPTW formulation with additional variables related to the multiple time

windows and specific constraints tackling periodic visits to customers. A set of test

cases was generated based on Fisher (1994). The problem was solved by an ant

colony type of metaheuristics. Belhaiza et al. (2014) also investigated VRPMTW

problems similar to that in Favaretto et al. (2007) with the same objective without

periodic visits, i.e., each customer is visited by one vehicle once. They extended the

mathematical programming model in Favaretto et al. (2007), and solved this prob-

lem with a new hybrid variable neighbourhood tabu search heuristic. Furthermore,

they proposed an interesting minimum backward time slack algorithm to adjust the

departure times at each customer site under multiple time windows environment.

This algorithm proved to be able to find the optimal solution to the minimum travel

duration problem with multiple time windows. In VRP with time windows either

single or multiple time windows, departure time will largely affect the objectives

even if the sequence of the routes is the same. Hence, this raises the departure times

optimisation problem.
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2.1.4 Departure times optimisation

For traditional VRPTW, the departure time at a customer site is set to be the end

service time at the previous customer site, but for green VRPTW, there is a problem

with the optimal departure times, due to the existence of congestion period. For

example, when finishing at a customer site, it is in the middle of the congested pe-

riod, and the vehicle could wait at the customer site for some time and depart later.

Kok et al. (2011) observed that most solution algorithms for time-dependent vehicle

routing problem schedule the departure time of each journey to the earliest available

time, but temporary traffic congestion makes these route plans non-optimal in the

sense of minimising total travel time. They proposed a departure time optimisation

problem with integer linear programming formulation and solved the problem using

constructive insertion algorithm. They considered travel speed to be a piecewise lin-

ear function of time of the day and a resulting travel time function of the departure

times of the day. The test case results showed a 15% reduction in total travel time.

Kim et al. (2005) also studied the optimal departure times with real-time traf-

fic information on an urban road network in Southeast Michigan. They considered

a stochastic vehicle routing problem on a road network with non-stationary travel

times and formulated it as a Markov decision process. Travel speeds for congested

and non-congested situations were modelled as random variables following two dif-

ferent normal distributions, respectively. Transition dummy variable was modelled

as a random variable following a bivariate normal distribution. With real-time traffic

information, cost savings and productivity improvement were experienced by opti-

mising departure times.

Hashimoto et al. (2006) proposed a standard vehicle routing problem with

soft time windows and travelling time constraints by putting constraints into the

cost function. They solved the problem first by determining the optimal sequence of

routes by an iterated local search algorithm with Cross, Exchange, 2-opt∗ and Or-opt

neighbourhoods’ operators and then optimised the departure times to customers by

a pseudo-polynomial time algorithm of dynamic programming for convex travel time
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cost functions. Tested on Solomon benchmark problems showed the effectiveness of

the proposed integrated algorithm.

2.2 Solution algorithms

The computational complexity of solving a VRP to optimality was proved to be

NP-hard (Lenstra and Rinnooy-Kan, 1981). NP-hard problems are unlikely to be

solvable in polynomial time. Exact solution methods are computational costly for

industrial-sized problems (Braekers et al., 2016). For an online type of problem,

where a response is needed to be given to the customer in a short time, it is more

practical to use a heuristic or metaheuristic method, which generates an acceptable

solution in a short time. However, the solution is not guaranteed to be optimal.

In a survey paper of vehicle routing problem, metaheuristics (71.25% of articles

reviewed) are used more often than exact methods and classical heuristics, further-

more simulation and real-time solution methods are rarely applied. The state of the

art metaheuristics used in green vehicle routing problems are reviewed by Lin et al.

(2014), including tabu search, simulated annealing, variable neighbourhood search,

genetic algorithm and ant colony optimisation. Metaheuristics for time-dependent

vehicle routing problem are also reviewed by Bräysy and Gendreau (2005).

2.2.1 Tabu search

Tabu search (TS) developed by Glover (1989) is based on a local search algorithm.

However, local search algorithms tend to get trapped into suboptimal regions or on

plateaus where many solutions fit equally. The basic idea is that a new current best

solution is selected in the neighbourhood of the current solution at each iteration,

even if it leads to a deterioration in the objective function. This deterioration

happens only to avoid paths which have already been investigated recently. Then

this method can escape from suboptimal regions. Besides this characteristic, this

algorithm has a short-term memory, known as the tabu list. The tabu list stores

either the reversals of recent moves or the recent complete solutions with a specific

length (e.g. the recent 9 solutions, length = 9). Each time a new element is added

to the end of the list it deposes an item from the top of the list. Those elements
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in tabu lists are tabu or forbidden to be visited again shortly to avoid short-term

cycling. This forbidden status could be broken if certain conditions are met, and this

is called the aspiration criterion. Typically, the feasibility of solutions is maintained

during the local searches. The termination criterion is that the objective function

has not been improved for the last N iterations, or some fixed number of iterations

has been reached. The initial solution is typically created by insertion heuristics

such as Solomon’s I1 insertion heuristic (Solomon, 1987). Starting from the initial

solution, improvements are made to it by applying local searches with one or more

neighbourhood operators, such as 2-opt, 2-opt∗, Or-opt, Swap, Exchange, Relocate

and so on. The tabu search algorithm is demonstrated in a detailed graphic form in

Glover (1990). The first attempt to apply tabu search to the VRP was by Willard

(1989). There are improvements and changes to the classic tabu search algorithms,

such as the tabu route heuristic (Gendreau et al., 1994), the Tailard tabu search

algorithm (Taillard et al., 1997) and the granular tabu search algorithm (Toth and

Vigo, 2003). Post-optimisation techniques are developed to incorporate with tabu

search algorithm, such as GENIUS heuristics (Gendreau et al., 1992).

2.2.2 Simulated annealing

Simulated annealing (SA) is based on a randomised local search algorithm. Like

TS, this method accepts moves which lead to deteriorations in the objective func-

tion with certain probabilities to avoid getting stuck in local minimum solutions.

SA originates from Kirkpatrick (1984) who studied the optimisation problem in an-

nealing in metallurgy. The physical annealing process aims at generating solids with

low-energy states by gradually reducing temperature levels. The process is heating

a crystalline solid and then letting it cool very slowly until it achieves its most regu-

lar possible crystal lattice configuration with the lowest energy state. In this state,

it becomes free of crystal defects. Simulated annealing establishes the connection

between this type of thermodynamic behaviour and the search for global minima for

a discrete optimisation problem. The basic algorithm for a minimisation problem is

at each step considering a random neighbouring solution of the current solution, if

the energy (objective value) is less then update the current state, otherwise, accept
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the current solution with a probability. The probability of acceptance depends on

the system temperature parameter which is decreasing as time goes on. The proba-

bility will decrease as temperature decrease in a predefined fashion. As for the later

stage of searching, a worse solution is less likely to be accepted. Accepting worse

solution is designed to be able to escape from local optima. The stopping criterion

is either system temperature becoming very close to zero or a certain number of

iterations being reached. According to Gendreau et al. (1994), it has been shown

that SA asymptotically converges to the global optimum. Also, the effectiveness of

this method is affected by the choice of parameters and initial temperature. It is

better to involve a restart procedure after every few steps. The main limitation is

that SA needs a few predefined parameters and the optimal set of parameters are

different for different problems. Parameter tuning is needed for efficient application

of SA.

2.2.3 Variable neighbourhood search

Variable neighbourhood search was first developed in Mladenović and Hansen (1997)

and finds its success in combinatorial optimisation applications. It is a metaheuristic

algorithm based on systematic changes of neighbourhoods in the search process.

The ability to escape from local optimum is enhanced by starting the search in each

neighbourhood from a random neighbour of the incumbent solution. The basic idea

of it is to find a local minimum in a descent method in one neighbourhood, and

then try to escape this local minimum by exploring a distant neighbourhood of this

solution in a sequential way among the candidate neighbourhoods or in a random

fashion. A jump to a new neighbourhood only happens if the local minimum found

in this neighbourhood is better. The pillars of VNS is based on the observation

that a local minimum found in one neighbourhood structure is not necessary a local

minimum for other neighbourhood structures. A global minimum is a local minimum

in the combination of all possible neighbourhood structures. Local minima found by

different neighbourhoods are relatively close to each other for many problems. Unlike

tabu search or simulated annealing, VNS is not a trajectory following method which

accepts a worse solution. The advantages of this method are its ease to implement,
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and it is parameter-free, which means it could be applied to different problems

without extra effort on parameter tuning. Since it was introduced, this method has

developed rapidly and found success in solving combinatorial optimisation problems.

There are several variants of the basic VNS, such as variable neighbourhood descent

and reduced variable neighbourhood search (Hansen et al., 2010). Also, due to its

parallel nature, there are several different parallel versions of VNS too.

2.2.4 Others

TS, SA and VNS are local search based metaheuristics, where each iteration is based

on a single candidate solution and these metaheuristics are developed to improve

local search heuristics. Genetic algorithm and ant colony algorithm are population

based metaheuristics, while the search for the solution is using a population of can-

didate solutions.

Genetic algorithm (GA) is a population search metaheuristic that mimics bi-

ological processes of species evolution and follows the Darwinian Theory that the

fittest survives. This algorithm begins with an initial population of parent solu-

tions, and offspring solutions are produced which exhibit some of the characteristics

of each parent with values of fitness. Then offspring solutions with higher fitness val-

ues are more likely to be chosen to become parent solutions in the next generation.

In computer science, solutions are represented as chromosomes in the form of binary

strings, but this is not necessary. Genes are those individual positions that form

a chromosome. New generations of solutions are produced by genetic operators,

such as crossover and/or mutation. Fitness values of those in the new generations

are calculated by the values of the objective function in the VRP case. The selec-

tion rule usually prefers the lowest objective value such as the lowest travel distance.

In details, the initial step of GA is to generate the initial population either

randomly (Prins, 2004) or by reasonably structured solutions, for example, by the

Sweep method or the Fisher-Jaikumar method (Baker and Ayechew, 2003). Then

those solutions are represented as chromosomes with trip delimiters (Baker and
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Ayechew, 2003) or without trip delimiters (Prins, 2004). The benefits of eliminating

trip delimiters are demonstrated by Prins (2004). Then a crossover procedure takes

place, such as 2-point crossover or OX, LOX for instances without trip delimiters.

Mutate offspring when necessary or when to accelerate the convergence of GA. The

next step is to compute fitness and choose next parent solutions based on that. The

stopping criteria can be based on the number of generations or the computing time

and so on.

Genetic Algorithms are also well developed in solving vehicle routing problems,

but they rely on the quality of the initial solution, and to maintain the feasibility of

the solutions regarding time window constraints, sophisticated designed mutation

and crossover operators are needed, as once the feasibility of solutions is lost, it is

difficult to regain feasible solutions.

Ant colony optimisation (ACO) is another population search metaheuristic

inspired by the behaviour of ants seeking paths between their colony and food lo-

cations. It is based on probabilistic techniques. In the real world, an ant may

walk randomly from its territory to locations of food and lay down pheromones to

communicate with other ants and mark the path. The other ants are not likely to

keep travelling at random, but follow the marked path and lay more pheromones to

reinforce this path. However, pheromones will evaporate at a particular rate. The

longer the path takes to travel, the fewer pheromones there will be left for that path.

So the shortest path is the most attractive path to the other ants to follow. Based

on this mechanism, Dorigo (1992) first applied this method to solve TSP problems,

and researchers then extended its use to solve VRP problems. In VRP, artificial ants

are simulated to construct feasible routes. At each stage, an ant may travel from

node i to j with a probability function that concerns both the amount of pheromone

laid on arc ij and the distance between ij. This route construction can be done by

a single ant one after another (sequential) or by multiple ants together (parallel)

(Mazzeo and Loiseau, 2004). Then, the pheromone trials are updated to improve

those feasible routes. There are two types of updating, local and global (Bell and
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McMullen, 2004). Local updating represents the evaporation of pheromones to en-

sure that no one path becomes too dominant and avoid trapped in a local optimal

solution. Global updating represents the accumulation of pheromones to reinforce

favourable paths, either to all solutions or to solutions made by elite ants or to the

best solution found. After trial updating, route improvement strategies are made

such as 2-opt heuristic or greedy ranked candidate list. Stopping criteria is similar

to GA. ACO can deal with large size problems and according to Bullnheimer et al.

(1999), the performance of ACO can compete with other metaheuristics such as

TS and SA, and outperform neural network method. The limitation is the need

to choose appropriate parameters which impact performance a lot. Hybridisation

of metaheuristics is also well applied, which are a combination of more than one

metaheuristics and acclaims to perform better than any of the metaheuristics alone

(Talbi, 2002).

2.3 Models for determining vehicle emissions

As emissions are affected by travel speeds, vehicle types and many other factors,

the shortest or quickest route may not be optimal with respect to emissions or fuel

consumptions. Also, the relationship between travel speeds and CO2 emissions is

nonlinear with a single minimum. During a congestion period, a vehicle experiences

slow speeds, and it frequently needs to accelerate to catch the speed of traffic flow or

decelerate when traffic slows down. This driving pattern generates more emissions

than steady-state free-flow speeds. When a vehicle drives at a steady-state free-flow

speed, its engine operates smoothly, and there is no acceleration behaviour where

the vehicle generates the most emissions of all. Vehicle engine will experience high

load when the vehicle travels at high speed, which is another reason for high emis-

sions levels.

In this case, green vehicle routing depends on the correct computation of the

carbon emissions to generate a route plan that is genuinely greener than the dis-

tance or travel time minimisation route plan (Turkensteen, 2017). Various emissions

models differ in nature of estimating emissions and fuel consumptions. The nature
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of models describes whether the model is a macroscale model that aggregates total

emissions and works as a rough estimate or it is a microscale model that is capable

of predicting a relatively more accurate second-by-second emissions. Some mod-

els are developed based on physical studies of engines and fuel technologies, and

some models are constructed using on-road measurements and real-life experiments

data. Factors that influence emissions or fuel consumptions in general fall into four

categories: vehicles (e.g. weight, engine type, engine size, and frontal area shape),

drivers (e.g. driving behaviour), environmental conditions (e.g. road slope and road

surface resistance) and traffic conditions (congestions). Among all those factors,

driver related factors are hard to measure and often excluded from all emissions

models. The choice of emissions models which is convenient to use or fits the de-

scription of the problem faced is essential before operational planning. The decision

also depends on the data availability, as accuracy usually relies on the amount of

information provided. In literature, an agreement has been made that emissions

are proportional to fuel consumption, so the models measuring fuel consumptions

are equivalent to models measuring emissions directly. A detailed review of existing

emissions models can be found in Palmer (2007) and in Demir et al. (2011). Some

models consider a large number of factors, which make them hard to implement,

and can only be applied for short trips. Models frequently in use in the literature of

green vehicle routing problem are the MEET project, the NAEI project and Com-

prehensive Emissions Model (CEM). Regardless of the emissions models applied,

CO2 emissions could be 15-20% higher in real-life traffic conditions Palmer (2007).

One possible reason is that most emissions models predict emissions based on hot

stabilised engine conditions and do not consider cold engine starts. If cold engine

starts are considered, the computed emissions will be 10% higher.

Emissions come from the burning of fossil fuels. Unlike other pollutants emit-

ted by vehicles, CO2 emissions are proportional to the amount of fuel consumed

(Ubeda et al., 2011). To some content, minimising CO2 emissions is equivalent

to minimising fuel consumption. According to U.S. Energy Information Admin-

istration (2017), standard diesel fuel emits 2.68 kg CO2/L and petrol fuel without
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ethanol emits 2.35 kg CO2/L. This fuel conversion factor can also be estimated based

on analysing the chemical reaction function of the fuel burning process. Lichty

(1967) stated that the fuel combustion chemical reaction is C13H28 + 20 · O2 →

13 · CO2 + 14 · H2O. Standard diesel (C13H28)’s molecular mass is 184 and the

molecular mass of CO2 is 44. Based on the reaction function, one unit of C13H28

can generate 3.11 unit of CO2. Diesel density is 0.84 kg/L, so fully burning of one

litre diesel fuel will generate 3.11 × 0.84 = 2.61 kg CO2. These conversion factors

may be slightly different across nations. Department for Environment, Food and

Rural Affairs of the UK government (2010) guided companies to report emissions.

In their report, the fuel-emissions conversion factors are provided for different types

of fuel and pollutants. For diesel, it is 2.641 CO2/L and 2.301 CO2/L for petrol.

2.3.1 Distance or fuel based emissions model

Distance or fuel based emissions models are macroscale level emissions models, which

approximate the overall emissions for the whole trip. Fuel consumptions or emissions

are calculated based on total distance travelled, fuel types and fuel conversion rate,

assuming the vehicle travels at a free flow speed. Those models can be adjusted to

capture the difference in vehicle payload, but they ignore factors like vehicle speeds,

vehicle acceleration, and road characteristics.

2.3.2 The MEET and the NAEI Project

The MEET project aimed to provide a basic, European-wide procedure for evalu-

ating the impacts of transportion on the air pollution. The duration of this project

was from 1996 to 1998, and the final results were shown in Hickman et al. (1999).

It was funded by the European Union. They developed several models for different

types of vehicles with various weight ranges. Those models are microscale level mod-

els. Vehicle emissions levels are calculated based on travel speeds, vehicle mass and

vehicle types, and can be adjusted to road gradient as well as vehicle load. MEET

suggests the following emissions models:

E =
(
K + av + bv2 + cv3 + d

v
+ e

v2 + f

v3

)
GC · LC · distance (2.2)
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where K, a, b, c, d, e, f are vehicle specified parameters, v is travel speed in km/h,

E is emissions in g, and distance is in km, GC is the road gradient correction fac-

tor and LC is the load correction factor. These parameters were estimated based

on real-life experimental data. The MEET model is an average of various speed-

emissions curves of a range of driving cycles. A driving cycle means a particular

pattern of driving behaviour containing a different combination of stops, starts, ac-

celeration and deceleration. So the effect of acceleration is implicitly included. The

main drawback of this model is its vehicle-specified parameters settings only depend

on vehicle weight range and usage, not considering vehicle make or engine types.

Figliozzi (2010), Jabali et al. (2012) and Saberi and Verbas (2012) applied this model

for carbon dioxide emissions reduction vehicle routing problems.

Similar models can be found in Road Vehicle Emissions Factors, which is de-

veloped in the UK by TRL (transportation research lab) and named NAEI (Boulter

et al., 2009). The NAEI database is based on a large number of measurements from

various programmes conducted over years. The database compiled as part of the

MEET project also included data from TRL. The most recent update of it is on

2002. The NAEI project suggests the following hot engine emissions models:

E = (a/v + b+ cv + dv2 + ev3 + fv4 + gv5) · distance (2.3)

where a − g are vehicle categories and pollutants types specified coefficients. The

formulation could also be adjusted for road gradient and vehicle load. Detailed

formulas for carbon dioxide emissions can be seen in Appendix E of Boulter et al.

(2009).

2.3.3 Comprehensive Emissions Model (CEM)

Comprehensive Emissions Model starts to develop by Barth et al. (2000) in the year

1996 in the University of California, sponsored by the National Cooperative Highway

Research Program and the US Environmental Protection Agency. The majority

of work was finished in 2000 and maintained till 2008. The aim was to develop

a microscale level model to predict second-by-second vehicle emissions. Vehicle
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emissions are calculated considering factors such as vehicle mass, engine specified

parameters, road specified parameters, vehicle speeds, acceleration and so on. The

model is shown in equation (2.4).

FR = φ (kNV + P/η) /44 (2.4)

where φ is the fuel-to-air mass ratio, k is the engine friction factor (0.2), N is the

engine speed, V is the engine displacement in litres (in range 2 to 8), P is the

second-by-second engine power output in kilowatt, and η is the efficiency parameter

for engines (0.4). Engine speed can be approximated by vehicle speeds:

N = S

(
R(L)
R(Lg)

)
v (2.5)

where S is a vehicle specified parameter which is the ratio of engine-speed divided by

the vehicle speed when in top gear Lg, R(L) is the gear ratio in gear L = 1, 2 . . . Lg,

and v is vehicle speed in m/s.

The power demand function is in terms of vehicle mass, vehicle speeds and

other road specified parameters, as shown in equation (2.6).

P =
(
Ma+Mg sin θ + 0.5CdρAv2 +MgCr cos θ

)
v
/

1000ηtf + Pacc (2.6)

where M is vehicle mass in kg, a is vehicle acceleration rate, g is the gravitational

constant (9.81 m/s2), θ is road slope in radians, Cd is the coefficient of aerodynamic

drag (0.7), ρ is the air density (1.2041 kg/m3), A is the area of vehicle frontal surface

area (between 2.1 m2 and 5.6 m2), Cr is the coefficient of rolling resistance (0.01), ηtf
is the vehicle drive train efficiency (0.4) and Pacc is the power used for air conditioning

and other vehicle accessories (assume 0). Observing the above equations, most

parameters are predetermined and vehicles related. The variables in the equation

(2.6) that may change in time are vehicle mass, vehicle speeds and acceleration rates.

In practical use of CEM, researchers often make some realistic assumptions and use

a simplified version of this model. For instance, Ehmke et al. (2016) used the model
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shown in equation (2.7).

E = 1
32428

(
33d
v

+ 0.00462dv2 + 0.000275(u+ l)d
)
, (2.7)

where E is the total amount of emissions in kg, d is travel distance, v is travel

speed, u is the mass of the vehicle (for a medium vehicle, u = 6350 kg; for a heavy

vehicle, u = 12 700 kg) and l is vehicle load in kg. Bektaş and Laporte (2011), Demir

et al. (2012) and Franceschetti et al. (2013) applied this model for carbon dioxide

emissions reduction vehicle routing problems.

2.3.4 COPERT software

Ntziachristos et al. (2000) developed COPERT. It can measure not only CO2 emis-

sions but also other major GHG emissions. This model is also based on real-life

experiments and takes into account road gradient and speed changing as well. It

generates an emissions rate that depends on vehicle types, engine emissions stan-

dard and the average travel speed. Scott et al. (2010) used this computer program

along with the payload correction and heavy-duty vehicle correction factors. There

are other emissions models, which may be more complex and accurate. As they are

used very rarely and do not appear in most of literature on green vehicles, we do

not discuss them in detail. Those models are four-mode elemental fuel consump-

tion model, the running speed fuel consumption model, the air quality model, and

the traffic situation models. One can refer to Boulter et al. (2007) for a detailed

summary of other emissions models. A detailed comparison based on discrepancies

between results yield and on-road consumptions results of vehicles for several vehicle

emissions models can be found in Demir et al. (2011). Readers can also refer to Frey

et al. (2010) for an overview of emissions measurement methods.

2.3.5 Comparing emissions models

In this section, the MEET project and the CEM models are compared in terms of

their nature, factors considered, and their performance comparing to actual road

data. As the NAEI model is an extended version of the MEET with UK data,

MEET project will be used as a representative. The MEET project models were
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constructed based on on-road measurements and real-life experiments data, while

the CEM were developed using physical studies. The CEM have been tested in real

road experiments under 23 vehicle categories by Barth et al. (2005). The comparison

of factors considered in these models is shown in Table 2.1.

Factors CEM MEET
Vehicle related
Total vehicle mass X X
Engine size X
Engine temperature X
Oil viscosity X
Gasoline type X X
Vehicle shape X
Environment related
Road gradient X X
Wind conditions X
Surface conditions X
Traffic related
Speed X X
Acceleration X

Table 2.1: Comparison of models regarding factors included (Source: Adapted from
Demir et al. (2011)).

As shown in the above table, the CEM is a more complicated model which con-

siders more factors that have an impact on fuel consumptions or emissions. CEM

model is based on second-by-second tailpipe emissions data collected from a variety

of laboratory driving tests. It is an instantaneous emission model different from

regression-based models such as the MEET. Instantaneous emission models could

be more accurate in predicting traffic emissions because they consider acceleration

and vehicle load for example. In practice, however, to implement the CEM requires

detailed vehicles or road specified parameters, which are hard to obtain in real-life

situations. The problem of interests considers a maintenance service company where
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each engineer carries a toolkit with a constant weight, so weight (load) may not be

an important factor as for groceries delivery companies. In this case, the MEET

and the NAEI models are more suitable.

Erlandsson et al. (2008) conducted on-road measurements of vehicles with dif-

ferent weights on a highway segment of 100 km. These kinds of on-road fuel measure-

ments are typically implemented using engine and chassis dynamometer tests, tun-

nel studies, remote censoring and onboard instrumentation readings (Demir et al.,

2011). The results from the CEM and the MEET models were compared to the

on-road measurements. The results show that on average the CEM tends to overes-

timate fuel consumptions and emissions, while the MEET model tends to underes-

timate the amount. The average absolute difference percentage of the CEM model

is 30.33% and for the MEET model 30%. In summary, both models are capable

of giving a relatively accurate prediction of emissions levels on a second-by-second

basis, but the MEET model requires less vehicle or road specified parameters esti-

mation, which makes it easier to implement. Furthermore, in on-road measurement

tests, the MEET project yield slightly better results than the CEM models. In this

report, the MEET project models together with its UK version the NAEI models

will be used to calculate emissions levels.

2.4 Value based demand fulfilment/ Demand management

in VRP

Revenue management has an important impact on profitability and requires suf-

ficient knowledge of customer preferences and flexibility. Tailored services, such

as Amazon recommendation advertisement which are based on customers’ search-

ing information, could win increase of customers’ loyalty and satisfaction. Revenue

management arises in the airline industry for setting flight fares. The main differ-

ences between the airline industry and online grocery or service delivery are that

the cost in the airline business is sunk cost at order in-take while the cost of delivery

is a variable that interdependent among orders, as orders that located close to each

other will have less transportation cost. Another difference is that for airline busi-
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ness customer heterogeneity lies in willingness-to-pay and demand flexibility only.

On the other hand, delivery business has more dimensions like customer locations

and time window requirements. Airline fares are determined based on flights’ pop-

ularity. Agatz et al. (2013) gave an example of Albert.nl’s dynamic pricing policy

of delivery slots based on their popularity and showed it could smooth the demand

by reducing the ratio of demand gap from 3 : 1 to 1.5 : 1. Demand gap was defined

as the number of customers in the busiest time window divided by the one in the

least busy time window (Agatz et al., 2013).

Revenue management in service delivery business models considers time slots

management problems or pricing problems (Agatz et al., 2013). Time slot man-

agement is classified into two categories in Agatz et al. (2013)’s review paper, i.e.,

differentiated slotting and dynamic slotting. Differentiated slotting studies the prob-

lem of deciding the number of slots offered in each area and the length of the delivery

time windows before order intake. On the other hand, dynamic slotting makes de-

cisions during the actual sales process, for example, closing a slot when it reaches

capacity. A more advanced case is to reserve scarce time windows for the most

beneficial customers by considering opportunity costs, instead of first-in-first serve

orders in-take. As for the home attended service providers, the costs are two fold,

the expenses for technicians’ wages or service fees and delivery fees, e.g. fuel cost.

Delivery cost is directly related to the location of each potential customer consider-

ing existing customers, so this generates the problem of assigning the customer to a

cost-effective time window.

With slotting decisions, customers are pushed away from certain options by

restricted time slots length or closing a slot early as mentioned before, while pricing

decisions provide a finer way to pull customers into cost-effective options by pro-

viding differentiated prices. Uniform pricing can make demand imbalanced, while

differentiated pricing can help to smooth demand based on demand forecasting. Fur-

thermore, dynamic pricing is even more powerful to adjust the demand in real-time.

As technology developed, differentiated or dynamic pricing of delivery options is ap-
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plicable for two reasons. One reason is the flexibility of both retailers and customers.

Retailers can easily confidentially communicate with customers by phone or email

to provide discounts and negotiate with customers in real-time. Customers have the

flexibilities to change delivery options to some extent as well. Additionally, data

availability enriched by the storage of all historical sales information enables more

accurate demand forecasting, and also increase the possibility of customer relation-

ship management. However, if the pricing policy is too complicated, customers may

get confused and feel distrustful of the company (Garbarino and Lee, 2003).

For pricing decisions, the idea of incentive pricing, more commonly known as

dynamic pricing, has been executed in a variety of industries to encourage customers

to purchase products or service at the ‘right time at the right price’ (Lin, 2006). In-

troduced in the airline industry (Rothstein, 1971; Littlewood, 2005), it has now

widely spread to areas such as the hotel industry, car rental, fashion, cruises and for

stadium tickets. The use of dynamic pricing has been shown to be successful, and

this has encouraged innovative ways of applying the approach.

For a detailed review of dynamic pricing, please refer to Elmaghraby and Ke-

skinocak (2003). Cleophas and Ehmke (2014) classified the application of demand

management in VRP field as value-based demand. In traditional dynamic pricing,

the cost of each product is the same, and price is differentiated according to time-

value and demand (e.g. airline ticket). In their paper, a combination problem of

cost minimal routing and value-based order acceptance techniques were investigated.

Yang et al. (2014) investigated dynamic delivery pricing problems in e-fulfilment of

an online grocery store. They studied an advanced and the state of the art demand

model, which is the multinomial logit choice model. They formulated the pricing

problem as a stochastic dynamic programming problem and solved it using approx-

imation method. Two different ways were proposed to estimate opportunity costs.

However, the cost of delivery was estimated using a simplified model, and vehicle

routing part of the problem was not investigated.
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Among the existing literature, the problem closest to the one in this research is

addressed by Campbell and Savelsbergh (2006). These authors considered the prob-

lem of online groceries delivery, where customers came with their preferred time

windows, and used a two-stage process to reduce travel costs; the first stage solving

a vehicle routing and scheduling problem and the second solving a dynamic pricing

problem. In their dynamic VRPTW problem, requests for a service for a week could

arrive one week beforehand, and these were scheduled at the customers’ preferred

time windows. Then the new arriving customers were inserted into one of the exist-

ing routes. They created a set of feasible routes for existing customers, and the new

customer was inserted into these feasible routes to find the lowest insertion cost time

windows. Construction and insertion heuristics were used to build initial schedules

and check insertion feasibility and costs following Bent and Van Hentenryck (2004)’s

approach. The minimum insertion costs from all schedules for each time window t

were calculated and represented as Ct. The insertion cost Ct integrated routing and

pricing models; it was an output of the routing model and an input of the dynamic

pricing model. At the second stage, a dynamic pricing model was constructed based

on Ct. The decision variables in their model were incentives given to selected time

windows. It was assumed that giving an incentive for a time window would increase

the probability that a customer chose it and equally decreased the probabilities of

other time windows without incentives. They aimed to shift customers’ demands by

giving pricing incentives to delivery time windows that result in minimum operating

costs. Their paper offered insights into the use of incentive schemes to substantially

reduce delivery costs, considering a distance problem. However, the limitation of

their pricing model is that the amount of incentives offered is highly restricted to

customer’s initial probability of choosing a time window, and this means they need

to pre-select the time windows that will receive incentives instead of incorporating

this into the optimisation procedure.

There is very little research on combining the areas of scheduling and pricing,

and as far as we are aware there is none on using pricing incentive for improving the

schedule of vehicles when the objective is to reduce carbon dioxide emissions costs.
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The problem that is considered in this thesis is that of online installations and main-

tenance service delivered to customers’ sites. Customers have a time preference as to

when they would like to receive a service. We aim to use dynamic pricing to provide

customers with incentives to purchase in time windows that have low CO2 emissions

levels and emissions cost. It is a significant problem because it can help reducing

operations costs, improving corporate reputations while also increasing profitability.

Demand forecasting is an essential element in the analysis of customer choice

behaviour according to changing prices. In the book by Ben-Akiva and Lerman

(1985), the application of discrete choice demand model in transportation systems

has been studied, including the methods of estimating unknown parameters in the

demand model, and its goodness of fit has been justified. Choice models predict

the likelihood of customers purchasing a specific product from a set of related prod-

ucts based on their relative attractiveness. Similar model fitting and measurement

methods also exist for linear demand models. In this research, we consider that only

price will affect each delivery options’ attractiveness.

2.5 Summary

In this chapter, literature related to this research is reviewed. The problem of in-

terests is pricing and scheduling of engineers of a service provider, so studies on

the vehicle routing problems with time window constraints and its variants are re-

viewed. The primary objective of our problem is to minimise CO2 emissions which

makes the problem a green vehicle routing problem. Furthermore, the travel speed

is one of the most important factors that affects emissions from vehicles and it is

changing during the day as there are regular congested periods when people go to

work and return from work. Many studies of green VRP apply time-dependent VRP

settings and those papers are reviewed. There is an interesting problem of optimal

departure times. As travel speeds are time-dependent, different departure times will

make a difference in the final solutions. Several papers considering the departure

times optimisation problems are reviewed. The dynamic pricing problem is often

made online and requires a relatively short solution time. Exact methods normally
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consume more computational time hence metaheuristics are also applied. The state

of the art metaheuristics methods are of two types: local search or population based

search. Tabu search, simulated annealing and variable neighbourhood search are

local searches and Genetic algorithm and ant colony algorithm belong to the second

type. Those metaheuristics are explained and reviewed in this chapter. Accurate

estimation of CO2 emissions is important for this research so all existing emissions

models are reviewed in details and compared. Pricing part is reviewed in the context

of vehicle routing and scheduling, and to our best knowledge, the pricing of green

services is new in literature.

In the next chapter, the CO2 emissions calculator uses in this research and

its real-life application in a field service provider will be described. The potential

benefits and impact of introducing green logistics in field scheduling and routing will

be demonstrated as well.
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3 CO2 emissions calculator

In this chapter, the CO2 emissions calculator used in this research is described.

Different models that could be used to calculate emissions and their comparisons

are reviewed in Chapter 2. Furthermore, the importance of accurate estimations of

emissions for green VRP/VSP is addressed in Chapter 2 as well. The CO2 emissions

calculator will be applied throughout this research and it has been implemented in

a real-life field service provider as part of their introducing green logistics into the

business logic plan. The real-life benefits and impacts are observed.

The CO2 emissions calculator is programmed as a Java application with sev-

eral features. The application includes built-in speed profiles for each geometric

area (domain) based on historical data, and an embedded road distance estimation

algorithm based on a linear regression model. Furthermore, it has two well-applied

emissions models that end users can choose from depending on the information

that they have available. Both emissions models require the knowledge of a vehicle

details and the application can map this to the corresponding emissions formula.

A Java desktop graphical user interface (GUI) application is developed using Java

Swing framework to help end users to map a vehicle to a specified emissions for-

mula. This chapter demonstrates the data analysing and cleaning process to obtain

the speed profiles, the linear regression model on road distance estimation, and the

business logic of the GUI application. To test the accuracy of the emissions cal-

culators, the MEET emissions calculator’s computational results will be compared

with vehicle manufacturing information on a real road journey. The discrepancy

between CO2 emissions minimisation and traditional travel time minimisation will

be demonstrated using numerical experiments with the NAEI emissions calculator

and discussed in depth. Furthermore, in the last section, business applications and

real-life impacts of the emissions calculator are demonstrated.

The rest of chapter is organised as follows. The three important components of

the CO2 emissions calculator namely the time-dependent speed profile and the emis-
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sions rate profile, the algorithm to estimate road distance based on coordinates and

vehicle details mapping to emissions formulas are described in Section 3.1, Section

3.2 and Section 3.3 respectively. The emissions calculator is verified on a real-life

test case in Section 3.4. Section 3.5 discusses the differences between CO2 emissions

minimisation objective with traditional objectives such as travel time. The real-life

business applications of the proposed emissions calculator are demonstrated in Sec-

tion 3.6 together with its impact and benefits. Conclusions are given in Section 3.7.

3.1 The speed profile & the emissions rate profile

Based on the real-life travelling journal of a field service provider’s engineers, a real-

life travel speed profile was generated for London, UK. This profile captured the

average traffic condition throughout the day. It was expected that there would be

two peak-hour periods, where the travel speed is slow. The two peak-hour periods

are when people go to work and from work. From the real-life field service provider’s

live tasks database, we have task locations so that we can calculate road distance

between tasks. We also have the start time for travelling to each task and the ar-

rival time, so we were able to calculate the total travel time between tasks. In this

way, we calculated the travel speed in the hour that engineer started to travel to a

task. A day was divided into 24 one-hour time slots, 0:00-24:00. If a travel journey

happened in one slot, the travel speed in that slot was recorded. If a travel journey

happened across several slots, the same travel speed was recorded for every slot.

Then for each slot we took the average speed for that slot of 121 days to construct

a speed profile for that domain, as shown in Figure 3.1(a). We have cleaned the

data set by eliminating speed data over 200 km/h, as that number was far above

the national speed limit and was treated as a fraud record. After data cleaning, we

have had 7795 speed data entries for London.
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(a) Hourly speed profile (b) Smoothed hourly travel speed profile

Figure 3.1: Speed profile of London, UK (km/h).

In Figure 3.1, we can see that there are two peak-hour periods, one early

morning and the other in the late afternoon. That matches our expectation. The

problem with this profile is for some hours we have many data entries, but for some

hours we have only a few. That is because most of the tasks happen in engineer

working hours, which are 07:00 -19:00. Detailed statistics of selected time slots are

shown in Figure 3.2.

(a) Speed data for time slot 2am-3am (b) Speed data for time slot 7am-8am

Figure 3.2: Statistics and frequency plots of selected time slots.

Comparing Figure 3.2(a) and 3.2(b), we can see that in time slot 2:00am-

3:00am, there are not many data entries (94) in these 121 days. The lack of data is

because not many tasks are appointed at this time of the day. The standard devi-

45



3. CO2 EMISSIONS CALCULATOR

ation of this data set is 21.25. For time slot 7:00am-8:00am, we have in total 671

data entries in 121 days, and the standard deviation of this data set is much smaller,

which is 15.284. To reduce the total variance of all the data, several time slots are

grouped to smooth the data pattern. The grouping criteria are to cluster time slots

with similar means and try to allocate only one group for midnight period. The

reason is that there is less traffic at midnight, and travel speeds should be similar.

We have grouped slots with similar speed profile for example 06:00-08:00 or

17:00-19:00. This is carried out first by eyeballing slots with similar speed and

then those slots were tested using independent t-tests to compare if their means

are significantly different. The speed profile after smoothing is shown in Figure

3.1(b). Before grouping, the mean variance is 19.359, and after it is 18.983. Through

clustering, we reduce the variance by 1.92%. The field service provider updates this

speed profile every three months automatically. Data storage requires only the mean

value for each hour and the number of entries. Ehmke et al. (2016) used a similar

method for doing speed analysis for 24 hours in Stuttgart, Germany, with 230 million

speed data (3 years), and they clustered each domain into sub-districts.

3.2 Estimating road distance from latitude and longitude

Given the locations (longitude and latitude) of two sites, line distance between

these two places can be calculated using the Haversine formula (Source: http:

//www.movable-type.co.uk/scripts/latlong.html) as shown below:

a = sin2(∆ϕ/2) + cosϕ1 · cosϕ2 · sin2(∆λ/2) (3.1)

c = 2 · arctan 2(
√
a,
√

1− a) (3.2)

d = R · c (3.3)

where ϕ is latitude, λ is longitude, R is earth’s radius (mean radius = 6371 km),

note that angles need to be in radians. This formula calculates the shortest distance

over the earth’s surface between two sites ignoring terrains. However, in real life

vehicles do need to follow the road network to travel between two locations. Road
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distance tends to be longer than line distance calculated from the formula.

Google Maps could be used to get a better estimation of road distance, but

more time needs to be spent to get responses from the server especially in large-

scale computations. To establish a quick and reasonably accurate method for travel

distance estimation, we tried to work out a relationship between the Haversine

distance and the real road distance using a large set of sample data. In each domain,

2614 task pairs were randomly selected, and the line distance between each pair of

tasks was calculated. Then, Google Maps Distance API was called using Java to

get road distance estimates between the same pairs of tasks. Based on Yang et al.

(2014), there is a linear relationship between Haversine distance and road distance,

a linear regression analysis can be carried out. We applied a simple linear regression

technique to train a linear regression model on a training data set and tested the

model on a test data set. The 2614 data pairs were randomly divided into a training

dataset and a test dataset with the proportion of 2 : 1. So the training data set

contains 1742 data points, and the test dataset includes 872 data points. It is

reasonable to assume that for each domain the parameters in equation (3.4) are

slightly different, as the geographic areas of domains are different. For example,

London is a small domain comparing to Scotland. R software was used to carry out

the linear regression method. Let us take London as an example. The regression

results are shown in Appendix A together with the R script. The linear model is

a suitable model with a 93.71% R2 value, indicating high goodness of fit value. P-

value of the F statistic is 0.000 < 0.05, which shows the model is significantly better

than the intercept-only model at the 95% confidence level. From the coefficients

table, both the constant term and the independent variable are statically significant

at the 99% confidence level, which means both the constant and the line distance

are necessary. The formula for London is summarised as:

RoadDistance = 0.668 + 1.305× LineDistance+ error. (3.4)

The visualisation of this linear model with the data points in the training set and

the test set are shown in Figure 3.3 and Figure 3.4 respectively.
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Figure 3.3: Road Distance vs. Haversine Distance (Training set) (Red: real data,
Blue: Learning model).

Figure 3.4: Road Distance vs. Haversine Distance (Test set) (Red: real data, Blue:
Learning model).

48



3. CO2 EMISSIONS CALCULATOR

3.3 Vehicle specification mapping to emissions models

There are 265 CO2 emissions formulas for different vehicles specifications in the

NAEI project and 33 different emissions formulas in the MEET project. Both

projects have formulas for various types of pollutants such as CO2, CO, HC and

NOx. Given the information of an engineer’s vehicle details as listed in Table 3.1,

each vehicle was mapped to a particular formula within the NAEI/MEET formu-

las set. A Java desktop application GUI was developed which automatically helps

users to match vehicles details with its corresponding numerical emissions formulas.

Appendix B shows a snapshot of the Java desktop GUI application.

Vehicle details NAEI Model MEET Model
Basic Type (e.g. LDV, HDV) X X

Fuel Type X X

Gross Weight X X

Emissions standard X

Engine capacity X

Table 3.1: Information of engineer’s vehicle details.

3.4 Test the accuracy of the emissions calculator

In this research, in order to calculate the amount of carbon dioxide emissions gen-

erated by vehicles, we use the instantaneous CO2 emissions model proposed by the

MEET project and its UK version the NAEI project. The MEET project aimed to

provide a basic, European-wide procedure for evaluating the impacts of transporta-

tion on air pollution. This would include comprehensive and up-to-date information

on emissions rates and traffic characteristics, as well as methods of calculation. For

different types of vehicles, it provided different emissions calculating formulas. For

example, the emissions model for light-duty gasoline vehicles with weight less than

3.5 t is shown in Figure 3.5. We focus on the last row, which is the model for carbon

dioxide emissions.
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Figure 3.5: An example of the MEET project emissions models: speed dependency
of emissions factors for gasoline light duty vehicles<3.5 t (Table A22 in the MEET
project report).

To validate the accuracy of the MEET project models, we compare the re-

sults given by the MEET models with vehicle manufacturing information and fuel

efficiency studies. For the real-life field service provider, one of their fleets includes

medium vans similar to Fiat Doblo. The manufacturing information of Fiat Doblo

is shown in Figure 3.6. It is a petrol car, and its gross weight is 2990 kg. This

vehicle belongs to the category of light-duty petrol vehicles and is mapped to the

CO2 formula in Figure 3.5.

(a) Picture of Doblo (b) Details of Doblo

Figure 3.6: Fiat Doblo manufacturing information.

In this study, we take a daily schedule of an engineer who drives this car to

customer sites for providing the services, as a test case. The schedule of Engineer

Bob (alias) on 17th July 2016 is selected. The journey of this engineer on this day

is shown in Figure 3.7.

50



3. CO2 EMISSIONS CALCULATOR

Figure 3.7: One-day live schedule of an Engineer.

Based on the mapped emissions formula of the MEET project in Figure 3.5, we

calculate the amount of carbon dioxide emissions for each journey of this engineer

on this day. The results are shown in Table 3.2. The vehicle is estimated to have

generated total CO2 emissions of 37.557 kg for the daily schedule. As can be seen

from the table, the speeds of the journeys are very slow (around 30 km/h). Manu-

facturers do not provide emissions or fuel consumptions information for such slow

speed. So we compare the emissions results given by the MEET formula and the

manufacturer information for the conditions for which manufacturer information is

available. According to Fiat manufacturing information, its CO2 emissions rate is

163 g/km. The total distance travelled in this particular schedule is 119.988 km.

Based on manufacturing information this route plan will generate 19.397 kg CO2.

This figure is based on the most efficient free-flow travel speed. If we substitute

the free-flow travel speed (113 km/h) into the MEET model, we get 22.122 kg CO2.

This figure is similar to the previous calculation.

However, travelling at the free-flow speed is impossible especially in an urban

area where there is a speed limit of 48 km/h in the UK. Let us look at the fuel

efficiency information of Fiat Doblo. The urban miles per gallon (mpg) is 30.7,

which means one litre of fuel can power travel of 10.805 km in a metropolitan area.
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One litre of petrol burnt thoroughly will generate 2.31 kg CO2, based on material

carbon composition. So based on its fuel efficiency in an urban area, it will emit

25.44 kg CO2. On the other hand, using the MEET formula with 48km/h urban

travel speed limit will produce 27.891 kg CO2. Again this result is similar to the

calculation based on manufacturing information.

TaskID StartTravelTime Distance(km) Speed(km/h) Emission(kg)
1 09:30 30.896 28.735 9.790
2 11:13 27.193 28.735 8.616
3 16:55 10.241 27.856 3.293
4 18:17 18.056 27.856 5.806
5 19:19 6.462 30 2.005
6 20:15 8.414 30 2.610
7 22:20 6.542 34 1.899
8 23:17 12.184 34 3.537

Total 37.557

Table 3.2: Carbon dioxide emissions amount calculated by MEET model.

Under each of the above two conditions, there is only a small difference between

the results of the two calculation methods. Considering that the manufacturer test

may not have included the waiting and acceleration and deceleration at traffic lights,

we can conclude that the MEET project model generates a comparable amount of

CO2 as provided by manufacturing information and fuel efficiency studies, under

different scenarios. Therefore, the MEET model will be in use in this research to-

gether with its UK version the NAEI model.

3.5 The objective of minimising CO2 emissions

A primary question that arises about green vehicle routing problem is whether it is

different from the traditional travel time minimisation problem. In this section, we

are going to demonstrate the possible conflicts between travel time objectives and

52



3. CO2 EMISSIONS CALCULATOR

emissions objectives under different scenarios and test the scenarios with numerical

experiments.

The total amount of CO2 emissions is:

E =
ˆ t=T

t=0
f (vt) vtdt, (3.5)

where E is the emissions in g and vt is the time-dependent travel speed in km/h.

For a specific type of vehicles (Light goods diesel vehicle, EURO 5, 1.76-3.5 t), the

NAEI formula R110 is:

f(vt) = 3903.4
vt

+65.04+0.44246vt+0.01324v2
t −6.7705·10−5v3

t +7.07·10−7v4
t , (3.6)

where f(vt) is the emissions rate in g/km. Solve f ′(vt) = 0 gives us the optimal

speed that minimise emissions in the range of valid speeds. v∗t = 49.440 km/h. The

relationship between emissions and travel speeds or travel time are plotted in Figure

3.8, and we can observe that the relations are not linear nor monotonic.

Figure 3.8: Left: relationships between CO2 emissions and travel speed for two
different vehicles (R117 on p.55); Right: relationships between CO2 emissions, start
travel time and total travel time derived from equation (3.5).
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3.5.1 Scenario 1: constant speed versus time-dependent travel speed

If the travel speed is a constant, which is normally assumed to be a constant in the

traditional VRP problem, we will have v(t) = v. Then equation E can be rewritten

as: E = f(v) · v · T , where f(v) is constant as well. In this case, minimising T is

the same as minimising E. In the time-dependent travel speeds settings, minimising

T and E can be different. To minimise T , the scheduler may choose to schedule

tasks to travel at 70 km/h time period and during 50 km/h time period to carry

out the work and avoid travelling. In this way, the scheduler could save the total

travel time. However, for traversing the same pair of nodes, we know that travel at

50 km/h is the optimal speed which causes an increase in travel time compared to

travel at 70 km/h but reduces the amount of CO2 emissions.

Assuming a homogeneous fleet as we want to test the effect of time-varying

travel speed only, we carried out a numerical experiment on a small test case with

five customers and two vehicles. The test case was formulated as a VRP model

and solved to optimality using Xpress. The details of the mathematical model will

be shown in Chapter 6. Xpress applies a powerful branch and bound method to

tackle this form of optimisation model to global optimality. We first solved the

time-dependent VRP model with the objective to minimise total CO2 emissions,

and then we solved the same model with the objective to minimise total travel time.

The results of the global optimal solutions are shown in Figure 3.9. The results

demonstrate that for this specific type of commercial van under the normal traffic

condition with fluctuating speeds, there is a discrepancy between CO2 emissions

minimisation and travel time minimisation. The greenest route plan can reduce the

total emissions by 5.1% but at a sacrifice of 17.1% total travel time.
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Figure 3.9: Comparisons between CO2 emissions and travel time objective.

3.5.2 Scenario 2: different vehicles

Next, we consider the difference of emissions produced by different vehicle types.

For a specific type of vehicle, the NAEI formula R110 is in equation (3.6). For

another type of vehicle (Rigid heavy goods diesel vehicle, EURO V, 3.5-7.5 t), the

NAEI formula R117 is:

f(vt) =502.59
vt

+ 690.15− 26.109vt + 0.65957v2
t − 8.3582 · 10−3v3

t + 5.2817 · 10−5v4
t

− 1.1815 · 10−7v5
t . (3.7)

Let us address the constant speed scenario. If the travel speed is 70 km/h, to min-

imise travel time, there is no difference between allocating tasks to which type of

vehicles. However, when considering minimising emissions, the allocation is vital.

In this case, the scheduler will try to allocate more travel to vehicle R110 as it gen-

erates less emissions on speed [10, 120] as shown in the graph on the left in Figure 3.8.

Assuming constant travel speed as we want to test the effect of different ve-

hicles on emissions only, we carried out a numerical experiment on the same test

case as in Scenario 1. The travel speed is set to be 70 km/h for all periods, and the

two vehicles, one commercial van and the other is a heavy goods van (HGV), have
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different emissions rates at this speed: 210 g/km and 559 g/km respectively. We

first solve the VRP model with the objective to minimise CO2 emissions, and then

we solve the same model with the objective to minimise total travel time. The con-

straints are two vehicles available (one commercial and one HGV), working duration

of engineers and time window constraints of tasks. The GeoMap demonstration of

the global optimal solutions is shown in Figure 3.10, where dots mean locations on

the map and lines indicates routes between places.

Figure 3.10: Comparisons between CO2 emissions and travel time objective on
Cartesian coordinate map system (tested on randomly generated locations).

The results demonstrate that even with a constant travel speed, there is still

a conflict discrepancy between CO2 emissions minimisation and travel time minimi-

sation if the fleet is heterogeneous. The greenest route plan can reduce the total

emissions by 34.1% but at a sacrifice of 6.7% entire travel time. Based on the Ge-

oMap, we could observe that with emissions minimisation routes (Figure 3.10, left),

more tasks are assigned to the commercial van, and with travel time minimisation

routes (Figure 3.10, right), tasks are evenly assigned to both vehicles.

3.6 Benefits and business application of CO2 emissions cal-

culator

The calculator of CO2 emissions has been introduced into a field service provider to

increase the business awareness of green logistics. For the industry collaboration,
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the emissions calculator has been implemented in different ways for different users

and various purposes. Benefits are observed or expected to be observed since the in-

troduction of green logistics into their real-life field scheduling and routing decision

system. A summary of all the benefits and business applications is demonstrated in

Figure 3.11. The details of business applications and the impacts are explained in

Section 3.6.1 and 3.6.2.

Figure 3.11: Business applications.

3.6.1 Web portal and web service for on-demand CO2 emissions data

consumption

A web portal was designed to track the field service provider’s carbon footprint at

different granularities for a selection of time periods. The historical data of com-
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pany’s schedules come from backend data schema. This web portal was developed

under Java JSF framework, and the connection to the company’s database is built

using Hibernate.

Users such as a tasks manager may want a one-time check on one schedule

or want to populate the emissions to a specific data table in the data schema for

storage, and the application used by this manager is running on a different platform

with a different framework. In this situation, web service is required. Web service

is defined as the communication between client and server application through the

World Wide Web’s (WWW) HyerText Transfer Protocol (HTTP). RESTful Web

Services are based on Representational State Transfer (REST) architecture, where

data and functionalities are treated as resources and each can be assessed using a

unique Uniform Resource Identifier (URI), e.g. web link. It regulates both the client

and server side architecture and designs a stateless communication protocol, e.g.,

HTTP. The advantages of RESTful Web Services are loose coupling, which means

the client side need not be aware of the back end code or implantation details. So this

provides a platform and programming language independence. The implementation

uses Java Apache CXF (JAX-RS). The web service is deployed on the company

server using Tomcat 8.5. Swagger.io is implemented to visualise the resources and

functionalities of the CO2 emissions services to generate beautiful and interactive

documentation automatically. Front-end users could easily test and try the service

out with the swagger user interface of the web service. The snapshot of the web

service is shown in Figure 3.12. The try-out of the web services is shown in Appendix

C.
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Figure 3.12: CO2 emissions web service.

The available services are:

• The NAEI emissions formulas lookup

• Vehicles specifications map to the NAEI formulas

• Calculate emissions of travelling to a task based on a speed profile or another

web service

• Calculate emissions of travelling to a task based on telematics data

• Populate emissions table of a period based on speed profile

• Populate emissions table of a period based on telematics data

• Populate average emissions per day table of a period

• Populate average emissions per day per engineer table of a period
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The emissions of travelling to a task can be used for tasks pinning which is

allocating or recommending tasks to an engineer. With the information of CO2

emissions listed alongside the tasks recommended to engineers, engineers may select

the task with the smallest amount of CO2 emissions. This will help the company to

reduce emissions in the long run.

3.6.2 Heat Map visualisation

The business impact of the application of introducing green logistics into field ser-

vice scheduling and routing can be illustrated graphically, by analyzing a sample

corresponding to a scheduling profile of 179 engineers, with activities between 1st

May and 15th May 2017. This sample resolves 4173 unique tasks in Colchester and

Ipswich domain, where 94 active service sites reported activities. It can be noticed

from Figure 3.13(a), higher emissions from 7 to 9 hrs. compared to the picture re-

ported in Figure 3.13(b), which, in turn, reports the recorded emissions from 11 to

13 hrs. In the figure, roads in the purple represent the transited route with certain

CO2 emissions. Yellow colour indicates higher CO2 emissions and red colour spots

a concentrated CO2 emissions point. The heat maps shown in the figure reflect the

situation in a working day. The amount of emissions of a particular point on the

map is an accumulated amount for the time period measured, so the higher level

of emissions concentration is caused by two possible reasons, 1) high frequency of

travel, 2) congestion. As the task levels are similar in the two periods, the worse

congestion in the 7 to 9hrs period makes the heat map more amber in colour.

The threshold values are adjusted for comparison purposes according to the

desired snapshot. Threshold values define the range of values corresponding to

threshold colours. For example, if the emissions value is in the range of medium to

high, the colours shown on the map will be red and amber colours. Therefore, it is

categorised in according to certain ranges, such as

tlow = x[min, µ− σ2] (3.8)
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(a) from 7 hrs. to 9 hrs. (Inclusive). (b) from 11 hrs. to 13 hrs. (Inclusive).

Figure 3.13: CO2 Heat map visualisation.

tmedium = x[µ− σ2, µ+ σ2] (3.9)

thigh = x[µ+ σ2,max], (3.10)

where x corresponds to the CO2 value to be represented, min is the minimum CO2

value recorded, µ is the mean of the CO2 emissions after computation, σ2 is the

standard deviation of this CO2 computation in the specific time window being eval-

uated and max is the highest recorded value for the CO2 in the sample in that slot.

Therefore, the resulting thresholds are not fixed and correspond to the particular

desired granularity.

3.7 Summary

In this chapter, the components of a Java program used to calculate CO2 emissions

are introduced. The first component calculates the speed profiles for each domain,

and specifies how they are constructed. Then a simple linear regression model is

built to estimate the road distance from latitude and longitude. Furthermore, it

has two well-applied emissions models that end users can choose from depending

on the information obtained. Both emissions models require the knowledge of ve-

hicle details and these are mapped to corresponding emissions formulas. A desktop

Java GUI application is developed using Java Swing to help end users to do the

mapping. To test the accuracy of the emissions calculators, the MEET emissions

61



3. CO2 EMISSIONS CALCULATOR

calculator’s computational results are compared with vehicles manufacturing infor-

mation on real road journeys of a one-day schedule and the MEET one is believed

to perform equally well. Results show that the emissions calculators give a com-

parable amount of CO2 emissions as provided by manufacturing information and

fuel efficiency studies, under different scenarios. Furthermore, in the last section of

this chapter, the discrepancy between CO2 emissions minimisation and traditional

travel time minimisation are demonstrated using numerical experiments with the

NAEI emissions calculator. Numerical experiments illustrate the scenarios where

the discrepancies between objectives exist, and hence it is reasonable to distinguish

the problem of minimising emissions from the traditional travel time minimisation

problem. The CO2 calculator has been introduced to a field service provider on its

real-life field scheduling system. The business applications including a web portal,

web services, and a heat map visualisation are explained, which demonstrates the

potential real-life impact of green logistics.

In the next chapter, the CO2 emissions calculator proposed in this chapter will

be applied to an incentive pricing problem to minimise CO2 emissions of delivery

vehicles.
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4 Preliminary incentive pricing model to minimise

CO2 emissions of delivery vehicles

In this chapter, we consider a problem of scheduling services at customer sites by al-

locating them to engineers each with a vehicle. Customer orders arrive dynamically

online or by a call, and each customer order comes with a preferred time window. A

time window is a period of time within which the service must start, e.g., a two-hour

time window such as 8:00am-10:00am. We propose a new approach to this problem

which applies low-emissions vehicle scheduling techniques with dynamic pricing to

reduce CO2 emissions and maximise profit. When a customer requests for service

with a preferred time window, the company will provide the customer with additional

service time window options and their corresponding prices. Incentives are included

in the prices to influence the customer’s choice in order to reduce CO2 emissions. To

help the company in determining the incentives, our approach solves the problem

in two phases. The first phase tries to schedule the task in each of the possible

time windows with the objective of minimising CO2 emissions and the second phase

solves a dynamic pricing model to decide the actual time window for the service so

that the expected profit can be maximised. The customer sites considered are all in

a confined geographical area hence the travelling distances within the area are not

significantly different but the time of travel makes a more significant difference in

vehicle CO2 emissions. Therefore, the first phase problem can be considered as a

vehicle scheduling problem (VSP) with different times of travel between customers

at different times of a day due to traffic condition. The VSP is to allocate the service

tasks to the schedules of a fleet of vehicles initially located at a depot. Since traffic

conditions have a significant influence on CO2 emissions, the amount of emissions

generated and travel time per trip is modelled as being time-dependent to capture

congestion patterns. The second phase determines the prices for the time window

options provided to the customer. The prices will include incentives to encourage

the customer to choose options with low CO2 emissions cost. As the cost of engineer

wages is fixed, the only cost varying with delivery option is emissions cost or fuel

cost. A cost value is assigned to each kg of CO2 emissions. Environmental sustain-
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ability is a concern for all, hence the discounted delivery windows will be tagged as

green/environmentally friendly windows showing the amount of emissions that can

be saved by choosing such options, which may further influence customers to choose

these windows. The problem considered here is common for services in which there

are many competitors and customer retention is important. For example, this may

apply to home delivery or pick-up services, as well as installation or maintenance

services.

We develop a new time-dependent CO2 emissions minimisation scheduling

model and an improved incentive dynamic pricing model for the two phases, re-

spectively. The proposed approach is tested through computational studies that

simulate the situation of a service delivery company. Assumptions are made to sim-

plify the model such as homogeneous distance and linear demand model, and those

assumptions will be removed in the following chapters to provide a more realistic

model.

The rest of the chapter is organised as follows. Section 4.1 describes the prob-

lem in more detail and presents a two-phase solution framework. Mathematical

models for the two phases are formulated in Sections 4.2 and 4.3 respectively. The

simulation results and sensitivity tests are shown in Section 4.4. Finally, concluding

remarks are given in Section 4.5.

4.1 Problem description and solution approach

We study a problem where a company sends engineers to customer sites to provide

maintenance and installation services in a confined area. The company divides each

day into several time windows. Typically each customer makes a request for the

service through a website or telephone. The customer’s order normally comes with

a preferred time window for the service to start. Instead of simply accepting the

customer requested time window, the company can provide the customer with a

number of service time window options and their corresponding prices. Incentives
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are included in the prices to influence the customer’s choice to help the company

ensure a schedule which reduces CO2 emissions. To deliver the services, each engi-

neer is driving a vehicle, typically a van with the necessary tools. Therefore, the

assignment of tasks to the engineers is equivalent to assignment of tasks to the ve-

hicles. The distances among customer sites and the depot are all not far and maybe

considered the same, e.g. 5 km. The average travel speeds are fluctuating during the

day because of the traffic conditions, so the problem can be considered as a vehicle

scheduling problem (VSP) with time windows extended to capture different times of

travel between customers at different times of a day, rather than traditional vehicle

routing problem.

Traffic conditions and travel speeds have a significant influence on CO2 emis-

sions, and so the level and cost of emissions are time-dependent. Though the level

of emissions is also related to other factors such as vehicle load and road character-

istics, this research assumes homogenous vehicles and focuses on timing of travel to

take into account the different congestion conditions. Based on the traffic pattern

of the area, a day is divided into several time slots, e.g. one hour, such that travel

speed as well as the emissions level within a time slot can be considered the same.

Most previous research assumes that all information is known at the time of

planning and hence solves a static vehicle scheduling problem. In this study we deal

with a more dynamic nature of demand, where at the start of the schedule planning

horizon, the planner has an initial set of previously accepted jobs with their agreed

time windows. Meanwhile, new customers will arrive in the system dynamically each

with an original preferred time window for service start. At the time of each new

customer arrival, the problem is to determine the incentives and hence the prices for

the service for different time windows and, once the customer selects a service time

window based on this price information, to update the schedule by including both

the new task and the existing tasks not performed yet. The overall objective is set

to maximise the expected profit which is defined as the standard service price minus

the expected incentives and the emissions cost, aiming for reducing the amount of
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CO2 emissions as well as increasing profit.

We propose a new approach to this problem which applies both low-emissions

vehicle scheduling techniques and dynamic pricing. An initial schedule of the ve-

hicles is constructed based on information of the initial set of tasks. Whenever a

new customer order arrives with an original time window preference, prices for the

task to be performed in different time windows are determined and presented to

the customer; the new task will be scheduled to start in the time window that the

customer selects based on the price information. The actual start times and the

vehicles for the unserved existing tasks may be changed in the schedule to minimise

the emissions cost. However, their agreed time windows will remain satisfied in the

updated schedule. Emissions cost is defined as the monetary value of the amount of

emissions, which is the cost of its fuel, set to £1.371/kg in this study. The mone-

tary value of emissions is not accurate and it could be more to include the value of

damage to environment or damage to the company’s goodwill. The number here is

for demonstration purpose, and the methodology and results will not be affected if

a different value is chosen.

Therefore, we need to make both pricing and scheduling decisions each time

a new customer order arrives. These two decisions are interrelated and so an inte-

grated model would be difficult to formulate and solve. We propose to make these

two decisions in two phases as outlined below.

The first phase deals with the scheduling decisions. Although the scheduling

decision needs the information about the customer selection of time window for the

new task which in turn needs the pricing decisions, we know for sure that the new

task must be in one of the time windows. Thus, we solve several possible scheduling

problems each assuming the new task being allocated to a different time window.

Those scheduling problems are formulated as mixed integer linear programming

models. The solution of each problem provides a schedule minimising emissions cost

with the new task scheduled to start in the corresponding time window.
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The second phase makes pricing decisions using the emissions costs obtained

in the first phase. Based on the new customer’s original preference, the probabilities

for the customer to choose each time window are estimated. The way of these proba-

bilities changing with pricing changes is assumed to be known. The pricing problem

in the second phase can then determine the incentives/prices for each time window

so that the expected profit is maximised. Profit is calculated as the fixed charges of

service minus incentives offered minus the emissions cost. Once the customer selects

a time window based on the pricing results, the corresponding schedule obtained in

the first phase can be used. The second phase problems are modelled as non-linear

programming models with linear constraints and solved.

We will model the scheduling problem of the first phase and the pricing problem

of the second phase in Sections 4.2 and 4.3, respectively. Note that the scheduling

model can also be used for scheduling the initial set of customer jobs. Hence all

the decisions can be made with these two models. The framework of the approach

is illustrated in Figure 4.1. Within this framework the models are used to help the

planner to respond to customer requests and schedule the tasks.

Figure 4.1: The framework of the solution approach.
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4.2 First phase: The green vehicle scheduling model

The first phase model schedules or reschedules all the service tasks on hand to the

vehicles with the objective to minimise the emissions cost. There are a fixed number

of vehicles available in the depot at the start of the planning horizon; they will all

be scheduled in the day. At the start of the planning horizon, the tasks considered

in the model are the initial set of customer orders, while the tasks in each of the

subsequent models include the new customer order and the unserved existing tasks.

Each task has a required time window for service to start. The time window for the

new task is the assumed possible time window. The service times of different tasks

can be different to represent different duration of tasks.

The whole planning horizon is ranged from 0 to T , where T is the last time

a new customer can be served, and where 0 indicates the start of a working end

and T indicates the end of a working day correspondingly. Following Hickman et al.

(1999), we divide the whole planning horizon into several equal time slots. Each time

slot has an average travel speed. Based on the NAEI emissions model previously

mentioned, CO2 emissions could be computed for each time slot accordingly. Figure

4.2 presents a speed profile over the planning horizon for London, UK, generated

based on travel speed and common congestion periods summarised from Road Con-

gestion and Travel Times reports (Department for Transport, 2016). The amounts

of emissions are computed based on this profile.
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Figure 4.2: Speed profile over the planning horizon for London, UK.

Note that as time goes on, when a new customer order arrives, the planning

horizon for the model will be shorter than the initial planning horizon. To keep

the model general, we redefine the time so that the planning horizon for the model

always starts at time 0 and ends at T . T will be smaller in later run of the model.

Other time related parameters such as time windows and time slots will also be

adjusted accordingly. At the time a new customer arrives, some existing tasks may

have started but not completed. Such tasks have to be continued without change.

Until the completion time of such a task, the vehicle assigned to this task will not

be available.

Notations

Parameters:

i, k: index of customers;

j: index of vehicles;

N : total number of customers;

V : total number of vehicles available;

M1: a big positive number;

T : end time of the planning horizon;
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n: total number of time slots in the planning horizon, the length of each slot

is T/n;

bi, ei: beginning and ending times of the required time window in which a

vehicle must arrive to customer i;

si: service time needed for customer i;

τt: travel time between any two sites;

aj: the time when vehicle j becomes available;

ct: emissions cost for a trip in time slot t.

Variables:

Ci: emissions cost of serving customer i;

ui: time point a vehicle starts travelling to customer i;

wi: time point the service at customer i starts;

xij =


1, if customer i is allocated to vehicle j

0, otherwise
;

yik =


1, if customer i is served before customer k by the same vehicle

0, otherwise
;

zit =


1, if travelling to customer i starts in time slot t

0, otherwise
.

When a new customer requests service, the scheduling problem needs to be re-solved.

This is formulated as follows.

Minimise ∑N
i=1 Ci

Subject to

Ci ≥ ct + (zit − 1)T, i = 1, . . . N ; t = 1, . . . , n (4.1)
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V∑
j=1

xij = 1, i = 1, . . . , N (4.2)

n∑
t=1

zit = 1, i = 1, . . . , N (4.3)

yik + yki = 1, i, k = 1, . . . N, i 6= k (4.4)

bi ≤ wi ≤ ei, i = 1, . . . , N (4.5)

wi ≥ ui + τt + (zit − 1)T, i = 1, . . . , N ; t = 1, . . . , n (4.6)

wi + si ≤ uk +M1(3− xij − xkj − yik), i, k = 1, . . . , N ; j = 1, . . . , V (4.7)

ui ≥ (t− 1)(T/n)zit + T (zit − 1), i = 1, . . . , N ; t = 1, . . . , n (4.8)

ui + τt ≤ t(T/n) + T (1− zit), i = 1, . . . , N ; t = 1, . . . , n (4.9)

xij, yik, zit ∈ {0, 1}, i, k = 1, . . . , N ; t = 1, . . . , n (4.10)

wi, ui ≥ 0, i = 1, . . . , N (4.11)

The objective is to minimise emissions cost. Constraints (4.1) define the emis-

sions cost of customer i. Constraints (4.2) specify that each customer is served once

and by only one vehicle. Constraints (4.3) ensure that travelling to each customer

i starts in only one time slot. Constraints (4.4) indicate the sequence of serving

customers, a sub-tour elimination constraint. Constraints (4.5) ensure that the time

window requirements of each customer must be satisfied. Constraints (4.6) require

that service start time must allow for travel time between customers. Constraints

(4.7) will take effect when xij = 1, xkj = 1, yik = 1, which means customers i

and k are both served by vehicle j, and customer i is served before customer k.

Under this circumstance, the constraints ensure that the vehicle can start travel-

ling to customer k only after it completes serving customer i. Constraints (4.8) to

(4.9) identify the start and end time slot indexes. These help us to link continu-

ous variable u and binary variable z. Constraints (4.10) and (4.11) are binary and

non-negativity constraints.
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4.3 Second phase: The pricing model

When a new customer arrives with an initial preferred time window, the planner will

compute a price menu for each available time window. Incentives are given to time

windows which produce lower emissions; with the aim of shifting the customer’s

demand. The incentive pricing model is adopted from Campbell and Savelsbergh

(2006), whose model uses a distance cost function compared to the emissions cost

function used in the current study. The emissions cost of each time window is cal-

culated from the output of the first phase green vehicle scheduling model. These

are used in the pricing model to decide which windows should receive incentives and

the amounts of incentives. We also aim to improve on their model in two ways. The

amount of incentives they offer is highly restricted to the lowest initial probability

of choosing one time window and the time windows which will be given incentive

are pre-determined, refer to Campbell and Savelsbergh (2006) for more details. Our

model amends their model by imbedding the selection of time windows into the

optimisation, and in our model incentives are not restricted by the lowest initial

probability. In line with Campbell and Savelsbergh (2006), we assume that the

company has knowledge of the likelihood of a customer selecting a specified time

window and the effect of price change on the customer’s buying behaviour. With the

advent of the internet, it is reasonable to assume that businesses have access to vast

historical data about customers. For example, online grocery shopping and delivery

companies have developed interfaces for customers to book a service and monitor

their purchasing behaviour as well as their reactions to incentives or discounts.

Notations

Parameters:

h: index of time windows;

O: sets of all time windows;

ph: probability of the current customer choosing time window h if no incentives

are offered;
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Ch: additional emissions cost of including the current customer into an opti-

mised schedule (emissions cost is proportional to emissions);

r: revenue that the current customer will bring;

β: price sensitivity parameter;

B: maximum incentive that may be applied to time window h;

M2: a large positive number.

Variables:

Ih: incentive for time window h;

z: amount of probability reduced;

quh: the probability that time window h which gets an incentive will be chosen

by customer;

qvh: the probability that time window h which does not get an incentive will

be chosen by customer;

αh =


1, if Ih ≥ 0

0, if Ih = 0
;

Xh =


1, if ph − z > 0

0, if ph − z ≤ 0
.

The pricing model is formulated as follows:

Maximise ∑
h∈O(r − Ck − Ih) · quh +∑

h∈O(r − Ch) · qvh

Subject to

0 ≤ Ih ≤ B · αh, ∀h ∈ O (4.12)

quh ≤ ph + β · Ih, ∀h ∈ O (4.13)

quh ≥ ph + β · Ih + (αh − 1), ∀h ∈ O (4.14)
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quh ≤ αh, ∀h ∈ O (4.15)

αh + qvh ≥ ph − z, ∀h ∈ O (4.16)

qvh ≤ ph − z + 1−Xh + αh, ∀h ∈ O (4.17)

ph − z ≤ Xh + αh, ∀h ∈ O (4.18)

qvh ≤ Xh + αh, ∀h ∈ O (4.19)

qvh ≤ 1− αh, ∀h ∈ O (4.20)
∑
h∈O

(quh + qvh) = 1 (4.21)

Ih ≥ 1
M2 +M2 · αh −M2, ∀h ∈ O (4.22)

αh ≤ 2 ·M2 · Ih, ∀h ∈ O (4.23)

z, quh, qvh ≥ 0, ∀h ∈ O (4.24)

Xh, αh ∈ {0, 1}, ∀h ∈ O (4.25)

The objective is to maximise expected profit. The first part of the objective

function represents the expected profits from the time windows which are given in-

centives and the second part represents the expected profits from the windows which

do not receive any incentive.

Constraints (4.12) restrict the incentive to be in range 0 to B. Constraints

(4.13) - (4.15) calculate the adjusted probability quh = ph +β · Ih for all h receiving

incentives. If time window h does not receive an incentive, quh = 0. If a time

window does not receive an incentive, the probability of the customer choosing it

will reduce, this is represented by constraints (4.16) - (4.20). If the adjusted prob-

ability of a time window which does not receive an incentive is greater than zero,

i.e. ph − z > 0 then the adjusted probability, qvh = ph − z, otherwise, qvh = 0.

Constraints (4.21) ensure that the probabilities for all time windows sum to one.

Constraints (4.22) and (4.23) indicate that if a time window receives an incentive,

the amount of incentive is greater than zero. Constraints (4.24) and (4.25) are non-
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negativity and binary constraints.

Remark 1 Offering no incentives is a feasible solution.

When Ih = 0 for all h, from constraints (4.22) we have αh = 0. Then from the

first four constraints (4.12) to (4.15) we have quh = 0. Constraints (4.16) to (4.20)

can be satisfied by Xh = 1 and qvh = ph − z. Then since based on constraints

(4.21) ∑h∈O

(
quh + qvh

)
= 1, ∑h∈O

(
0 + ph − z

)
= 1. Since the initial probabili-

ties satisfy ∑h∈O p
h = 1, we know that z = 0. So the solution with no incentives

satisfy all the constraints, i.e., feasible, and the corresponding objective value is∑
h∈O

(
r − Ch

)
· ph = r −∑h∈O C

h · ph.

Remark 2 If an incentive is offered in the optimal solution, then the solution will

reduce the expected carbon dioxide emissions compared to a model with no incentive.

Because no incentive is a feasible solution, if Ih > 0 then by definition the ex-

pected revenue ∑h∈O

(
r − Ch − Ih

)
· quh +∑

h∈O

(
r − Ch

)
· qvh > r−∑h∈O C

h · ph.

The expected revenue can be re-written as r −∑h∈O C
h
(
quh + qvh

)
−∑t∈O I

hquh.∑
h∈O I

hquh is an additional cost to the objective function then the expected carbon

dioxide emissions cost ∑h∈O C
h
(
quh + qvh

)
must be lower for an overall revenue

increase.

4.4 Numerical experiments

The green scheduling and pricing approach is tested using numerical experiments.

The first phase model is solved using Xpress optimiser, which applies a powerful

branch-and-bound method to solve mixed integer linear programing models. The

second phase model is solved by Lingo optimiser which deploys both successive lin-

ear programming (SLP) and generalized reduced gradient (GRG) algorithms to solve

non-linear programming models. In the experiments, the whole planning horizon is

set to be one day from 8:00am to 6:00pm. For convenience we choose a time unit
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such that the length of this planning horizon is 1000. The whole period is divided

into five equal time windows that customers may choose for their requested service

to start. Reflecting the congestion conditions, the speed profile is expressed using

ten time slots as illustrated in Figure 4.2. A time slot refers to a time interval asso-

ciated with time-dependent travel speeds, while a time window is used to describe

an option of time periods for customer booking. The solution approach described in

Section 4.2 is implemented simulating customer arrivals and the service operations

for the whole planning horizon. The models in the first and second phases are solved

using Xpress Optimiser and Lingo, respectively. We generate an initial set of cus-

tomers at the beginning of the day and simulate subsequent customer arrivals using

Poisson process. For each customer arrival, a preferred time window is randomly

generated. The probability for the customer accepting each available time window

is calculated using a triangular distribution with the preferred time window as the

mode. Details of the triangular distribution are provided in Appendix D. The green

scheduling model is run to obtain the emissions cost for the task being performed in

each available time window. The pricing model is then run to decide the incentives

given for each of these time windows. Table 4.1 shows the inputs and outputs of

the pricing model for an example customer. The customer arrives at time 284. His

initial preference is time window [600,800]. The initial probabilities of choosing the

available time windows and the emissions costs for the time windows are given in

Table 4.1. The pricing model offers incentives for time window [800,1000] which has

the lowest emissions cost. The probability profiles before and after incentives can

be seen in Figure 4.3. As can be seen from the figures in Table 4.1 the expected

emissions cost with the incentive is lower than the emissions cost for the customer

initial preferred time window. The customer’s final choice of the service time win-

dow is randomly generated using the adjusted probability profile. The task is then

scheduled in the selected time window, and this customer becomes an existing cus-

tomer.
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[0,200] [200,400] [400,600] [600,800] [800,1000]
Customer Arrival Time 284
Available Time Windows – X X X X

Initial Probabilities – 0.133 0.267 0.4 0.2
Emissions Costs – 50 35 35 20
Incentives – 0 0 0 6.5
Adjusted Probabilities – 0 0 0.15 0.85

Table 4.1: An example customer for illustration.

(a) Before incentive

(b) After incentive

Figure 4.3: Customer Choice Probability.
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4.4.1 Performance of dynamic pricing

We first compare our approach with the green scheduling method without incentives.

The green scheduling method is implemented using the same simulation framework.

In this method the scheduling model in Section 4.3 is applied to schedule each

customer’s task always to their preferred time window. We assume there are five

vehicles available at the depot and an initial set of 10 customers at the start of the

planning horizon. We simulate the customer arrivals using a Poisson process with

mean inter-arrival time of 50, and therefore on average there are approximately 20

new requests per day. The service time for each customer is different, which is ran-

domly generated in the range of [55, 150] to mimic the uncertainties in the service

times of this type of problems. We generate 10 set of customer arrival times, their

initial preferred time windows and service times, each for one day. Each set of data

is called a scenario. Because each customer’s final choice is uncertain, the result

may be different in different runs even for the same scenario. Therefore, we run

each of these 10 scenarios 10 times and calculate the average emissions and profit.

We assume each customer will bring a revenue of 30, which is about 10 times the

amount of emissions cost, as we also need to cover other cost, e.g. engineer wages,

to make profits. The profit is calculated by the revenue minus incentives and the

emissions cost. We compare the two methods in terms of the CO2 emissions cost and

the profit. The average computational time is on average 5 minutes per customer

even for this simplified model, so using software solver may not be applicable in real

life. The results are shown in Table 4.2 and Table 4.3 respectively.
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Scenarios No. of new

customers

Ratio of

existing

customers

Average

emissions of 10

replications

with incentives

Emissions

with no

incentive

CO2

Savings

(%)

1 20 0.33 75.81 78.88 3.8974

2 15 0.40 66.99 70.41 4.8570

3 20 0.33 94.77 117.1 19.0690

4 20 0.33 104.49 146.71 28.7749

5 15 0.40 60.39 62.58 3.4943

6 21 0.32 79.13 81.07 2.3890

7 20 0.33 83.92 112.14 25.1684

8 18 0.36 74.25 79.07 6.0915

9 17 0.37 96.62 104.79 7.7931

10 18 0.36 214.56 229.46 6.4951

Average 0.35 10.8030

Table 4.2: Comparing CO2 emissions.
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Scenarios No. of new

customers

Ratio of

existing

customers

Average profit

of 10

replications

with incentives

Profits

with no

incentive

Improvement

in profit

(%)

1 20 0.33 824.19 821.12 0.3744

2 15 0.40 683.01 679.59 0.5032

3 20 0.33 835.23 812.9 2.7469

4 20 0.33 855.51 813.29 5.1907

5 15 0.40 689.61 687.42 0.3181

6 21 0.32 850.87 848.93 0.2281

7 20 0.33 846.08 817.86 3.4509

8 18 0.36 765.75 760.93 0.6330

9 17 0.37 743.38 735.21 1.1108

10 18 0.36 775.44 760.54 1.9596

Average 0.35 1.6516

Table 4.3: Comparing profits.

The results presented in Table 4.2 and 4.3 clearly demonstrate the effects of

incentives on both the emissions cost and the profit generated. Our incentive model

reduces the CO2 emissions cost by 10.80% on average, compared to a green vehicle

scheduling method without incentive. Meanwhile the average profit increases by

1.65%. The average results show that the incentive pricing model can both increase

profits and reduce carbon dioxide emissions significantly.
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4.4.2 Sensitivity of the two phase approach

4.4.2.1 The ratio of existing customers

The average percentage of existing customers was about 33% in the initial setting

(10 from a total of 30 on average). We change the ratio of existing customers in

the system but use the same setup for other parameters as the first experiment. We

increase the average percentage of existing customers to about 50% (15 out of 30)

and then about 67% (20 out of 30). The number of new customers arriving will now

be 15 and 10 respectively. We examine how the number of existing customers in

the system affects the emissions savings and profit. The emissions cost and profit

results are shown in Tables 4.4 and 4.5, respectively. For the ratio of 53% and 67%

existing customers, the average savings for emissions cost become 5.77% and 3.37%

respectively and the average profits become 0.82% and 0.36% respectively. These

results demonstrate that as the percentage of existing customers increase, there are

fewer new customers arriving during the day and so the system becomes less dy-

namic. The use of the pricing techniques is restricted. Therefore there is less room

for the savings in CO2 emissions cost and for profit improvement.
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Scenarios No. of New

Customers

Ratio of existing

customers

Emissions cost

savings (%)

Improvement

in profit (%)

1 15 0.50 7.8613 0.7895

2 14 0.52 0.0000 0.0000

3 18 0.45 1.7345 0.1535

4 9 0.63 8.7048 2.5403

5 13 0.54 0.4348 0.0367

6 14 0.52 22.6454 2.9654

7 10 0.60 0.1767 0.0155

8 15 0.50 12.2448 1.2925

9 17 0.47 3.8942 0.3635

10 9 0.63 0.0000 0.0000

Average 0.53 5.7696 0.8157

Table 4.4: Comparing emissions and profit with around 50% existing customers.
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Scenarios No. of New

Customers

Ratio of existing

customers

Emissions

cost savings

(%)

Improvement

in profits (%)

1 9 0.69 2.3998 0.2126

2 12 0.63 2.7225 0.2742

3 8 0.71 2.9319 0.2733

4 6 0.77 4.7424 0.4323

5 8 0.71 3.1670 0.2876

6 16 0.56 3.9259 0.6653

7 11 0.65 3.4454 0.4299

8 11 0.65 7.0376 0.7564

9 11 0.65 2.8539 0.2645

10 8 0.71 0.4831 0.0405

Average 0.67 3.3709 0.3637

Table 4.5: Comparing emissions and profit with around 67% existing customers.

4.4.2.2 Variation of emissions level over congested/non-congested pe-

riod

We test the performance of our pricing model in a situation where there is less vari-

ation in emissions cost for different time slots. For example, there is less congestions

and the travel speed varies less during the day like in Yorkshire and the Humber,

UK (Department of Transport, 2016). The less variation speed profile of a day of

Yorkshire and the Humber, UK is obtained as shown in Figure 4.4.
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Figure 4.4: Speed profile with lower variation for Yorkshire and the Humber, UK.

Assuming this new speed profile, we test our model using the same 10 scenarios

as in 4.2 and 4.3, and each scenario is run for 10 times. The results of emissions

cost and profit are shown in Table 4.6. With the new speed profile our model only

saves 0.23% on CO2 costs. The profit improvement also becomes 0.02% only. As

the emissions levels vary less across the day, the differences between the costs of

different time slots are much smaller. Then the attempt to use incentives to shift

customers’ demands makes less difference. Hence the speed profile plays a central

role to the effectiveness of the pricing model.
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Scenarios Ratio of

existing

customers

Average

emissions of

10 iterations

with

incentives

Emissions

with no

incentive

Emissions

cost savings

(%)

Improvement

in profit

(%)

1 0.33 65.10 65.23 0.2054 0.0161

2 0.40 54.17 54.22 0.0861 0.0067

3 0.33 67.44 67.87 0.6385 0.0503

4 0.33 69.42 69.61 0.2750 0.0215

5 0.40 53.73 53.74 0.0140 0.0011

6 0.32 66.93 67.18 0.3788 0.0295

7 0.33 67.18 67.26 0.1140 0.0089

8 0.36 60.65 60.86 0.3385 0.0264

9 0.37 60.76 60.81 0.0822 0.0064

10 0.36 71.92 72.04 0.1596 0.0125

Average 0.35 0.2292 0.0179

Table 4.6: Results for the speed profile with lower variation.

4.4.2.3 Patterns of customer arrivals

We further test the effect of customer arrival patterns on the performance of our

model. We run 10 scenarios that have the same existing customers as the first 10

scenarios in the first experiment, but subsequent customers arrive in three different

patterns. In each pattern, the total number of customers is the same, which is 30.

It means the number of new arriving customers is 20 for each pattern. For Pattern

1, the average numbers of customers arrived in the first and second halves of the

planning horizon are 10 and 10 respectively. For Pattern 2, the average numbers

of customers arrived in the first and second halves of the planning horizon are 5
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and 15 respectively, and for Pattern 3, they are 15 and 5 respectively. Compared

to Pattern 1 where customers arrive more evenly across the planning horizon, Pat-

tern 3 provides the planner more opportunity to price dynamically and influence

the customer’s choice while Pattern 2 provides less opportunity. The savings on the

emissions cost and the profit improvement for the three arrival patterns are shown

in Table 4.7.

Patterns Arriving
customers
[0,500]

Arriving
customers
[500,1000]

Emissions
cost savings

(%)

Improvement
in profits (%)

1 10 10 13.6612 2.5405
2 5 15 5.2594 1.7866
3 15 5 17.2565 3.0734

Table 4.7: Results for different patterns of customer arrival.

The experimental results show that when more customers arrive in the system

early, more savings in CO2 emissions cost and more improvement in profit are ex-

pected. Over time we would expect strategic customers to learn that earlier arrival

into the system results in them receiving the service for a lower price. This may

shift the customer arrival patterns over time to the more profitable one.

4.5 Summary

In this chapter, we have studied a problem where a company sends engineers with

vehicles to customer sites to provide services. Throughout the day customers call or

visit a website requesting for services with preferred time windows and for each cus-

tomer the company needs to schedule the service task to the vehicles. We proposed

a new two-phase approach to this problem. The first phase solves vehicle scheduling

model with the objective of minimising CO2 emissions and the second phase solves a

dynamic pricing model to maximise profit. The approach was tested through com-

putational experiments. The results showed a significant reduction in the amount

of CO2 emissions as well as significant improvement in the total profits. We also

carried out sensitivity tests, of which the results showed that with less dynamics
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in the system, i.e., less new coming customers, or lower emissions variation, the

reduction in CO2 emissions and profit improvement would be lower. The patterns

of customer arrival also affect the results. Although our models were developed un-

der certain assumptions, they are applicable for some real-life situations. The new

approach is an attempt in the new direction of research to exploit the combination

of green VRP/VSP and dynamic pricing techniques. In this chapter, we assumed

that the level of CO2 emissions depends only on different time slots of a given day,

and used exact optimisation methods to solve our mathematical models. The em-

phasis is on verifying the overall approach especially the benefits of incentive pricing.

Under this framework, we will extend the study to consider the actual travel

distance in the schedule. The first phase problem then becomes a time-dependent

green vehicle routing problem which is a relatively new research topic. Like for most

VRP problems, it is difficult to solve the green VRP optimally, especially for the

problem we are facing which requires a quick response to the customer. In the next

chapter, the development of heuristic solution algorithms will be discussed to reduce

computation time.
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5 Solution algorithms

Vehicle routing problems were proved to be NP-hard (Lenstra and Rinnooy-Kan,

1981). Therefore, it is unlikely to solve them optimally in polynomial time. Exact

solution methods consume a large amount of computational efforts and so the size

of the problem they can solve is restricted. For a real-life online service booking

problem such as that we study, where the problem size is large and a response needs

to be given to a customer in a short time, it is more appropriate to use a heuristic

or metaheuristic method, which generates an acceptable solution in a short time. A

survey paper on vehicle routing problems has found that metaheuristics (71.25% of

papers reviewed) were used more often than exact methods and classical heuristics,

furthermore simulation and real-time solution methods were rarely applied (Braek-

ers et al., 2016). Many metaheuristics have been applied in literature to solve vehicle

routing problems and green vehicle routing problems. The state of the art meta-

heuristics used in green vehicle routing problems were reviewed by Lin et al. (2014),

including tabu search, simulated annealing, variable neighbourhood search, genetic

algorithm and ant colony optimisation.

In this chapter, some different metaheuristic methods are implemented and

tested for the green time-dependent vehicle routing problems with time windows,

which is the first phase problem in the thesis. They are neighbourhood based

metaheuristics including tabu search, two variants of variable neighbourhood search

(VNS), simulated annealing and a new self-adaptive simulated annealing algorithm.

We exclude the use of the genetic algorithm and other evolutionary algorithms be-

cause the time window constraints make it hard to maintain solution feasibility

when performing the mutation or crossover operation in these algorithms. It would

be time-consuming to revise infeasible solutions. This will not be suitable for the sit-

uation where quick response is needed. On the other hand, time window constraints

can help to reduce the neighbourhood size for the neighbourhood based algorithms.

The rest of chapter is organised as follows. In Section 5.1 the problem is de-
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scribed. Section 5.2 presents the method for constructing initial solutions for all

the implemented solution algorithms. Section 5.3 shows different ways of generating

neighbourhood solutions. VNS and its variants and tabu search are introduced in

Section 5.4 and Section 5.5 respectively. Section 5.6 shows the real-life test cases

applied for comparing those algorithms, and the comparison results are illustrated in

Section 5.7. Section 5.8 introduces the classic SA and proposed a new self-adaptive

SA, together with the comparisons between them. Summary of this chapter is in

Section 5.9.

5.1 Problem description

The green time-dependent vehicle routing problem with time windows studied here

for service delivery is new and has some different features compared to the traditional

time-dependent vehicle routing problem. As with traditional models, the travel

speed is time-dependent, time window constraints are considered. The new features

are 1) the objective is CO2 emissions minimisation; 2) heterogeneous fleet is used;

3) skill matching constraints. The vehicle scheduling and routing problem of this

study involves real-life tasks locations in the UK. V = v0, v1, . . . , vn is a set of nodes

representing task locations and v0 represents the depot, which is the location where

engineers start and end their daily work journeys. A = {(vi, vj)|vi, vj ∈ V, i 6= j} is

the arc set in the road network. We assume engineers will always take the shortest

path between two nodes, so there is only one path linking the same pair of nodes.

Each arch of A is associated with a non-negative cost Cij, which represents the cost

of travelling from vi to vj. In this study, this cost is the amount of CO2 emissions

computed using emissions models mentioned previously. The travel speed vt is a

time-dependent speed, derived from our speed profile. Engineers may drive differ-

ent vehicles which have different emissions formulas. Each task has a specified skill

requirement and each engineer has a set of skills that determine the types of tasks

he/she can perform. A task can only be scheduled to an engineer with the specified

skill. Each task has a time window requirement [bi, ei], where bi is the earliest pos-

sible time to start this task and ei is the latest time. The service start time must
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be in this range. Each vehicle/engineer has a working period, all travels and works

can only be scheduled within this working period. In summary, the problem is a

time-dependent green vehicle routing problem with a heterogeneous fleet, and with

the time window and skill matching constraints considered. The ways of estimat-

ing CO2 emissions were described in Chapter 3 including road distance estimations,

tailored speed profiles and vehicle specification mapping to emissions formulas.

5.2 Initial solution

Initial feasible solutions are constructed using an insertion heuristic as in Solomon

(1987). This algorithm generates a good quality initial feasible solution, which is

important to the success of tabu search algorithm. Reduced VNS (RVNS) algorithm

is more robust to the quality of the initial solution but also requires it to be feasible.

Given a list of engineers who are working for the period and a list of tasks to be

scheduled, a traditional insertion heuristic will randomly choose a task from the task

list and insert into the best and feasible partial route. In vehicle routing problems

with time windows and skills matching constraints, this way will lead to problems

as it may first insert some tasks that are less difficult to accommodate and leave the

route unable to accommodate those difficult tasks to be added later. To overcome

this, an extended insertion heuristic is introduced here. First, all tasks are ranked

in ascending order of their easiness to insert. The easiness is measured by task time

window width and task requested skill’s rareness. We want to schedule the most

difficult task first (or the easiest task last). The insertion algorithm is shown in

Algorithm 5.1. In step 2,

Easinessi = α · TimeWindowWidth(i) + β · Task Rareness(i),

and

Task Rareness(i) = Number of Eng has the skill/T imes the skill are requested.

The smaller the Easinessi, the harder to accommodate the task. In this study,
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α and β are tuned to be 0.01 and 300 for good performance. The cost in step 6

is the additional amount of CO2 emissions when inserting this task to the current

partial route.

Algorithm 5.1 Insertion algorithm
1: Function InsertionAlgorithm;
2: Rank tasks in descending order of their difficulty (i.e., ascending order of the
Easinessi)

3: Get ordered taskList
4: i← 1
5: Repeat
6: insert(taski) to the lowest cost and feasible position in current partial route
7: i← i+ 1
8: Until i = taskList length

5.3 Neighbourhood operators

In this research, six different operators for generating neighbouring solutions are used

to enable a broader exploration of the solution space as shown in Figure 5.1. Those

operators are a mix of nodes, links and chains changes. For neighbour generating

operators in general, one could refer to Bräysy and Gendreau (2005). The details of

the six operators are shown below:

• 2-Opt: this is applied to a single route by breaking two links and reconnect.

For the example in Figure 5.1, before changes the route is A-B-C-D-E-F-G-H

and after changes the route is A-B-F-E-D-C-G-H.

• Swap: this is applied to a single route by swapping the position of two nodes.

For the example in Figure 5.1, before changes the route is A-B-C-D-E and

after changes the route is A-D-C-B-E.

• Exchange: this is applied to a pair of routes by swapping the positions of two

nodes each from one route. For the example in Figure 5.1, before changes the

route is A-B-C and D-E-F and after changes the route is A-B-E and D-C-F.

• Relocation: this is applied to a pair of routes by taking out one node from one

route and insert it into another. For the example in Figure 5.1, before changes
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the route is A-B-C-D and E-F-G-H and after changes the route is A-B-D and

E-F-C-G-H.

• 2-Opt∗: this is applied to a pair of routes by breaking one link from each

route and reconnect two routes. For the example in Figure 5.1, before changes

the route is A-B-C-D and E-F-G-H and after changes the route is A-B-D and

E-F-C-G-H.

• Or-Opt: this is applied to a single route by moving a chain of k nodes to a

new position, e.g. in the example in Figure 5.1, chain D-E is relocated. Before

changes the route is A-B-C-D-E-F and after changes the route is A-E-D-B-C-F.

Figure 5.1: Neighbourhood operators.

5.4 Variable neighbourhood search

Variable neighbourhood search is a metaheuristic algorithm based on systematic

changes of neighbourhoods both in the descent phase to find a local minimum, and

in the perturbation phase to emerge from the corresponding valley. Since it was

introduced, this method has been developed rapidly and found success in combina-

torial optimisation problems. VNS’s idea is based on the fact that a local minimum

found in one neighbourhood structure is not necessarily the local minimum for other

neighbourhood structures; A global minimum is a local minimum in the combination

of all possible neighbourhood structures; Local minima found by different neighbour-
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hoods are usually close to each other.

5.4.1 Variable neighbourhood descent (VND)

There are several variants of VNS, and in this research, variable neighbourhood de-

scent and reduced variable neighbourhood search will be studied. The procedure of

variable neighbourhood descent is outlined in Algorithm 5.2. The algorithm termi-

nates when no improvement can be achieved. During the local search, a solution

is generated using the current neighbourhood operator k, and once the best im-

provement is found, it will be accepted (best improvement strategy) and the current

neighbourhood operator will keep generating new solutions until no improvement

can be found with the current neighbourhood operator. In steps 5 to 8 is local

search using one neighbourhood. In step 7, when the best neighbour x′ is better

than the current solution x, meaning that x′ has a lower CO2 emissions level than x,

then the current solution will be updated. When no improvement could be achieved

with this current neighbourhood operator, we move to the next neighbourhood op-

erator k + 1 in step 9. This searching process will terminate until no improvement

is found using all six neighbourhood operators.

Algorithm 5.2 Variable neighbourhood descent
1: Function VND(x);
2: Repeat
3: k ← 1
4: Repeat
5: Repeat
6: x

′ ← BestImprovement(x, k)
7: If x′ is better than x, then x← x

′

8: Until x = x
′

9: k ← k + 1
10: Until k = kmax
11: Until no improvement could be found
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5.4.2 Reduced variable neighbourhood search (RVNS)

The problems with descent algorithms are that it can get trapped to the local opti-

mal and cannot escape from it even though we use variable neighbourhood operators.

RVNS tries to avoid this by introducing a shake step. Algorithm 5.3 outlines the

procedure of RVNS. The stopping criterion in this research is chosen to be a maxi-

mum runtime. In step 5, Shake(x, k) means we randomly generate a solution x′ from

the kth neighbourhood of x. Step 6 is the neighbourhood search using the current

neighbour generating operator, representing the same process as steps 5 to 8 in VND.

Algorithm 5.3 Reduced variable neighbourhood search
1: Function RVNS(x);
2: Repeat
3: k ← 1, CPU time← 0
4: Repeat
5: x

′ ← Shake(x, k)
6: x← NeighbourhoodSearch(x, x′ , k)
7: k ← k + 1
8: Until k = kmax
9: Until CPU time > time max

5.5 Tabu search

Tabu search is a metaheuristic search method employing local search methods and

has been widely used in vehicle routing problems with time window constraints.

Different from descent methods, the objective is allowed to deteriorate in order to

avoid local minima. To prevent cycling, solutions that are recently visited are pro-

hibited and stored in a tabu list. Algorithm 5.4 illustrates the procedure of TS.

The stopping criterion is usually either when it reaches the maximum total num-

ber of iterations iter_max or the best solution has not been updated for a certain

number (iter_cons_max) of iterations. Steps 6 to 8 in Algorithm 5.4 perform local

search methods within a specified neighbourhood. This neighbourhood is generated

at each iteration by a neighbourhood operator which is randomly selected from the

previously mentioned six operators. Then the solution that has been recently visited

(memorised in tabu list) or violates constraints will be eliminated. The reason for

only keeping feasible solutions is that once an infeasible solution is accepted, it is

94



5. SOLUTION ALGORITHMS

hard to regain feasibility using tabu search algorithm. Then in step 7, the local

search takes the best improvement strategy, which could be switched to the first

improvement strategy. The structure of memory is a short-term memory with a

fixed size of six, which means the six most recent solutions will be in the tabu list.

f(x) is the fitness score of the solution x, and in this research, it is the total CO2

emissions of the solution routes.

Algorithm 5.4 Tabu Search
1: Function TabuSearch;
2: iter ← 1, iter_cons← 1; xbest ← xinitial, xcurrent ← xinitial
3: Repeat
4: k = random(k = 1 . . . 6)
5: Generate neighbourhood by kth operator: neighbourk(xcurrent)
6: Remove tabu or infeasible solution in neighbourk(xcurrent)
7: xcurrent ← the best solution of neighbourk(xcurrent)
8: Update tabu list by adding xcurrent, removing the least recent one
9: If f(xcurrent) < f(xbest), iter_cons← 1

10: Else iter_cons← iter_cons+ 1, iter ← iter + 1
11: Until iter = iter_max or iter_cons = iter_cons_max

5.6 Real-life test cases

Five real-life data samples are taken from a field service provider with similar prob-

lem size (around 100 tasks per sample). Table 5.1 shows the exact number of tasks in

each case. The initial feasible solution for each case is generated using the extended

insertion algorithm proposed in Section 5.2. The objective values of the initial so-

lutions in terms of the amount of CO2 emissions in kg is also shown in Table 5.1

together with two other performance measures of the solutions: the number of ve-

hicles or engineers scheduled to fulfil all the tasks and the number of trips that are

bundled together which means tasks at the same location. Our different test cases

have different features. For example, in Figure 5.2, comparing test case 1 and test

case 3, test case 3 has a higher number of widely spread tasks on the map, that is

why its initial solution has higher CO2 emissions.
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Test case No. of Task No. Engineer CO2 kg Bundle Trip
Case 1 103 19 187.613 46
Case 2 110 18 150.044 51
Case 3 108 20 236.522 46
Case 4 100 17 201.032 42
Case 5 106 24 233.129 41

Table 5.1: Initial solution.

Figure 5.2: Test case 1 (left) vs. test case 3 (right).

5.7 Comparison of metaheuristics on real-life test cases

5.7.1 Variable neighbourhood descent vs. reduced variable neighbour-

hood search

For each test case, we first use VND to solve the problem and get a solution together

with its objective value as well the CPU time used, then we let RVNS run for the

same CPU time and compare the results. As RVNS has a stochastic nature, this

algorithm is run 30 times to conduct statistical analysis. Based on the procedure

of Chen et al. (2016), a one-sample t-test is carried out to see if the mean solution

of RVNS is significantly different from the VND, and the significance level is set

to be 0.1. The results are shown in Table 5.2 with the best solution highlighted in

bold. Other than test case 2, RVNS yields significantly better solutions than VND.

Comparing the emissions results, on average RVNS gives 3.7% less emissions with

the same computational time. Results suggest that RVNS outperforms VND.
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Algorithm Emissions kg Case 1 Case 2 Case 3 Case 4 Case 5

RVNS
Best 148.95 143.32 158.90 130.61 161.95

Average 160.56 146.74 181.00 165.97 183.73
S.D 6.28 2.11 14.17 15.14 10.15

VND 171.87 144.34 187.34 170.81 198.52

CPU time (seconds) 100 100 150 300 600

p-value 0.000 0.000 0.020 0.091 0.000

Different? Y Y Y Y Y

Table 5.2: Comparison between VND and RVNS.

5.7.2 Reduced variable neighbourhood search versus tabu search

The tabu search algorithm randomly generates neighbourhood solutions, so this al-

gorithm is also run 30 times for each test case. The stopping criterion is set to

be 15000 maximum evaluations or 300 non-improving evaluations, and then the

computational time is fluctuating, unlike RVNS which is set to be terminated at a

specific maximum run time. These ways of setting termination criteria are based

on the standard practice applied in literature. We also let both algorithms run for

the same time for a fairer comparison. Another five test cases are generated and

TS and RVNS are run for the same time to solve those test cases (Appendix E).

Conclusions drawn from this new test are similar to those in Table 5.3. Table 5.3

shows the comparisons of these two solution algorithms by means of average CO2

emissions and average computational time. The best solution value of CO2 emissions

is highlighted in bold. Among the five test cases, these two methods generate similar

solutions for case 3 and case 5 by means of CO2 emissions, but the computational

time of tabu search algorithm is on average 5.37 times longer than RVNS. For the

other test cases, tabu search algorithm gives significantly better results than RVNS,

the CO2 emissions are on average 5.35% less, but at the expense of 11.72 times of

computational time. Although the tabu search algorithm finds the best solution in

most cases, results suggest that RVNS has a good trade-off between solution quality
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and computational time for industrial application.

Emissions Case 1 Case 2 Case 3 Case 4 Case 5

RVNS

Best 148.95 143.32 158.90 130.61 161.95

Average 160.56 146.74 181.00 165.97 183.73

S.D 6.28 2.11 14.17 15.14 10.15

CPU Time 100 100 150 300 600

Best 142.52 131.57 156.31 140.79 163.24

Average 156.44 137.83 178.82 153.66 188.73

Tabu S.D 9.00 2.74 7.01 6.15 10.19

Average Time(s) 1642.14 1616.32 1492.69 1668.29 1665.90

S.D. 521.45 503.35 288.39 740.51 457.93

p-value 0.044 0.000 0.454 0.000 0.105

Different? Y Y N Y N

Table 5.3: Comparison between TS and RVNS.

The vehicle routing problem is solved using three metaheuristics: RVNS, VND

and TS. Experiments are carried out to compare three different metaheuristics on

five typical real-life cases. On average RVNS gives 3.7% less emissions with the same

computational time compared to VND, and therefore VND will not be included in

the final solution engines. For most test cases, the tabu search algorithm gives CO2

related results significantly better than RVNS: the CO2 emissions are on average

5.35% less, but at an expense of 11.72 times of computational time. Neverthe-

less, the significantly lower running time cost of RVNS places this algorithm at the

top position of industrial operational acceptable algorithm underlying a real-time

decision-making support solution. The industrial solution relies on fast computa-

tions returning a set of time-contextual recommendations about the CO2 impact
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and feasible time windows regarding a task-engineer assignment decision. There-

fore, reduced variable neighbourhood algorithm is selected as the solution engine for

the next chapter, and the performance of VNS is improved by parallelism.

5.8 Simulated annealing (SA) and self-adaptive simulated

annealing (ASA)

Simulated annealing is another well-implemented algorithm for VRPTW. It is a

stochastic algorithm consisting of two random processes: one for generating new

solutions and the other for accepting or rejecting the new solutions. The probability

of accepting a new solution or in the thermodynamics of metal annealing, the prob-

ability of state changes is determined by the Boltzmann distribution of the energy

difference between two states:

P = e−
4E
T , ∀4E > 0 (5.1)

In SA, the simulation process mimics the temperature cooling process. When the

system temperature is high, an increase in state energy will be accepted with a

higher chance and the system performs a coarse search of the searching space to

find a good minimum. As the system temperature goes down, it performs a fine

search, worse solution is less likely to be accepted and it tries to find a better min-

imum. The probability distribution of accepting worse solution when temperature

decreases is shown in Figure 5.3.
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Figure 5.3: Boltzmann distribution based on system temperature when 4E > 0.

The pseudo codes of SA with large neighbourhoods are shown in Algorithm

5.5 and Algorithm 5.6. The neighbourhoods used are the same as in Figure 5.1, and

the function Shake in Algorithm 5.6 is the same as in Algorithm 5.3.
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Algorithm 5.5 Simulated Annealing with large neighbourhoods Algorithm
1: Function SA(x);

2: Setting the system configurations

3: T ← Tinit

4: Repeat

5: n← 0

6: Repeat

7: x
′ ← BestShake(x)

8: 4E ← f(x′)− f(x)

9: IF 4E < 0, x← x
′

10: Else, x← x
′ with probability P = e−

4E
T

11: n← n+ 1

12: Until n = N(t)

13: Update(T )

14: Until T < T_min

Algorithm 5.6 Best Shake Algorithm in SA
1: Function BestShake(x);

2: k ← 0, best← big number

3: Repeat

4: x
′ ← Shake(x)

5: IF f(x′) < best, best = f(x′) and x← x
′

6: k ← k + 1

7: Until k = k_max

The configurations of the system include system initial temperature, which

is a big number, the termination temperature, which is small enough, the cooling

strategy which is in step 13, a cooling rate for the corresponding cooling strategy

and N(t) the number of iterations to carry out at each temperature T . Romeo

and Sangiovanni-Vincentelli (1991) show that an effective cooling strategy is essen-

tial to reducing the amount of time required to get the optimal solution. There

are two commonly used cooling strategies: one is Ti+1 = αTi (Kirkpatrick et al.,

101



5. SOLUTION ALGORITHMS

1983) or Ti+1 = Ti/(1 + βTi) (Lundy and Mees, 1986). The latter one works when

N(t) = 1, ∀t means temperature updates every iteration. The graphic demonstra-

tions of the above two cooling strategies are shown in Figures 5.4 and 5.5. For the

Kirkpatrick et al. (1983) cooling strategy, when α is small, the system is cooling

too fast and terminate for a short time, a good α is reported to be in the range

of [0.85, 0.96]. As to the Lundy and Mees (1986) cooling strategy, when β is a big

value, the cooling process is too fast and not enough steps of searching are operated.

Figure 5.4: Kirkpatrick (1983) cooling strategy with Tinit = 1000.

Figure 5.5: Lundy and Mees (1986) cooling strategy with Tinit = 1000.
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The problem of SA is that it requires a predefined set of parameters and sys-

tem configurations, and for different problems these configurations are different. To

demonstrate this issue, SA is applied on a sample problem with different configu-

rations. The sample problem is randomly generated with 100 nodes on a Cartesian

coordinate with random time windows and four vehicles available. Same speed pro-

file as in Chapter 3 is applied. The results of various configurations are illustrated

in Figures 5.6 - 5.9.

Figure 5.6: Configurations 1: Tinit = 10000, Kirkpatrick cooling, α = 0.8, Tmin =
0.01.
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Figure 5.7: Configurations 2: Tinit = 10000, Kirkpatrick cooling, α = 0.95, Tmin =
0.01.

Figure 5.8: Configurations 3: Tinit = 10000, Lundy and Mees cooling, β = 0.2,
Tmin = 0.01.
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Figure 5.9: Configurations 4: Tinit = 10000, Lundy and Mees cooling, β = 0.1,
Tmin = 0.01.

Among all those four configurations, Configuration 4 as in Figure 5.9 yields

the best result but with the longest computational time 0.234 s while Configuration

1 (Figure 5.6) only consumes 0.031 s. Observations on the four searching paths

show that the last three configurations run for more iterations, but the last part of

the iterations show no improvement in the objective value. This is due to the fact

that as temperature drops, the probability of accepting worse solution decreases and

the search process are easily trapped to plateau solutions. To avoid this situation,

we propose a new self-adaptive version of SA based on the moving variance of

objective values (Algorithm 5.7). During the search process of this new version of

SA, the moving variance of solutions of iterations are calculated, and if the moving

variance is small which indicates a straight line in the search path, then for a worse

solution we increase the probability of accepting it by temporary reheating the

system temperature by a predefined adjust factor. With the self-adaptive SA, we

introduced a few more control parameters. The reheating process only takes effect

at the lower system temperature state, as when the system temperature is high, SA

is doing a coarse search and the probability of accepting worse solution is already

high and we don’t want to increase it at that time. In the numerical experiments,
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the parameters are set to

small number = 10−6, θ = 50000, AdjustFactor = 30.

Algorithm 5.7 Self-adaptive Simulated Annealing Algorithm
1: Function Self-adaptive SA(x);

2: Setting the system configurations

3: T ← T_init

4: Repeat

5: n← 0

6: Repeat

7: γ ← 1

8: x
′ ← BestShake(x)

9: 4E ′ ← f(x′)− f(x)

10: σ2 ←MovingV ariance

11: IF 4E < 0, x← x
′

12: Else if σ2 < small number and T < T0
θ
, γ ← AdjustFactor, let x ← x

′

with probability P = e
−4E
γT

13: n← n+ 1

14: Until n=N(t)

15: Update (T )

16: Until T < T_min

5.8.1 Compare traditional simulated annealing and the new self-adaptive

simulated annealing

Figure 5.10 demonstrates the searching progresses of a test case which is solved both

by SA and self-adaptive SA. The SA reaches a local optimal solution in the first few

iterations and gets trapped there, so a straight line is shown on the search path (blue

line). However, with the self-adaptive SA, a long segment of the straight line will

not be seen as the self-adaptive mechanism will increase the probability of accepting

a worse solution if the search path is a straight line for a short while. We can see
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that the self-adaptive SA finds a better solution at a late stage of the search path

and once it is experiencing a straight line, it will accept worse solution and then

be able to escape from the local minimum. On this test case, self-adaptive SA can

improve the optimal solution by 8.84% and the computational time is the same for

2.252 s. There are random natures of the SA algorithms, so we need to test them

on the same test case many times and take the average improvement.

Figure 5.10: Comparisons of SA and adaptive SA with configurations: Tinit = 10000,
Lundy and Mees cooling, β = 0.01, Tmin = 0.01.

The self-adaptive SA is tested on ten different test cases with 30 customers

each, and both SA and self-adaptive SA are applied to each test case 200 times, the

average solutions and the best solutions of each algorithm are demonstrated in Table

5.4. Self-adaptive SA on average achieves a better final solution on every test case,

and on average improves the mean final solutions of SA by 12.76%. Furthermore,

self-adaptive SA generates the best solution for all ten test cases, and the average

lowest minimum is also 4.39% lower than that of SA. This shows the excellent

performance of our new self-adaptive simulated annealing algorithm. This new self-

adaptive SA will be applied in Chapter 7.
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Problem
SA Self-adaptive SA Improvement

Average Best Average Best Average Best

1 156.17 135.61 137.37 131.83 12.03816 2.787405

2 135.83 103.47 110.87 100.66 18.37591 2.715763

3 112.49 94.16 100.1 93.3 11.01431 0.913339

4 95.98 84.57 86.97 79.91 9.387372 5.510228

5 159.35 116 129.42 107.81 18.78255 7.060345

6 112.37 101.87 102.17 92.05 9.077156 9.639737

7 110.81 90.44 93.96 86.94 15.20621 3.869969

8 107.3 84.55 89.56 79.59 16.53308 5.866351

9 119.08 102.06 106.82 99.02 10.2956 2.97864

10 107.81 97.23 100.38 94.77 6.891754 2.530083

Average 12.76021 4.387186

Table 5.4: Comparison between SA and the new self-adaptive SA.

5.9 Summary

In this chapter, we first implemented the basic tabu search algorithm, variable neigh-

bourhood descent algorithm, reduced variable neighbourhood algorithm and com-

pared them on our green time-dependent VRP with time windows. RVNS outper-

formed VND for every test case. The computational time of tabu search algorithm

was on average 5.37 times longer than RVNS for test cases of the same results. For

the other test cases, tabu search algorithm gave better results than RVNS, the CO2

emissions were on average 5.35% less, but at an expense of 11.72 times of com-

putational time. Although for most of the test cases, the best solution was found

by tabu search algorithm, results suggest that RVNS is a good trade-off for indus-

try application. Then simulated annealing algorithm was tested, and the problems

with this algorithm were revealed. For improvement, a new self-adaptive simulated

annealing algorithm was proposed and compared with the previous normal SA. Ex-

periment results showed a robust better performance of the self-adaptive version of

108



5. SOLUTION ALGORITHMS

SA. Self-adaptive SA on average got a better solution on every test case, and on

average improved the solutions of SA by 12.76%. Furthermore, self-adaptive SA

generated the best solution for all ten test cases, and the average lowest minimum

objective value was 4.39% lower than that of SA. Based on the comparison results,

both VNS and ASA perform well for green vehicle routing problem with time win-

dows and each has its own advantages. To explore the benefits of metaheuristics

and make more contributions to metaheuristics in green logistics, both algorithms

will be implemented. VNS is selected as the solution engine for Chapter 6, and the

performance of VNS is improved by parallelism. The new ASA will be applied to

the problem in Chapter 7.

In the next chapter, we will extend the problem in Chapter 4 to a real-life sized

problem with a multinomial logit demand model. Furthermore, the VNS algorithm

proposed in this chapter will also be used as the solution engine.
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6 Online booking systems for green service deliv-

ery

In this chapter, we extend the problem studied in Chapter 4 to include real distances

among the depot and customers sites, which makes the problem more general and

applicable to any geographical settings instead of a confined area. Also, while Chap-

ter 4 used software solver to solve the problem, in this chapter some of the algorithms

investigated in Chapter 5 are applied. Furthermore, a more sophisticated discrete

choice pricing model is applied.

Here we consider the same problem of a company who sends engineers with

vehicles to customer sites to provide services. A customer’s request may arrive any-

time during the day. The company then provides the customer with a list of time

window options and their corresponding prices. The prices reflect the cost of the

delivery option, which is calculated using the cost of CO2 emissions. We followed

the two-phase solution framework as in Chapter 4. Once a new customer arrives,

the system first solves a time-dependent vehicle routing problem to minimise emis-

sions for each time window available. Then for each available option, the minimum

additional cost for including this customer is calculated. In the second phase, a price

will be determined for each option by solving a discrete choice pricing model based

on the additional costs previously calculated. The whole booking system follows

a time rolling mechanism. Metaheuristic methods are applied to real-life business

applications which enable the solution framework to be applied online since shorter

computational time is required. To be more specific, parallel variable neighbourhood

search is applied to the first phase problem with a dynamic programming method

to optimise departure times. The differential evolution algorithm solves the second

phase problem. The solution framework is tested through simulation experiments.

Dynamic pricing techniques are compared to fixed pricing strategies. Results show

that dynamic pricing leads to a reduction in CO2 emissions and an improvement in

profits.
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The rest of chapter is organised as follows. The problem description is in Sec-

tion 6.1. The mathematical model for the first phase problem and algorithms to

solve it are shown in Sections 6.2 and 6.3 respectively. Sections 6.4 and 6.5 formu-

lated the mathematical model for the second phase problem and compare different

algorithms to solve the model and choose to use the differential evolution algorithm.

The simulation results and sensitivity tests are shown in Section 6.6. Finally, con-

cluding remarks are given in Section 6.7.

6.1 Problem description

In our research, we study a problem where a company sends engineers to customer

sites to provide maintenance and installation services in London, UK. For example,

a pool of 100 customers is shown in Figure 6.1, where the home circle shows the lo-

cation of the company site (depot). The real road distance between two coordinates

(latitude and longitude) on the map is obtained by calling web service Google Maps

Distance Matrix API. Traffic speed is not a constant over a day, and the hourly

average travel speeds of London are shown in Figure 6.2. Customer requests will

be handled whenever they arrive. The service time can be estimated according to

the type of a task. Based on historical data, in our experiment, we assume that the

maximum, minimum and mean service times for all customers are 480 minutes, 37

minutes and 92 minutes, respectively, and that the customer arrival process follows

a Poisson distribution with mean inter-arrival time of 7.2 minutes.
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Figure 6.1: 100 Customers (Sample data) locations and depot location.

Figure 6.2: Average hourly travel speed profile of London, UK.

Customers book for the service through a website or by telephone. The com-
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pany takes a rolling booking approach. The company’s booking system starts at

6:00am every day to accept bookings, and ends at 18:00pm; and no booking is avail-

able after that time. Meanwhile, the engineers start to work at 8:00am and finish

work at 18:00pm. The company provides five delivery options, and each delivery

option has a two-hour time window. There are five cut-off times daily: 8:00am,

10:00am, 12:00pm, 14:00pm, 16:00pm. A customer missing the cut-off time for a

delivery time window can book one of the next available time windows. An exam-

ple of the customers’ arrival versus five available time windows is demonstrated in

Figure 6.3.

Figure 6.3: Available time windows in the rolling mechanism.

With this rolling mechanism, each customer is guaranteed five delivery options.

Prices for each time window option are dynamically determined by the company to

influence the customer’s choice.

The dynamic scheduling and pricing system works as follows: Once a new cus-

tomer arrives to make a booking, the solution approach, as shown in the flowchart

(see Figure 6.4), is taken. Upon the customer arrival, the system generates five deliv-

ery time window options based on the current arrival time. Then, for each delivery

option, it tries to fit this customer into existing schedules by inserting it to make

a new lowest-cost schedule. At the same time, the opportunity cost of this time

window is computed. Opportunity cost is defined as the value of the time window

option, with the ones closest to expire being least valuable because the company

wants to minimise engineers’ idle time and any unused time of engineer is wasted.
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Repeating this for all five options provides a list of costs for all available delivery

time window options. Then it inputs these into the dynamic pricing problem which

provides a price menu for all the delivery options, and those are relayed to the cus-

tomer. The customer chooses one of them, and the system updates the schedule

accordingly. This process is repeated for all incoming customers. The solution al-

gorithms are introduced in the following sections.

Figure 6.4: Online pricing system flowchart.
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6.2 First phase model: Green time-dependent VRPTWwith

heterogenous fleet

In this section, we present the mixed integer linear programming formulation for the

green vehicle routing problem of the first stage. Different from the traditional vehicle

routing problem, this model minimises CO2 emissions and involves time-dependent

travel speed, time window constraints and a heterogeneous fleet.

Index

i, j : index of customers; i, j = 0 for the depot;

k: index of vehicles;

t: index of times slots.

Parameters:

n: total number of customers;

K: total number of vehicles available;

Kj: set of vehicles/engineers that has the skill to do job at customer j;

M : a big positive number;

T : total time of the planning horizon;

S: total number of time slots;

dij: distance of travelling from i to j;

si: service time at customer i; s0 = 0;

bi, ei: begin time and end time of time window of customer i;

b0, e0: start and end times of the working period for engineers;

Lt: start time of time slot t;

vt: travel speed in time slot t in km/h;
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ckt: emissions rate of vehicle k in time slot t in kg/km.

Variables

Cijk: the amount of emissions (in kg) generated by travelling from i to j by

vehicle k;

xijk =


1, if vehicle k travel from customer i to j

0, otherwise
;

ui: time point when a vehicle starts travelling to customer i, for i = 1, . . . , n;

Uk: time point when vehicle k travelling back to depot;

wi: time point when the service at customer i starts, for i = 1, . . . , n;

Wk: time point when vehicle k gets back to depot;

τij: travel time from customer i to customer j;

z1it =


1, if travelling to customer i starts in time slot t

0, otherwise
, for i = 1, . . . , n;

z2it =


1, if travelling to customer i ends in time slot t

0, otherwise
, for i = 1, . . . , n;

Z1kt =


1, if vehicle k travelling back to depot starts in time slot t

0, otherwise
;

Z2kt =


1, if vehicle k travelling back to depot ends in time slot t

0, otherwise
.

Minimize ∑N
i=0

∑N
j=0,i 6=j

∑K
k=1 Cijk

Subject to

n∑
i=0,i 6=j

∑
k∈Kj

xijk = 1, ∀j = 1, . . . , n (6.1)

n∑
i=0,i 6=j

xijk =
n∑

i=0,i 6=j
xijk, ∀j = 1, . . . , n; k = 1, . . . , K (6.2)
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n∑
j=1

K∑
k=1

x0jk ≤ K (6.3)

n∑
i=1

K∑
k=1

xi0k =
n∑
j=1

K∑
k=1

x0jk (6.4)

bi ≤ wi ≤ ei, ∀i = 1, . . . , n (6.5)

b0 ≤ Wk ≤ e0, ∀k = 1, . . . , K (6.6)

wi − uj +M
K∑
k=1

xijk ≤M − si, ∀i = 1, . . . , n; j = 1, . . . , n; i 6= j (6.7)

wi − Uk +Mxi0k ≤M − si, ∀i = 1, . . . , n; k = 1, . . . , K (6.8)

wj ≥ uj + τij +M

(
K∑
k=1

xijk − 1
)
, ∀i = 0, . . . , n; j = 1, . . . , n; i 6= j (6.9)

Wk ≥ Uk + τi0 +M(xi0k − 1), ∀i = 1, . . . , n; k = 1, . . . , K (6.10)

uj ≥ Lt + T (z1jt − 1) , ∀j = 1, . . . , n; t = 1, . . . , S (6.11)

Uk ≥ Lt + T (Z1kt − 1) , ∀k = 1, . . . , K; t = 1, . . . , S (6.12)

uj ≤ Lt+1 + T (1− z1jt) , ∀j = 1, . . . , n; t = 1, . . . , S (6.13)

Uk ≤ Lt+1 + T (1− Z1kt) , ∀k = 1, . . . , K; t = 1, . . . , S (6.14)

uj + τij ≥ Lt + T

(
z2jt +

K∑
k=1

xijk − 2
)
, ∀i = 0, . . . n; j = 1, . . . , n; i 6= j;

t = 1, . . . , S (6.15)

Uk + τi0 ≥ Lt + T (Z2kt + xi0k − 2), ∀i = 1, . . . , n; k = 1, . . . , K; t = 1, . . . , S

(6.16)

uj + τij ≤ Lt+1 + T

(
2− z2jt −

K∑
k=1

xijk

)
,∀i = 0, . . . , n; j = 1, . . . , n; i 6= j;

t = 1, . . . , S (6.17)

Uk + τi0 ≤ Lt+1 + T (2− Z2kt − xi0k) , ∀i = 1, . . . , n; k = 1, . . . , K;

t = 1, . . . , S (6.18)
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S∑
t=1

z1jt = 1, ∀j = 1, . . . , n (6.19)

S∑
t=1

Z1kt = 1, ∀k = 1, . . . , K (6.20)

S∑
t=1

z2jt = 1, ∀j = 1, . . . , n (6.21)

S∑
t=1

Z2kt = 1, ∀k = 1, . . . , K (6.22)

τij ≥
dij
vt

+M

(
K∑
k=1

xijk + z1jt + z2jt − 3
)
, ∀i = 0, . . . , n; j = 1, . . . , n; i 6= j;

t = 1, . . . , S (6.23)

τi0 ≥
di0
vt

+M (xi0k + Z1kt + Z2kt − 3) , ∀i = 1, . . . , n; t = 1, . . . , S; k = 1, . . . , K

(6.24)

τij ≥ Lt+1 − uj + [dij − vt(Lt+1 − uj)]
vt+1

+M

(
K∑
k=1

xijk + z1jt + z2jt+1 − 3
)
,

∀i = 0, . . . , n; j = 1, . . . , n; i 6= j; t = 1, . . . , S (6.25)

τi0 ≥ Lt+1 − Uk + [di0 − vt(Lt+1 − Uk)]
vt+1

+M (xi0k + Z1kt + Z2kt+1 − 3) ,

∀i = 1, . . . , n; t = 1, . . . , S; k = 1, . . . , K (6.26)

Cijk ≥ ckt · dij +M (xijk + z1jt + z2jt − 3) , ∀i = 1, . . . , n; j = 1, . . . , n; i 6= j;

k = 1, . . . , K; t = 1, . . . , S (6.27)

Ci0k ≥ ckt · di0 +M (xi0k + Z1kt + Z2kt − 3) , ∀i = 0, . . . , n; k = 1, . . . , K;

t = 1, . . . , S (6.28)

Cijk ≥ ckt · vt (Lt+1 − uj) + ckt+1 · [dij − vt (Lt+1 − uj)] +M(xijk + z1jt + z2jt+1−

3), ∀i = 0, . . . , n; j = 1, . . . , n; i 6= j; k = 1, . . . , K; t = 1, . . . , S (6.29)

Ci0k ≥ ckt · vt (Lt+1 − Uk) + ckt+1 · [di0 − vt(Lt+1 − Uk)] +M(xi0k + Z1kt + Z2kt+1

− 3), ∀i = 1, . . . , n; k = 1, . . . , K; t = 1, . . . , S (6.30)

τij ≤M
K∑
k=1

xijk, ∀i, j = 0, . . . , n; i 6= j (6.31)
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0 ≤
S∑
t=1

t · z2jt −
S∑
t=1

t · z1jt ≤ 1, ∀j = 1, . . . , n (6.32)

0 ≤
S∑
t=1

t · Z2kt −
S∑
t=1

t · Z1kt ≤ 1, ∀k = 1, . . . , K (6.33)

and the nonnegativity and binary constraints for the variables.

The objective of the model is to minimise the total amount of CO2 emissions

generated by travelling along the links. Constraints (6.1) and (6.2) indicate that

there is exactly one vehicle going into each customer node and the same vehicle

leaves the customer node (each customer node is served only once). Constraints

(6.3) and (6.4) mean that at most K vehicles can leave the depot and the same

number will travel back to the depot at the end. Constraints (6.5) and (6.6) specify

the time windows for starting customer services, and working periods for the engi-

neers. Constraints (6.7) and (6.8) ensure that a vehicle can start travelling to the

next customer only after finishing the task at the current customer. These also work

as sub-tour elimination constraints. There may be a gap (idle time) between task

finish time and the time of travelling to the next customer. Constraints (6.9) and

(6.10) require that tasks at customers’ cites can start only after the vehicle arrives

there. Constraints (6.11) through (6.12) determine travel start and end times. Con-

straints (6.13) through (6.22) mean that the start or end of each travel must fall

into at most two time slots. Constraints (6.23) through (6.26) calculate the travel

time between two nodes with time-dependent travel speed. If the start and end of

travel are in the same time slot, travel time equals travel distance divided by the

travel speed of the time slot: τij = dij
vt
. If the start and end of travel are in two time

slots, the travel time consists two parts, the first part is the end of the first time

slot minus start travel time (Lt+1−uj) and the second part is the travel time in the

second time slot ( [dij−vt(Lt+1−uj)]
vt+1

). Constraints (6.27) through (6.30) determine the

amount of CO2 emissions associated with each link. Constraints (6.31) bound the

travel time between two nodes to zero if they are not linked. Constraints (6.32) and

(6.33) assume that the maximum gap between the start and end of travelling on any

link is one time slot and the minimum is zero time slot, i.e., travelling between any
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two nodes will not span into three different time slots. In this model CO2 emissions

rate is different for different vehicle types and for different speeds. The emissions

rate is calculated as demonstrated in Chapter 3.

6.3 Solution algorithms for the first phase problem

The problem of interest is an online problem which requires a quick system response.

Optimisation software such as FICO Xpress solver will take too long to solve the

first stage model. For a 10 customer case as shown in Section 6.3.3, the solver runs

for 20 hours and then crushes as the system memory runs out. So in this section, a

metaheuristic will be applied. Modern PCs have a parallel processor structure with

several computing cores that support multi-threading and task parallelism. Consid-

ering the computational complexity of real-life vehicle routing problems (VRPs) and

the parallel nature of the metaheuristics applied, it is appropriate to take advantage

of parallel computing to boost system performance.

6.3.1 Parallel variable neighbourhood search

Variable neighbourhood search (VNS) was first developed in 1997 (Mladenović and

Hansen, 1997). It finds its success in combinatorial optimisation applications. The

basic idea is to find a local minimum in a descent method in one neighbourhood,

and then try to escape this local minimum by exploring a distant neighbourhood

of this solution in a sequential way among the candidate neighbourhoods or in a

random fashion. The search result in a new neighbourhood is accepted only if the

local minimum found in this neighbourhood is better. Unlike tabu search or sim-

ulated annealing (SA), VNS is not a trajectory-following method which accepts a

less-favourable solution. The advantages of the VNS method are that it is parameter-

free and easy to implement. Thus, it could be applied to different problems without

extra effort on parameters tuning.

The pseudo code of the general VNS is shown in Algorithm 6.1. We use six

120



6. ONLINE BOOKING SYSTEMS FOR GREEN SERVICE DELIVERY

(k = 6) common neighbourhood constructors for VRP type of problems: Cross,

OrOpt, Relocate, Swap, 2 Opt and 2 Opt∗ (as shown in Chapter 5). During the

local search, a solution is randomly generated using the current neighbourhood op-

erator k (step 5) to avoid cycling, and variable neighbourhood descent method is

used to get the best improvement solution based on the randomly-generated solu-

tion (step 6). Once the random solution represented by task assignment and travel

sequence is generated, optimal departure times at each customer are computed in

step 7. In step 8 and step 9, if the solution obtained is better than the current

solution, it is accepted and we restart from neighbourhood operator 1. Otherwise,

we move to the next neighbourhood operator. This searching process terminates

until it meets certain criterion. Here we use a maximum CPU time as termination

criterion. Both Algorithms 6.1 and 6.2 adopt a deterministic sequence of applying

neighbourhood operators.

Algorithm 6.1 Variable neighbourhood search
1: Function V NS(x);

2: Repeat

3: k ← 1;

4: Repeat

5: x
′ ← Shake(x, k)

6: x
′′ ← V ND(x′)

7: OptimalDepartureTime (x′′)

8: If x′′ is better than x, x← x
′′
, k ← 1

9: Else k ← k + 1

10: Until k = k_max

11: Until CPUtime > timemax
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Algorithm 6.2 Variable neighbourhood descent
1: Function V ND(x);

2: Repeat

3: k ← 1;

4: Repeat

5: x
′ ← BestNeighbour(x, k)

6: If x′ is better than x, x← x
′
, k ← 1

7: Else k ← k + 1

8: Until k = k_max

9: Until no improvement is obtained

We extended the solution algorithm by applying parallelism in a simple way

called replicated parallel VNS (PVNS). The parallelism approach in this research

aims to enlarge the search space by using multiple independent search threads with-

out increasing the computational time. It follows the multi-start strategy concept

by increasing the number of neighbour solutions to start a local search. Several

starting solutions are generated in the same neighbourhood where each local search

is run in parallel using Java Multithreading. Then the best among all solutions is

taken as the final solution.

6.3.2 Optimise departure times by dynamic programming

The previous solution algorithms optimise the allocation of customers to vehicles

and the sequence of travel, but this assumes that the vehicle travelled as soon as it

finished a task at a customer location and that no waiting is allowed at the customer

location. However, allowing waiting at the customer location upon job completion

and travelling at a non-congested period may further reduce the amount of CO2

emissions. For the problem of optimising departure times (which affects the time

slot that actual travel happens, along with emissions), we formulate the problem as

a finite state deterministic dynamic programming problem.
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The dynamic programming recursion equation is:

Vi(x) = min{c(x, y) + Vi+1(y) : y ∈ Stage(i+ 1)}, (6.34)

where Vi(x) is the optimal amount of emissions for customer i; x is the start travel

time to customer i; i is the customer visiting sequence number 0 . . . n+ 1, and n+ 1

denotes the depot; c(x, y) is the amount of emissions if the travel to customer i

starts at x and to customer i+ 1 at y. The boundary conditions are:

x+ s+ τ ≤ y, ∀ pair(x, y), (6.35)

where s is the service time at customer i and τ is the travel time from customer i−1

to i. Given Vn+1(x) = constant, we could recursively solve all Vi(x) by backward

deduction. The pseudo codes of dynamic programming procedures to optimise the

start travel time to each customer i are shown in Algorithms 6.3 and 6.4.

Algorithm 6.3 Dynamic programming algorithm
1: Function DynamicProgramming;
2: i← N
3: Repeat
4: current ← taski
5: bestStt taski+1
6: FindSubTimePoint (current, bestStt (taski+1));
7: For each point in findSubTimeSlot(previous)
8: findMinEmissionPath(previous)
9: Update bestStt(taski)

10: i← i− 1
11: Until i = 0;

Algorithm 6.4 Function FindSubTimePoint in Dynamic Programming
1: Function FindSubTimePoint (current, bestStt(taski+1));
2: Set s← time interval length/step size
3: Index ← 0
4: While (EarliestTime(current)+s ∗ Index ≤ LatestTime(current))
5: Add EarliestTime(current)+s ∗ Index to SubTimePoint list
6: Index ← Index+1;
7: Return SubTimePoint list
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The key part of applying dynamic programming to this problem is to find the

earliest and latest times that will not influence the feasibility of the route plans. The

earliest time is the start travel time of the initial schedule since when we construct

initial schedules, the start travel time is set to be as earliest as possible. The latest

time of travelling to customer i is the earliest of either:

time window end of customeri − travel time to customeri

or

optimal start travel time of customeri+1 − service time of customeri

− travel time to customeri.

For n+ 1, which is the stage the vehicle travels back to the depot, the latest time is

set to be the end of the engineer’s working period.

To demonstrate the effects of dynamic programming on emissions, we select

eight engineers’ (ID is aliased) optimal route plans and applied dynamic program-

ming to the optimal route plans to get the optimal departure times for each customer.

The hourly emissions are computed and the heatmap R lattice plot is shown in Figure

6.5 where darker areas mean more emissions. We can tell that the colouring before

dynamic programming is darker than the colouring after dynamic programming.

The total amount of emissions before dynamic programming is 148.31 kg and after

dynamic programming is 132.37 kg, which is a 10.75% reduction in the emissions

amount. There are several journeys scheduled in the peak morning hours of 7:00am

- 9:00am before we apply dynamic programming. However, when we optimise start

travel time with dynamic programming, those journeys are shifted towards a later

non-peak time slot. This dynamic programming method will be applied with PVNS

in every local search stage.
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Figure 6.5: CO2 emissions heatmap for 8 engineers before DP and after DP.

6.3.3 Comparison with software solver

Based on the MIP formulation in Section 6.3, the problem can be solved to optimal

using Xpress optimiser for small problems. We generated ten small samples with

customer sizes of 10 and compared the PVNS performance with the Xpress, which

applied an exact method (branch-and-bound). This problem size is chosen because

the largest problem size that could be solved within reasonable CPU times and sys-

tem memory capacity was 10 customers. The numerical experiments are carried out

on a PC with 64-bit Windows operating system, eight GigaBytes of RAM and an

Intel i5 processor with quad-cores. PVNS is run on eight threads in parallel. The

computational results are shown in Table 6.1.

On average, the gap between solutions found by PVNS and global optimal

solutions given by Xpress is one percent, and seven out of 10 cases have a gap

within 0.5 percent. Furthermore, the computational time of PVNS is on average

332.69 times faster than optimiser software. This indicates the PVNS metaheuristic

method performs really well.
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Problem
Objective value

Diff. in %
CPU times

Xpress PVNS Xpress PVNS

1 51.26 51.38 0.2 32 10

2 42.88 43.12 0.5 2634 10

3 55.51 55.65 0.3 2928 10

4 32.94 32.94 0.0 9 10

5 49.11 49.59 0.98 5116 10

6 48.95 51.81 5.8 661 10

7 31.09 31.09 0.0 3679 10

8 47.03 47.40 0.79 10388 10

9 39.57 39.62 0.1 1094 10

10 39.51 39.59 0.2 6728 10

Average 1.0 3326.9 10

Table 6.1: Comparison results between Xpress solver and PVNS.

6.4 Second phase problem: delivery time windows pricing

Following the solution of vehicle scheduling and routing problems in the first stage,

we consider how to dynamically price different service time window options for

each arriving customer. A non-linear optimisation problem with the objective to

maximise expected profit is derived.

max : f =
5∑
i=1

(pi − ci − oppcosti)Pi, (6.36)

where f denotes expected profit, i denotes the time window option, parameters ci
is the emissions cost of option i, and oppcosti is the opportunity cost of option i;

variables pi is the price of option i, and Pi is the probability of choosing option i

under the current price menu.

Profit is calculated as service price minus cost of CO2 emissions, minus oppor-
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tunity cost, where cost of CO2 emissions is set to be £1 per kg. Opportunity cost

is calculated as: α ·TimeDue. Here TimeDue is the period from current time until

this time window option is no longer available. So, the time window is more valuable

when it is further away from expiring. α is a decision-maker-specified weight pa-

rameter. Probability Pi is formulated as a multinomial logit (MLN) demand model.

6.4.1 Multinomial logit demand model

We model customer choice using random utility theory as in Ben-Akiva and Lerman

(1985). The utility function of a choice i is: Ui,n = Vi,n + εi,n, where V is the

deterministic part: Vn = βTxn and ε is the stochastic part following a Gumbel

distribution. xn is the vector of attributes of choice that influence utility. The

choice with higher utility was chosen with greater probability. A customer n within

the same category will be more likely to choose delivery option i if it has the highest

utility among all options: Pn(i) = P (Uin ≥ Ujn,∀ j ∈ Cn, j 6= i) and Cn is the set

of delivery options. The multinomial logit (MNL) model is expressed as

Pn(i) = eVin/
∑
j∈Cn

eVjn (6.37)

with 0 ≤ Pn(i) ≤ 1, ∀i ∈ Cn and ∑i∈Cn Pn(i) = 1.

In our problem, the vector of attributes xn including alternative specific con-

stants and the price are shown in Table 6.2. Walk away is also modelled as an option

if the service is overpriced. We define customer reservation price as pr,n.
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Slots
Attributes

Alternative specific constant Price

8:00-10:00 1 0 0 0 0 p1,n

10:00-12:00 0 1 0 0 0 p2,n

12:00-14:00 0 0 1 0 0 p3,n

14:00-16:00 0 0 0 1 0 p4,n

16:00-18:00 0 0 0 0 1 p5,n

Walk away 0 0 0 0 0 pr,n

Table 6.2: MNL Model choices and attributes.

In the following part, we will look at the properties of the demand model and

optimal price menu.

Proposition 1. Price elasticity

Proposition 1.1. If the price of one delivery option increases, its demand decreases.

Proof ∂P (i)
∂pi

= −βP (i)(1− P (i)), as 1 > P (i) > 0. β > 0 so ∂P (i)
∂pi

< 0.

Proposition 1.2. If the price of one delivery option increases, the demand for other

delivery options increases.

Proof ∂P (i)
∂pj

= −βP (i)P (j), as P (i) > 0, P (j) > 0, β > 0 so ∂P (i)
∂pj

> 0.

Proposition 2. The price range for each delivery option is
[
min{ci},max{αiβ + pr}

]
.

Proof If the price is lower than the cost of the delivery option, and if P (walk away) =
e−β·pr∑n

i=1 e
αi−β·pi+e−β·pr u 1, the customer will walk away without buying anything. When

e−β·pr � ∑n
i=1 e

αi−β·pi , which gives us pi > αi
β

+ pr. When the price for option i is

greater than αi
β

+pr, the customer will walk away and this gives us the upper bound
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of the price for delivery option.

Proposition 3. Greener delivery slots (if advertised) have smaller price elasticity

than normal slots, which means smaller price discounts are enough to shift demand.

Proof ∂P (i)
∂pi

= −βeαi−βpi∑n

m=1 e
αm−β·pm+e−β·pr ,

∂P (j)
∂pj

= −βeαj−βpj∑n

m=1 e
αm−β·pm+e−β·pr , where i is the

greener delivery option tagged and j is the normal delivery option. Then we

have αi > αj, if they are fixed price initially pi = pj, we have ∂P (i)
∂pi
− ∂P (j)

∂pj
=

−β(eαi−β·pi−eαj−β·pj)∑n

m=1 e
αm−β·pm+e−β·pr < 0.

Proposition 4. The optimal price for delivery option i has the following form:

p∗i − ci − µτi = 1
βP (walk away) , where τi denotes the expiration time of delivery option

i.

Lemma 4.1. Profit function f has a strong relative maximum at stationary point

p∗, where f ′ = 0.

Proof See Appendix F.

Proposition 5. The optimal price for time window i decreases as CO2 costs de-

crease.

Proof We have p∗i − ci − µτi =
∑n

m=1 e
αm−β·pm+e−β·pr
βe−β·pr

and move all p∗i terms to the

left and the rest to the right we have: p∗i − eαi−β·p
∗
i

βe−β·pr
= ci+µτi+ 1

β
+
∑n

m=1,m 6=i e
αm−β·pm

βe−β·pr
.

Then take the partial derivative of ci of both sides, ∂
∂ci

[
p∗i − eai−β·p

∗
i

βe−β·pr

]
= 1. Based on

the chain rule, we get: ∂p∗i
∂ci

= 1
1+p∗i ·e

αi−β·p∗i +β·pr > 0.

Proposition 6. The optimal price for time window i decreases as opportunity cost

decrease if µ > 0.

Proof Like the previous proof, we can derive: ∂p∗i
∂τi

= µ

1+p∗i ·e
αi−β·p∗i +β·pr and ∂p∗i

∂τi
> 0

when µ > 0.
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6.5 Solution algorithms for the second phase problem

Let us consider a general formulation of the MNL demand model:

P (n = i) =



eU
i−β·pi

/(
eU

0 +
∑
i∈A

eU
i−β·pi

)
, for n ∈ A

eU
0
/(

eU
0 +

∑
i∈A

eU
i−β·pi

)
, for n = 0

0 , for n /∈ A

(6.38)

and

N∑
i=0

P (n = i) = 1, (6.39)

where A is the set of all available time window options, β is the sensitivity param-

eter and U i is the initial utility of the customer, pi is the price for time window

option i. The second phase problem can be formulated as a non-linear multivariable

programming problem without constraints:

Max: f :=
∑
i∈A

P (n = i) · (pi − Ci), (6.40)

where Ci is the cost for time window option i, and this already takes into consid-

eration opportunity cost. In order to find pi to maximise f , we calculate gradient

matrix and in order to prove its maximum, we also calculate its Hessian matrix in

equation (6.41).

g(pi) =



∂f
∂p1

...

∂f
∂pN


; H(p) =



∂2f
∂p2

1
· · · ∂2f

∂p1∂pN

... . . . ...

∂2f
∂pN∂p1

· · · ∂2f
∂p2
N


, (6.41)

where f has a strong relative maximum at stationary point p(0) if H(p(0)) is negative

definite. Stationary point is where g(pi) = 0;

Theorem 1. Let Di be the minor of H former from the rows 1, 2, . . . , i and columns
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1, 2, . . . , i, then H is negative definite iff


Di > 0, ∀i ∈ even

Di < 0, ∀i ∈ odd
. (6.42)

Lemma 1.1. f has a strong relative maximum at stationary point p(0) if H(p(0))

is negative definite. Stationary point is where g(pi) = 0.

Proof of Lemma Similar to the proof of Proposition 4 see Appendix F.

6.5.1 Software solver (Exact method)

To compare different solution methods, we first use a mathematical software Maple

to solve the maximisation problem. The software solves the problem by taking the

first order derivative and let it equal zero. Let us consider a simple numerical ex-

ample with two options.

Numerical Example 1:

We have two options for a customer, costs are: C1 = £5;C2 = £10, with sensitivity

parameter β = 0.1. The initial utilities for two options and walk away are:



U0 = 0.5

U1 = 1

U2 = 0.5

The customer prefers option 1 initially. The objective function can be rewritten as:

f := e1−0.1x(x− 5)
1.648721271 + e1−0.1x + e0.5−0.1y + e0.5−0.1y(y − 10)

1.648721271 + e1−0.1x + e0.5−0.1y (6.43)

The gradient matrix is:
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∂f

∂p1
=− 0.1e1−0.1x(x− 5)

1.648721271 + e1−0.1x + e0.5−0.1y + 0.1 (e1−0.1x)2 (x− 5)
(1.648721271 + e1−0.1x + e0.5−0.1y)2

+ e1−0.1x

1.648721271 + e1−0.1x + e0.5−0.1y + 0.1e0.5−0.1y(y − 10)e1−0.1x

(1.648721271 + e1−0.1x + e0.5−0.1y)2 ,

(6.44)

and

∂f

∂p2
= 0.1e1−0.1x(x− 5)e0.5−0.1y

(1.648721271 + e1−0.1x + e0.5−0.1y)2 −
0.1e0.5−0.1y(y − 10)

1.648721271 + e1−0.1x + e0.5−0.1y

+ 0.1 (e0.5−0.1y)2 (y − 10)
(1.648721271 + e1−0.1x + e0.5−0.1y)2 + e0.5−0.1y

1.648721271 + e1−0.1x + e0.5−0.1y .

(6.45)

Set equations (6.44) and (6.45) equal to 0, we get:

p1 = 18.53404284,

p2 = 23.53404284.

We get the optimal prices for the two options, and then we need to prove this point

that we get the maximum value.

H(p1, p2) =

 −0.0191 , −1.1× 10−12

−1.1× 10−12, −0.007

 ,

where

D1 = −0.0191 < 0,

D2 = 0.0191× 0.007− (1.1× 10−12)2 ≈ 0.00013 > 0.

According to Theorem 1, at this optimal price menu we obtain a strong local maxi-

mum value.
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6.5.2 Modified Newton’s method

Newton-based methods are widely used to solve non-linear optimisation problems.

An initial starting point is needed:

Xk = (xk1, xk2, . . . xkn).

Then at each iteration, the method searches for and move to a neighbouring point:

Xk+1 = Xk + ξ. (6.46)

Instead of a linear approximation of the function value at this new point, Newton’s

method uses a quadratic approximation of the function value:

f(Xk+1) = f(Xk) + g(Xk)T ξ + 1
2ξ

TH(Xk)ξ. (6.47)

We want to maximise f with respect to ξ, to decide step size.

∂f(Xk+1)
∂ξ

= g(Xk) + 1
2 × 2H(Xk)ξ = 0. (6.48)

We get step size as by solving equation (6.48):

ξ = −H(Xk)g(Xk). (6.49)

Substitute into equation (6.46), we get:

Xk+1 = Xk −H(Xk)g(Xk) (6.50)

Often, in order to satisfy the Wolfe conditions, we use modified Newton method by

adding modified step length, equation (6.50) becomes:

Xk+1 = Xk − λH(Xk)g(Xk), λ ∈ (0, 1).
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The determination of λ, in order to maximise f(Xk+1) needs future work.

However, Newton’s method only has local convergence, during searches, H is

sometimes singular or near singular, we modified our search by adjusting H. If H

is singular or near singular, update H as:

H = H + I.

Then new H will be non-singular.

Numerical Example 1:

Previously we solved example 1 by solving g(x) = 0, when x dimension increases, it

is hard to solve it directly, we use modified Newton’s method:

Starting point: (15,15)

The stopping criteria: g(x) < 10−6

Step length: λ = 0.3

The solution is: (18.534044; 23.534039)

Running time: 0.3s

The exact solution given by previous solution is (18.53404284, 23.53404284).

6.5.3 Levenberg–Marquardt method

Newton’s method requires a good starting point, but LM method is more robust.

It’s easier to solve a minimisation problem, so our model can be changed to: min

−∑N
n=1 P (n = i)(pi − Ci).

We have an initial guess p0, set ε0 = 1. This initial guess can be of any value.

Then set k = 0, we first calculate gk(pk), if g(pk) < 10−6 terminate, else we calculate

Hk(pk), set Bk := Hk + εk · I. Then we try to do Cholesky decompose of B, If fail,

set εk = εk · 4;Bk = Hk + εk · I until success. Then we denote Bk = LLT , also based
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on Newton’s method, we have Bk(pk+1 − pk) = −g(pk). We have:

Ly = −g(pk)

Solve y using forward substitution. So we have:

LT · 4p = y

Solve 4p backward substitution. Then we update next iteration of solution by:

p(k+1) = pk +4p

Then we decide step size for next iteration by calculating R = f(pk)−f(pk+1)
Q(pk)−Q(pk+1) , where

Q is the expected value and f is the real value. If R < 0, set εk = εk · 10 , and start

over with pk+1 = pk; Else if R < 0.25, set εk = εk · 10 and update ak+1; If R > 0.75,

set εk = εk/10 and update ak+1. Let k = k + 1, we repeat the above process until

termination criteria satisfied.

Numerical Example 1:

We solve the same problem as before with starting point: (10,10)

The solution is: (18.534044; 23.534039)

Running time: 0.3 s

This solution is the same as previous solution given by commercial software Maple

and by modified Newton method.

Numerical Example 2:

Example 1 has only two options, it is easier to solve. With five options or more,

commercial software fails to give a solution or takes time to solve the problem.
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i 0 1 2 3 4 5

Ci 5 6 5 8 7

U i 0.2 0.3 0.5 0.3 1 0.5

Table 6.3: Numerical example 2.

Sensitivity parameter for this example is β=0.1.

We start with an initial guess: p0 = (10, 10, 10, 10, 10).

The solution is : p = (21.91345391554212, 22.91345515023535,

21.913455150235343, 24.91345516933855, 23.91345515023535).

Solution time: 3 s.

6.5.4 Differential evolution method

Both Newton based method and LM method take time to solve non-linear opti-

misation problems, as they require either matrix inverse or matrix decomposition

calculation. Furthermore, those methods apply a local search. There is possibly

more than one local minimum solution, and Newton-based methods may only give a

local optimal solution. Differential evolution algorithm is a global search heuristic.

This method was first introduced in Storn and Price (1997). It is similar to other

evolutionary algorithms with three stages: mutation, crossover and selection. In

the mutation stage, each mutated solution is obtained by adding a current solution

and the difference of two other solutions in the current generation. The mutation

operator is:

xi,G+1 = xl,G + F · (xm,G − xn,G), (6.51)

where l,m, n are indexes of the current generation and are randomly chosen for

every iteration. F works as a control parameter to control the amplification of the

difference component; it is in the range of 0 to 2. In the experiment, we used 0.5.

In the crossover stage, the current generation solution vector changes several com-

ponents with the mutated vector generated in the mutation stage. In the selection

stage, the best mutated vector and crossover vector, in terms of objective values,
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are chosen to be in the next generation.

Numerical Example 2:

We solve the same problem as in LM method with 5 options. Control parameter is

set to be 0.5. The maximum generation number is set to be 1000.

The solution is : p = (21.91345391554212, 22.91345515023535, 21.913455150235343,

24.91345516933855, 23.91345515023535).

Solution time: 0.1 s

This solution is the same as given by LM method, but with much shorter

computational time. Also, this method is a global search method. In this research,

differential evolutionary method will be used to solve the pricing problem.

To summarise, optimisation software can only solve problems to optimal of

small size such as the one with two options. Differential evolution method generates

the same solution as Levenberg–Marquardt method but in a shorter time. Differ-

ential evolution method will be applied to solve the second phase problem in this

chapter.

6.6 Numerical experiments and results

In the numerical experiment, we test the performance of the online booking system

with a sample customer pool of size 100 (mentioned in Section 6.2). Travel dis-

tance between locations is real-road distance. Customer requests are drawn from

this pool repeatedly. We consider a homogeneous arrival pattern of customers. The

average inter-arrival time is set to be 7.2 minutes, and the system is run for 12 hours

each day, starting at 6:00 and closing at 18:00. This means that, on average, 100

customers arrive every day. The weight parameters β in the MNL demand model

in section 6.1 are assumed to be [0.01, -0.50, -0.10, -0.20, 0.01, -0.50], with 0.01

corresponds to walk way, -0.50 is for 8:00-10:00, -0.10 is for 10:00-12:00, . . . , -0.50
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corresponds to 16:00-18:00 respectively. These parameters are initially set based on

experiences with customer preference, where customers prefer 8:00-10:00 and 16:00-

18:00 the most as those time windows are off-work time. Furthermore, 10:00-12:00

is the least preferred time window for example. A numerical example demonstrating

the meaning of the specified parameters is shown in Appendix G. Once the system

starts running online, real-life data can be collected and stored in a database. Then

those parameters can be learned and updated regularly.

The weight of the opportunity cost is tuned to 0.3 for the best performance in

reducing emissions. If the weight of opportunity costs was set too high, the effect

of improving profits would not be obvious, and the system would always try to sell

slots that are closer to expiration even if they have higher emissions levels. On the

other hand, a small weight of opportunity costs would lead to overfilling of future

beneficial slots and waste those slots close to expiration; it would also reduce the

system capacity as well as profit.

There are 20 engineers working each day. Each engineer has one vehicle. All

vehicles start and end their daily work at the depot. In order to give a threshold

value for comparison purposes, the total amount of emissions and profits are com-

puted for a fixed price policy where customers are served based on their primary

demand. We simulate the system for one month (30 days) to compute the emissions

and profits for both the case of applying dynamic pricing and the case of applying

fixed price policy. We simulate the choice of customer decision based on the MNL

model to mimic real life. Hence, there are uncertainties. By taking the total and

average of 30 days simulations, the results are more representative for long term.

Different scenarios are considered in the experimental study, including the effects

of the customers’ perception, different customer classes (different price sensitivity).

The weight of opportunity cost are also considered when making dynamic pricing

decisions.

The computational results are shown in Table 6.4. The average computational
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time per customer is 10.3 second. This is acceptable for an online real-life booking

system. Compared to fixed pricing (FP) policy, dynamic pricing policy consistently

reduces the average emissions cost (even under the worst scenario) by 6.7 percent.

The higher the customer values this service, the more DP could save on CO2 emis-

sions. DP starts to increase profitability when customers value the service more

than its fixed price; and profit increases as reservation price increases because there

is a negative relationship between reservation price and the probability of walkaway

(proof in Appendix H). However, DP is observed to lead to a higher percentage of

customer walkaway. To measure the effects of different customer classes, we fixed

the reservation price to 50 to rule out the effects of customer walk away and only

consider the effect of price sensitivity. The results show that DP achieves better

results with less price sensitive (0.2) customers. To test the performance of DP with

different weights of opportunity cost, the price sensitivity and reservation price are

set to be 0.5 and 50 respectively. When the weight of opportunity cost increases,

the pricing decision is made more on filling up slots rather than on shifting demand

towards the lower emissions slot. The results demonstrate that the more weight

on opportunity cost, the less reduction in emissions and the less improvement in

profit. Overall, the performance of DP, compared to FP, is robust and a reduction

in emissions and improvement in profits are observed.
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Scenarios Cost/Customer Profit/Customer Walkaway %

DP FP Diff.% DP FP Diff.% DP FP

10 2.8 3.0 6.7 7.0 7.0 0 36.7 18.3

Reservation 15 3.5 4.1 14.6 7.8 5.9 32.2 8.7 1.7

price 20 3.4 4.5 24.4 8.6 5.5 56.4 1.5 0.1

50 3.3 4.6 28.3 8.7 5.4 61.1 0 0

Price 0.2 3.3 5.1 35.3 12.9 4.9 163.3 0 0

sensitivity 0.5 3.3 4.6 28.3 8.7 5.4 61.1 0 0

0.8 3.7 4.4 15.9 7.4 5.6 32.1 0 0

Weight of 0.3 3.3 4.6 28.3 8.7 5.4 61.1 0 0

opportunity

cost

0.6 3.9 4.1 4.9 7.5 5.9 27.1 0 0

Table 6.4: One-month simulation results of online pricing system.

6.7 Summary

This chapter developed a new mixed-integer linear programming model to solve the

green vehicle routing problem with time window constraints and time-dependent

travel time, and solved it using parallel variable neighbourhood search metaheuris-

tics with a dynamic programming algorithm to optimise start travel time. Compared

with exact method branch-and-bound which gave the global optimal solutions, the

proposed solution method performed well with an average one percent gap to global

optimal solutions and 332.69 times faster in CPU times. The pricing model was

solved by differential evolution method and this method outperformed mathemati-

cal software and Newton types of search methods.

An innovative online pricing system with our proposed solution method for

delivery services booking with rolling mechanisms was built and tested through a
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one-month simulation study to show the influence of dynamic pricing strategy versus

the fixed price strategy. Each customer request was processed by the system in 10.3

second on average. Several simulation studies were carried out to test the robustness

of the DP policy under various scenarios. Overall, the performance of DP, compared

to FP, was more robust and the reduction in emissions and improvement in profits

were observed.

This chapter extended the study in Chapter 4 and modelled customers demand

using a discrete choice model. Future work will look at different customer demand

model or different pricing policies to shift customers demand towards greener deliv-

ery options, this will be the focus of Chapter 7.
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7 Incentives sharing pricing policy for green de-

livery time window booking

In this chapter, we consider a different setting to that considered in the previous

chapters, in that previously when customers entered the website to purchase a ser-

vice they chose one delivery time window. In this chapter customers have the option

to choose either the standard two-hour delivery time window option or to be more

flexible and participate in the green delivery program, where the customer chooses

a two-hour time window together with several alternatives and the least-emissions-

cost time window option will be assigned to this customer. To reward customers

being flexible and caring about the environment, the cost savings, comparing to

all customers who choose standard delivery, will be distributed to those customers

who do not get their preferred time window option. This pricing policy needs no

extra knowledge of customer demand modelling; it is a simple but highly applicable

pricing policy.

We are still interested in scheduling a home attended service provider’s op-

erations. Comparing to a non-attended delivery problem, customers of attended

services need to agree on a delivery time window. This is because service providers

need to enter customer’s house to do the job, e.g. installation or maintenance. For

safety reasons, the customer is required to be physically present at the time of ser-

vice. For commodities delivery business, home attended delivery is also common as

the commodities may be food that perishes quickly or may be electronic equipment

that is valuable. The delivery time window is normally one to four hours, within

which the delivery person will arrive at the customer’s doorstep (Agatz et al., 2013).

For example, Sainsbury.com provides a one-hour delivery slot with differentiated

prices. The narrower the time window, the more satisfied the customers will feel as

it provides more certainty but the higher the cost will be for the retailer as it limits

flexibility to shuffle customers around (Punakivi et al., 2001).

The models related to transportation decisions in home attended delivery are
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vehicle routing problem with time windows (VRPTW), dynamic vehicle routing

problem (DVRP) and periodic vehicle routing problem (PVRP) (Agatz et al., 2008).

VRPTW studies the problem to decide the routings to visit a set of customers, which

is the same as in traditional vehicle routing problem, but the arrival time at each

customer site must fall into a time window agreed with customers beforehand. In

DVRP, customer requests arrive during operations and real-time routing adjustment

is required. PVRP finds many applications in real life that deals with customers

that require service or goods delivery periodically and decisions should be made on

delivery routes for multiple periods considering the delivery frequency. For installa-

tion and maintenance service providers, the requests are not periodically arriving,

and normally customers will send their requests a few days in advance so there is no

need for real-time routing solutions. VRPTW will be studied as customers’ orders

are collected and scheduled all together as a deterministic problem.

Papers in the literature focused on either the time windows management prob-

lems or pricing problems separately. Though both are powerful tools in revenue

management to reduce costs and improve profitability, research gaps are seen in the

combination of the two powerful tools. In this research, the integrated time windows

management and pricing problem will be studied in the context of home-attended

service delivery.

7.1 Problem description

We study a problem where a company sends engineers to customer sites to provide

maintenance and installation services. The company divides each day into several

time windows. Typically, each customer makes a request for the service through a

website or telephone at least one day before the service day. The customer service

centre will ask the customer’s preferred time window and offer the customer to par-

ticipate in the green delivery program (see Table 7.1). The green delivery program

is that instead of booking a two-hour time window as usual, the customer also pro-

vides a number of available time windows that are also suitable and the company
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will inform the customer the exact time window on the day of service delivery like

DPD’s business model (www.dpd.co.uk). So even if the customer chooses the green

delivery program, a two-hour time window is guaranteed and the customer will not

feel unsatisfied by uncertainty caused by wider time window. However, the customer

may not get the initially preferred time window, while incentives will be given for

customers who are flexible and participate in the green delivery option on the day

of service delivery. The incentives work as a compensation for those customers who

do not get the preferred delivery options. The incentives pricing problem is solved

using a simple pricing policy which does not need prior knowledge of sophisticated

customer demand formulation. The total cost savings as compared to following

customers’ initial preferences are fairly awarded to those customers who choose the

green delivery option and do not get their initial preferred time windows.

Standard Delivery

Program

Green Delivery

Program

Request Specific one-hour time

window (e.g. Monday

8am-10am)

Specific one-hour time

window and several

alternatives

Actual delivery Two-hour time window Two-hour time window

Preference

guaranteed?

Yes No

Confirmation of

service time and

price

Order in-take On the day of actual

delivery

Price Fixed price Fixed price minus dynamic

incentives

Table 7.1: Comparing the standard delivery program and the green delivery pro-
gram.
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To deliver the services, each engineer is driving a vehicle, typically a van with

the necessary tools. The goal is to allocate customers to engineers in a cost-saving

manner. The average travel speeds are fluctuating during the day because of the

traffic conditions, so the problem can be considered as a vehicle routing problem with

time windows extended to capture different travel times between customers at differ-

ent times of a day, rather than the traditional vehicle routing problem. Meanwhile,

for those customers who provide multiple time windows, the problem becomes more

complicated and is a multiple time windows VRPTW. To further demonstrate the

benefits of the green delivery program, a simple routing problem with time windows

is solved and the solutions are demonstrated in Figure 7.1. The standard delivery

program generates a route where the vehicle must visit each customer site by the

specified time window. However, customers who participate in the green delivery

program are more flexible, and the resulting route has a shorter distance and de-

livery time. Furthermore, the computational efforts needed for the green delivery

program are less, as the time windows are wider or even there are no time window

constraints for customers who specify the whole day as the available period. After

the optimal route solutions are computed, the delivery windows are determined and

then communicated to those customers in the green delivery program.
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Figure 7.1: Routing solutions of the standard delivery program and the green deliv-
ery program.

Traffic conditions have a significant influence on CO2 emissions, and so the

level and cost of emissions are time-dependent. Though the level of emissions is also

related to other factors such as vehicle load and road characteristics, this chapter

assumes homogenous vehicles and focuses on the timing of travel to take into ac-

count the different congestion conditions. Based on the traffic pattern of the area,

a day is divided into several time slots such that travel speed so as the emissions

level within a time slot can be considered the same.

This study assumes that all information is known at the time of planning

which is in the morning of every day and hence solves a deterministic vehicle rout-

ing problem. This is normal as the latest service booking time is at least one day

before actual service delivery happens. The decisions on vehicle routes are made to

minimise the total amount of CO2 emissions, or fuel consumptions as the two are

linearly related (Lichty, 1967). The solution framework is shown in Figure 7.2.
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Figure 7.2: Solution Framework.

7.2 Scenario 1: available time windows in the same day

We first consider a situation where if a customer participates in the green delivery

program, then all the available time windows are on the same day. This scenario

exists and is applicable for some urgent services where flexibility exists but normally

in one day. Those time windows could be adjacent or not. For example, a customer

originally picks 8:00am-10:00am and provides another two available time windows:

2:00pm-4:00pm, 4:00pm-6:00pm. Let us denote the number of time windows for

customer i as nTi, and in the previous example, nTi = 2 and the first window has

a width of two hours and the second one has four-hour width (2:00pm-4:00pm and

4:00pm-6:00pm are connected). The problem of interests can be formulated as a

multiple time windows VRP problem.
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Index:

i, j: index of customers; i, j = 0 for the depot;

k : index of vehicles;

t : index of time slots;

l : index of time windows options;

nTi: index of the total number of time windows options.

Parameters:

n : total number of customers;

K : total number of vehicles available;

Kj : set of vehicles/engineers that has the skill to do job at customer j;

M : a big positive number;

T : total time of the planning horizon;

S : total number of time slots;

dij : distance of travelling from i to j;

si : service time at customer i; and s0 = 0;

bil, eil : begin time and end time of the lth time window of customer i; and b0,

e0 are start and end times of the working period for engineers;

Lt : start time of time slot t;

vt : travel speed in time slot t in km/h;

ckt: emissions rate of vehicle k in time slot t in kg/km. 2

Variables:
2We consider homogenous vehicle in this chapter, ckt = ct for all k, for generic purpose we

model it as ckt
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Cijk : the amount of emissions (in kg) generated by travelling from i to j by

vehicle k;

xijk =


1, if vehicle k travel from customer i to j

0, otherwise
;

ϕil =


1, if customer i is assigned to his/her lth time window

0, otherwise
;

ui : time point when a vehicle starts travelling to customer i, for i = 1, . . . , n;

Uk : time point when vehicle k travelling back to depot;

wi : time point when the service at customer i starts, for i = 1, . . . , n;

Wk : time point when vehicle k gets back to depot;

τij : travel time from customer i to customer j;

z1it =


1, if travelling to customer i starts in time slot t

0, otherwise
, for i = 1, . . . , n;

z2it =


1, if travelling to customer i ends in time slot t

0, otherwise
, for i = 1, . . . , n;

Z1kt =


1, if vehicle k travelling back to depot starts in time slot t

0, otherwise
;

Z2kt =


1, if vehicle k travelling back to depot ends in time slot t

0, otherwise
.

Minimize:

N∑
i=0

N∑
j=0,i 6=j

K∑
k=1

Cikj (7.1)

Subject to:

n∑
i=0,i 6=j

∑
k∈Kj

xijk = 1,∀j = 1, . . . , n (7.2)
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n∑
i=0,i 6=j

xijk =
n∑

i=0,i 6=j
xjik,∀j = 1, . . . , n; k = 1, . . . , K (7.3)

n∑
j=1

K∑
k=1

x0jk ≤ K (7.4)

n∑
i=1

K∑
k=1

xi0k =
n∑
j=1

K∑
k=1

x0jk (7.5)

n∑
i=1

xi0k ≤ 1, ∀k = 1, . . . , K (7.6)

n∑
i=1

x0ik ≤ 1, ∀k = 1, . . . , K (7.7)

bil +M (ϕil − 1) ≤ wi ≤ eil +M (1− ϕil) ,∀i = 1, . . . , n; l = 1, . . . , nTi (7.8)

b0 ≤ Wk ≤ e0,∀k = 1, . . . , K (7.9)

wi − uj +M
K∑
k=1

xijk ≤M − si,∀i = 1, . . . , n; j = 1, . . . , n; i 6= j (7.10)

wi − Uk +Mxi0k ≤M − si,∀i = 1, . . . , n; k = 1, . . . , K (7.11)

wj ≥ uj + τij +M

(
K∑
k=1

xijk − 1
)
,∀i = 0, . . . , n; j = 1, . . . , n; i 6= j (7.12)

Wk ≥ Uk + τi0 +M (xi0k − 1) , ∀i = 1, . . . , n; k = 1, . . . , K (7.13)

uj ≥ Lt + T (z1jt − 1) ,∀j = 1, . . . , n; t = 1, . . . , S (7.14)

Uk ≥ Lt + T (Z1kt − 1) ,∀k = 1, . . . , K; t = 1, . . . , S (7.15)

uj ≤ Lt+1 + T (1− z1jt) ,∀j = 1, . . . , n; t = 1, . . . , S (7.16)

Uk ≤ Lt+1 + T (1− Z1kt) ,∀k = 1, . . . , K; t = 1, . . . , S (7.17)

uj + τij ≥ Lt + T

(
z2jt +

K∑
k=1

xijk − 2
)
,∀i = 0, . . . , n; j = 1, . . . , n; i 6= j;

t = 1, . . . , S (7.18)

Uk + τi0 ≥ Lt + T (Z2kt + xi0k − 2) ,∀i = 1, . . . , n; k = 1, . . . , K; t = 1, . . . , S

(7.19)
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uj + τij ≤ Lt+1 + T

(
2− z2jt −

K∑
k=1

xijk

)
,∀i = 0, . . . , n; j = 1, . . . , n; i 6= j;

t = 1, . . . , S (7.20)

Uk + τi0 ≤ Lt+1 + T (2− Z2kt − xi0k) ,∀i = 1, . . . , n; k = 1, . . . , K; t = 1, . . . , S

(7.21)

S∑
t=1

z1jt = 1, ∀j = 1, . . . , n (7.22)

S∑
t=1

Z1kt = 1,∀k = 1, . . . , K (7.23)

S∑
t=1

z2jt = 1, ∀j = 1, . . . , n (7.24)

S∑
t=1

Z2kt = 1,∀k = 1, . . . , K (7.25)

τij ≥
dij
vt

+M

(
K∑
k=1

xijk + z1jt + z2jt − 3
)
,∀i = 0, . . . , n; j = 1, . . . , n; i 6= j;

t = 1, . . . , S (7.26)

τi0 ≥
di0
vt

+M (xi0k + Z1kt + Z2kt − 3) ,∀i = 1, . . . , n; t = 1, . . . , S; k = 1, . . . , K

(7.27)

τij ≥ Lt+1 − uj + [dij − vt (Lt+1 − uj)]
vt+1

+M

(
K∑
k=1

xijk + z1jt + z2jt+1 − 3
)
,

∀i = 0, . . . , n; j = 1, . . . , n; i 6= j; t = 1, . . . , S (7.28)

τi0 ≥ Lt+1 − Uk + [di0 − vt (Lt+1 − Uk)]
vt+1

+M (xi0k + Z1kt + Z2kt+1 − 3) ,

∀i = 1, . . . , n; t = 1, . . . , S; k = 1, . . . , K (7.29)

Cijk ≥ ckt · dij +M (xijk + z1jt + z2jt − 3) ,∀i = 0, . . . , n; j = 1, . . . , n; i 6= j;

k = 1, . . . , K; t = 1, . . . , S (7.30)

Ci0k ≥ ckt · di0 +M (xi0k + Z1kt + Z2kt − 3) ,∀i = 0, . . . , n; k = 1, . . . , K;

t = 1, . . . , S (7.31)
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Cijk ≥ ckt · vt (Lt+1 − uj) + ckt+1 · [dij − vt (Lt+1 − uj)] +M(xijk + z1jt+

z2jt+1 − 3),∀i = 0, . . . , n; j = 1, . . . , n; i 6= j; k = 1, . . . , K; t = 1, . . . , S (7.32)

Ci0k ≥ ckt · vt (Lt+1 − Uk) + ckt+1 · [di0 − vt (Lt+1 − Uk)] +M(xi0k + Z1kt+

Z2kt+1 − 3), ∀i = 1, . . . , n; k = 1, . . . , K; t = 1, . . . , S (7.33)

τij ≤M
K∑
k=1

xijk,∀i, j = 0, . . . , n; i 6= j (7.34)

0 ≤
S∑
t=1

t · z2jt−
S∑
t=1

t · z1jt ≤ 1,∀j = 1, . . . , n (7.35)

0 ≤
S∑
t=1

t · Z2kt−
S∑
t=1

t · Z1kt ≤ 1,∀k = 1, . . . , K (7.36)

and the nonnegativity and binary constraints.

The objective equation (7.1) of the model is to minimise the total amount of

CO2 emissions generated by travelling along the links. In this model, CO2 emissions

rate is the same as in Chapter 6. Constraints (7.2) and (7.3) indicate that there is

exactly one vehicle going into each customer node and the same vehicle leaves the

customer node (each customer node is served only once). Constraints (7.4) and (7.5)

mean that at most K vehicles can leave the depot and the same number will travel

back to the depot at the end. Constraints (7.6) and (7.7) require that each vehicle

can at most leave and return to the depot once, and reuse of vehicle is prohibited.

Constraints (7.8) and (7.9) specify that the services for each customer i must be in

one of the nTi available time windows, and the vehicles/engineers must return to

depot in the working period for the engineers. Constraints (7.10) and (7.11) ensure

that a vehicle can start travelling to the next customer only after finishing the task

at the current customer. These also work as sub-tour elimination constraints. There

may be a gap (idle time) between task finish time and the start time of travelling

to the next customer. Constraints (7.12) and (7.13) require that tasks at customer

sites can start only after the vehicle arrives there. Constraints (7.14) through (7.21)

determine travel start and end times. Constraints (7.22) through (7.25) mean that

the start or end of each travel must fall into only one time slot. Constraints (7.26)
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through (7.29) calculate the travel time between two nodes with time-dependent

travel speed. Constraints (7.30) through (7.33) determine the amount of CO2 emis-

sions associated with each link. Constraint (7.34) bounds the travel time between

two nodes to zero if they are not linked. Constraints (7.35) and (7.36) assume that

the maximum gap between the start and end of travelling on any link is one time

slot and the minimum is zero time slot, i.e., travelling between any two nodes will

not span into three different time slots.

The model is tested and solved on a few small examples with 10 customers each,

and every customer has an initial preferred time window with two-hour width. To

validate the effect of the proposed green delivery program policy, all ten customers

will participate in this program and will provide another alternative time window

with a four-hour width (nTi = 2). The alternative time window is non-overlapping

with the initial preferred time window. All test cases are solved to optimality by

Xpress optimiser on the Loughborough high-performance computer (HPC) cluster,

HYDRA with 20 cores 64-bit Intel Xeon CPU and 64 GigaBytes of memory. The

optimal solutions metrics are demonstrated in Table 7.2. The problems are solved

using 20 threads in parallel. Initially, we tried to solve the problems on a personal

computer (PC) with 64-bit Windows operating system, eight GigaBytes of RAM and

an Intel i5 processor with quad-cores. However, those problems cannot be solved

to optimality within 20 hours, after which the program will terminate due to insuf-

ficient system memory left. In the solution for each problem, the service starting

times clearly indicate which time window is selected for each customer.
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Instance
Emissions (kg)

Improvement
Travel Time (mins)

Improvement
Distance (km)

Improvement
Idle Time (mins)

Improvement
Vehicles

Improvement
nT=1 nT=2 (%) nT=1 nT=2 (%) nT=1 nT=2 (%) nT=1 nT=2 (%) nT=1 nT=2 (%)

1 47.31 35.16 25.68 570.16 327.27 42.6 239.16 173.04 27.65 2129.84 372.73 82.5 3 1 66.67

2 42.51 28.33 33.36 483.3 287.46 40.52 215.77 141.28 34.52 1216.7 412.54 66.09 2 1 50

3 55.05 49.48 10.12 601.69 471.3 21.67 281.82 245.61 12.85 2098.31 228.7 89.1 3 1 66.67

4 36.14 27.26 24.57 576.2 246.92 57.15 183.65 134.55 26.74 1123.8 453.08 59.68 2 1 50

5 45.9 35.24 23.23 946.05 333.63 64.73 229.61 174.06 24.19 753.95 366.37 51.41 2 1 50

6 49.47 45.11 8.81 667.7 426.39 36.14 247.69 223.94 9.59 1032.3 273.61 73.49 2 1 50

7 31.51 27 14.3 549.55 250.79 54.36 158.05 134.92 14.64 1150.45 449.21 60.95 2 1 50

8 49.3 37.19 24.56 588.34 359.6 38.88 251.47 185.48 26.24 2111.66 340.4 83.88 3 1 66.67

9 44.32 34.43 22.32 645.79 349.42 45.89 222.23 172.6 22.33 1054.21 350.58 66.74 2 1 50

10 43.47 36.93 15.05 405.55 354.09 12.69 215.45 183.18 14.98 1294.45 345.91 73.28 2 1 50

Average 20.2 41.46 21.37 70.71 55

Table 7.2: Xpress results on test instances with customer size 10.
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Procedures taken to improve the performance of the solver are shown in Ap-

pendix I. Customers participated in the green delivery program and provide flexi-

bility will help reduce the total emissions by 20.20%. Furthermore, engineers’ total

travel time, travel distance and idle time are also reduced by 41.46%, 21.37% and

70.71% respectively. Idle time reduction is mainly achieved by reducing the number

of engineers scheduled and tighten the schedule of each engineer, so a 55% reduction

in the number of vehicles used/engineers scheduled is also observed. This helps the

company to save staff cost as well.

For the pricing part, the total emissions cost savings of these ten customers

and the number of customers being shifted are summarised in Table 7.3. Not all

customers provided flexibility will be shifted, and some of them can still get their

initial preference. The savings will be evenly distributed to customers who have

been moved to another time windows. The average savings for ten customer cases

are 1.40.
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Instance Savings (money unit) Shifted Customer Incentives

(money unit)

1 12.148917 9 1.349879667

2 14.181729 6 2.3636215

3 5.570394 7 0.795770571

4 8.8803 7 1.268614286

5 10.66131 5 2.132262

6 4.359695 6 0.726615833

7 4.505483 5 0.9010966

8 12.105757 8 1.513219625

9 9.890963 6 1.648493833

10 6.542719 5 1.3085438

Average 1.400811772

Table 7.3: Incentives pricing of the ten instances.

7.3 Metaheuristic method for scenario one

Because the model cannot be solved on normal PCs in reasonable times, the new

self-adaptive simulated annealing algorithm introduced in Chapter 5 is applied in

this chapter to solve scenario one model. To deal with multiple time windows con-

straints, we amended the algorithm slightly. The first amendment is that when

building initial solutions, the tasks are ranked in ascending order of time window

width. In multiple time windows instances, the tasks are ranked by the biggest

time window width of all available time windows. Furthermore, tasks are scheduled
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according to the biggest time window in the initial solution. Another change to the

algorithm is that when checking the feasibility of a neighbouring solution, if start

service of each customer is within any of the multiple time windows, then the solu-

tion is feasible.

To test the performance of the algorithm, we solved the same ten instances

that the software solver solved before on the same PC mentioned before. The re-

sults are summarised in Table 7.4. The SA solution is an average solution of 10

repetitions as there is randomness in the search algorithm. The algorithm is able to

produce solutions with an average of 2.68% gap, which is close to optimal. Further-

more, while the optimisation software cannot solve those problems within hours on

local PC, the average solution time of the SA algorithm is 44.93 seconds. Based on

industrial needs, the proposed SA algorithm is fast and the solution quality is very

high.
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Instance Xpress solution

(optimal solution)

ASA solution Time (s) Gap%

1 35.16 37.135 48.5 5.61

2 28.33 29.321 42.1 3.50

3 49.48 49.988 50.6 1.03

4 27.26 27.695 46.4 1.60

5 35.24 35.24 35.7 0.00

6 45.11 45.216 48.6 0.23

7 27.00 27.311 40.9 1.13

8 37.19 38.194 47 2.69

9 34.43 36.17 34.6 5.06

10 36.93 39.131 54.9 5.97

Average 44.93 2.68

Table 7.4: Comparisons between Self-adaptive SA with Xpress solver on the ten
Senario 1 instances.

7.4 Scenario 2: available time windows in different days

For normal or standard service booking, a customer probably has another available

time window on a different day of his/her initial preferred time window. Those time

windows could be adjacent or not as in Scenario 1. Another example is a customer

originally picks 8:00am-10:00am on Monday and provides another available time

window 4:00pm-6:00pm on Tuesday. Different from the example in Scenario 1, these

time windows are on different days. The customer may provide time windows on

two different days, but the schedules and routing need to be solved every day for the

current day. It is not feasible to solve the problems for two days as there will still

be customers arriving for the next day, and optimal solutions cannot be obtained

until the cut-off time of the next day, which is the end of the current day. With
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available time windows on two days, it is more beneficial to schedule the customer

on the current day to reduce engineer idle time unless the current day yields much

more emissions. To tackle this point, each shifted flexible customer, which means

shifted to the next available time window on another day, is associated with an

opportunity cost measured by the value of wasted utility time, where wasted utility

time of customer i is defined as:

ςi = a (si + τi)

where a is a predetermined parameter indicating the weight of the wasted time, si
is the service time and τi is the average travel time to customer i, and

τi =
∑
j∈N dij
nv

where set N is the set of n nearest neighbour of customer i and v is the mean ve-

locity of the day. Wasted utility time is calculated using the total time dealing with

a customer, which means if shifting this customer away, that particular amount of

time which would be used to fill up engineers’ idle time is wasted.

For customers who participate into the green delivery program (flexible cus-

tomers), they will be guaranteed to be scheduled in one of their available windows,

as they already provide flexibilities and it is not wise to refuse those customers es-

pecially at the last time window they choose. If flexible customers cannot be served

or not beneficial to be served in the current day, they will definitely get their service

on one of the alternative available dates. On the other hand, non-flexible customers

only provide one-time window and they may or may not get their service depending

on capacity. However, they will get the response sooner than flexible customers

which are before or at the beginning of their preferred day. To decide which non-

flexible customers to reject, the estimated potential profits loss of all the non-flexible

customers are calculated by:

πi = Ri −
∑
j∈N dij
n

· c
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where Ri is the revenue that a customer may bring, which is linearly related to the

service time and c is the average emissions rate. This potential profit loss is treated

as another type of opportunity cost.

The problem of interests can be formulated as an extended version of the Sce-

nario 1 model with overbookings and the objective function is changed to maximise

profit minus opportunity cost and additional constraints are added to deal with

overbookings.

Index:

i, j : index of customers; and i, j = 0 for the depot;

k : index of vehicles;

t : index of time slots;

NF: set of non-flexible customers;

FF: set of flexible customers that still have available time windows in the

future time;

FM: set of flexible customers that have been shifted before and today is the

only available time window left.

Parameters:

n : total number of customers;

K : total number of vehicles available;

bi, ei : begin time and end time of the time window of customer i; and b0, e0

start and end times of the working period for engineers;

πi : estimated average profit of customer i;

ςi : opportunity cost of customer i;

Ri : revenue customer i brings which is linearly related the service time.
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Variables:

Cijk : the amount of emissions (in kg) generated by travelling from i to j by

vehicle k;

xijk =


1, if vehicle k travel from customer i to j

0, otherwise
;

wi: time point when the service at customer i starts, for i = 1, . . . , n.

Maximum:

N∑
i=0

N∑
j=0,i 6=j

K∑
k=1

Rixijk −
N∑
i=0

N∑
j=0,i 6=j

K∑
k=1

Cijk −
∑
i∈NF

πi

1−
N∑

j=0,i 6=j

K∑
k=1

xijk

−
∑
i∈FF

ςi

1−
N∑

j=0,i 6=j

K∑
k=1

xijk

 (7.37)

Subject:

n∑
i=0,i 6=j

K∑
k=1

xijk = 1, ∀j ∈ FM (7.38)

n∑
i=0,i 6=j

K∑
k=1

xijk ≤ 1, ∀j ∈ FF, NF (7.39)

Constraints (7.3) - (7.7)

bi ≤ wi ≤ ei, ∀i = 1 . . . , n; l = 1, . . . nT (7.40)

Constraints (7.9) – (7.36), and the nonnegativity and binary constraints.

The objective (7.37) is to maximise the total profit (∑N
i=0

∑N
j=0,i 6=j

∑K
k=1 Rixijk−∑N

i=0
∑N
j=0,i 6=j

∑K
k=1 Cijk) minus the opportunity cost of rejecting a non-flexible cus-

tomer
(∑

i∈NF πi
(
1−∑N

j=0,i 6=j
∑K
k=1 xijk

))
and minus the opportunity cost of shift-

ing a flexible customer to a future time window rather than taking the near-to-expire

time window ∑
i∈FF ςi

(
1−∑N

j=0,i 6=j
∑K
k=1 xijk

)
). Constraints (7.38) are for flexible

customers who have been shifted and have only one available time window left. It

indicates that each customer in this group is served once and only once by one vehi-

cle on the current day. Meanwhile, constraints (7.39) are for non-flexible customers
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and flexible customers who still have available time window options in the future,

so the customer can be served once by one vehicle or not be served. Constraints

(7.40) are the standard time window constraints. Different from Scenario 1 model,

in one day, each customer only has one time window option, but flexible customers

have multiple time windows across different days. The rest constraints are the same

as in Scenario 1 model.

Scenario 2 model is first tested on a small example as in Scenario 1 for one day

and the above formulation was solved by Xpress optimiser. In this instance, there

are five new customers who are flexible and have one time window for this day and

alternatives for other days, five new customers who are non-flexible and five existing

customers who used to be flexible but have been shifted to this day with one time

window too. In total, there are 15 customers booked for this day. The estimated

capacity of one engineer is 10. So, the number of vehicles is one in this instance.

The service times are all set to be 30, and the revenue from customers is all 30 unit.

We first set the time value in the function of ςi to be 0.1. The optimal solutions

represented on X-Y coordinates are shown in Figure 7.3. As there is overbooking,

not all customers are accepted in the optimal solution. When ςi = 0.1, less weights

are put onto the opportunity cost of serving flexible customers today rather than

another day, so all rejected customers are within this group. 12 customers are

served. If increase ςi to 0.5, opportunity cost takes too much weight this time,

resulting all non-flexible customers being rejected. Same as before, 12 customers

are served. Taking some value in between such as 0.3 will be an appropriate weight

for opportunity cost. One customer from the flexible group is shifted to another day,

and two non-flexible customers are rejected. Furthermore, the detailed performance

metrics of the optimal routes are shown in Table 7.5. ςi = 0.3 gives the best routes

among the three in the case of emissions, travel distance and travel time.
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Figure 7.3: Xpress results regarding different weights of opportunity cost demon-
stration on X-Y coordinates.

Instance Customer

served

Customer

rejected

Emissions Travel

Time

Distance

a = 0.1 12 3 61.9919 557.3326 306.1329

a = 0.3 12 3 59.0449 535.4196 291.031

a = 0.5 12 3 63.18748 578.1264 312.3845

Table 7.5: Xpress results with respect to different weights of opportunity cost (best
result highlighted).

7.5 Solution algorithm for Scenario 2 problem

A modified self-adaptive simulated annealing algorithm is applied to Scenario 2

problem. To decide which customers to be included in the initial solution, all the

tasks that belong to FF and NF are ranked according to their potential cost and

time window width, the one with a smaller cost and a narrower time window will
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be inserted into initial solution first. Ten test instances are randomly generated

and with five customers for each category. Time value a is set to be 0.3. All test

cases are solved by Xpress optimiser on HPC first to get the optimal solution, and

then solved by the modified SA. The comparison results are demonstrated in Table

7.6. SA performs well in terms of solution quality with an average optimality gap

of 1.61%, furthermore the average solution time is 16 seconds.

Instance Emissions

(Xpress

optimal)

No.

customers

(Xpress)

Emissions

(ASA)

No.

customers

(ASA)

CPU

Time

Gap

1 56.83 12 56.83 12 18.339 0.00

2 66.08 13 68.672 13 21.984 3.93

3 70.08 13 71.726 13 22.501 2.35

4 64.80 13 67.8 13 12.048 4.63

5 52.60 12 55.06 12 11.136 4.69

6 68.71 13 68.85 13 14.847 0.21

7 51.47 12 51.56 12 10.585 0.17

8 50.54 13 50.54 13 16.251 0.00

9 48.48 13 48.54 13 18.821 0.12

10 40.49 12 40.49 12 12.882 0.00

Average 15.939 1.61

Table 7.6: Comparisons between Self-adaptive SA with Xpress solver on the ten
Senario 2 instances.
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7.6 Simulation experiments on large size problem

A customer pool of 600 customers are generated for the simulation experiments of

seven days. Artifical test cases are used instead of real life instances because the

real life cases have rather long time windows e.g. a four hours time window which is

not suitable to be grouped and does not make sense. To better study the effects of

time windows flexibility, artificial data sets are created. Assuming there are three

engineers on duty each day, 45 customers can be served approximately. We consider

a scenario with overbooking where the company will accept 60 customers each day,

among them there is a 50-50 percent chance that the customer will participate in the

green delivery program. The geographical data are taken from the combination of

all Solomon benchmark case locations of 600 customers (some customer may be at

the same locations) and shown in Figure 7.4. The test case is a mix of Scenario 1 and

Scenario 2, where customers who are flexible have time windows on the same day or

on different days. The customers not being served are either non-flexible customers

being rejected or flexible customers being shifted to alternate days. Initially, we

consider for flexible customers nT = 3 3 and the first time window has a width of

two hours and the second two have four-hour width. Simulations of seven days are

run on ten instances, and the results are summarised in Table 7.7.

Figure 7.4: Locations of 600 customers and a depot for simulation experiments.
3The number of time windows customers provided are the same in the experiments, so we denote

nT = nTi,∀i
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Instances With green delivery program Traditional delivery
Total

emissions
(kg)

Average per
customer

(kg)

Served
(no.)

Shifted
(no.)

Rejected
(no.)

Average
incentives
(money)

Total
emissions

(kg)

Average per
customer

(kg)

Served
(no.)

Rejected
(no.)

1 1102.79 3.16 349 65 71 1.19 1126.19 3.38 333 87
2 1087.01 3.11 349 80 71 0.84 1097.65 3.31 332 88
3 1094.92 3.16 347 71 73 1.46 1098.14 3.45 318 102
4 1060.44 3.02 351 86 69 2 1155.11 3.51 329 91
5 1082.05 3.12 347 80 73 1.3 1110.67 3.42 325 95
6 1136.71 3.28 347 81 73 0.91 1102.6 3.49 316 104
7 1057.38 3.05 347 76 73 1.46 1094.19 3.37 325 95
8 1129.01 3.22 351 66 69 1.33 1119.99 3.47 323 97
9 1091.91 3.07 356 77 64 1.69 1102.01 3.43 321 99
10 1062.21 3.01 353 85 67 1.6 1120.2 3.39 330 90

Average 3.12 349.7 76.7 70.3 1.38 3.42 325.2 94.8

Table 7.7: Seven days simulations results on 10 instances where NF:FF=1:1 and nT = 3.
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The average emissions cost per customer is 3.12 when introducing the green

delivery program and 50% of customers participating in it. However, the average

emissions of traditional delivery and time window booking is 3.42 kg. This is an

8.77% reduction in average emissions per customer. Furthermore, with overbook-

ings, the green delivery program is able to serve more customers and so reject fewer

customers with an average of 70 rejections comparing to traditional delivery with an

average of 95. This delivery system results in a 26.32% reduction in the number of

customers refused. On average, the customers who participate in the green delivery

program will get an incentive reward of 1.38.

7.6.1 Changes in the environment

The initial results show good potential and benefits of the proposed pricing and

green delivery program. This section tests the robustness of the program when

there are changes in the environment. Customers may not prefer the green delivery

program or may prefer it more than expected, so the ratio of non-flexible customers

and flexible ones may be changed. We consider a ratio of 2:1 and 1:2 separately.

The results are listed in Table 7.8 and Table 7.9. The percentage reductions in

emissions compared to traditional delivery strategy are 4.11%, 8.77% and 12.65%

for the ratios of non-flexible customers versus flexible customers 2:1, 1:1 (Table 7.7)

and 1:2 correspondingly. As the proportion of flexible customers increases which

gives more room for optimisation, the benefits of the green delivery program get

enlarged. There is also a positive trend in the percentage reduction in customers

rejected, where the reductions are 18.59%, 26.32% and 35.89%. Furthermore, when

more customers participate in the green delivery program, an increase in average

incentives awarded are also increased, which are 0.99, 1.38 to 1.57.
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Instances With green delivery program Traditional delivery
Total

emissions
(kg)

Average per
customer

(kg)

Served
(no.)

Shifted
(no.)

Rejected
(no.)

Average
incentives
(money)

Total
emissions

(kg)

Average per
customer

(kg)

Served
(no.)

Rejected
(no.)

1 1064.73 3.16 337 42 83 0.9 1076.24 3.27 329 91
2 1142.59 3.4 336 55 84 0.03 1120.62 3.41 329 91
3 1114.02 3.16 352 55 68 1.34 1103.44 3.37 327 93
4 1146.44 3.34 343 38 77 1.41 1130.19 3.5 323 97
5 1119.62 3.29 340 50 80 0.87 1091.33 3.42 319 101
6 1127.04 3.26 346 53 74 1.08 1115.97 3.42 326 94
7 1108.41 3.24 342 52 78 1.46 1118.29 3.46 323 97
8 1135.94 3.34 340 50 80 1.17 1138.23 3.51 324 96
9 1135.6 3.35 339 50 81 0.72 1102.39 3.46 319 101
10 1127.75 3.19 354 51 66 0.94 1109.18 3.32 334 86

Average 3.27 342.9 49.6 77.1 0.99 3.41 325.3 94.7

Table 7.8: Seven days simulations results on 10 instances where NF:FF=2:1 and nT = 3.
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Instances With green delivery program Traditional delivery
Total

emissions
(kg)

Average per
customer

(kg)

Served
(no.)

Shifted
(no.)

Rejected
(no.)

Average
incentives
(money)

Total
emissions

(kg)

Average per
customer

(kg)

Served
(no.)

Rejected
(no.)

1 1077.57 3.09 349 98 71 0.92 1100.94 3.35 329 91
2 1040.58 2.92 356 106 64 1.57 1074.73 3.39 317 103
3 1047.6 2.9 361 102 59 2.26 1153.9 3.54 326 94
4 1034.9 2.91 356 94 64 1.66 1077.6 3.35 322 98
5 1130.26 3.17 356 103 64 1.33 1156.79 3.56 325 95
6 1029.71 2.81 366 103 54 1.8 1078.86 3.32 325 95
7 1058.28 2.96 358 77 62 2.23 1113.35 3.44 324 96
8 1084.92 2.98 364 96 56 1.64 1109.52 3.41 325 95
9 1059.52 2.89 366 103 54 1.05 1056.14 3.19 331 89
10 1110.54 3.09 359 98 61 1.27 1121.9 3.44 326 94

Average 2.97 359.1 98 60.9 1.57 3.4 325 95

Table 7.9: Seven days simulations results on 10 instances where NF:FF=1:2 and nT = 3.
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The number of available time windows may also affect the performance of the

new pricing strategy. We consider for flexible customers nT = 2 where the first

time window has a width of two hours and the second one has a four-hour width,

nT = 4 where the first time window has a width of two hours and the others have

four-hour width. The results are demonstrated in Table 7.10 (nT = 2), Table 7.7

(nT = 3) and Table 7.11 (nT = 4). It shows that the more time windows the

customer provided, the more emissions that can be saved, the percentage savings

of emissions are 4.09%, 8.77% and 11.73% for nT = 2. . . 4 respectively. Similar

results are observed for the rejection ratio, the reductions in customers rejected are

14.45%, 26.32% and 36.82%. Meanwhile, the amounts of incentives also improve as

the number of flexible customers increases (0.94, 1.38 and 1.55).
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Instances With green delivery program Traditional delivery
Total

emissions
(kg)

Average per
customer

(kg)

Served
(no.)

Shifted
(no.)

Rejected
(no.)

Average
incentives
(money)

Total
emissions

(kg)

Average per
customer

(kg)

Served
(no.)

Rejected
(no.)

1 1158.57 3.44 337 48 83 0.91 1123.59 3.57 315 105
2 1135.14 3.34 340 46 80 0.98 1124.8 3.47 324 96
3 1065.59 3.27 326 69 94 0.96 1131.74 3.47 326 94
4 1112.48 3.25 342 54 78 1.65 1124.39 3.51 320 100
5 1113.59 3.3 337 54 83 0.81 1105.79 3.43 322 98
6 1125.7 3.25 346 54 74 1.15 1105.33 3.43 322 98
7 1095.86 3.19 343 56 77 0.4 1062.84 3.26 326 94
8 1100.31 3.26 338 51 82 0.85 1086.24 3.38 321 99
9 1130.96 3.38 335 52 85 1.5 1183.91 3.61 328 92
10 1006.43 3.08 327 60 93 0.15 1015.31 3.1 327 93

Average 3.28 337.1 54.4 82.9 0.94 3.42 323.1 96.9

Table 7.10: Seven days simulations results on 10 instances where NF:FF=1:1 and nT = 2.
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Instances With green delivery program Traditional delivery
Total

emissions
(kg)

Average per
customer

(kg)

Served
(no.)

Shifted
(no.)

Rejected
(no.)

Average
incentives
(money)

Total
emissions

(kg)

Average per
customer

(kg)

Served
(no.)

Rejected
(no.)

1 1111.19 3.13 355 83 65 1.54 1134.52 3.49 325 95
2 1085.68 3.04 357 95 63 1.69 1120.58 3.49 321 99
3 1075.63 3.01 357 87 63 1.65 1106.49 3.42 324 96
4 1103.49 3.04 363 98 57 1.21 1124.6 3.37 334 86
5 1059.02 2.91 364 90 56 1.98 1094.85 3.4 322 98
6 1069.04 3 356 99 64 1.6 1085.94 3.45 315 105
7 1070.82 3.04 352 90 68 1.67 1151.73 3.47 332 88
8 1093.21 3.04 360 104 60 1.27 1096.12 3.4 322 98
9 1106.65 3.02 367 87 53 1.69 1103.08 3.42 323 97
10 1051.48 2.88 365 99 55 1.16 1041.59 3.2 326 94

Average 3.01 359.6 93.2 60.4 1.55 3.41 324.4 95.6

Table 7.11: Seven days simulations results on 10 instances where NF:FF=1:1 and nT = 4.
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7.7 Summary

In this chapter, a new pricing strategy was studied where customers who participate

in the green delivery program share the incentives. The green delivery program

allows the customers to provide alternative time windows, different from traditional

delivery where only one time window is selected. The incentives are determined by

the amount of emissions saved compared to traditional delivery. When customers

provide more than one time window, the decision problem for customer assignment

and engineers routing becomes a multiple time windows VRP problem which at-

tracts little attention in the literature. A new self-adaptive simulated annealing

algorithm was developed in Chapter 5 and applied in this chapter. Two different

scenarios of problems were considered when the alternative time windows are either

on the same day or on different days. Furthermore, in Scenario 2, overbooking is

considered as well. To test the performance of self-adaptive SA, ten instances each

are constructed for both scenarios, and solved by Xpress optimiser as well. The

results showed that for Scenario 1 the gap is 2.68% and for Scenario 2 is 1.61%. The

solution quality is acceptable, meanwhile the computational time is much faster

with an average of 44.93 s and 15.94 s respectively. However, Xpress optimiser was

unable to solve those instances on local machine within hours and 8Gb of memory,

so the instances were solved by Xpress optimiser on Loughborough University HPC.

Real-life sized instances were randomly generated and simulated for seven working

days with both Scenario 1 and Scenario 2 properties. Results showed that the pro-

posed incentive sharing policy could help save emissions and improve the number

of customers served when there is overbooking. Changes in the environment were

simulated to test the robustness of the new policy. Test results showed that more

flexible customers or more time windows provided by each customer could further

enlarge the benefits of reducing emissions and reducing the number of customers

refused.

In the next chapter, we will conclude the findings of this research and sum-

marise the contributions. Furthermore, future research topics will also be proposed.
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8 Conclusions

The objective of the research presented in this thesis has been to apply dynamic

pricing policies to shift customer demand and lead them to choose more environ-

mental friendly delivery options in the context of the online service delivery industry,

such as a telecommunication company which provides home attended installation

and maintenance service. A significant portion of CO2 emissions comes from road

transportation. Emissions from vehicles are affected by travel speed which varies

during the day, so emissions levels for different delivery time slots of a day are dif-

ferent. The aim is to find the potential benefits of implementing dynamic pricing in

the sense of both emissions reduction and profits improvement.

8.1 Contributions and findings

To understand the state-of-the-art of the field and ensure the originality of the the-

sis work, a literature review was conducted first focusing on four different research

areas related to the thesis. First, since the research interests are in online service

delivery with the goal to reduce emissions, the literature on green vehicle routing

problems with time windows was reviewed. Most relevant works in the literature

acknowledge that emissions are affected by travel speed and that travel speed is

a time-dependent variable so as emissions. There are congested periods in a day,

during which emissions are much higher. Research gap was seen in multiple time

window VRP literature. Little attention has been paid to this topic. By providing

multiple time window options, there would be a potential to reduce CO2 emissions

further in this case. The second related research area is how to estimate emissions

from vehicles. Several different emissions models were reviewed and compared. The

NAEI and the MEET project formulas are the most suitable emissions models for

this research based on data availability. The accuracy of the emissions models was

testified in Chapter 3. Thirdly, state of the art solution algorithms for VRPTW

were reviewed and compared to select the algorithms for use. Tabu search, variable

neighbourhood search and variants, simulated annealing and variants have been
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implemented and compared in this thesis. At last, the literature of revenue manage-

ment in time window booking was reviewed. There are differentiated time window

pricing and dynamic pricing for time windows. There have been some previous

works applying revenue management technique to reduce traditional delivery costs

such as distance and travel time and smooth demand. To the best of our knowledge,

there has been no research applying dynamic pricing technique to reduce emissions

of delivery.

CO2 emissions are affected by travel speed, travel distance, and vehicle details,

etc. For calculating emissions from different route plans and for real-life applica-

tions to make an impact, a CO2 emissions calculator was built in Java. The unique

features of the system are: 1) automated vehicle details mapping to emissions for-

mulas, which is not provided in any commercial emissions software; 2) tailored speed

profiles for different regions in the UK, based on real-world traffic data and the data

of driving behaviours of engineers from a field service provider; 3) computing emis-

sions data for every granularity like road segment level, task level, engineer level,

daily level and so on. Although fuel consumption data gives companies an idea of

the overall emissions associated with each vehicle and engineer, the emissions data

gives more detailed information on fuel consumption e.g. per task; 4) Map visual-

izing (Heat map): the emissions on travels are coloured and benchmarked against

different levels of CO2 emissions. The emissions calculator has the NAEI and the

MEET emissions formulas built in, and the results from it were compared with

manufacturing data and proved to be relatively accurate. It is also the first emis-

sions calculator that includes vehicle details in emissions formulas to differentiate

the emissions calculation. An interesting finding from experiment results is that

minimising emissions is not the same as minimising travel time. Conflicts exist be-

tween traditional objectives and green objectives. Real life business applications in

a telecommunication company were taken as an example to demonstrate the impact

of the research.

Three different application situations of service delivery booking were then
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considered, and the potential benefits of applying dynamic pricing to each of them

were investigated, as compared to applying traditional fixed price booking. Cus-

tomers may arrive anytime during the day and book for services.

In the first situation, customers who book before the day of service are allo-

cated to the time windows they requested. A two-phase solution framework was

proposed to deal with customer requests for service on the current day. Customer

locations are concentrated in a relatively small geographical area and so travel-

ling times between locations and their differences could be ignored. Each customer

request comes with a preferred service time window, but may accept other time win-

dows with certain probabilities which change with prices change. The first phase

model for this situation solves the problem for each time window option as a vehicle

scheduling problem with the objective to minimise emissions and get the cost of

accommodating the customer in the time window. The costs of all time windows

are the inputs for the second phase model. The second phase model solves the

pricing problem to determine the incentives for each time window option with the

objective of maximising the expected profit. A linear probability demand model was

considered in this situation. The models in both phases were solved using software

optimiser which yielded optimal solutions but was limited to problem size due to long

computational time. Simulation experiments were carried out on small size instances

to compare the performance of dynamic pricing with fixed price policy. Significant

reduction in the amount of CO2 emissions, as well as significant improvement in the

total profits, were observed. Sensitivity tests were carried out, in which the results

showed that with less dynamics in the system, i.e., less new coming customers, or

lower emissions variation, the reduction in CO2 emissions and profit improvement

would be lower. The patterns of customer arrival were also found to affect the results.

To extend the problem to a general setting with no limits on location dis-

tances, routing decisions need to be included in the first phase problem. Vehicle

routing problems are NP-hard. Real life problems are not solvable within a reason-

able amount of time and within limited memory usage. Metaheuristic methods are
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often applied to large size problems. The state of art algorithms, including tabu

search, variable neighbourhood search and variants, simulated annealing and a new

self-adaptive simulated annealing algorithm, were implemented and compared on

real-life instances. The results showed that RVNS is more suitable than VND and

TS for practical application where quick solutions with reasonable good quality are

required. Comparison between traditional SA and the new proposed self-adaptive

SA demonstrates that on average improves the average optimal solutions by 12.76%.

We have not seen any previous work comparing several algorithms on green VRPTW

problem.

With the knowledge of how to calculate emissions and the appropriate so-

lution algorithms, the problem was extended to real life problems in the second

situation and the customer demand was considered to follow a more complicated

discrete choice model comparing to the linear one. Different from previous booking

system in the first situation, it takes a rolling mechanism so all customers face the

same number of available time windows. Opportunity costs were also introduced to

try to arrange customers to those near-to-expire time windows. The problem was

also solved with the two-phase framework, while new mathematical models were

proposed for each phase. The first phase model was extended to consider time-

dependent travel speed, real-life road distance matrix, and a heterogeneous fleet.

A parallel variable neighbourhood search algorithm was used to solve this problem

and compared with Xpress solver on small size instances. Meanwhile, a dynamic

programming algorithm was proposed to determine the optimal departure times to

customer sites. The results showed that the PVNS could solve the problems with

an average optimality gap of one percent and get the solution 332.69 times faster

than the software solver. The second phase solves a nonlinear programming model.

Differential evolution search method was selected to solve this problem as it outper-

forms mathematical software and other Newton type search methods in the sense

of the quality of results and computational time. The whole solution process for

dealing with one customer was within seconds, so it is applicable in real life busi-

ness. Dynamic pricing policy reduced emissions by 6.7% compared to fixed pricing
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policy. More experiments were carried out to test the impact of changes in the en-

vironment, and the results showed that higher valuation of the service would lead

to more emissions reductions, but dynamic pricing might lead to an increase in the

number of walk away customers. The results also demonstrated the effects of the

weight put on opportunity cost when making the pricing decisions. The relationship

is negative with more weight of opportunity cost cause less reduction in emissions.

Overall, the performance of dynamic pricing, compared to fixed pricing policy, is

robust and a reduction in emissions and improvement in profits are observed.

Both linear demand model or discrete choice demand model requires historical

data on customer booking behaviours with respect to varying prices to estimate

parameters in the models. However, those data are hard to obtain. With limited

access to real-life data on this, a new demand-model-free dynamic pricing policy

was proposed in the third situation. In this situation, customers book one day in

advance and provide an initial preferred time windows together with other avail-

able time windows. The problem needs to be solved at the beginning of each day

considering all the requests for services on that day, which may be viewed as the

first phase vehicle routing and scheduling problem in the first situations extended

to a multiple time windows VRP. We built a new mixed integer linear programming

model that determines the task schedule with vehicle routes and allocates service

time window for each customer simultaneously, rather than in two phases. The total

profit is compared with that of the schedule where all customers are served in their

preferred time windows. The savings due to flexible time window options are then

shared among the customers receiving service in alternative time windows. This in-

tegrated model is even more difficult to solve. This problem is novel. There is very

little research on multiple time windows VRP in literature, but applications can be

found in practice. Procedures to improve Xpress optimiser performance were tested

on small test cases. For real-life size test cases, metaheuristics were applied. This

pricing strategy was applied on two different scenarios, one is that all the initial

preference and available time windows are on the same day, which is the case of

urgent service where flexibility may exist but service needs to be completed on the
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same day. The second scenario is that the initial preference and available time win-

dows can be on different days, so opportunity costs can be included in the model.

Opportunity cost is calculated based on the time value of the time window, and

a time window which is near to expire has less opportunity cost than a later one.

Furthermore, in the second scenario, overbookings was considered, so the decisions

of which customer to refuse were included. To measure the performance of this pric-

ing policy, the problems were first solved by Xpress optimiser to get an idea of the

percentage savings of CO2 emissions, comparing to the case where each customer

only has one time-window. Considering the complexity of this problem, for large

size problem instances, a self-adaptive simulated annealing algorithm was applied.

This research has made a number of significant contributions. One main con-

tribution is a new approach to reducing emissions by applying dynamic/incentive

pricing techniques and combining it with time-dependent vehicle routing/schedul-

ing models in a two-phase framework. Using this framework, each customer order

is handled as it arrives. Decisions are made, with customer interaction, on the time

window to perform the task and on the price. Another main contribution is that

we proposed a new incentive sharing pricing policy to reduce emissions in which

the task scheduling, vehicle routing and time window choice problems are modelled

together as an integrated problem. Such a situation has received little attention in

the literature.

8.2 Future works

In this research, we found that there may be conflicts between traditional objectives

and CO2 emissions minimisation objective. Research could be carried out in this

direction to investigate the relationship between objectives, as companies want to

introduce green logistics into their operations but they are afraid that doing so may

cause profit loss and affect other performances. To convince industry to take this

approach, a multi-objective VRP model with dynamic pricing may be necessary.

The multi-objective function could be treated as a linear combination of all the

objectives and solved using standard methods as mentioned in Chapter 5, or each
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objective is treated as a player and the problem is solved by a cooperative game

theoretic approach.

With historical data collection, parameter estimation with machine learning

could be applied to the demand model. To measure the accuracy of a demand model,

goodness of fit tests could be carried out with the MNL model and real-life data

sample as shown in Ben-Akiva and Lerman (1985). Furthermore, dynamic pricing

may cause a regret effect, which will change customer choice, and further impact

the performance of dynamic pricing and CO2 emissions. These could be included in

future research.

Electric vehicles have recently been introduced into the fleet of companies such

as Sainsbury and Royal Mail. Electric vehicles are restricted by the range and only

suitable for short trips. The scheduling of electric vehicles during peak hours and

traditional vehicles during off-peak hours can help reduce emissions largely. How-

ever, introducing electric vehicles will bring additional constraints, such as the total

trip length must be below a certain value. Another example is the scheduling of elec-

tric cars must also take the charging port location and recharging time constraints

into consideration. Moreover, the estimated electricity consumption of electric ve-

hicles also depends on travel speed and other factors, an efficient and accurate way

of measuring the electricity consumption can be an interesting topic.

The road network details were not considered in this thesis for the reason that

the problem of interests is the delivery of service in a local area, and the travel

time and travel distance are not long. For longer distance travelled, there are many

different routes and the differences among them are big. It is important to plan

beforehand what route to take, and the drivers also tend to follow the plan for long

distance trips. However, for short distance journey, when the company accepts a

customer’s order, they will plan for the future for which they do not have informa-

tion on the road traffic condition. A reasonable estimate of the travel cost will be

acceptable and sufficient. Moreover, the difference between route options is rela-
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tively small compared to that in long distance drive. The drivers are also familiar

with the road options in the local area, so they may use experiences to choose the

road rather than following predetermined road plans which is time-consuming for

the company to make. The study may be extended to cases with medium and long

travel instances by considering road network.

In this thesis, the revenue management technique applied to manage time

window booking is dynamic pricing or incentive pricing, this could be extended to

differentiated pricing for each delivery time windows based on the popularity and

corresponding emissions levels.
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Appendices

A Summary of regressor and R script of linear

regression model

A.1 R results

A.2 R script

# Importing the dataset

dataset = read_xlsx(’DISTANCE _ MATRIX _DATA_ TABLE1 .xlsx ’)

dataset = dataset [ ,3:4]

library ( caTools )

set.seed (123)

split = sample .split ( dataset $REAL_DISTANCE , SplitRatio = 2/3)

training _set = subset (dataset , split == TRUE)

test_set = subset (dataset , split == FALSE)

#Train regression model with the Training set

regressor = lm( formula = REAL_ DISTANCE ~ DISTANCE ,

data = training _set)

# Predicting the Test set results
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REAL_ DISTANCE _pre = predict (regressor , newdata = test_set)

# Visualising the Training set results

library ( ggplot2 )

ggplot ()+

geom_point(aes(x = training _set$DISTANCE , y = training _set$REAL_

DISTANCE ),

colour = ’red ’)+

geom_line(aes(x = training _set$DISTANCE , y = predict (regressor ,

newdata = training _set)),

colour = ’blue ’)+

ggtitle (’Road Distance vs Distance ( Training set)’)+

xlab(’Haversine Distance ’)+

ylab(’Road Distance ’)

ggplot ()+

geom_point(aes(x = test_set$DISTANCE , y = test_set$REAL_ DISTANCE ),

colour = ’red ’)+

geom_line(aes(x = training _set$DISTANCE , y = predict (regressor ,

newdata = training _set)),

colour = ’blue ’)+

ggtitle (’Road Distance vs Distance (Test set)’)+

xlab(’Haversine Distance ’)+

ylab(’Road Distance ’)

B Vehicles mapping to emissions formulas GUI

The user interface of the emissions formula mapper is shown in Figure B.1 with the

following information entered and press Enter button, the user will get the corre-

sponding emissions formula number.
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Figure B.1: Vehicles mapping to emissions formulas GUI.

If the user only knows the vehicle registration number, he/she can simply press

the ‘Search Vehicle Information’ button, and the government website (as demon-

strated in Figure B.2) will pop out to help to get the required information.
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Figure B.2: Vehicles mapping to emissions formulas GUI.
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C Examples of CO2 emissions web service

C.1 The NAEI Formulas lookup: Get the NAEI emissions

formula R110

Figure C.1: Get the NAEI emissions formula R110.
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C. EXAMPLES OF CO2 EMISSIONS WEB SERVICE

C.2 Vehicle specification mapping service: Post vehicle spe-

ciation and map it to a corresponding formula

Figure C.2: Post vehicle speciation and map it to a corresponding formula.
187



C. EXAMPLES OF CO2 EMISSIONS WEB SERVICE

C.3 Emissions calculation service: Calculate CO2 emissions

with telematics data

Figure C.3: Calculate CO2 emissions with telematics data.
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D. TRIANGULAR METHOD FOR CALCULATING INITIAL PROBABILITIES

C.4 Resources documentation

Figure C.4: Java beans class documentation.

D Triangular method for calculating initial prob-

abilities

For each customer, the probabilities that this customer will choose each avail-

able time windows are calculated using triangular distribution. The company is

a monopoly and therefore the probability that a customer walks away without pur-

chasing the service is zero. The probabilities of choosing the preferred time window

and the other time windows are calculated based on triangular distribution:

tmin: customer arriving time window or the earliest time window available, whichever

is earlier.

x: any of the available time windows; x = tmin, .., 5.

d: customer initial preferred time window.

The probabilities of each available time windows are:
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E. COMPARE TS AND VNS WHEN THE COMPUTATIONAL TIME IS THE
SAME

p(x) =


2 ∗ (x− tmin+ 1)

(6− tmin+ 1) ∗ (d− tmin+ 1) , if tmin ≤ x ≤ d.

2 ∗ (6− x)
(6− tmin+ 1) ∗ (6− d) , if d ≤ x ≤ 5.

(D.1)

E Compare TS and VNS when the computational

time is the same

Emissions Case 6 Case 7 Case 8 Case 9 Case 10

RVNS

Best 327.33 239.47 299.35 293.51 265.84

Average 339.99 260.75 325.31 339.84 282.65

S.D 8.00 15.53 12.20 15.49 11.80

CPU Time 60 130 34 80 60

Best 362.10 253.31 330.42 338.44 319.49

Average 364.30 262.90 354.29 341.30 319.50

Tabu S.D 3.88 2.42 2.22 1.76 0.02

CPU Time 60 130 34 80 100

p-value 0.000 0.456 0.000 0.608 0.000

Different? Y N Y N Y

Table E.1: Comparison between TS and RVNS.
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F. PROOF OF PROPOSITION 4 AND LEMMA 4.1

F Proof of Proposition 4 and Lemma 4.1

First, calculate the stationary point satisfying the first order condition:



∂f
∂p1

= P1 +∑N
n=1

∂Pn
∂p1

(pn − cn − µτn) = 0,

·

·

·

∂f
∂pN

= PN +∑N
n=1

∂Pn
∂pN

(pn − cn − µτn) = 0,

(F.1)

For simplicity, denote qni := ∂Pn
∂pi

and Λn := pn − cn − µτn. Then equation (F.1) can

be rewritten as: 

q1
1 . . . qN1

... . . . ...

q1
N . . . qNN )





Λ1

...

ΛN)


=



−P1

...

−PN


(F.2)

By Cramer’s rule, the solution of F.1:

Λn = det



q1
1 . . . qn−1

1 −P1 qn+1
1 . . . qN1

... . . . ... ... ... . . . ...

q1
N . . . qn−1

N −PN qn+1
N . . . qNN


/

det



q1
1 . . . qN1

... . . . ...

q1
N . . . qNN


(F.3)

Due to the properties of Pi, we have:

qni


βPi (Pi − 1) , i = n

βPnPi, i 6= n

(F.4)
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F. PROOF OF PROPOSITION 4 AND LEMMA 4.1

In F.3, the denominator is:

det



q1
1 . . . qN1

... . . . ...

q1
N . . . qNN


= det



βP1(P1 − 1) βP2P1 . . . βPNP1

βP1P2 βP2(P2 − 1) ...
... ... . . . ...

βP1PN βP2PN . . . βPN(PN − 1)



= βNP1P2 . . . PNdet



P1 − 1 P2 . . . PN

P1 P2 − 1 . . . PN

... ... . . . ...

P1 P2 . . . PN − 1



= βNP1P2 . . . PNdet



P1 − 1 P2 . . . PN

1 −1 . . . 0

· 0 · ·

· · . . . ·

1 0 . . . −1



= βNP1P2 . . . PNdet



P1 + P2 + · · ·+ PN − 1 0 . . . 0

1 −1 . . . 0

· 0 · ·

· · . . . ·

1 0 . . . −1
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F. PROOF OF PROPOSITION 4 AND LEMMA 4.1

= βNP1P2 . . . PNdet



−P0 0 . . . . . . 0

1 −1 . . . . . . ·

1 0 . . . · ·

· · ˙ . . . 0

1 0 . . . 0 −1


= (−β)NP1P2 . . . PNP0

In F.3, the nominator is:

det



q1
1 . . . qn−1

1 −P1 qn+1
1 . . . qN1

... . . . ... ... ... . . . ...

q1
N . . . qn−1

N −PN qn+1
N . . . qNN



=det



βP1(P1 − 1) βP2P1 . . . βPn−1P1 −P1 βPn+1P1 . . . βPNP1

βP1P2 βP2(P2 − 1) · · · · · ·

· · · · · · · ·

βP1PN · · βPn−1PN −PN · · βPN(PN − 1)



= βNP1P2 . . . PNdet



P1 − 1 P2 · · · Pn−1 −1 Pn+1 · · · PN

P1 P2 − 1 · · · · · ·

· · · · · · · ·

· · · · · · · ·

P1 P2 · ·Pn−1 −1 Pn+1 · PN−1
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F. PROOF OF PROPOSITION 4 AND LEMMA 4.1

= βN−1P1P2 . . . PNdet



−1 0 · · · 0 −1 0 · · · 0

0 −1 · · −1 · · 0

0 0 · · · · · ·

· · · · · · · ·

0 0 · 0 −1 0 · −1


= (−1)NβN−1P1P2 . . . PN

Then (F.3) becomes:

Λn = 1
βP0

(F.5)

Let us calculate Hessian matrix, there are two elements in the Hessian matrix: ∂2f
∂p2
i

and ∂2f
∂pi∂pj

.
∂2f

∂p2
i

= 2∂Pi
∂pi

+
N∑
n=1

∂2Pn
∂p2

i

(pn − cn − µτn) . (F.6)

It is easy to show that:

∂2Pn
∂p2

i

=


β2Pi(Pi − 1)(2Pi − 1), i = n

−β2PiPn(1− 2Pi), i 6= n

(F.7)

Then the equation (F.6) when it satisfies the first order condition becomes:

∂2f

∂p2
i

= 2βPi(Pi − 1) + 1
βP0

β2Pi(Pi − 1)(2Pi − 1) +
N∑

n=1,n6=i

(
−β2PiPn(1− 2Pi)

)
= 2βPi(Pi − 1) + 1

βP0

(
−β2Pi(2Pi − 1)P0

)
= −βPi

≤ 0

∂2f

∂pi∂pj
= ∂2f

∂pj∂pi
= ∂Pi
∂pj

+ ∂Pj
∂pi

+
N∑
n=1

∂2Pn
∂pi∂pj

(pn − cn − µτn) (F.8)
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G. A NUMERICAL EXAMPLE DEMONSTRATING THE MEANING OF THE
SPECIFIED PARAMETERS IN MNL DEMAND MODEL

∂2Pn
∂pi∂pj

=



β2PiPj(2Pi − 1), n = i

β2PiPj(2Pj − 1), n = j

2β2PiPjPn, n 6= i, j

Then the equation (F.8) when it satisfies the first order condition becomes:

∂2f

∂pi∂pj
= 2βPiPj + 1

βP0

β2PiPj(2P−1) + β2PiPj(2Pj − 1) +
N∑

n=1,n 6=i,j
2β2PiPjPn


= 2βPiPj + 1

βP0
(−2β2PiPjP0)

= 0

So the Hessian matrix has the following form:

H(x) =



−βP1 · · 0

0 −βP2 0
... . . . ...

0 · · −βPN


(F.9)

The Hessian matrix is a diagnostic matrix; it is trivial that Hessian matrix is nega-

tive definite.

G A numerical example demonstrating the mean-

ing of the specified parameters in MNL de-

mand model

The parameters in the MNL demand model is assumed to be [0.01, -0.50, -0.10,

-0.20, 0.01, -0.50]. This means for instance, the fixed price policy is 50 for each

time window, then the probabilities estimated by MNL model for time slots [8:00,

10:00]. . . [16:00, 18:00] and the probabilities of walk away are shown in Figure G.1
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H. THE RELATIONSHIP BETWEEN RESERVATION PRICE AND THE
PROBABILITY OF WALKAWAY

with different customer’s perception of the service, which is measured by reservation

price (the value customer think the service worth). When the reservation price (e.g.,

£5) is below the price of the service (e.g., £10), then the customer will most likely

to walk away without purchasing. On the other hand, if the customer valued the

service £50 much more than the tagged price, the probability of walk away will be

small (0.01%).

Figure G.1: Probability distributions of choice with different reservation price under
fixed price policy (£10 for all).

H The relationship between reservation price and

the probability of walkaway

Based on the MNL model, we have:

P (walk away) = eβ(walk away)pr

A+ eβ(walk away)pr
,

where A is a constant, as the prices for all time windows are fixed.

∂P (walk away)
∂pr

= Aeβ(walk away)pr

(A+ eβ(walk away)pr)2 > 0,
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I. IMPROVING XPRESS MIP SOLVER PERFORMANCE

indicates that when the reservation price increases, the probability of walk away

decreases.

I Improving Xpress MIP solver performance

1. Switch from Xpress-mosel to Xpress-optimiser because of memory utilisation

issue. Xpress-optimiser require .lp file, which is generated by mosel interface.

2. Add redundant constraints:

z2i,n ≤M (1− z1i,t) , n = t+ 2, . . . , N (I.1)

z1i,n ≤M (1− z2i,t) , n = 1, . . . , t− 2 (I.2)

z2k,n ≤M (1− z1k,t) , n = t+ 2, . . . , N (I.3)

z1k,n ≤M (1− z2k,t) , n = 1, . . . , t− 2 (I.4)

Cijk ≤M (1− xijk) (I.5)

Uk ≤M
N∑
i=1

xi0k (I.6)

Wk ≤M
N∑
i=1

xi0k (I.7)

Among them, constraints (I.1)-(I.4) are effective, the rest seem not.

3. Aggressive cut

CUTSTRATEGY: Set it to 3 to allow for more cuts to be added to the problem

CUTFREQ: How frequently to create cuts during the branch-and-bound search.

You can try setting this to something more aggressive, like every 2 nodes.

4. Using loop

• Set stop criteria Gap

• Save mip solutions

• Reduce gap

• Load mip solutions

• Restart
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I. IMPROVING XPRESS MIP SOLVER PERFORMANCE

5. Adjust big M value from 20000 to 2000 (reduce roundoff error problems)

6. As time windows maybe adjacent, if they are adjacent, they are treated as one

time windows and constraints are changed for those customers
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