54 research outputs found

    Loss of synchrony in an inhibitory network of type-I oscillators

    Get PDF
    Synchronization of excitable cells coupled by reciprocal inhibition is a topic of significant interest due to the important role that inhibitory synaptic interaction plays in the generation and regulation of coherent rhythmic activity in a variety of neural systems. While recent work revealed the synchronizing influence of inhibitory coupling on the dynamics of many networks, it is known that strong coupling can destabilize phase-locked firing. Here we examine the loss of synchrony caused by an increase in inhibitory coupling in networks of type-I Morris-Lecar model oscillators, which is characterized by a period-doubling cascade and leads to mode-locked states with alternation in the firing order of the two cells, as reported recently by Maran and Canavier (2007) for a network of Wang-Buzsáki model neurons. Although alternating- order firing has been previously reported as a near-synchronous state, we show that the stable phase difference between the spikes of the two Morris-Lecar cells can constitute as much as 70% of the unperturbed oscillation period. Further, we examine the generality of this phenomenon for a class of type-I oscillators that are close to their excitation thresholds, and provide an intuitive geometric description of such leap-frog dynamics. In the Morris-Lecar model network, the alternation in the firing order arises under the condition of fast closing of K+ channels at hyperpolarized potentials, which leads to slow dynamics of membrane potential upon synaptic inhibition, allowing the presynaptic cell to advance past the postsynaptic cell in each cycle of the oscillation. Further, we show that non-zero synaptic decay time is crucial for the existence of leap-frog firing in networks of phase oscillators. However, we demonstrate that leap-frog spiking can also be obtained in pulse-coupled inhibitory networks of one-dimensional oscillators with a multi-branched phase domain, for instance in a network of quadratic integrate-and-fire model cells. Also, we show that the entire bifurcation structure of the network can be explained by a simple scaling of the STRC (spike- time response curve) amplitude, using a simplified quadratic STRC as an example, and derive the general conditions on the shape of the STRC function that leads to leap-frog firing. Further, for the case of a homogeneous network, we establish quantitative conditions on the phase resetting properties of each cell necessary for stable alternating-order spiking, complementing the analysis of Goel and Ermentrout (2002) of the order-preserving phase transition map. We show that the extension of STRC to negative values of phase is necessary to predict the response of a model cell to several close non-weak perturbations. This allows us for instance to accurately describe the dynamics of non-weakly coupled network of three model cells. Finally, the phase return map is also extended to the heterogenous network, and is used to analyze both the order-alternating firing and the order-preserving non-zero phase locked state in this case

    Gap Junctions and Epileptic Seizures – Two Sides of the Same Coin?

    Get PDF
    Electrical synapses (gap junctions) play a pivotal role in the synchronization of neuronal ensembles which also makes them likely agonists of pathological brain activity. Although large body of experimental data and theoretical considerations indicate that coupling neurons by electrical synapses promotes synchronous activity (and thus is potentially epileptogenic), some recent evidence questions the hypothesis of gap junctions being among purely epileptogenic factors. In particular, an expression of inter-neuronal gap junctions is often found to be higher after the experimentally induced seizures than before. Here we used a computational modeling approach to address the role of neuronal gap junctions in shaping the stability of a network to perturbations that are often associated with the onset of epileptic seizures. We show that under some circumstances, the addition of gap junctions can increase the dynamical stability of a network and thus suppress the collective electrical activity associated with seizures. This implies that the experimentally observed post-seizure additions of gap junctions could serve to prevent further escalations, suggesting furthermore that they are a consequence of an adaptive response of the neuronal network to the pathological activity. However, if the seizures are strong and persistent, our model predicts the existence of a critical tipping point after which additional gap junctions no longer suppress but strongly facilitate the escalation of epileptic seizures. Our results thus reveal a complex role of electrical coupling in relation to epileptiform events. Which dynamic scenario (seizure suppression or seizure escalation) is ultimately adopted by the network depends critically on the strength and duration of seizures, in turn emphasizing the importance of temporal and causal aspects when linking gap junctions with epilepsy

    Low-dimensional models of single neurons: A review

    Full text link
    The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary state variables associated with other ionic current types, and are able to describe additional phenomena such as sub-threshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but the number of effective dimensions (state variables) is lower. We describe several representative models. We also describe systematic and heuristic methods of deriving reduced models from models of HH type

    Studying spontaneous brain activity with neuroimaging methods and mathematical modelling

    Get PDF
    The study of spontaneous brain activity using functional Magnetic Resonance Imaging (fMRI) is a relatively young and rapidly developing field born in the mid-nineties. So far, sufficiently solid foundations have been established, mainly in validating the neuronal origin of a significant component of observed low-frequency fluctuations in the 'resting state' fMRI signal. Nevertheless, the field is still facing several major challenges. This thesis first reviews the current state of knowledge and subsequently proceeds to present original research results that are directed towards overcoming these challenges. The first challenge stems from the indirect nature of the fMRI recordings, obscuring the interpretation in terms of the underlying neuronal activity. Two investigations related to this are presented. First, I show that increased head-movement, epiphenomenal to altered states of consciousness, can lead to spurious increases in low-frequency fluctuations in fMRI signal. This may adversely affect inferences on the underlying neurophysiological processes. Second, I demonstrate a direct electrophysiological correlate of increased synchronisation of fMRI activity in areas of the much studied default-mode network. By directly studying electrophysiological correlates of fMRI-based functional connectivity, this study took a pioneering approach to confirming the biological validity of the fMRI functional connectivity concept. Another widely debated question within the field is the optimal method for extracting relevant information from the extreme volumes of neuroimaging data. I present an investigation providing insights and practical recommendations for this question, based on assessing the interdependence information neglected by the commonly used linear correlation for fMRI functional connectivity studies. The results suggest that in typical resting state data, the nonlinear contributions to instantaneous connectivity are negligible. The third major challenge of the field is the integration of the experimental evidence into theoretical models of spontaneous brain activity. In the last part of this thesis, such models are discussed in detail, focusing on the two crucial features of observed spontaneous brain activity: functional connectivity and low-frequency fluctuations. Two specific mechanisms for emergence of the latter are proposed, depending either on the local synchronisation dynamics or the regulatory action of particular neuromodulators. The thesis concludes with discussion of the questions arising from the presented results in the context of the most recent development in the wider field

    Studying spontaneous brain activity with neuroimaging methods and mathematical modelling

    Get PDF
    The study of spontaneous brain activity using functional Magnetic Resonance Imaging (fMRI) is a relatively young and rapidly developing field born in the mid-nineties. So far, sufficiently solid foundations have been established, mainly in validating the neuronal origin of a significant component of observed low-frequency fluctuations in the 'resting state' fMRI signal. Nevertheless, the field is still facing several major challenges. This thesis first reviews the current state of knowledge and subsequently proceeds to present original research results that are directed towards overcoming these challenges. The first challenge stems from the indirect nature of the fMRI recordings, obscuring the interpretation in terms of the underlying neuronal activity. Two investigations related to this are presented. First, I show that increased head-movement, epiphenomenal to altered states of consciousness, can lead to spurious increases in low-frequency fluctuations in fMRI signal. This may adversely affect inferences on the underlying neurophysiological processes. Second, I demonstrate a direct electrophysiological correlate of increased synchronisation of fMRI activity in areas of the much studied default-mode network. By directly studying electrophysiological correlates of fMRI-based functional connectivity, this study took a pioneering approach to confirming the biological validity of the fMRI functional connectivity concept. Another widely debated question within the field is the optimal method for extracting relevant information from the extreme volumes of neuroimaging data. I present an investigation providing insights and practical recommendations for this question, based on assessing the interdependence information neglected by the commonly used linear correlation for fMRI functional connectivity studies. The results suggest that in typical resting state data, the nonlinear contributions to instantaneous connectivity are negligible. The third major challenge of the field is the integration of the experimental evidence into theoretical models of spontaneous brain activity. In the last part of this thesis, such models are discussed in detail, focusing on the two crucial features of observed spontaneous brain activity: functional connectivity and low-frequency fluctuations. Two specific mechanisms for emergence of the latter are proposed, depending either on the local synchronisation dynamics or the regulatory action of particular neuromodulators. The thesis concludes with discussion of the questions arising from the presented results in the context of the most recent development in the wider field

    Understanding spiking and bursting electrical activity through piece-wise linear systems

    Get PDF
    In recent years there has been an increased interest in working with piece-wise linear caricatures of nonlinear models. Such models are often preferred over more detailed conductance based models for their small number of parameters and low computational overhead. Moreover, their piece-wise linear (PWL) form, allow the construction of action potential shapes in closed form as well as the calculation of phase response curves (PRC). With the inclusion of PWL adaptive currents they can also support bursting behaviour, though remain amenable to mathematical analysis at both the single neuron and network level. In fact, PWL models caricaturing conductance based models such as that of Morris-Lecar or McKean have also been studied for some time now and are known to be mathematically tractable at the network level. In this work we proceed to analyse PWL neuron models of conductance type. In particular we focus on PWL models of the FitzHugh-Nagumo type and describe in detail the mechanism for a canard explosion. This model is further explored at the network level in the presence of gap junction coupling. The study moves to a different area where excitable cells (pancreatic beta-cells) are used to explain insulin secretion phenomena. Here, Ca2+ signals obtained from pancreatic beta-cells of mice are extracted from image data and analysed using signal processing techniques. Both synchrony and functional connectivity analyses are performed. As regards to PWL bursting models we focus on a variant of the adaptive absolute IF model that can support bursting. We investigate the bursting electrical activity of such models with an emphasis on pancreatic beta-cells

    Conductance-Based Refractory Density Approach for a Population of Bursting Neurons

    Get PDF
    The conductance-based refractory density (CBRD) approach is a parsimonious mathematical-computational framework for modeling interact- ing populations of regular spiking neurons, which, however, has not been yet extended for a population of bursting neurons. The canonical CBRD method allows to describe the firing activity of a statistical ensemble of uncoupled Hodgkin-Huxley-like neurons (differentiated by noise) and has demonstrated its validity against experimental data. The present manuscript generalises the CBRD for a population of bursting neurons; however, in this pilot computational study we consider the simplest setting in which each individual neuron is governed by a piecewise linear bursting dynamics. The resulting popula- tion model makes use of slow-fast analysis, which leads to a novel method- ology that combines CBRD with the theory of multiple timescale dynamics. The main prospect is that it opens novel avenues for mathematical explo- rations, as well as, the derivation of more sophisticated population activity from Hodgkin-Huxley-like bursting neurons, which will allow to capture the activity of synchronised bursting activity in hyper-excitable brain states (e.g. onset of epilepsy).Russian Science Foundation grant (project 16-15- 10201) Spanish grant MINECO-FEDER-UE MTM-2015-71509-C2-2-R Catalan Grant number 2017SGR104

    Computational Study of the Mechanisms Underlying Oscillation in Neuronal Locomotor Circuits

    Get PDF
    In this thesis we model two very different movement-related neuronal circuits, both of which produce oscillatory patterns of activity. In one case we study oscillatory activity in the basal ganglia under both normal and Parkinsonian conditions. First, we used a detailed Hodgkin-Huxley type spiking model to investigate the activity patterns that arise when oscillatory cortical input is transmitted to the globus pallidus via the subthalamic nucleus. Our model reproduced a result from rodent studies which shows that two anti-phase oscillatory groups of pallidal neurons appear under Parkinsonian conditions. Secondly, we used a population model of the basal ganglia to study whether oscillations could be locally generated. The basal ganglia are thought to be organised into multiple parallel channels. In our model, isolated channels could not generate oscillations, but if the lateral inhibition between channels is sufficiently strong then the network can act as a rhythm-generating ``pacemaker'' circuit. This was particularly true when we used a set of connection strength parameters that represent the basal ganglia under Parkinsonian conditions. Since many things are not known about the anatomy and electrophysiology of the basal ganglia, we also studied oscillatory activity in another, much simpler, movement-related neuronal system: the spinal cord of the Xenopus tadpole. We built a computational model of the spinal cord containing approximately 1,500 biologically realistic Hodgkin-Huxley neurons, with synaptic connectivity derived from a computational model of axon growth. The model produced physiological swimming behaviour and was used to investigate which aspects of axon growth and neuron dynamics are behaviourally important. We found that the oscillatory attractor associated with swimming was remarkably stable, which suggests that, surprisingly, many features of axonal growth and synapse formation are not necessary for swimming to emerge. We also studied how the same spinal cord network can generate a different oscillatory pattern in which neurons on both sides of the body fire synchronously. Our results here suggest that under normal conditions the synchronous state is unstable or weakly stable, but that even small increases in spike transmission delays act to stabilise it. Finally, we found that although the basal ganglia and the tadpole spinal cord are very different systems, the underlying mechanism by which they can produce oscillations may be remarkably similar. Insights from the tadpole model allow us to predict how the basal ganglia model may be capable of producing multiple patterns of oscillatory activity
    • …
    corecore