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Abstract

The study of spontaneous brain activity using functional Magnetic Resonance

Imaging (fMRI) is a relatively young and rapidly developing field born in the

mid-nineties. So far, sufficiently solid foundations have been established, mainly

in validating the neuronal origin of a significant component of observed low-

frequency fluctuations in the ‘resting state’ fMRI signal. Nevertheless, the field

is still facing several major challenges. This thesis first reviews the current state

of knowledge and subsequently proceeds to present original research results that

are directed towards overcoming these challenges.

The first challenge stems from the indirect nature of the fMRI recordings, ob-

scuring the interpretation in terms of the underlying neuronal activity. Two

investigations related to this are presented. First, I show that increased head-

movement, epiphenomenal to altered states of consciousness, can lead to spurious

increases in low-frequency fluctuations in fMRI signal. This may adversely affect

inferences on the underlying neurophysiological processes. Second, I demonstrate

a direct electrophysiological correlate of increased synchronisation of fMRI ac-

tivity in areas of the much studied default-mode network. By directly studying

electrophysiological correlates of fMRI-based functional connectivity, this study

took a pioneering approach to confirming the biological validity of the fMRI

functional connectivity concept.

Another widely debated question within the field is the optimal method for

extracting relevant information from the extreme volumes of neuroimaging data.

I present an investigation providing insights and practical recommendations for

this question, based on assessing the interdependence information neglected by

the commonly used linear correlation for fMRI functional connectivity studies.

The results suggest that in typical resting state data, the nonlinear contributions

to instantaneous connectivity are negligible.

The third major challenge of the field is the integration of the experimental

i



evidence into theoretical models of spontaneous brain activity. In the last part

of this thesis, such models are discussed in detail, focusing on the two crucial

features of observed spontaneous brain activity: functional connectivity and

low-frequency fluctuations. Two specific mechanisms for emergence of the latter

are proposed, depending either on the local synchronisation dynamics or the

regulatory action of particular neuromodulators.

The thesis concludes with discussion of the questions arising from the presented

results in the context of the most recent development in the wider field.
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Chapter 1

Preface

1.1 Motivation

The workings of the human mind have captivated the imagination of philoso-

phers, scientists and probably all curious individuals since the prehistoric times.

From this perspective just relatively recent technological advances have facili-

tated discoveries about its relation to the workings of the brain, which led to

the marriage of the Philosophy’s daughter Psychology with Neurobiology and

natural sciences in general. While this marriage has not always been without

disputes, the abundance of interesting results in the field confirms its fertility.

Since then the question of mind has become increasingly linked to or even sub-

stituted by the question of brain.

In its beginnings, the mapping of human mind-brain relation was dependent on

relatively scarce and anecdotal evidence from patients with localised brain dam-

age, invasive experiments and interesting but technically limited EEG findings.

The entry of the brain imaging methods and subsequently the functional brain

imaging about twenty years ago has had revolutionary consequences. Noninva-

sive mapping of brain function is now relatively easily available for numerous

research groups around the world, leading to an expansion of specialised neu-

rocognitive studies.

From the onset, the field of functional neuroimaging was dominated by a research

strategy that views the brain as primarily reflexive, driven by momentarily de-

mands of the environment. Nevertheless, during the last fifteen years there has

been a sustained trend of increasing interest in the neuroimaging community

that corresponds to another view of the brain workings. This pictures the brain

operation as predominantly intrinsic, with adaptive mechanisms of information
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Chapter 1: Preface

collection, maintenance and processing driven mainly internally. Corresponding

to the increased support of this perspective, the analysis of spatiotemporal pat-

terns of brain activity in the so-called resting state condition has developed from

a controversial niche into one of the main streams of neuroimaging.

Apart from the contribution of maybe less deeply grounded motivations such as

availability of a simple study design and the outward attractiveness of the topic,

there are principled incentives for paying attention to the spontaneous brain

activity research. When one sets aside the evident value these investigations can

have directly for the clinical practice, there is also an important promise for the

general study of brain–mind relation and function.

Most importantly, taking into account the spontaneous brain activity finally al-

lows the formation of a holistic picture of brain function. Without a significant

and detrimental reduction, the brain can be hardly considered as a purely re-

active system. Rather, reactions to external stimulation are embedded in and

catalysed by its rich intrinsic dynamics. These internal dynamics have been

shown to be flexible and subject-dependent, but also relatively robust with re-

spect to brain state. Indeed, it has been shown that taking into account the

spontaneous brain activity is relevant for interpretation of responses to external

stimulation. Moreover, spontaneous brain activity is becoming increasingly con-

sidered as interesting on its own, representing adaptive functional processes of a

crucial role for the healthy function and survival of the organism.

While holding the above promises, spontaneous brain activity research comes

across with specific challenges: The first of these is shared with functional mag-

netic resonance imaging in general and relates to the indirect nature of the brain

activity measurement method. This calls for improved treatment of system-

atic noise also known as imaging artifacts. Another method of tackling this

challenge is to investigate the link between the functional magnetic resonance

imaging results and complementary brain activity measurements such as elec-

troencephalography.

Second, neuroimaging presents us with data of extreme volume and dimension-

ality. While computing capacity is becoming less of a problem with the improve-

ments in technology, the selection and development of appropriate statistical

tools and interpretation frameworks for the optimal utilization of the informa-

tion in the sheer abundance of data is another major challenge of the field.

Finally, systematic research and integration of the findings of the many studies

into a coherent theory of spontaneous brain activity or brain activity in general
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Chapter 1: Preface

is currently limited. To a large extent, this is due to the lack of systematic devel-

opment of brain system function theory, in particular represented by theoretical

and computational models of large scale spontaneous brain activity.

In this thesis, the above presented results, promises and challenges in the field

of spontaneous brain dynamics are discussed in detail. In particular, apart from

reviewing the work of other groups, several original results of work that was

directed towards the main challenges of the field as outlined above are presented.

1.2 Thesis outline

The thesis is organised in the following chapters:

Chapter 2

This chapter sets the stage for the presentation of the field of spontaneous brain

activity, as studied using resting state condition neuroimaging data. The basics

about brain structure and function and the neuroimaging methods are reviewed.

More attention is paid to structural features and specific methods that are es-

pecially relevant for the research in the field, or for the original research work

presented in this thesis.

Chapter 3

Spontaneous brain activity is introduced in this chapter. After a review of the

development of the field in the last fifteen years the quantitative methods for

the extraction of important features of spontaneous brain activity are discussed.

Further, the key findings in the area of spontaneous brain activity alterations in

disease and changed brain state are summarized. Finally, I overview the state-

of-the-art knowledge of the neurophysiological underpinnings of the large-scale

fMRI resting state features and conclude with some suggestions on the role of

the spontaneous brain activity.

Chapter 4

In this chapter, I turn towards the challenges of analysis of spontaneous brain

activity data, in particular those acquired by functional Magnetic Resonance

Imaging (fMRI). Previously, the power of low-frequency fluctuations in the rest-
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Chapter 1: Preface

ing state networks has been reported to change in altered brain state conditions

such as sedation or sleep. Crucially, the neuronal activity patterns are not the

only potential source of the fMRI signal fluctuation that might be sensitive to

such experimental brain state manipulation. Here, I set out to test whether

an increase in one of the potential fMRI measurement confounds, namely the

amount of involuntary head-motion, might account for the signal fluctuation

increases reported in such experiments.

Chapter 5

High dimensionality and volumes of the neuroimaging data poses a major chal-

lenge to interpretation of the spatiotemporal patterns of spontaneous brain activ-

ity. Functional connectivity analysis is a way to summarise the complex pattern

in simple indices. Nevertheless, the use of linear correlation between time series

as a functional connectivity measure has been recently challenged and the need

to use nonlinear measures proposed. In this chapter, I both quantitatively and

qualitatively probe the suitability of the linear correlation as a tool for functional

connectivity estimation. In particular, I use mutual information, a general mea-

sure of bivariate dependence, to assess the deviation of standard fMRI data from

bivariate Gaussianity, which is a crucial condition for unbiased interpretation of

linear correlation.

Chapter 6

Functional connectivity, particularly within the main resting state networks, is

a key concept in the current discourse of spontaneous brain activity. Recently,

strength of the functional connectivity within the default mode network has

been suggested to relate to the level of subject’s consciousness. The biological

significance of functional connectivity, however, is still not well understood. In

this chapter I present an inter-subject comparison of the electrophysiological

correlates of the default mode network functional connectivity, uncovering a

network-specific and functionally meaningful electrophysiological signature of

decreased default mode network functional connectivity.

Chapter 7

This chapter further extends the investigation of the previous chapter via a crit-

ical investigation of the potential role of head-movement in the observed elec-
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trophysiological signature of the default mode network functional connectivity.

Further, I follow the recent studies reporting changes of fMRI FC and ask, simi-

larly as in chapter 4, whether these results could be attributed to changes in the

subject’s propensity to head-movement in the sedation condition.

Chapter 8

The final challenge addressed in this thesis is the lack of sufficiently developed

models for spontaneous large-scale brain activity. Within this chapter, I first

review some basic neuronal models used in computational neuroscience. I also

include some tools used for modelling neural populations and interacting neural

oscillator networks. Finally, I give a review of computational models recently

applied to explain some of the phenomena observed by the experimentalists in

the field of spontaneous brain activity. Above all, I focus on the accounts of

functional connectivity patterns and low-frequency activity fluctuation. The

model architectures and explanatory potential are critically discussed.

Chapter 9

Following the introduction given in the previous chapter, I use a computational

model consisting of 47 neuronal populations connected according to an anatom-

ical pattern collected from macaque studies to document some of the issues with

modelling spontaneous brain activity. First, using our simulations, I discuss the

difficulty of predicting functional connectivity pattern from structural connec-

tivity matrix – in particular I focus on the dependence of the structure/function

agreement on the parameter settings. Second, I show how realistic low-frequency

fluctuation patterns can be modelled in a simple neural population model. Con-

trary to some previous accounts, this is feasible without inclusion of noise and

delays in the model. Importantly, local synchronisation changes play a role in

this mechanism, suggesting potential unsuitability of the modelling approach

‘one oscillator per cortical area’ commonly adopted in the field.

Chapter 10

Another potential mechanism for emergence of low-frequency fluctuation is dis-

cussed in this chapter. Here I use a localised neural network model that imple-

ments the regulatory action of endocannabinoids in a network of synaptically

connected neurons. After an initial analysis of behaviour of the network for
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weak coupling, I show that for sufficiently strong coupling I obtain nested fast

and slow to ultra-slow oscillations. Again, this behaviour robustly appears even

in the absence of cortico-cortical transmission delays and noise. I hypothesise

that this or a similar regulatory mechanism might play a role in the emergence

of the low-frequency oscillations observed in brain imaging experiments.

Chapter 11

The final chapter discusses the questions open by the presented results in the

context of the recent developments in the field. The potential future extensions

of the research are also outlined.

Following the stylistic tradition, I generally use the plural form of the first person

“we” in the body of the thesis. To clarify, the work described in this thesis rep-

resents the independent research work I have carried out under the supervision

of Prof. Dorothee Auer and Prof. Steve Coombes during my postgraduate study

registration with the University of Nottingham. However, at this point I must

acknowledge the specific contribution of two of my former colleagues from the

Division of Academic Radiology, University of Nottingham. In particular, for

chapters 4,5,6 and 7 I have used a resting state fMRI and EEG dataset that was

originally acquired by Dr. Charilaos Alexakis and Dr. Ana Diukova. The latter

colleague also carried out the standard part of the EEG data preprocessing.

The original research contributions of this thesis have been for the most part

already published in peer-reviewed journals. In particular, the work of chapter 4

was published in Magnetic Resonance Materials in Physics, Biology and Medicine

(MAGMA) [79], the work presented in chapter 6 was published in NeuroImage

[78] and the work presented in chapter 10 was published in Physical Review

Letters [80]. Finally, the framework presented in chapter 5, applied to another

dataset, has also been recently accepted for publication in NeuroImage [81].
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Chapter 2

Investigating the brain

Before we give an introduction to the specific subject of this thesis, that is the

large-scale spatiotemporal patterns of spontaneous brain activity, we gather in

this chapter some important basic facts about the brain and some of the methods

used to study it. This is in no way meant to be a comprehensive review. Rather,

we set the general stage for presentation of the state of the art in the study of

spontaneous brain activity and highlight the points that are most relevant for

the original research contributions presented in the later chapters of the thesis.

2.1 Brain architecture

Although most of the basic information on brain anatomy and function presented

further can be considered common knowledge, we generally account to Kingsley’s

neuroscience textbook [95]. We refer the reader to this or other comprehensive

textbooks such as [94] for more detail.

2.1.1 Brain cells and signalling

The central nervous system is composed of two types of cells (neurons and glia),

enclosed by three layers of connective tissue that form the meninges. Neurons are

composed of a soma, an axon and dendrites, where the axon and the dendrites

are processes that extend from the soma (cell body). See a schematic of a neuron

at Figure 2.1. In the central nervous system, collection of somas is commonly

called a nucleus and collection of collated axons a tract. The central nervous

system consists of the brain and the spinal cord. The brain is further divided

into the forebrain (including in particular the cerebral hemispheres, basal ganglia

and the thalamus), the brainstem (consisting of the midbrain, the pons and the
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medulla) and the cerebellum.

Figure 2.1: A schematic of the neuron structure. Adopted from [26].

There are two important means of signalling in the nervous system: electrical

and chemical. Generally, electrical signalling is used for intracellular signalling,

while chemical signalling is used for intercellular transmission. Ion imbalances

across the neuronal cell membrane lead to a negative electrical potential inside

the cell and enable electrical signalling.

To understand the signalling process, it is useful to consider the microanatomy

of the axon. The following three regions can be defined within an axon: the

initial segment, the axon proper and the terminal bouton. Generally, the initial

segment is specialized for initiation of the action potential upon suprathreshold

stimulation, the axon proper for its effective conduction due to myelinization and

the terminal bouton contains specialised structures for chemical communication

with other cells.

Upon initiation, action potentials are spread along the axon due to combina-

tion of passive conduction between nodes of Ranvier (regularly spaced gaps in

the myelin sheath around an axon or nerve fibre) and successive activation of

voltage-gated ion channels in the nodes of Ranvier, which leads to rapid hyper-

polarisation. At the terminal bouton, synaptic vesicles release neurotransmitter

chemicals into the synaptic cleft. The neurotransmitter binds to specific locations

of the postsynaptic membrane and activates ion-channel (or second-messenger

cascades). The depolarisation (in the case of an excitatory synapse) or hyper-
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polarisation (in the case of an inhibitory synapse) spreads passively along the

dendrite or soma as a local current. The resulting signal at the initial segment

of an axon of the receiving neuron is the sum of all the reaching local currents.

2.1.2 Cortical structure and connectivity

The structure of brain tissue and connections is quite stable across individuals

of one species. In the following, we shall focus only on describing some details of

the structure of the human cerebral cortex and thalamus and their connections.

To a first approximation the thalamus serves as a relay station for the sensory

information going towards the cortex and motor information coming out of the

cortex, having reciprocal connections to the cerebral cortex. It can be divided

into several groups of nuclei. Some of the nuclei are connected to very small

parts of the cerebral cortex; these are so-called specific thalamic nuclei, while

other nuclei are non-specific. An important group is the reticular thalamic group,

sending inhibitory connections to other thalamic nuclei and playing a role in the

wake-sleep cycle [170]. The sensory and motor representation in both thalamus

and cortex is somatotopic (maintaining spatial organisation of the body).

The cerebral cortex is composed of 2-4 millimetres thick layer of grey matter and

an underlying mass of white matter. The grey matter is organised into 6 cortical

layers, defined by histological criteria such as size and number of various cells.

The principal cell type in the cerebral cortex is the pyramidal cell. Pyramidal

cells are found in all but the first layer and have an apical dendrite extending from

the peak of the triangular shape of the soma and reaching the surface layer, with

basal dendrites spreading horizontally and a single axon projecting into the white

matter. The pyramidal cells are the only cortical neurons projecting outside the

grey matter, all others are interneurons. The cortex input is as follows:

• association fibres from other parts of the cortex synapse in all layers within

one cortical column

• fibres from specific thalamic nuclei synapse primarily in layer IV within

one cortical column

• fibres from the non-specific thalamic nuclei and from the specialised sub-

cortical nuclei synapse in all layers, terminating commonly in large areas

after branching.

10



Chapter 2: Investigating the brain

2.2 Neuroimaging methods

The aim of this section is to give an overview of neuroimaging methods which

are available for studying spontaneous brain activity, with a specific focus on

those which are used or referred to in this thesis.

Neuroimaging is a rapidly developing field, offering a range of methods. These

can be divided into structural (anatomical) and functional neuroimaging meth-

ods. Major structural methods are Computer Tomography (CT) and Magnetic

Resonance Imaging (MRI), introduced in the late seventies and offering 2D or 3D

information about anatomical structure of brain or other tissues. These methods,

particularly MRI, have undergone profound development since being invented.

The functional imaging methods include Positron Emission Tomography (PET)

and functional Magnetic Resonance Imaging (fMRI) [136].

There is a slightly separate family of methods commonly also included in the

neuroimaging methods, which are based on direct measurement of neuronal elec-

tromagnetic activity. The noninvasive representatives include particularly Elec-

troencephalography (EEG) and Magnetoencephalography (MEG). On the other

hand, invasive recordings from subdural electrodes are utilised, mainly for clin-

ical purposes, in Electrocorticography (ECoG). The main advantages of this

family of methods are the high temporal resolution (in order of milliseconds, see

Figure 2.2 adapted from [32] for comparison) and direct sampling of electrical

neuronal activity rather than of the metabolic correlates as in the case of fMRI

(to some extent, this may be considered a disadvantage as well, if we are more

interested in the metabolic demands). The main disadvantage of noninvasive

electrophysiological methods lies in poor spatial resolution and poor localization

of sources and preferential sensitivity of these methods to specifically located

and oriented neurons.

In the following, we briefly describe the principles, advantages and drawbacks of

the methods most relevant for this thesis.

2.2.1 MRI

Introduction to MRI

The use of the principles of nuclear magnetic resonance for medical scans of

the brain and other organs was introduced in the during the 1970s and 1980s.

Although the methods have developed in great detail, the main principles are
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Chapter 2: Investigating the brain

Figure 2.2: The methods of cognitive neuroscience can be categorized according
to their spatial and temporal resolution. Adopted from [32].

reasonably straightforward to be covered in brief in this section.

The basic fact the method relies on is that the atoms in the tissue behave like

tiny magnets, due to the spins of the nuclei (it suffices for our purposes to only

consider hydrogen atoms containing a single proton in the nucleus). When a

strong external magnetic field is applied (conventional medical scanners have

fields of 1.5 or 3 Tesla, which is about 100000 times stronger than the Earth’s

magnetic field), the spins align in parallel or antiparallel with the applied field,

with a slight prevalence of the parallel orientation (to the order of 0.0001%).

This leads to a net steady state magnetization B1. In more detail, each spin

precesses around the B axes with a so-called Larmor frequency

ω = λB,

where B is the applied external magnetic field and λ is the gyromagnetic ratio,

with a value of 42.576 MHz/Tesla for 1H nucleus. When an electromagnetic

pulse with Larmor frequency (called RF pulse for radiofrequency) is applied to

the sample, the spins excite, the axis of precession changes and the phases of

the spins synchronise. After switching the RF pulse off, the spins re-emit energy

in the form of an RF signal of the Larmor frequency whilst returning to the

baseline precession state. During the read-out phase, the scanner receives the
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re-emitted signal and further processing is applied to this signal to recover the

spatial and structural information it conveys about the excited sample.

Note that all the spins precess and also emit RF radiation on the same frequency

(and in phase, since initially brought in coherence by the excitation pulse), unless

spatial inhomogeneity of the magnetic field occurs or is imposed. In practice,

small magnetic fields with a linear intensity gradient along a chosen spatial di-

rection (commonly called magnetic gradients and gradient direction) are used to

introduce heterogeneity of Larmor frequencies across the sample, perpendicular

to the gradient direction so as to distinguish signals re-emitted from different

locations.

The return to the baseline state consists of two main processes. The first is

the dephasing of the spins with respect to each other. This is an exponential

process governed by the so-called T2 constant, which is further pronounced

in case of inhomogeneity of magnetic field due to fine tissue structure – when

these effects are included, the temporal constant is then called T2*. The second

process taking place is the longitudinal recovery of the net magnetization, an

exponential process governed by a T1 constant. Both these processes contribute

to the rapid decay of the re-emitted signal after switching of the RF pulse. Since

different tissues have different T1 and T2 values, manipulation with the scanning

sequence (excitation, readout) can make the readout signal more susceptible to

T1 or T2 processes. Thus, we are able to recover images with various contrasts

distinguishing various types of tissue (grey matter, white matter, cerebro-spinal

fluid, lesions, or more oxygenated tissue as utilised in functional MRI techniques

discussed later). The necessary step to do that is to be able to decode spatial

information from the signal to recover spatial origin of the signal within the

sample. To achieve this a combination of three methods is commonly used,

namely:

• slice selection (by applying a small gradient during application of narrow-

band RF pulse)

• frequency encoding (applying small gradients during read-out of the signal)

• phase encoding (applying small gradients between excitation and readout

to dephase the spins differentially in different locations of the sample across

the direction of the gradient in a controlled way)

While these principles generally cover the processes needed to acquire anatomical

images sensitive to tissue type, we refer the reader to a comprehensive book [76]
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for a detailed account of the underlying physical principles and scanning sequence

design.

fMRI

The basic idea of fMRI is to capture the (brain) activity in consecutive temporal

windows to be able to study the dynamics of the spontaneous activity or the

response to an experimental stimulus. This firstly imposes some demands on

the speed of acquisition, and secondly calls for a contrast that is sensitive to

changes of brain activity.

The first step of enabling rapid acquisition was solved in the early eighties by Sir

Peter Mansfield in proposing an imaging sequence called Echo-Planar Imaging

(EPI) [117]. In the recent implementations, it offers whole brain coverage with

few millimetre resolution acquired in a couple of seconds. For example, datasets

with 64×64×35 cubic voxels of 3.25×3.25×3.0 mm acquired every 2.1 seconds

were used in this thesis, see Chapter 4 for details of the methods).

Second, a specific contrast was observed in the early nineties to be sensitive to

haemodynamic response to neural activity and gave rise to the so-called Blood

Oxygenation Level Dependent (BOLD) fMRI contrast [136]. We shall cite one

of the biggest authorities in the field, Prof. Nikos Logothetis: “As its name sug-

gests, the BOLD contrast mechanism alters the T2* parameter mainly through

neural activity-dependent changes in the relative concentration of oxygenated and

deoxygenated blood. Deoxyhemoglobin (dHb) is paramagnetic and influences the

MR signal unlike oxygenated Hb. In the presence of dHb, the T2 value decreases

quadratically with field strength, as expected from the dynamic averaging owing

to diffusion in the presence of field gradients. The effects of dHb on T2* are even

stronger, as first noticed by Ogawa et al. Specifically, Ogawa & Lee observed that

blood vessel contrast varied with changes in blood oxygen demand or flow” [113].

While the exact mechanism of BOLD signal is still not fully understood, since it

is dependent on the interplay of many biological factors, the basic principle can

be summarized as follows: The increased neuronal activity triggers a pronounced

increase in Cerebral Blood Flow (CBF) accompanied by a less pronounced in-

crease in Oxygen Extraction Fraction (OEF). This leads to a decrease in tissue

dHb content and conversely to a higher signal intensity.

Regarding the neuronal correlates of the BOLD signal, the cited paper shows

results of simultaneous BOLD and electrophysiological recordings, suggesting
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that the BOLD response primarily reflects the input and local processing of

neuronal information rather than the output signals, which are transmitted to

other regions of the brain by the principal neurons [113].

Another important finding further complicating a straightforward interpretation

of the fMRI data is that the haemodynamic response function linking the neu-

ronal activity and BOLD signal increase is heterogeneous across the cortex of an

individual subject, between subjects and also presumably dependent on other

conditions, which makes the precise quantitative interpretation of BOLD signal

in terms of neural activity a difficult task.

In this context it is also appropriate to mention briefly another complication

which usually comes with fMRI BOLD measurements. This is the problem of

structured noise in the MRI data, also known as imaging artifacts. Probably the

most common and cumbersome are:

• artifacts connected to physical motion of the subject during acquisition

• cardiac and respiratory activity related artifacts

• scanner related artifacts (i.e. scanner drifts, inhomogeneity of signal, sus-

ceptibility artifacts)

When mentioning these artifacts, we also outline the basic preprocessing steps

which are usually carried out before feeding the data into a statistical analysis:

Reslicing the data Since the acquisition is done slice by slice, not all the data

in one 3D volume actually reflect the same moment. The simplest way to

correct for this is to use linear interpolation based on information about

the slice acquisition order

Motion correction Physical and apparent (scanner-drift related) movement of

the head as well as pulsation effects usually leads to spatial misalignment of

the 3D volumes. To correct for this effect typically a simple linear transfor-

mations consisting of translations and rotations is used, with parameters

optimized to minimize some goodness-of-fit measure such as mutual infor-

mation between the two images

Spatial smoothing is used to raise the signal to noise ratio by averaging out

the noise (based on the assumption of spatial independence/non-smoothness

of noise and smoothness of signal)
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Frequency filtering is often applied to get rid of contributions which are most

likely to be physiological artifacts (> 0.1Hz) or a scanner drift or trend

(< 0.01Hz). Nevertheless, the use of spectral filtering methods for physio-

logical artifact removal has serious drawbacks. In particular, as commonly

above the Nyquist frequency, the physiological artifacts often alias into the

pass-band of the frequency filter.

Filtering out physiological signals is an advantageous alternative or com-

plement to the frequency filtering when the simultaneously acquired physi-

ological signals are available. Example of such a method is the RETROICOR

algorithm [67]. Here, the physiological signal is expressed by a low-order

Fourier series (typically of order two) in terms of the phases of the cardiac

and respiratory cycles. Subsequently, the contribution of the estimated

physiological signal is filtered out of the image data (for each voxel sepa-

rately).

MRI diffusion

Another important specialised MRI technique is the diffusion-weighted imaging

(DWI). The principle is that additional small gradients along multiple directions

are applied in a specific manner, to create a contrast which is sensitive to (wa-

ter molecule) diffusion along a given direction. Combining multiple diffusion

weighted images enables one to recover information about the overall strength

of diffusion and its directionality. This in turn enables one to distinguish white

and grey matter by means of the overall strength of diffusion (captured by e.g.

average diffusivity index, AD) as well as direction and overall anisotropy of diffu-

sion (captured by e.g. Fractional Anisotropy (FA)). Changes in these measures

can be sensitive to neurodegenerative disease processes, e.g. in multiple sclerosis

[45].

Pushing the limits of methods of DWI, new approaches to high angular res-

olution diffusion weighted imaging such as Diffusion Spectrum Imaging (DSI)

allow good resolution of directionality profiles of white matter tracts in each

voxel. This is a promising avenue for solving the problem of interpretation di-

rectionality in voxels containing crossing fibres. This in turn brings important

improvement in diffusion-based tractography, a method of extracting the trajec-

tories of brain white matter tracts in vivo using noninvasive methods of MRI.

Thus, noninvasive investigation of structural brain connectivity of single human

subjects becomes available, of potential interest for clinical applications but also
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providing priors for functional modelling studies. A first pioneering example of

such an application is [84], but the potential of the structural priors in models

is yet far from being properly utilised.

2.2.2 EEG

Compared to MRI, the EEG method is conceptually simple and more direct;

nevertheless the interpretation of EEG data in terms of neural activity is also not

straightforward. Electroencephalography is the neurophysiologic measurement

of the electrical activity of the brain by recording from electrodes placed on the

scalp (or, in special cases, subdurally or in the cerebral cortex). The resulting

traces are known as an electroencephalogram and represent an electrical signal

(mainly postsynaptic potentials, not action potentials [95]) from a large number

of neurons. While EEG offers the advantage of millisecond temporal resolution,

the spatial resolution is poor in comparison to fMRI. That stems from a number

of reasons:

• The limited number of channels acquired (typically several tens to a hun-

dred of electrodes)

• The non-unique solution to the inverse problem of detecting electrical

sources inside the head from the surface measurement

• The complex conductance pattern of head which further complicates esti-

mating the solution to the inverse problem.

Due to these reasons, in most studies, researchers do not attempt to recover the

exact distribution of the sources inside the brain, rather staying at the surface

electrode/channel level, assuming that e.g. the occipitally placed electrodes carry

information mainly from visual cortex areas.

Typically, EEG recording is divided into frequency bands for ease of description

and analysis. The main four are (note that the behavioural characterization is

extremely simplified):

Delta-band (0.5-4Hz) – prevalent in deep sleep

Theta-band (4-8Hz) – widespread in the onset of sleep and in deep relaxation,

but also linked to some memory-related cognitive processing

Alpha-band (8-13Hz) – prominent rhythm in a relaxed state, pronounced in

visual areas in eyes closed condition, diminishes when eyes opened
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Beta-band (13-30Hz) – prominent rhythm during cognitive activity

Aside from these frequency bands, fluctuations in higher frequencies than 30Hz

called Gamma-oscillations are extensively discussed in cognitive neuroscience.

Quite recently, it has been proposed by Steriade that different brain rhythms

are grouped within complex wave-sequences [170]. This perspective may help

to approach electrophysiological data more effectively, but has not been widely

utilised yet. The straightforward categorisation of behavioural correlates of the

brain rhythms is further complicated by their spatial heterogeneity, inter- and

intra-subject variability and reactivity to brain state or specific stimulation. For

a thorough but readable account of rhythmic activity in the brain we refer the

reader to [24].

2.2.3 Other neuroimaging methods

We briefly review some other brain imaging methods which, although not used

in our experiments, are highly relevant for the research in spontaneous brain

activity. For the sake of brevity we have to exclude other methods such as Near

Infrared Spectroscopy and optical imaging methods in general [64], although

they are also becoming applied in the field.

MEG

Magnetoencephalography is a recent tool for measuring neural activity of the

brain. It uses surface sensors (often called channels) in usually higher density

than EEG (of several hundreds sensors) to measure subtle changes of magnetic

field. The whole measurement is technically very demanding, inquiring spe-

cial shielding from magnetic fields from the environment and cooling of super-

conductive coils in the detector system. The reward lies in obtaining a better

starting point for spatial localization of sources due to the following facts:

• Higher number of detectors than in EEG

• The conductivity does not affect the spreading of magnetic field and there-

fore the estimation of sources does not rely on so many assumptions and

prior knowledge of brain and skull anatomy and physical properties.

Still, as with EEG, the solution to the inverse problem of localisation of the

sources from the measurements is not unique [177], and therefore the solution
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can be uniquely defined only through introduction of a set of constraints. One

approach to recovering the spatial information about the localization of the

sources is the family of beamformer methods, an example application of which

is Dynamic Imaging of Coherent Sources (DISC) [74]. The main principal of

beamformer techniques is in obtaining estimates of electric field time-course at

a given location in the brain as a weighted sum of surface measurements, where

the weightings are derived from the channel covariance matrix under some rather

general assumptions [22].

Invasive electrophysiological recordings

One of the major difficulties of EEG and MEG recordings was the inverse prob-

lem of localisation of the sources of the measured signals. With invasive electro-

physiological recordings, this problem is largely attenuated. Thus, they serve an

important role in validating the hypothesis generated using the more generally

applicable neuroimaging methods. The invasive nature of the procedure on the

other hand limits the potential use in humans and to great extent in animals as

well for both ethical and experimental reasons. This is reflected in the limited

availability of invasive electrophysiological recordings. In particular, the sev-

eral published human studies report results from measurements taken as part of

preoperative assessment of patients with pharmacoresistant epilepsy.

The broad-band signal obtained from microelectrodes can be generally divided

by filtering into the local field potential (LFP) and the multi-unit activity. The

former is obtained using a low-pass filter at ∼ 300Hz and corresponds generally

to the sum of dendritic synaptic activity within a localised volume of tissue.

The multi-unit activity is then the fast component of the signal, corresponding

to individual action potentials or spikes, which under good circumstances can

be ascribed to individual neurons using spike-sorting techniques.

Analysis of invasive electrophysiological recordings in the context of large-scale

spontaneous brain activity has lead to several interesting observations. For ex-

ample, interhemispheric correlations of slow spontaneous fluctuations in firing

rates and LFP power modulations in human sensory cortex have been directly

observed [135], suggesting the role of long-range LFP power synchrony in func-

tional connectivity. Second, LFP power in the default mode network areas has

been shown to have the same reactive task-related properties as the fMRI signal,

confirming the neural origin of the task-related deactivations in the default mode

network.
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Spontaneous brain activity

In this chapter we introduce the modern research into large-scale spontaneous

brain activity (SBA) using neuroimaging methods, particularly fMRI. First, we

describe the development of the field in the last fifteen years. This is followed

by an overview of the quantitative methods used for extraction of the most

important features of spontaneous brain activity. We also discuss the key findings

in SBA changes in disease and altered brain state and offer an overview of the

state of the art in understanding the neurophysiological underpinnings of the

large-scale fMRI resting state features. We conclude with some speculation on

the role of the spontaneous brain activity.

3.1 Introduction to resting state research

Functional neuroimaging (utilising PET and later fMRI) focused at its outset

on studies of brain responses to carefully controlled sensory, cognitive and motor

tasks. These experiments fit well with the view of the brain as driven by the

momentary environmental demands [149]. However, during the last fifteen years

the interest in the study of intrinsic, un-driven or on-going brain activity has

steadily increased. Given the nature of this activity, the terminology in this area

is not yet fully established. In the following we shall refer to resting state when-

ever we focus on the experimental condition during which spontaneous brain

activity data are typically acquired, while the term spontaneous brain activity is

left for denoting the brain activity not directly related to external stimuli manip-

ulation. Note that the term intrinsic brain activity was proposed with a similar

meaning, suggesting a distinction from evoked activity [147]. Although there are

some methodological and theoretical challenges in the measurement and inter-

pretation of resting state data (for a sceptical view see e.g. [129]), resting state
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research is gaining in significance in a way eliciting an impression of a paradigm

shift in neuroimaging [146].

The beginnings of growing interest of neuroimaging researchers in the resting

state of brain lie in the late nineties. Probably the earliest, nowadays almost

classical observation of functionally meaningful patterns in the resting state fMRI

is the study by Biswal et al. [15]. This study demonstrated that even during

resting condition, temporal signals from bilateral motor cortices mutually corre-

late, while this correlation is specific for the motor network. Nevertheless, the

rise of the interest in spontaneous brain activity patterns in the first stages was

most probably driven mostly by the observations of activity in the so-called de-

fault mode network (DMN). Mainly for this reason, in the following review of

recent spontaneous brain activity research we adopt the perspective of evolution

of the concept of the DMN.

3.2 Default mode of brain function and spontaneous

brain activity

3.2.1 Deactivation during active task

As stated before, early fMRI studies were primarily directed at detecting in-

creases in signal during carefully selected tasks meant to affect activity in specific

brain modules. Nevertheless, these studies also tended to show spatially consis-

tent patterns of deactivations across a wide range of task conditions. In 1997,

Shulman and his colleagues [161] published a meta-analysis of several studies that

reported such consistent BOLD deactivations during attention-demanding tasks

in specific areas of cortex (precuneus gyrus, cingulate cortex, medial prefrontal

cortex). This finding has been replicated by independent researchers in a number

of studies [13, 122]. As well, the results have been generalised across modali-

ties by reporting similar findings using PET imaging [148]. In the latter paper,

Raichle hypothesised that there exists a default mode of brain function, during

which a set of areas including the precuneus gyrus and medial prefrontal cortex

is tonically active, continuously gathering and processing information about the

external and internal environment.
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3.2.2 Spontaneous fluctuations anticorrelated networks

Another step in the exploration of spontaneous brain activity was the observa-

tion that during the resting state condition the default network is actually not

tonically active, but instead fluctuates at typical frequencies of 0.01− 0.1Hz, as

was pointed out by Fransson in 2005 [53]. More detailed analysis in his paper,

confirmed also by a concurrent report by Fox et al. [51] revealed that while the

default network fluctuates coherently (in-phase) as a whole, there is another set

of brain areas that fluctuates out-of-phase and consists of the dorsolateral pre-

frontal cortex, dorsal premotor cortex, including the supplementary motor area

and the inferior frontal gyrus/ventral premotor cortex, bilateral supramarginal

gyrus, the posterior parietal cortex, insula and the extrastriate cortex. To be

more precise, regression analysis of each voxel timecourse against the precuneus

area average timecourse has shown positive correlations for default network areas

and negative correlations in the other set of areas. While the precise functional

interpretation of the two networks is still debated, the original proposal of Frans-

son was that “... the brain recurrently toggles between an introspectively oriented

mode (default mode) and a state-of-mind that tentatively might be interpreted

as an extrospectively oriented mode that involves a readiness and alertness to

changes in the external and internal environment.” Similar findings led Michael

Fox and his colleagues from the Raichle’s group to formulate the hypothesis that:

“The human brain is intrinsically organized into dynamic, anticorrelated func-

tional networks” [51]. See Figure 3.1 for illustration of the two anticorrelated

functional networks as detected by the Raichle’s group.

3.2.3 Resting state in behavioural context: processing load &

SIT

Once the phenomenon of coherent resting state fluctuations had been reported by

independent groups and quite well established, more attention has been focused

on its functional and behavioural significance. To mention just two of these

attempts, default mode activity has been studied under sustained memory task

[54] and in connection to daydreaming [120].

In the former paper, Fransson describes the decrease in fluctuations and con-

nectivity within DMN under sustained working memory task. He presents three

main findings:

• The extent of correlating areas is decreased
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Figure 3.1: Figure shows intrinsic correlations between a seed region in the
precuneus cortex and all other voxels in the brain for a single subject during
resting fixation. The spatial distribution of correlation coefficients shows both
correlations (positive values) and anti-correlations (negative values), thresholded
at R > 0.3. The time course for a single run is shown for the seed region
(precuneus cortex, yellow), a region positively correlated with this seed region
in the medial prefrontal cortex (orange), and a region negatively correlated with
the seed region in the intraparietal sulcus (blue). Reproduced from [51].

• The magnitude of correlation to precuneus seed is decreased in most DMN

areas

• The mean power density of intrinsic low-frequency signal fluctuations de-

creases under sustained task

Clearly, these three findings can be seen as three manifestations of a general fluc-

tuation decrease. On the other hand, this study also confirmed the observation

of a well-defined pattern of spontaneous fluctuations even during a sustained

attention-demanding task.

The latter paper by Mason et al. [120] explores the apparent possibility of a

link between the observed default network activity and daydreaming activity of

the resting subject. During a paradigm validation session, the subjects‘ were

presented practised and novel tasks, and a simple questionnaire was used to

assess the number of stimulus-independent thoughts (SIT, daydreaming) that

occurred during the sessions. The difference was statistically significant. Later,

in an epoch paradigm, they were presented both novel and practised tasks, as

well as periods of rest. It was found that during the novel tasks the decrease

of DMN activity was more pronounced than during the practised tasks (with
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respect to the rest) – see Figure 3.2. To further support the hypothesis that the

DMN activity is related to daydreaming, the decrease difference was correlated

with result of the Imaginal Processes Inventory (IPI) measuring the propen-

sity for daydreaming. The correlation was found to be significantly positive for

most of DMN areas. While the possibility of misattribution of DMN activity

to SIT instead of stimulus-oriented thought (SOT) has been pointed out in an

immediately following technical comment published in the same journal [65], the

findings seem to be supported by other new studies such as [31].

3.2.4 Alternative analysis methods and the zoo of networks

When viewing the results of the spontaneous brain activity research from a

perspective, two interlinked characteristic features of the dynamics stand out.

The first is the typical temporal property of low-frequency fluctuation of the

signal (LFF, 0.01 − 0.1Hz, [53]). The second is the fact, that spatially distant

but functionally related regions show coherent activity dynamics, a phenomenon

called functional connectivity (FC) [56, 59] in the general context of imaging

neuroscience. Many of the findings discussed above, particularly the detection

of the DMN and its anticorrelated networks by means of regression analysis, were

in principle obtained using a simple analysis method called seed-based correlation

analysis (SCA).

SCA consists of a few elementary steps. First, a suitable seed voxel or area is

chosen, which is assumed to lie within a core of a network of interest. Then, the

timecourse of the seed is correlated to that of each brain voxel independently,

deriving a spatial map of correlations to the seed-voxel. This map then undergoes

appropriate thresholding and statistical testing.

One of the main disadvantages of the seed-based correlation analysis is the ar-

bitrariness of the choice of the seed-voxel. Also, due to the principally bivariate

analysis, this approach is not able to effectively utilise the multidimensional na-

ture of the data and is very sensitive to the effects of imaging artifacts discussed

in section 2.2. Soon after the topic of spontaneous brain activity and resting state

data analysis had attracted the attention of the wider neuroscience community,

an alternative method called Independent Component Analysis (ICA)[34] has

been applied to the resting state fMRI data [97, 10] and become widely used.

(Note that the earliest ICA application to fMRI, though to task-related data,

dates back probably to 1998 [125].)
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Figure 3.2: Figure shows the BOLD brain activity signal change from resting
state to steady state task of two different difficulties: a more difficult novel
task and an easier, since already practised, task. Note the prominent effect
of task difficulty on the activity change. Note that the tasks in practised and
novel task category were matched to avoid intrinsic task difficulty as a confound.
Illustration taken from [120].
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While the resting state data analysis methods are described in a later section,

we note here three critical advantages of ICA over the SCA approach. Firstly,

the method is generally model-free – no choice of seed voxel or region is needed.

Secondly, the method naturally decomposes the data into a set of spatiotemporal

components, each representing the location and dynamics of a single network.

And thirdly, as the noise is typically classified into separate components, the

actual spatial maps of the networks are more robust with respect to noise.

In our view, the use of ICA on resting state data contributed strongly to change

of the general view of spontaneous brain activity. While at some stage, the spon-

taneous brain activity might have been (simplistically) iconified by the DMN, the

model-free ICA approach made it much clearer that there are many functional

networks, whose activity slowly fluctuates with high level in internal consistency

– with all of them fluctuating concurrently. This comes back to the original ob-

servations of Biswal [15] of the spontaneous synchronous oscillations in the motor

network – the choice of motor network was driven only by convenience, while

similar synchronous oscillations happen also in other functional networks such

as visual or somatosensory. The name resting state networks (RSNs) has been

widely accepted for these networks, although they have been shown to corre-

spond to functional networks related to specific cognitive/behavioural activities

[165].

To give an example, in 2006, with a particular implementation of ICA, namely

Probabilistic Independent Component Analysis (PICA) [10], De Luca et al. [38]

described at least 5 RSNs consistent across subjects (see Figure 3.3). Note that

while robust identification of only up to ten networks on a single subject level is

usually possible, the group studies have been able to detect already several tens

of functionally meaningful networks [98], utilising the combined wealth of data.

3.3 Methods for spontaneous brain activity analysis

In this section we introduce some of the statistical methods used for analysis of

fMRI spontaneous brain activity recordings.

From mathematical point of view, acquisition of resting state fMRI data leads

to a 4D scalar field of intensity values (3 spatial dimensions and 1 temporal).

For an example, spatiotemporal resolution of 3.25mm ×3.25mm ×3.0mm (×2.1

seconds) used in our data presented in Chapter 4 can be typically reached while

keeping a reasonable signal to noise ratio. With this resolution, the images cov-
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Figure 3.3: Figure shows the location of five resting state networks extracted
consistently across subjects using PICA by deLuca et al. [38]. Note the second
from top network shown, spatially corresponding to the default mode network
described previously. Source: [38].
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ering the whole brain have a size of 64 × 64 × 35. Therefore we obtain about

100000 voxels (volume pixels) for each 3D volume. Multiplied by several hun-

dreds of time points in typical resting state scan, we obtain large amounts of

data demanding conceptually reasonable as well computationally efficient anal-

ysis methods yielding easily visualize-able output. While we have introduced

some of the preprocessing steps in the section 2.2, here we discuss the methods

used to summarise the statistical relations in the data.

Since the first reports of meaningful spontaneous brain activity patterns, two

interlinked features of the data stood out. As mentioned earlier, the first was

the low-frequency fluctuation (0.01 − 0.1 Hz) of the signal, while the second

is the synchrony of these low-frequency fluctuations among distant areas, called

functional connectivity. For quantifying the LFF, simple computation of spectral

power in the low-frequency band is commonly used. Alternatives include the use

of the variance or coefficient of variation, or specific measures such as fractional

Amplitude of Low Frequency Fluctuations (fALFF)[182].

The terms functional connectivity and effective connectivity have been used to

describe neural interactions, typically on the level of neural assemblies, even

before the application to neuroimaging. In structuring this section, we shall

adhere to the distinction made by Friston et al. [56, 59] between the functional

connectivity as temporal correlations between remote neurophysiologic events

and effective connectivity as the influence one neural system exerts over another.

3.3.1 Functional connectivity methods

For the purpose of this review, we shall divide the functional connectivity meth-

ods of SBA analysis used in the literature to bivariate methods, multivariate

methods and ‘complex methods’ which usually include a mix of both bivari-

ate and multivariate methods. The list is far from complete since the range of

methods applied is growing quickly as the topic of connectivity attracts more

mathematicians and data analysts.

Bivariate methods

Probably the simplest approach to studying functional connectivity between re-

gions of brain is to use linear Pearson’s correlation coefficient of timecourses

from a pair of voxels as a measure of strength of connection between the two

time series. This simple correlation method can be used to derive a network
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of all voxels connected to a given seed voxel (or seed region consisting of sev-

eral tens to several hundreds voxels and represented by the average timecourse).

This corresponds to the SCA approach discussed earlier. Typically, only voxels

surpassing an arbitrary or statistically determined threshold on the correlation

coefficient are included in the presented network. Note that such a network is

derived from information on connectivity of whole brain to one seed region, not

of connectivity of each area to each.

This method can be altered simply by choosing a different connectivity mea-

sure than correlation coefficient (e.g. mutual information, spectral coherence,

or wavelet decomposition parameters correlation). The potential advantage of

these more complex, potentially nonlinear methods for bivariate functional con-

nectivity indices is critically assessed in chapter 5 of this thesis.

As a typical result of this method is a set of locations connected to a given seed

region, the need to introduce a seed region based on prior knowledge becomes an

inevitable limitation of this method. On the other hand, the SCA approach offers

a straightforward interpretation in terms of statistical properties of the localised

signals, which is not always the case for multivariate connectivity methods.

Multivariate methods

Under the umbrella term of multivariate methods we cover two main groups

of analysis techniques. The first group includes the (typically linear) unmixing

methods like ICA and Principal Component Analysis (PCA), while the second

concerns various clustering methods.

Matrix unmixing methods (PCA and ICA)

In general, both PCA and ICA attempt to explain the data matrix X (each

column representing a time series of one voxel) as a linear transformation of a

matrix of source (latent) variables Y by a mixing matrix A:

X = AY. (3.1)

If t denotes the number of acquired time points, v number of voxels, then X is

a t-by-v matrix, A is a t-by-t matrix and Y is a t-by-v matrix. Clearly, such

decomposition is generally not unique. In PCA, the constraint is that the first
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column of matrix A shall explain most of variability of matrix X, and each

successive most of the residual variability, given the condition of orthogonality

to all the preceding vectors. This leads to decomposition such that the matrix A

consists of the eigenvectors of matrix X in decreasing order of magnitude. Apart

from decomposing the data to spatial maps (rows of Y ) with assigned orthogonal

time series (columns of A), the algorithm has the advantage of helping with

data-reduction, since the first few principal components contain most of data

variability, while the last ones can be discarded as usually containing only minor

noise variance.

The ICA method decomposes the matrix Y based on different constraints. In

particular, it poses the assumption of independence of the sources (either in

spatial or temporal domain, for fMRI data usually the former is used). Note

that this assumption is stronger than that of orthogonality in PCA, (which is

equivalent to purely linear independence in case of demeaned data).

So far we have assumed that the number of estimated sources is the same as the

number of time points we acquired. It is clear that this assumption does not

generally have to hold, and might also be difficult to assess. In fact, the necessary

decision on the number of sources to recover is one of the most controversial

points of using ICA. Either it has to be based on a model, theory or intuition

of the analyst, or a method to automatically estimate the number of sources

contained in the data has to be implemented. Another problem (of both ICA

and PCA) is that these models do not include explicit error terms, although

some measurement error or noise can be expected to be always contained in the

measured data.

We shall discuss here one solution to these burning questions concerning the use

of ICA for fMRI data, which was proposed by Beckmann et al. [10]. Their

Probabilistic Independent Component Analysis (PICA), implemented as the

MELODIC routine in the FSL software package, uses estimation of source num-

ber by comparing the eigenvalues of the data covariance matrix with the dis-

tribution of eigenvalues of a random white noise covariance matrix. While this

constitutes a meaningful criterion for data dimension reduction, we shall bear

in mind that the solution proposed is still somewhat arbitrary. Moreover, it

has been proposed that principally there “can be no single, ‘best’ dimensionality

or model order for the underlying neurophysiology of multiple distributed sys-

tems”[33]. Importantly, the statistical model order selection may lead to over-

splitting of components in data from longer acquisition with more timepoints,
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which we have already observed in several cases in our experimental data having

430 timepoints in comparison to commonly published data having around 200

timepoints and resulting to less components. On the other hand, the dependence

of typical number of detected components on the number of timepoints can be

utilised in group studies using the concatenation technique such as in [98] to en-

able detection of splitting of the major resting state network into subnetworks.

The advantage of ICA over the seed-based methods in detection of networks was

documented in some studies [10, 114].

Clustering methods

Although we have not used clustering methods directly in our analysis, we include

them in this review as they are starting to be used in resting state literature

alongside ICA. We will give just brief overview of these methods, followed by

example results from literature in the latter subsection.

Clustering methods generally attempt to group objects (or cases, in our context

voxels or regions of interest) into several sets/clusters based on their similarity

or dissimilarity. Clustering methods can be roughly divided into two approaches:

hierarchical clustering and partitional clustering. [169]

In hierarchical clustering, typical hierarchical tree architecture is created by suc-

cessive processing of previously established clusters, while partitional clustering

algorithms determine all clusters at once, although potentially by an iterative

process. Hierarchical algorithms can be agglomerative (“bottom-up”) or divisive

(“top-down”). Agglomerative algorithms begin with each element as a separate

cluster and merge them into successively larger clusters. Divisive algorithms be-

gin with the whole set and proceed to divide it into successively smaller clusters.

The simplest algorithm for hierarchical clustering starts with each case being

considered as a separate cluster. Then the criterion on the uniqueness is grad-

ually relaxed, and any two cases which are nearer to each other than a given

threshold are merged (amalgamated) together into one higher-order cluster. The

algorithm proceeds until all cases are merged in one big cluster. The result can

be easily visualized by a hierarchical tree. The resulting tree is dependent on

the particular distance measure used and the way of defining the distance of

two clusters. For the distance, typically a single linkage (nearest neighbour),

complete linkage (furthest neighbour) or some sort of average linkage method is

used.
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A typical example of a partitional clustering method is k-means clustering. Be-

fore running the algorithm, the analyst has to decide on the number k of clusters

to be detected. The algorithm then tries in an iterative manner to assign each of

the cases to one of k groups to maximize the ratio of between groups variance to

within groups variance. Note that there are methods to estimate the most suit-

able number of clusters to be extracted directly from the data such as Bayesian

Information Criterion (BIC). Recently, another algorithm for partitional cluster-

ing, so-called Normalised Cut Group Clustering, has been successfully applied

to resting state data, detecting RSNs at group level [174].

Combined methods

In real-world analysis, several concepts are commonly combined in the analysis

of spatiotemporal structure of resting state data. In the following we describe

two examples of such an approach.

A nice example of the combined methodological approach to resting state dataset

analysis is found in work of Thirion et al. [173]. In their multi-step approach,

they:

• Spatially under-sample the data using intra-session parcellation algorithm,

ending up with around 1000 parcels representing spatially and temporally

homogeneous units

• Use pair-wise spectral coherence of parcel timecourses as a measure of

connectivity between parcels

• Transform the pair-wise coherence matrix into a distance map using several

different methods

• Run PCA on the distance map in order to reduce the dimensionality of

the space by using only the first 3 PCA components

• Determine the number of clusters to be derived by Bayesian Information

Criterion

• Run clustering algorithms (General Mixture Modelling) to obtain final

clusters

• Use prior knowledge to choose the anatomically most plausible clusters for

display
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Figure 3.4: Figure shows the spatial and frequency distribution of three of the
detected clusters by the complex method of Thirion et al. The first spectra (in
black) corresponds to the average signal from the remaining unclassified voxels.
Adopted from [173].

The results of this method are shown in Figure 3.4.

Another example of a complex approach appears in the paper by Achard et al.

[1]. The steps of their analysis are as follows:

• Anatomical template based parcellation into 90 brain regions of interest

followed extraction of the average time-courses for these 90 regions

• Wavelet analysis on six different frequency scales (defined by typical fre-

quencies represented by the fitted wavelets)

• For each scale, a correlation matrix of the wavelet coefficients was com-

puted, representing further the connectivity matrix

• Each connectivity matrix was thresholded controlling for False Discovery

Rate at 5% level

• The thresholded connectivity matrix was binarized to serve as neighbour-

hood matrix for graph analysis using various indices, namely computing

characteristic path length, clustering coefficient and degree
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• An index of small-worldness was derived by comparison with typical char-

acteristic indices of comparable random graphs

While the combined methods inevitably differ in many aspects, there are some

common features:

• Spatial down-sampling of the input data

• Use of sophisticated connectivity/distance measures, possibly sensitive to

coherence in a specific frequency band

• Need to reduce the dimensionality of the final results before a reasonable

interpretation or visualization is feasible

Overall, these combined approaches have not been widely adopted, probably

due to the complexity of the analysis and their dependence on many decisions

regarding the settings of the analysis. On the other hand, if well tuned to a

particular dataset, combined methods might gain an advantage over the general

purpose approaches such as seed-based correlation or ICA.

3.3.2 Effective connectivity analysis

Effective connectivity methods have neither been widely used in this thesis, nor

extensively applied to resting state fMRI data by others. Therefore in the follow-

ing we provide only a brief overview of the approaches with relevant references

for the sake of completeness.

As introduced earlier, there is an important distinction between functional con-

nectivity, usually considered as ‘temporal correlations between remote neuro-

physiological events’ and effective connectivity characterised as ‘the influence

one neural system exerts over another’ [56]. The study of effective connectivity

seeks to recover a potentially asymmetric matrix of directed interactions between

localised neural units. In theory, these neural units would correspond to neu-

rons or neural populations, while in practice the connectivity between voxels or

regions of interest is studied.

The effective connectivity methods differ in the form of the interaction model

they assume. In its basic form, structural equation modelling (SEM) assumes

linear instantaneous relations and independence of the temporal samples. When

model of the dynamics is included, we deal with multivariate autoregressive mod-

elling (MAR). Such a model allows implementation of testing of causality in the
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sense of Granger [70], as the temporal precedence of cause and effect can be as-

sessed. A richer model of causality-based effective connectivity is the Dynamic

Causal Modelling (DCM) [60], which assumes a bilinear dynamic model on the

level of neural population activity and includes an explicit forward model from

the neuronal activity to the measured data. This model includes the haemody-

namic response function in the case of fMRI data. In theory, a fully nonlinear

nonparametric approach to effective connectivity analysis based on conditional

mutual information or transfer entropy [157] could also be used, although the

typically low number of datapoints in fMRI datasets poses a limitation on the

robustness of estimation of information-theory based functionals.

In general, effective connectivity methods are less suitable for large-scale ex-

ploratory analysis and are therefore applied to signals from several well-defined

areas of interest. Also, as the timing is crucial for the dynamic effective connec-

tivity models, the spatial heterogeneity of the haemodynamic response function

and the relatively low sampling rate generate serious difficulties to effective con-

nectivity estimation and interpretation. In fact, there is an ongoing heated de-

bate regarding the advantages and suitability of particular effective connectivity

methods - see e.g. [57, 153].

3.4 Alterations in spontaneous brain activity

The phenomenon of spontaneous brain activity as observed with resting state

fMRI did not remain unnoticed by wider community of researchers and clini-

cians, who raised the question of stability or modification of the low-frequency

fluctuations and connectivity patterns represented by RSNs by factors such as

mental state or disease. In this section, we summarize the findings of alter-

ations of spontaneous brain activity. Special attention is paid to those related

to changes of state of consciousness, as these are particularly pertinent to the

research presented in chapters 4 and 6 of this thesis.

3.4.1 Alterations related to vigilance

One of the fundamental goals of modern neuroscience is to shed more light on

the neural basis of consciousness. To investigate altered states of consciousness,

studies of stimulus-free or “resting-state” fMRI are becoming increasingly popu-

lar. To determine mental-state-dependent alterations of the functional architec-

ture of the resting brain, the two main properties of BOLD signal fluctuations
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that were introduced earlier are typically assessed: FC capturing the extent and

strength of spatio-temporal synchronisation and the strength of the underlying

LFF.

FC fMRI studies during altered states of consciousness have so far generated

somewhat controversial observations. For instance, while [99] reported an in-

crease of FC in several areas including the motor network after induction of

midazolam sedation, another group [142] reported decrease of FC in the motor

areas in sedation induced by severoflurane.

The DMN has previously been hypothesised to serve functions that may be

related to conscious mental activity. Thus, the pattern of FC changes in higher

cognitive networks and the DMN are currently being actively researched to unveil

the neural basis of consciousness. So far, there was a decrease in DMN FC

observed under midazolam sedation [72] and in brain-damaged patients [18];

inconclusive results were reported in light severoflurane sedation [119]. Fitting in

the general picture of partial reduction of DMN FC in suspended consciousness,

DMN FC was shown to be preserved but reduced during deep sleep [86, 155],

with predominant reduction in frontal loading.

In contrast to complex FC changes, reduced vigilance was found to be consis-

tently associated with increases in LFF amplitude as studied during midazolam-

induced sedation [99], light [62, 87] and deep sleep [106]. This is surprising in

view of the opposite effect of low frequency vasomotor activity during anaesthesia

[89, 88]. Vasomotor activity here refers to oscillatory vascular rhythms that share

many properties with BOLD LFF such as frequency characteristics and respon-

siveness to manipulations of vascular tone. As said, in contrast to BOLD LFF

in humans, the animal studies cited above showed a clear and significant dose-

dependent reduction of vasomotion during anaesthesia. Intriguingly, a recent

rodent fMRI study largely replicated these effects for BOLD LFF demonstrat-

ing reduction of both amplitude and coherence strength of LFF during deepening

of isoflurane anaesthesia [112].

To reconcile this controversy about LFF changes in altered vigilance state, one

might speculate on true species-specific effects. On the other hand, one may

look for effects of experimental factors differently controlled during human and

animal studies. BOLD LFF is known to be potentially confounded by a number

of non-neural factors such as systemic cardio-vascular physiological variables, and

artifacts such as motion. It has been noted that motion may affect LFF [164,

151], but no systematic study on such effects exists. As sedation and light sleep
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may increase the propensity for head motion by reducing the subject’s conscious

control of head position, we hence hypothesised that LFF increases observed in

human sedation studies may be mediated by sedation-induced increased head

motion. A study testing this hypothesis is described in Chapter 4. We also

include some further analysis of the potential mediation effect of motion on FC

in similar context in chapter 7.

3.4.2 Alterations related to disease

The properties of resting state fMRI signal, in particular in the DMN, have

been extensively investigated as potential biomarkers of mental diseases or other

conditions related to structural and functional brain changes. The spectrum of

conditions for which changes of DMN properties have been reported is wide, in-

cluding among others Alzheimer’s disease, Schizophrenia, Attention Deficit/Hy-

peractivity Disorder, Depression, Anxiety, Epilepsy, Autism Spectrum Disorder,

Multiple Sclerosis and Parkinson’s disease. In most cases, decreases of FC and/or

fluctuation power within the DMN are reported. For reviews and meta-analysis

we refer the reader to [96, 6, 23]. Here we give only an example of two studies

carried out by the group of Michael Greicius.

The first is a study on Alzheimer’s disease [73], which has revealed different

spatial distribution (namely hippocampal co-activation) and overall higher con-

nectivity in healthy elderly compared to incipient Alzheimer’s disease. They also

proposed similarity to healthy brain template spatial distribution (derived from

earlier studies) as a possible disease marker. This achieved 85% sensitivity and

77% specificity. These discrimination characteristics are quite promising, given

the fact that the template was not optimised and this was a first study on the

topic.

The later depression study [71] states that depressed subjects showed increased

default mode connectivity in the subgenual cingulate, the thalamus, the or-

bitofrontal cortex and the precuneus. On top of that, cingulate connectivity

correlated with length of depression. Nevertheless, in this study, goodness of fit

to template was not a good biomarker of depression.

When interpreting the SBA and the alterations of SBA features with disease

or brain state, the question of reliability of estimation of the SBA measures

naturally comes up. Just recently, several studies focused on this topic [160,

126, 183]. These findings suggest that in general, the resting state network
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spatial patterns show moderate to high reliability. This supports the potential

for construction of disease biomarkers. Nevertheless, while some results of the

clinical studies of alterations of spontaneous brain activity are promising, the

sensitivity of measurement and analysis methods and our understanding of the

nature of the phenomena is not sufficient yet for effective clinical applications.

3.5 Neurophysiological underpinnings

In view of the amount of research invested in the properties and potential clin-

ical applications of spontaneous brain activity, it may be surprising how little

is known about the foundations of these phenomena. The nature of the syn-

chronised spontaneous LFF underlying resting state fMRI is still only poorly

understood. Nevertheless, there is a growing number of studies researching the

electrophysiological underpinning of certain aspects of these resting brain activ-

ity features.

In particular, band-limited local field potentials, as the best electrophysiologi-

cal correlate of BOLD signal [113], were found to show LFF in anaesthetised

monkeys [110].

In humans, the link between EEG band-limited power in particular bands and

the fMRI signal has been investigated since the main technical problems with

simultaneous EEG/fMRI recordings have been solved. Initial whole brain cor-

relation studies between band limited EEG power and BOLD signal amplitudes

yielded variable results with some studies localizing spectral EEG/BOLD corre-

lations to the default mode [108]. More recently, negative correlations between

frontal theta EEG independent component band-limited power and BOLD signal

were reported in areas of DMN [156]. A more comprehensive picture was offered

by a study focusing on resting brain networks and their EEG signature [118].

This study reported correlations of EEG power spectra with BOLD activity in

specific networks. Correlations with DMN time course as derived by ICA were

found to be generally positive, particularly for beta and alpha rhythms. Another

recent study [90] conducted inverse analysis and found nodes of BOLD activity

within DMN correlated to EEG global field synchronisation.

Generally, the previous EEG/fMRI studies focused on correlating the instanta-

neous EEG-band-limited power (or synchronisation) with BOLD signal intensity.

Band-limited EEG power is however an indicator of local fast-scale synchronisa-

tion of a specific type of processing, rather than a mere measure of the intensity
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of processing. Therefore we hypothesise that EEG spectral powers as an indi-

cator of brain state may be more directly linked to some network feature such

as FC. This link may in fact be stronger than the observed but variable link to

metabolic intensity measurement of BOLD intensity, and allow an intuitive inves-

tigation of associations between network-specific FC and EEG power. Moreover,

focusing on interrelations between EEG power and inter-regional FC of BOLD

signal would enable the direct study of inter-individual and inter-session vari-

ability that may underlie altered network organisation in relation to personality

traits, emotional states and importantly diseases. To the best of our knowledge

no previous study investigated the interrelation between EEG power and syn-

chronisation of fMRI activity during awake state directly. Therefore we set out

to test the hypothesis that the strength of synchronization of BOLD activity

within the DMN may be related with band-limited EEG power. This study is

described in chapter 6.

Finally, a very promising approach for EEG/fMRI correlation was presented

in two recent studies [21, 133]. These studies propose correlating the BOLD

signal with time-courses derived from conventional EEG microstate analysis and

show that particular fMRI RSNs have time series correlated to the instantaneous

density of particular microstates.

3.6 What might spontaneous brain activity repre-

sent?

As reviewed in the previous section, the understanding of the nature of the spon-

taneous brain activity is still in its initial stages. While cognitive correlates have

been found for some of the markers derived from spontaneous brain activity fluc-

tuations such as in [120], it seems that unconstrained thought and other higher

order cognitive processes are not at all sufficient for explaining this activity.

To this end, interesting results were provided by observation of BOLD fluctu-

ations in non-human species, namely monkeys. Resting state networks have

been proved to be present in anaesthetized monkeys even at anaesthetic levels

known to induce profound loss of consciousness [176]. Furthermore, not only

oculo-motor and somato-motor networks were detected, but an analogue of hu-

man default network has been revealed by regression with seed in the precuneus

cortex. The spatial pattern of connected areas fairly well resembled that of hu-

man default network. These results support the position that spontaneous brain
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activity, particularly in DMN, does not correspond merely to conscious mental

activity such as self-referential thought or daydreaming.

So what may the spontaneous brain activity represent? This is so far an open

question; nevertheless, many speculations have been suggested. For now, we

may share with the reader some of the interpretations, offered in [149]. The first

is that spontaneous brain activity represents spontaneous cognition e.g. stim-

ulus independent thoughts. This may be the case for some of the fluctuations,

but clearly cannot account for the low frequency fluctuations during anaesthesia

or deep sleep. The other concept mentioned is that intrinsic activity facilitates

maintaining of balance between excitatory and inhibitory inputs determining

the responsiveness of neurons to correlated input. Finally, the most appealing

interpretation is that: “the intrinsic activity instantiates the maintenance of

information for interpreting, responding to and even predicting environmental

demands. In this regard, a useful conceptual framework from theoretical neuro-

science posits that the brain operates as a Bayesian inference engine designed to

generate predictions about the future” [149].
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Chapter 4

Motion as a confound in

resting state studies

As already discussed in Section 2.2, resting state fMRI data suffers from the pres-

ence of structured noise (artifacts) due to various sources. In this chapter, we

discuss this issue in more detail and present some analysis of the potential con-

founding effects of these artifacts on studies quantifying changes of LFF power.

In particular, we focus on the potential role of subjects’ head motion. The

work presented in this chapter has been published in the Magnetic Resonance

Materials in Physics, Biology and Medicine journal [79].

4.1 Nonneural sources of LFF

4.1.1 Overview

Apart from the neuronal sources of resting state BOLD signal and the inevitable

thermal noise, several non-neuronal (or artifactual) sources are usually consid-

ered [11, 175] including instrumental drift, participant motion, and physiological

sources such as cardiac and respiratory activity (and variability of their rate).

While these non-neuronal sources are not specific to resting state fMRI stud-

ies and are present in active-task studies as well, in resting state studies they

gain on importance as no explicit model for neuronal activations is available and

therefore we miss this useful prior information for distinguishing the artifactual

activations from true neuronal activations. The relative contribution of neural

and various non-neural mechanisms to BOLD fMRI signal variations has been

investigated in a range of conditions [11, 164]. In general, the need for suitable

preprocessing was firmly established - we review the preprocessing options for
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resting state fMRI in the following subsection.

4.1.2 Typical preprocessing procedures

Let us recall that basic fMRI preprocessing consists of removal of the first few

3D volumes to avoid initial signal instability, motion correction by means of rigid

body transformation of each 3D volume to achieve the best match to a selected

reference volume (typically the first, middle or last one of the acquisition) and

potentially the so-called slice-timing correction, which is basically a temporal

interpolation carried out to correct for difference in acquisition times of differ-

ent volume slices. Quite often a so-called coregistration is also carried out by

means of an affine transformation of the brain image to achieve a best match

to a standardised template brain (typically the Montreal Neurological Institute

(MNI) template brain [48] is used). This is done in order to allow group statis-

tics comparison, as well as for the reporting of results in terms of standardized

coordinates. Commonly, some spatial smoothing is also applied to increase the

signal-to-noise ratio in exchange for spatial specificity. While the optimisation of

all the above steps is a complex task in its own and subject to further research,

the state-of-the-art implementation of the necessary algorithms is available and

regularly updated in the main software packages - such as Statistical Parametric

Mapping (SPM) [58] or FMRIB Software Library (FSL) [166].

Additional preprocessing steps are typically carried out in order to remove, at

least partly, the remaining non-neural sources of temporal signal variation. As

discussed earlier, in resting state fMRI, the signal of interest has typical low fre-

quencies (about 0.01 − 0.1Hz). On the other hand, the cardiac and respiratory

activity has considerably higher typical frequencies (∼ 1 and ∼ 0.2Hz respec-

tively). Therefore the use of low-pass filters with cut-off frequency about 0.1 Hz

is widespread in fMRI preprocessing. Similarly, since slow scanner signal drifts

have been reported, a high-pass filter at about 0.01Hz is commonly used.

Importantly, the band-pass filtering can be insufficient - with typical TR of 2

seconds for whole brain acquisition, the Nyquist frequency is about 0.25 Hz and

the cardiac and potentially the respiratory signal can be critically undersampled,

leading to aliasing of the artifact, potentially into the 0.01 − 0.1Hz frequency

band of interest. While the work of Biswal [15] or Cordes [36] suggests that

this aliasing does not play a major role, at least in the FC analysis of resting

state data, approaches have been proposed to solve this problem by modelling

the non-neural contributions utilising simultaneously acquired physiological data
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[14, 41, 67]. Another approach lies in the use of ICA, which was reported to be

able to separate the physiological artifacts from resting state networks based on

their spatial pattern even under conditions of temporal undersampling [38].

An alternative approach to removing signal components due to physiological ar-

tifacts is by orthogonalising all the voxel or region of interest (ROI) timecourses

with respect to the average signal taken from ROIs in white matter and cere-

brospinal fluid. The rationale of this step lies in the assumption that as these

tissues do not generate true neuronal signals, their signal fluctuation solely re-

flects the artifactual sources. The orthogonalisation or regressing out is a simple

application of a linear regression - effectively removing the part of the signal Y

that is correlated to the estimated artifactual signal X, as given by:

Yorth = Y − (X(XTX)−1XT )Y.

Here T in the superscript stands for matrix transpose and X, Y are considered

column vectors of size n samples. If there are several artifactual signals X1 . . . Xn

to be removed, they can be regressed out using the same formula by putting the

signals into columns of a single matrix X. Note that this formula is directly

applicable only in the case that the signals Y and X have zero mean - otherwise

a constant has to be included in the regression model by adding a vector of ones

to the X matrix.

A similar procedure is commonly used to decrease the extent of motion-related

signal variation that was not removed by initial motion correction by spatial

realignment of the images. Here, 6 motion parameter time series estimates are

most commonly used as regressors, although the inclusion of the second order

and lagged effects has also been proposed to correct for nonlinear and lagged

effects of head-motion [61].

It is not uncommon that artifacts lead to widespread positive correlations, af-

fecting globally the whole brain image and impacting on reliability of FC anal-

ysis. The global character of these fluctuations motivates another method of

data preprocessing, namely global signal correction - correction for fluctuations

averaged across the entire brain. While at least three different approaches to

this correction have been used (for a review see e.g. [52]), the most current

reports typically utilise a method based on regression of the global signal using

an orthogonalizing procedure similar to the one described above for removal of

physiological artifacts and remaining motion-related signal variations. The use

of global signal correction has recently attracted a heated debate in the resting
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state neuroimaging field regarding its suitability. Most importantly, global signal

correction was an important preprocessing steps in original studies that reported

anti-correlated networks [51, 53]. The interpretation of the FC results, and par-

ticularly the anti-correlations, after application of global signal correction, has

been questioned [132]. The main argument here was that the global signal cor-

rection, purely due to the mathematical consequences of its construction, forces

the distribution of voxel values of seed based correlations to be approximately

centred around zero. In other words, independently of what the true correla-

tions in the neuronal signals are, after applying the global signal correction we

are bound to detect a comparable amount of positive and negative correlations.

The global signal removal not only removes global artifacts, but also signals

correlated to average brain neural sources, obscuring the interpretation of the

results. In particular, it could be argued that the anti-correlations observed after

global mean regression are not truly neuronal, but introduced by the correction

[132]. While the reply of some of the strongest supporters of global signal cor-

rection [52] may not seem completely convincing, independent evidence brought

by [27] has confirmed that at least some of the anti-correlations are genuine,

by documenting these anti-correlations in the absence of global signal correc-

tion. This report advocated the use of regression of physiological signals or their

image-based counterparts as a safer alternative to global signal correction.

Similarly, an image-based artifact removal procedure consisting in regressing out

average signals from white matter and cerebrospinal fluid regions and motion

parameters was proposed as “an effective method for dealing with global corre-

lations that offers the significant advantage of reducing the risk of introducing

‘fictitious’ negative correlations in the data sets” [66].

4.2 Is sedation induced increase in low-frequency fluc-

tuation mediated by increased motion?

Having reviewed the typical fMRI preprocessing methods, the question arises,

whether these are fully sufficient for any type of subsequent data analysis. In

the following, we study the potential role of unbalanced artifacts in between-

condition comparisons.
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4.2.1 Introduction

As mentioned earlier in Section 3.4, there are an increasing number of studies

that focus on changes in the crucial resting state signal properties - either due to

specific disease conditions or due to other manipulations of brain state. Assess-

ing the induced changes in the main resting state features, such as low frequency

fluctuation power and functional connectivity, should help to extend our un-

derstanding of the neurobiological underpinnings of consciousness and also the

spontaneous brain activity itself.

On the other hand, resting state fMRI signal is prone to artifacts which are

difficult if not impossible to remove completely. Therefore, a reasonably imagin-

able scenario for the observed changes in resting state measures in altered brain

states is that these constitute a result of an increase in some of the artifact

rather than in the true neuronal effect. Apart from the extreme scenario of no

neuronal effect and observed change fully attributable to change in the artifacts,

the mixed scenario of an artifact change partially increasing the estimate of a

real change, or even masking a change in the opposite direction seems even more

likely. To complicate the situation further, a spatial selectivity of the artifacts

or signal changes might lead to spatially heterogeneous effects of the artifacts,

masking out the changes in some networks while increasing the changes in other

networks.

To explore this scenario more specifically, we hypothesised that LFF increases

observed in human sedation studies may be mediated by sedation induced in-

crease in head motion. To test this hypothesis, we studied LFF in sensory and

cognitive networks in healthy volunteers during baseline and midazolam induced

conscious sedation. Mediation analysis consisted of testing a direct sedation

effect and indirect motion effect with motion indexed as mean relative displace-

ment. In addition, motion effects on LFF were directly quantified during baseline

state (i.e. before sedative administration), representing the standard experimen-

tal resting state fMRI setting.

4.2.2 Material and methods

fMRI data from healthy volunteers were included that had been acquired in

the context of an unrelated study on the cerebral effects of midazolam. MRI

scanning was performed on a Phillips Achieva (Philips, Eindhoven, NL) at 3T.

The study was approved by the Nottingham University Medical School ethics
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Table 4.1: Ramsay sedation scale ([150])

Awake levels are classified as:
Level 1 patient anxious and agitated or restless or both
Level 2 patient co-operative
Level 3 patient responds to commands only
Asleep levels are dependent on the patient’s response to a light glabellar
tap or loud auditory stimulus:
Level 4 a brisk response
Level 5 a sluggish response
Level 6 no response

committee and all subjects gave written informed consent. 20 healthy volunteers

(18 males, 2 females, age range 18-35) were scanned during resting wakefulness

(baseline). Subjects were instructed to lie still with eyes closed and not to fall

asleep. 15 of these volunteers underwent a second session on the same day after

induction of light sedation by intravenously injected midazolam (‘Dormicum’,

a benzodiazepine derivative, 0.05mg/kg). Volunteers were rescanned within 5

minutes after they stabilized at Ramsay level 3 (see Table 4.1 for description of

the Ramsay sedation scale [150]) that was assessed (by the attending anaesthesi-

ologist) with the subject on the scanner table outside the magnet with the head

coil removed.

430 volumes of standard functional single-shot echo-planar images (EPI; TR =

2100ms, TE = 60ms, flip angle 90◦, 64x64x35 matrix, resolution 3.25× 3.25× 3

mm) were acquired for each scan. Standard pre-processing steps were applied,

using FSL4.0 [166] software package: brain extraction, motion correction and

high-pass 0.01 Hz frequency filtering. For each session, registration matrices

to MNI template were computed and their inverses used to register MNI-space

based ROIs to individual acquisitions. The ROIs were chosen to represent the

main nodes of 5 functional networks: 4 ROIs for the DMN, 4 ROIs for the DAN

and two for Auditory, Motor and Visual Network.

The following procedure for deriving the DMN and DAN ROIs was used: firstly,

for each network a binary network template consisting of spherical regions (15

mm diameter) centred at significant network peaks was created. The peak loca-

tions were adapted from SI Table 3 of [118]. Secondly, individual ICA decomposi-

tions of MNI-registered fMRI data were obtained using MELODIC (FSL4.0) [10],

utilising built-in automated estimation of number of components. Subsequently,

a template-matching procedure proposed in [73] was run on the decompositions
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ROI x y z
DMN: PCC 0 -50 18
DMN: MPFC 0 52 28
DMN: IPL left -50 -60 24
DMN: IPL right 50 -60 24
DAN: PL left -40 -64 44
DAN: PL right 40 -64 44
DAN: DLPFC left -42 26 36
DAN: DLPFC right 42 26 36
Motor: left -56 -2 38
Motor: right 56 -2 38
Visual: left -8 -76 12
Visual: right 8 -76 12
Auditory: left -42 -24 12
Auditory: right 42 -24 12

Table 4.2: MNI coordinates of template 15 mm sphere ROI centres. PCC:
precuneus cortex, MPFC: medial prefrontal cortex, IPL: inferior parietal lobule,
PL: parietal lobule, DLPFC: dorsolateral prefrontal cortex

to detect best-matching individual maps for each binary network template. As

a last step, for each network, all the individual best-matching components were

averaged and the resulting group map thresholded at Z > 2 and binarized. The

resulting binary network masks were then split into several ROIs. In particular,

4 ROIs were created for DMN located in precuneus/posterior cingulate cortex,

medial prefrontal cortex and left and right inferior parietal cortex and 4 ROIs for

DAN network (bilateral dorsolateral prefrontal ROIs and parietal ROIs). These

8 ROIs were complemented by 6 ROIs (3 left-right pairs) from Auditory, Motor

and Visual Network. These ROIs were derived with analogous procedure with

the difference that the centres of the template spheres were located at hemispher-

ical peaks of anatomical maps in probabilistic Harvard-Oxford Atlas included in

FSL 4.0: the initial template for the Auditory Network was based on Heschl’s

gyrus map, for the Motor Network on precentral gyrus map and for the Visual

Network on intracalcarine sulcus map. All ROIs were checked for spatial overlap

between them and the overlapping areas (although not constituting substantial

parts of any of the ROIs) were excluded from the ROIs. The centre locations of

the sphere templates are summarised in the Table 4.2, while Figure 4.1 shows

the derived ROIs.

To analyse the potential impact of motion on resting state fMRI analysis, we

followed standard procedures for data preprocessing. Average time courses for

each ROI of each subject were extracted and orthogonalized with respect to mo-
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Figure 4.1: ROIs derived for five RSNs: auditory (yellow), DMN (red), DAN
(blue), motor (green), visual (pink). Each network is represented by 2 or 4 ROIs.
On the left is an axial slice (z=16), on the right a sagittal slice (x=18))

tion parameters and also with respect to average white matter and cerebrospinal

fluid (CSF) time series to correct for nonspecific global signal fluctuations. The

motion parameters were obtained from the standard 6 degrees of freedom spa-

tial realignment, i.e. rigid body transformation motion correction procedure,

while the white matter and CSF time courses were derived from thresholded

white matter and ventricular ROIs from the Harvard-Oxford Atlas included in

FSL 4.0. Finally, a low-pass 0.1 Hz second-order Butterworth filter was ap-

plied. Combination of FSL tools and in-house MATLAB scripts was used for

the analysis.

The procedure for quantifying the LFF, implemented in an in-house MATLAB

script was as follows: First, each average ROI time series was divided by its mean

for normalisation. Subsequently, the absolute values of its FFT coefficients were

squared and summed over the frequency bins within the 0.01-0.1 Hz range. The

sum represents a measure of LFF power for a given ROI of a given subject.

To derive a network-specific LFF power estimate, LFF measures were averaged

across ROIs constituting a given network.

To further investigate the effect of global mean correction demeaning as an addi-

tional pre-processing step, we repeated the analysis with an extra orthogonaliza-

tion step with respect to each session’s global mean time series. We refer to the

resulting LFF estimates in further text as ‘global mean corrected’. The head-

motion amount was measured by Mean Relative Displacement (MRD) [91], an
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Figure 4.2: Illustration of the mediation model. Top: direct effect - independent
variable X (IV) affects directly dependent variable Y (DV). Bottom: mediated
effect: X affects Y both with direct effect c′ and through indirect effect mediated
by mediator M ; the strength of the mediated effect is equal to ab. Modified from
[115]

index implemented in FSL4.0, making use of head-motion correction parameters

from the registration algorithm.

Testing mediation

According to Baron & Kenny [9], testing the full mediation consists of four steps

outlined below (so-called method of causal steps - Figure 4.2 illustrates the model

considered):

1. establishing existence of total effect, i.e. correlation between the IV and

DV, (effect c)

2. establishing existence of effect of IV on the mediator (effect a)

3. establishing existence of effect of mediator on the DV (effect b)

4. establishing non-existence of direct effect of the DV on the IV, if the me-

diator is included in the model (effect c′)

More formally, simple mediation is assessed through use of a linear model de-

scribed below (adopted from [115]):

Y = i1 + cX + e1 (4.1)

Y = i2 + c′X + bM + e2 (4.2)

M = i3 + aX + e3, (4.3)
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where i1, i2 and i3 are intercepts, Y is the dependent variable, X is the inde-

pendent variable, M is the mediator, c is the coefficient relating the independent

variable and the dependent variable, c′ is the coefficient relating the independent

variable to the dependent variable adjusted for the mediator, b is the coefficient

relating the mediator to the dependent variable adjusted for the independent

variable, a is the coefficient relating the independent variable to the mediator

and e1, e2 and e3 are residuals.

We structure the investigation as follows: first, we test the total effect (c) of se-

dation of LFF, in each of the five networks - this corresponds to the first causal

step of Baron & Kenny. Subsequently we run a joint test of the second and

third causal step by means of a bootstrapping procedure for mediation analysis

described in [143] as implemented in SPSS script INDIRECT [144]. In brief,

this test consists in comparing the value of the product of the coefficients a,b

as defined above against the hypothesis ab = 0. This is in line with the com-

mon agreement that joint tests of a and b in mediation analysis are more highly

recommended - for extensive comparison of mediation tests see e.g. [116]. For

completeness, apart from the main joint test results, we include a separate ac-

count of effect of sedation on head-motion (a) and head-motion on LFF (b).

Finally, we report the test of the direct effect of sedation on LFF (c′), when the

indirect effect through motion is included in the model. Each of the individual

coefficients a, b, c, c′ was tested in the standard parametric framework of linear

regression model, i.e. by a two-tailed t-test after dividing it by its standard error.

As 9 of the 11 variables investigated have shown significantly non-normal distri-

butions (Shapiro-Wilk test of normality p < 0.05), we have log-transformed the

variables, including the motion estimate, before running the mediation analysis.

The variables were also standardised to have zero mean and unit variance.

Robustness

To check the robustness of the mediation results with respect to the motion

correction preprocessing step, we repeated mediation analysis on data with less

and no motion preprocessing, firstly data without the motion orthogonalisation

step and secondly data without any motion correction at all.
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Figure 4.3: Effect of sedation on LFF power. The mean and standard deviation
per network per condition is represented by full bar height and error bar. The
effect proved significant (p < 0.05) in all five networks analysed: auditory (AUD),
dorsal attentional (DAN), default-mode (DMN), motor (MOT), visual (VIS).

4.2.3 Results

Pharmacological sedation increases in LFF power

Sedation was found to increase LFF power (paired t-test, p < 0.05) of rest-

ing state BOLD time series in all sensori-motor and cognitive networks (visual,

motor, auditory, DMN, DAN) (Figure 4.3).

Is effect of sedation on LFF mediated by motion?

For standard preprocessed data, we showed a significant indirect effect mediated

by motion for all 5 networks considered (p < 0.05, corresponding to zero not

included in the bias-corrected accelerated bootstrap 95 % confidence interval for

ab). See a scatterplot in Figure 4.4 exemplifying the relation of the variables

considered for visualisation of the mediation effect. To give a more detailed

analysis, we split down the intervening effect into the two steps. Firstly, the

effect a of sedation on motion was quite profound. The mean relative displace-

ment in control condition was 0.07 ± 0.03 mm (mean ± std) and in sedation

0.21 ± 0.10 mm, which constituted a statistically significant difference between

the conditions (p < 0.001). Secondly, motion had a significant direct effect b on

52



Chapter 4: Motion as a confound in resting state studies

the LFF power (t-test, p < 0.05) in all five networks.
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Figure 4.4: Visualisation of the mediation effect. The increase in LFF power
(y-axis) between baseline (red circle) and sedation (green square) is significantly
mediated by the sedation related increase in head-motion (x-axis), which itself
elevates the LFF power even within baseline condition. This effect was found in
all five investigated networks.

Absence of a direct effect of sedation on LFF

When the model included the mediating effect of motion, there was no significant

remaining direct effect c′ of sedation on LFF for any of the networks studied.

Results with additional global mean correction

Including additional global mean correction did not drastically change the re-

sults. In the first step, a similar but weakened total effect was noted: LFF power

increased significantly in three (auditory, visual and motor) of the 5 networks

with a trend for DMN as well (p < 0.1). In the next step, the indirect effect me-

diated by motion proved significant for the auditory and motor networks, with a

trend in the visual network (95% bias-corrected accelerated confidence interval:

−0.004 to 0.645). The indirect effect has shown insignificant in the two cognitive

networks. Finally, the direct effect of sedation has not proven significant for any

of the networks. The overall results are summarised in the Table 4.3.
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Standard pre-
processing

Sedation
effect on
motion
(a)

Motion
effect on
LFF (b)

Direct
sedation
effect on
LFF (c’)

Total
sedation
effect on
LFF (c)

Indirect
effect me-
diated by
motion (ab)

Auditory 0.73* 0.81* -0.11 0.49* 0.60*
DMN 0.73* 0.50* 0.09 0.46* 0.37*
DAN 0.73* 0.54* 0.01 0.41* 0.40*
Motor 0.73* 0.96* -0.31 0.40* 0.70*
Visual 0.73* 0.62* 0.06 0.51* 0.45*
Additional
global mean
correction:

(a) (b) (c’) (c) (ab)

Auditory 0.73* 0.51* 0.23 0.60* 0.37*
DMN 0.73* 0.00 0.34 0.34* 0.00
DAN 0.73* -0.08 0.28 0.22 -0.06
Motor 0.73* 0.61* -0.04 0.41* 0.45*
Visual 0.73* 0.42? 0.21 0.52* 0.31?

Table 4.3: Summary of mediation analysis results. Columns show standardized
regression coefficients in the mediation model. Significant effects are denoted by
an asterisk (‘*’ , p < 0.05), trends close to significance by a questionmark (‘?’,
p < 0.1) . For detailed explanation of the effects a, b, c, c′ refer to the Materials
and Methods section.

Robustness

To investigate whether the observed effects could have been introduced by in-

adequacies of the motion correction procedure, we repeated mediation analysis

on motion corrected (realigned) data without motion orthogonalisation and raw

data without any motion correction. In both cases, the estimated ab paths were

similar or moderately stronger than those for the standard preprocessing and

the hypothesis tests gave almost the same results.

Further, in a follow-up analysis we also included subject coding dummy vari-

ables as covariates in the mediation model to account for between-subject LFF

baseline differences, which could potentially increase model sensitivity by remov-

ing between-subject variance. To put this into context, in this enriched model

the tests of the coefficients c′ and b correspond to the main and the confound

effects in a repeated measures ANCOVA with varying covariate (ie. the motion

amount). Nevertheless, inclusion of subject-specific baselines left the results

almost unaffected. There was no change, or mild increase, in the estimated

strength of mediated effect ab with respect to the original mediation model.

The formal hypothesis test result changed only for one of the variables (DMN).
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Counterintuitively, this was from significance (p < 0.05) to a trend or marginal

significance (p < 0.1). This might have happened due to decrease in power of

the test caused by lower number of degrees of freedom in the model that includes

subject-encoding covariates.

Relations within baseline condition

To further investigate the relation between motion under standard experimental

condition after standard motion correction procedures and LFF, we separately

analysed data from the 20 baseline sessions, i.e. sessions when no sedatives were

administered. We still observed significant (p < 0.05) positive correlations be-

tween motion parameters and LFF for auditory (r=0.531), motor (r=0.651) and

visual networks (r=0.680). This corresponded to up to 46 % of inter-subject

variance in LFF being explained by motion within a standard control condition

of fMRI after using a standard motion correction scheme and motion orthog-

onalization. Even after additional global mean correction, motion was signifi-

cantly positively correlated with visual LFF power (r=0.601); LFF in auditory

(r=0.353) and motor (r=0.402) networks showed a positive correlation trend,

although not statistically significant. Of note, DMN and DAN showed none or

weak negative correlations of LFF to motion. In order to preliminarily explore

the effect of head-motion on FC estimates, we have performed simple correlation

analysis of motion and FC on the baseline dataset. The mean correlation across

all ROI pairs was rmean = 0.22, standard deviation rstd = 0.10, with maximal

correlation rmax = 0.66.

4.2.4 Discussion

We have observed that pharmacologically induced light sedation increases LFF

in resting state or stimulus-free BOLD fMRI. The effect was noted in all tested

sensori-motor and cognitive networks, which is in line with the previously re-

ported wide-spread LFF increases in sedation [99] and sleep [62, 87, 106].

Notably, we could verify our hypothesis that this observed sedation effect on LFF

was mediated by head motion. In addition, a significant direct and strong effect

of motion on LFF was confirmed by correlation analysis also during standard

experimental baseline conditions without sedation. The demonstrated media-

tion effect supports the notion that the sedation-related increases in LFF to a

significant extent can be explained by sedation-related increases in head motion.
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In other words, motion is a significant potential confound in resting state fMRI

studies even when using high quality data and state-of-the art motion correc-

tion algorithms. Additional global mean correction was found to mitigate, but

not fully resolve this motion effect with significant residual mediation effect for

sensori-motor networks. The results were also robust with respect to two assessed

preprocessing alternatives (no motion orthogonalization or no motion correction

at all) as well as inclusion of subject-specific baseline values of regional LFF in

the model, documenting that the effects were not introduced by the analysis

methods. While detailed comparison of motion correction approaches is beyond

the scope of this study, these results allow excluding the possibility that the

observed effects were introduced by the motion correction itself.

In our mediation model, midazolam induced light sedation was not associated

with LFF increase when the indirect effect of motion was considered. This

cautions against the interpretation of previously reported LFF increases during

sleep and sedation as of neural origin, since beyond standard motion correction,

motion parameters were generally not explicitly controlled for or studied. These

findings do not contradict the possibility that LFF changes may be observed in

states of reduced or even lost consciousness, but suggest that previous reports

on LFF increases may have resulted from condition-specific subjects’ propensity

to head motion. This is particularly relevant as there is no neural mechanism

known to date that would easily explain increased LFF during reduced vigilance.

Lack of genuine LFF increase during conscious sedation would furthermore be

well in line with rodent studies showing a gradual decrease of BOLD and CBF

LFF during deepening of anaesthesia [88, 112] deploying experimental conditions

with rigid head restraint.

Nevertheless we have to bear in mind that correct interpretation of a mediation

test depends on the accuracy of the underlying causal model. At least two

alternative explanations lend themselves to consideration. Firstly, motion might

not actually be (the only) mediator of the LFF increase, but instead might serve

as a marker for some other mediating physiological variable related to increased

LFF, which has not been directly modelled, e.g. RVT (Respiratory Volume per

Time) variability. Notably, even in such a case, it appears that motion estimates

will give us important information regarding the level of non-neuronal LFF in

the data where direct measurement of the underlying physiological variable may

not be available. Secondly, one might argue that the explanatory power of

motion estimates beyond sedation is still linked to neuronal LFF. In other words,
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that motion may be a very sensitive measure of the underlying brain state - so

sensitive, that it outperforms sedation manipulation. While this might seem

counter-intuitive, we cannot disprove it based on our measurements. Also, our

study does not allow us to speculate as to how motion may directly or indirectly

affect LFF. Sophisticated experimental studies would be necessary to elucidate

the exact mechanism generating the observed motion-mediated LFF increase.

Beyond sedation induced effects of motion, we found a strong correlation between

head motion and LFF power also during baseline sessions reflecting standard

experimental fMRI conditions in healthy young volunteers. This further warns

against interpretation of LFF without accounting for the between subject or

condition variation of motion. Even if there is no systematic bias between groups

or conditions under investigation, the considerable amount of variance (46 %)

of LFF power we could explain by mean relative displacement at the very least

is prone to reduce statistical power. While this study focused on LFF power,

due to this strong motion effect at baseline, we also explored motion effects on

FC estimates. Our preliminary findings showed that at least in some pair-wise

correlations, strong interdependencies can be observed between motion and FC

metrics. This suggests that motion induced LFF power can translate into motion

induced increases in FC estimates.

In practical terms, our findings call for extra caution in design, analysis and in-

terpretation of FC MRI studies. This is especially pertinent for studies where the

variable of interest (such as sedation) is related to bodily changes that may have

an indirect effect on the studied ‘neural’ variable such as LFF power or FC. Re-

moving maximally this noise variance with powerful post-processing techniques

is important, but not necessarily sufficient, as the amount of residual noise is

likely to still relate to the variable of interest. But also in studies where the

variable of interest is not likely to alter head motion, statistical power of FC

MRI analysis will be improved by extra experimental care to reduce head mo-

tion, more stringent rejection criteria and lastly explicit accounting for residual

between subject/condition motion effects.

4.2.5 Conclusion

This study confirms previous reports that pharmacologically induced light se-

dation increases LFF in stimulus-free or resting state BOLD. The effect was

noted in all tested sensori-motor and cognitive networks. Notably, we could

verify our hypothesis that this observed sedation effect on LFF was mediated
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by head motion. In addition, a significant direct and strong effect of motion

on LFF in sensori-motor networks was confirmed by correlation analysis also

during standard experimental baseline conditions without sedation. These ef-

fects were observed even after standard motion correction and after additional

global demeaning, which calls for extra caution in FC study design, analysis and

interpretation.

4.3 Summary

For the study of spontaneous brain activity and its changes in disease and altered

brain state, one of the central methods is the assessment of strength of the low-

frequency fluctuations. This has been reported to increase in conditions such as

sedation or sleep. As there are other variables that may be affected by alteration

of the brain state, we hypothesised that the observed fluctuation increase may

be mediated by these confounding variables. A representative candidate of such

a confounding variable is the amount of involuntary head-motion. We tested

the hypothesis that head-motion mediates the observed fluctuation increases in

sedation condition using a standard statistical test for mediation, exploring the

inter-subject relations among amount of head motion, observed signal fluctuation

and sedation condition. We have detected a mediating effect of motion for all five

studied networks under standard data preprocessing, that persisted in at least

two of the networks even after additional preprocessing steps. This provides an

important warning for studies investigating spontaneous fluctuation changes.
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Is linear correlation a suitable

measure of functional

connectivity?

Linear correlation is a generally accepted measure of FC in fMRI studies. Nev-

ertheless one may ask whether linear correlation is indeed the right measure for

FC. Does it describe well the degree of statistical dependence between the signals

from different regions, or does it omit important information by focusing only

on the linear component of the interdependence?

In this chapter, we propose a framework to investigate this question in a system-

atic way. Due to the threat of dimensionality explosion, we limit our investigation

to instantaneous bivariate dependences. Nonetheless, we believe the results pro-

vide an important initial answer to a question which might be on the mind of

many imaging neuroscientists. The core of this work has been already submitted

for publication in the NeuroImage journal [81].

5.1 Introduction

As discussed in Chapter 3, probably the most widely used method of measuring

FC between a pair of regions is computing a linear correlation of their activity

time series. These activity time series can be derived from these regions by e.g.

simple spatial averaging across all the voxels in the regions. Linear correlation is

also widely used to obtain so-called correlation maps by correlating the seed voxel

or seed region signal with signal from all the other voxels in the brain, potentially

constrained to grey matter area. When we follow the distinction of FC methods
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to bivariate and multivariate suggested in section 3.3, linear correlation has a

dominant position among the former, while Independent Component Analysis is

the most prominent example of the latter.

Indeed, from all possible bivariate measures of association, linear correlation is

clearly a method of first choice. This reflects the commonly accepted assumption

that the relationship between the fMRI time series can be suitably approximated

by a multivariate Gaussian white noise process. Additionally, linear correlation

is a well-known statistical concept, sufficiently simple to allow wide use and easy

communication of results between researchers of diverse backgrounds.

On the other hand, from the mid-1980s, nonlinear approaches to analysis of brain

signals, particularly EEG, are getting increased interest of researches who con-

sider nonlinearity as an intrinsic property of brain dynamics. This nonlinearity

is studied both in the univariate temporal structure [154] and the interdepen-

dence [131]. The fact that the nonlinearities may be only occasionally and weakly

present in the biological datasets has previously motivated work on improvement

and assessment of nonlinear interdependence detection methods [163, 172]. For

a review of nonlinearity in EEG, see e.g. [168].

Importantly, the resting state fMRI signal temporal properties are different from

those of EEG. Moreover, they have just recently become more intensively stud-

ied. Above all, apart from the neuronal dynamics nonlinearity, the haemody-

namic nonlinearities are also known to affect the BOLD fMRI signal [40].

Notably, non-linearity of dependence between fMRI time series during resting

state has been recently reported [104]. Use of non-linear measures of FC for

the analysis of resting state data has been proposed [44, 121, 180], particularly

including measures based on analysis of chaotic non-linear dynamical systems

to analyse resting state data, suggesting that the assumption of linearity might

be oversimplifying. The question arises, to what extent and in what context

is it justified and beneficial to use non-linear measures of FC. This issue is

also related to the question of justifiability of use of any indices motivated by

the assumption of non-linear dynamical system as the underlying mechanism

behind the resting state fMRI signal. These include temporal fractal dimensions

or Lyapunov exponents of the BOLD signal. While the presented or similar

investigation might inform us on this question as well, we focus on the topical

question of suitability of linear correlation as a FC measure.

When linear correlation is used as a measure of FC, there are some implicit

assumptions made. The first is that the information in the temporal order of the
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samples can be ignored (both within each time series and the mutual interaction).

While the extent of justifiability of this assumption deserves exploration of its

own, we keep this interim assumption for the purposes of this chapter, not least

in order to keep the comparison of linear correlation to nonlinear measures fair.

Accepting for now the assumption of no role of temporal order of samples, we ask

if the instantaneous (zero-lag) dependence between the time series, expressed in

the probability distribution p(X, Y), is fully captured by the linear correlation

r(X,Y). We answer that this is true under the second important assumption: the

assumption of bivariate Gaussianity of the distribution. Indeed, a multivariate

normal (Gaussian) distribution is uniquely defined by its correlation - up to linear

shifts and rescaling. To be more precise, a bivariate normal distribution is fully

characterised by its mean µ = (µx, µy) and its 2×2 covariance matrix Cov(X,Y )

– if we allow for linear shifting and scaling, the remaining invariant parameter

characterizing fully the distribution is indeed the correlation r(X,Y ). For a

bivariate Gaussian distribution, the correlation also uniquely defines the mutual

information shared between the two variables X, Y which can be computed as

I(X,Y ) = IGauss(r) ≡ −1
2 log(1− r2).

On the other hand, when the Gaussianity assumption does not hold, the distri-

bution cannot be fully described by the mean and covariance. More, possibly

infinitely many, higher order moments need to be specified to determine the

distribution. As the correlation is not sufficient to describe the dependence

structure, the equation for I(X,Y ) above cannot hold in general. Interestingly,

we can use the prominent properties of normal distribution to derive a useful

lower bound on mutual information valid for a broad class of probability distri-

butions. In particular, for a bivariate distribution p(X,Y ) with standard normal

marginals p(X), p(Y ), it holds that I(X,Y ) ≥ IGauss(r) = −1
2 log(1−r2), where

the equality holds exactly for bivariate Gaussian distributions. This allows us

to quantify the deviation from Gaussianity as the difference between the total

mutual information of the two variables I(X,Y ) and the mutual information

IGauss(r) = −1
2 log(1 − r2) that correspond to bivariate Gaussian distribution

with the observed correlation r.

While there are many potential nonlinear FC measure candidates, mutual in-

formation holds a specific position among these for its generality. In theory, it

is general enough to capture an arbitrary form of dependence relation between

the variables without any prior model restrictions on its form. The properties of

mutual information allow us not only to test the suitability of linear correlation
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through probing the Gaussianity of the fMRI time series, but also to construct

a quantitative estimate of connectivity information neglected by the use of lin-

ear correlation. This gives the amount of additional information available and

bounds the potential contribution of non-linear alternatives over the Pearson

correlation coefficient.

We implement the outlined ideas by comparing the total mutual information

between the signals with the mutual information between the signals in surro-

gate datasets. These surrogates are generated in a way that preserves the linear

correlation, but cancels any nonlinear information by enforcing a bivariate Gaus-

sian distribution on the surrogate signal-pair. This approach allows us to both

test and quantify the deviation from Gaussianity, providing a principled guide

in judging the suitability of linear correlation as a measure of FC. The focus

on bivariate Gaussianity as the crucial condition of suitability of use of linear

correlation as FC index, along with the illustrative quantitative estimation of

the deviation from Gaussianity by means of the mutual information neglected

by linear correlation, are the two main contributions of this study to the dis-

cussion of fMRI FC methods. We apply the presented method to ROI-average

time series obtained from resting state fMRI BOLD signal of healthy subjects,

testing and quantifying the deviation from bivariate Gaussianity.

5.2 Material and Methods

5.2.1 Data

We use the preprocessed fMRI data from the study described in Chapter 4. In

particular, for each of 15 healthy volunteers we had two 15 minute resting state

fMRI scans. Each of these sessions produced 14 time series of 430 timepoints –

one time series for each cortical ROI. The list of the ROIs and the method used

to derive them was described in Chapter 4, including the preprocessing applied

to the time series.
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5.2.2 Analysis

The minimal information argument

As already mentioned in the Introduction, for a bivariate distribution p(X,Y )

with standard normal marginals p(X), p(Y ), it holds that

I(X,Y ) ≥ IGauss = −1
2

log(1− r2), (5.1)

where the equality holds exactly for bivariate Gaussian distributions. The in-

equality (5.1) stems from the fact, that normal distribution is the maximum

entropy distribution for a given covariance matrix (or for a given correlation, as

we assume without loss of generality that σ(X) = σ(Y ) = 1). From the relation

between mutual information and entropy (I(X,Y ) = H(X) +H(Y )−H(X,Y ))

it follows that mutual information of Gaussian distribution IGauss(r) is then

minimal from all distributions of given correlation r, under the assumption of

fixed marginal entropies, which is true when the marginals have standard normal

distribution. Note that the assumption of normality of the marginals is far less

restrictive than it might seem. First, approximate data normality is commonly

assumed in areas not restricted to fMRI FC analysis. More importantly, even

if we find particular data deviated strongly from normality, any sample distri-

bution can be monotonously transformed to match normal distribution before

further statistical processing.

To assure precise non-Gaussianity estimates, we have indeed carried out this

‘normalization’ step. It consists in assigning the appropriate percentile to each

value of a given variable and then replacing the original values of the variable

by values corresponding to these percentiles in a standard normal distribution.

Note that this normalization step does not affect mutual information between

the time series.

For two discrete random variables X1, X2 with sets of values Ξ1 and Ξ2, the

mutual information is defined as

I(X1, X2) =
∑
x1∈Ξ1

∑
x2∈Ξ2

p(x1, x2) log
p(x1, x2)
p(x1)p(x2)

,

where the probability distribution function is defined by p(xi) = Pr{Xi =

xi}, xi ∈ Ξi and the joint probability distribution function p(x1, x2) is defined

analogously. When the discrete variables X1, X2 are obtained from continu-

ous variables on a continuous probability space, then the mutual information
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depends on a partition ξ chosen to discretize the space. Here a simple box-

counting algorithm based on marginal equiquantization method [140] was used,

i.e., a partition was generated adaptively in one dimension (for each variable) so

that the marginal bins become equiprobable. This means that there is approxi-

mately the same number of data points in each marginal bin. We used a simple

pragmatic choice of Q = 8 bins for each marginal variable [141].

For each session, we have computed the mutual information (MI) for each pair

of regions, yielding a symmetric 14-by-14 matrix of MI values. To minimize bias

of the MI estimates due to inevitable discretization and finite sample estimation,

the MI values were further monotonously transformed to correct for these effects.

This transformation map was generated using random samples from normal dis-

tributions with correlation ranging from 0 to 1 in 200 steps of 0.005. For each

correlation value, 50000 such random bivariate samples with N=430 observations

each were generated and the mean of their MI as computed by the equiquan-

tization method was tabulated. As for bivariate Gaussian random distribution

with correlation r the true MI is IGauss = −1
2 log(1− r2), this tabulation allows

approximate transformation of estimated MI to true bivariate MI.

Linear surrogate data

To compare the (total) mutual information to the portion of information con-

veyed in the linear correlation, for each dataset, 99 random realizations of mul-

tivariate time series preserving the linear structure but cancelling the nonlinear

structure were constructed, and MI was computed for these surrogates. If the

original time series dependence structure was Gaussian (and therefore fully cap-

tured by the linear correlation), the MI in the surrogates should not differ from

the original MI, up to some random error. The alternative case should manifest

itself as a decrease in the MI in the surrogates with respect to the original data.

The surrogates were constructed as multivariate Fourier transform (FT) sur-

rogates [145, 138]: realizations of multivariate linear stochastic process which

mimic individual spectra of the original time series as well as their cross-spectrum.

The multivariate FT surrogates are obtained by computing the Fourier trans-

form of the series, keeping unchanged the magnitudes of the Fourier coefficients

(the amplitude spectrum), but adding the same random number to the phases

of coefficients of the same frequency bin; the inverse FT into the time domain is

then performed. The multivariate FT surrogates preserve the part of dependence

which can be explained by a multivariate linear stochastic process.
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The idea of comparing the MI of data to MI of ‘linear’ surrogates rather than

directly to linear correlation of data has two aspects. First, it allows a direct

quantitative comparison of the nonlinear and linear connectivity, while correla-

tion and mutual information estimators have generally different properties. Sec-

ond, generation of the surrogates allows direct statistical testing of the difference.

However, this procedure generates 99 estimates of the linear MI for each parcel

pair; one for each surrogate. While these are useful for hypothesis testing, for

general presentation of the difference we use the mean value of these 99 values. In

the following we refer to this as ‘Gaussian’ MI, and it actually closely estimates

the MI of a bivariate Gaussian distribution IGauss(r) = −1
2 log(1− r2), where r

stands for the correlation of the two variables (see the close match in Figure 5.2,

red and purple line). The ‘neglected’ MI is then estimated by the difference

between data MI and the Gaussian MI: Ineglected(X,Y ) = I(X,Y )− IGauss(r).

5.2.3 Statistical tests

For each session and each region pair, non-Gaussianity was tested at p = 0.05

by comparing data MI against MI distribution of multivariate FT surrogates.

To correct for mutual comparisons, the number of significant pairs in given ses-

sion was than tested against the null hypothesis that the number of individ-

ual significant entries has a binomial distribution B(n = 91, p = 0.05), where

n = 91 = 14(13−1)
2 is the number of all region pairs and p = 0.05 is the single

entry false positive rate under condition of pure Gaussianity of the bivariate

distributions.

As it may be argued that the assumption of pair independence is too lenient,

but the exact level of dependence is difficult to establish, we also carried out

group level tests. The percentages of significant pairs were compared by means

of a paired t-test to the percentages of significant pairs obtained from shadow

datasets. Each shadow dataset was created as a multivariate FT surrogate of

normalized data of a given session, preserving only the linear structure of the

dataset after normalisation of univariate marginals. Subsequently, each shadow

dataset has undergone the same procedure as original data, including the initial

normalization, generation of multivariate surrogates, computation of MI, and

statistical testing of pair-wise MI against surrogates. In this way, we mimicked

the full procedure using a ‘purely linear FC’ shadow dataset, accounting for any

potential bias in the detection rate introduced by numerical properties of the

algorithm. Apart from the percentages, we have also tested the mean neglected
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information from data versus shadow datasets by mean of a paired t-test. The

group-level tests used a p = 0.05 significance threshold, but we also report the

attained significance level.

5.3 Results

5.3.1 Descriptive assessment

In descriptive terms, the data MI has proved very similar to the Gaussian MI

(see Figure 5.1). In particular, averaging across all parcel pairs, the data MI

ranged between 0.1 and 0.6 bits for different sessions, while the neglected MI

was more than an order of magnitude smaller (−0.01 to 0.04 bits). Nevertheless,

the estimates of neglected MI in data were generally positive (small negative

values in only 3 out of 30 sessions), suggesting presence of some small but real

nongaussianity. This was not the case for shadow datasets (ranging from -0.01

to 0.01 bits and generally symmetrically spread around zero).

Independently of the strength of coupling, the data MI was moreover typically

within the range of surrogate MI, as illustrated by Figure 5.2. Here, each blue dot

corresponds to MI of one parcel pair; the surrogate distribution is represented

by red (light blue, green) lines for the mean (1st percentile, 99th percentile) of

the surrogate distribution. Although the session with the most non-Gaussianity

is depicted here, the distribution of computed MI for data and the correspond-

ing shadow dataset (Figure 5.3) are almost indiscernible, with the former only

slightly elevated. Also, apart from the random error due to MI estimation from

short time series, which is shared by data and shadow data, both scatters fol-

low well the theoretical prediction of dependence of MI on linear correlation

(IGauss = −1
2 log(1− r2), valid exactly under Gaussianity, purple line), which is

closely approximated by the surrogate mean.

5.3.2 Statistical tests

The percentage of region pairs with significant non-Gaussianity was elevated in

all but 3 sessions above the 5% expected under the null hypothesis (ranging

from 0 to 35% of significant pairs in different sessions). If all the region pairs

were considered independent this would constitute a significant percentage for

19 out of the 30 sessions considered (comparing to binomial distribution B(n =

91, p = 0.05), where n = 91 = 14(14−1)
2 is the number of all region pairs). As
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Figure 5.1: Comparison of the average Gaussian and neglected information.
Each stack bar represents values for one session, averaged across all region pairs.
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Figure 5.2: Mutual information as a function of correlation in an example
dataset. The session with the most non-Gaussianity is depicted. Each blue dot
corresponds to MI of one region pair; red (light blue, green) lines correspond to
mean (1st percentile, 99th percentile) of the surrogate distribution. The purple
line shows the theoretical mutual information of an exactly Gaussian distribution
with the given correlation IGauss(r) - it is not well visible as it closely matches
the mean of the surrogate distribution.
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Figure 5.3: Mutual information as a function of correlation in an example sur-
rogate. Each blue dot corresponds to MI of one region pair; red (light blue,
green) lines correspond to mean (1st percentile, 99th percentile) of the surrogate
distribution. The session with the most non-Gaussianity is depicted.

the assumption of independence of the pairs might be too lenient, yielding false

positive results, we also carried out group level tests that confirmed the statistical

deviation from Gaussianity. In particular, the counts of pairs with significant

nonlinearity were significantly higher than similar counts obtained from shadow

datasets, when compared on group level by means of a paired t-test (t=3.91,

df=29, p<0.005).

Also, the neglected information in data averaged over parcel pairs was generally

positive and on average had value 0.011 bits. On the other hand, the neglected

information in the shadow datasets fluctuated around zero with mean of 0.002

bits. This difference was also clearly statistically significant (t=4.09, df=29,

p ∼ 0.003).

5.4 Discussion

The presented analysis revealed that the bivariate dependence structure of the

fMRI BOLD regional time series is captured very well by linear correlation.

Indeed, average mutual information was only several percent higher than the

mutual information in surrogate data that contained only the linear part of the

dependence. This gives an explicit and quantifiable argument for the intuitive

choice of linear correlation as a measure of FC for fMRI time series.

68



Chapter 5: Is linear correlation suitable for fMRI FC?

Nevertheless, we have shown that there is a statistically significant contribution

of non-Gaussian dependencies in the data, although the effect is so subtle that

testing across many pairs or even across many sessions was needed to acquire

sufficient power for such tests. The detection of non-Gaussian coupling is not

surprising in the light of the fact that the dynamics of brain activity as well as

the haemodynamic response of the vasculature contain many nonlinearities.

It is important to keep in mind that the observed deviations from Gaussianity

might not only reflect a stationary non-Gaussianity in neuronal connectivity.

In the presented framework, deviation from the null hypothesis could also be

caused by nonstationarity of the signal. Vice versa, non-Gaussianity might lead

to false detection of nonstationarity if the test assumes a linear Gaussian gen-

erating process as in [28]. Technically, a precise isolation of these two effects is

extremely challenging. A practical consideration allows reasonably reconciling

the two alternative interpretations: heavy nonstationarity could indeed increase

the estimated non-Gaussianity, but it would also on its own invalidate the use

of simple linear correlation, leading to the same conclusion about its suitability.

On another note, we also should not forget that we are working on the level of

fMRI BOLD signal rather that with neuronal activations - both the Gaussian

and non-Gaussian contributions to FC are likely to be affected to some extent by

non-neural sources of signal variation. Nevertheless, in the end the estimation

of whether this would play in favour of or against the use of linear correlation

(and how much) seems to be entirely speculative at this point.

It can be argued that the amount of non-linear mutual information detected is

likely to depend on the preprocessing of the data and the acquisition parameters.

In this study, we have used standard acquisition and preprocessing. It may be

argued that use of temporal filtering might have a Gaussianising effect not only

on the univariate but also the bivariate distributions. To this end, we have

recently analysed a different dataset without the use of low-pass filtering with

similar results, presented in [81]. Also, temporal domain filtering is a generally

accepted fMRI preprocessing step in order to remove artifacts. It could be

argued that FC supported by the stop-band frequencies correspond mainly to

non-neural artifacts [36].

Here we have applied the nongaussianity assessment on ROI-average time series.

Importantly, under partial incoherence of voxel-level neural signals within the

regions, some of the nonlinearity might be lost due to ROI-averaging. Therefore

working on the level of temporal signal of spatial ICA components or single voxel
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signal might in theory be more sensitive to nonlinearity. Although such FC is

less easily interpretable and in the case of single voxels more prone to noise,

exploring the dependence of the non-Gaussian contribution to FC on the time

series extraction method is a subject of future work.

Also, the analysis presented in this chapter did not consider any time-lags. This

is consistent with comparing to linear correlation as a measure of FC. The time

lags would naturally have to be included in case that we were interested in

assessment of causal or ‘effective connectivity’ measures (linear versus nonlinear).

This defines another natural follow-up of the recent study.

Apart from some minor technical aspects such as normalisation of the time se-

ries, our approach differs from the previous probes into the potential of nonlinear

fMRI FC such as [44, 104, 121, 180] mainly in that we explicitly focus on the

bivariate Gaussianity rather than the linearity assumption as the condition of

suitability of use of linear correlation as FC index. The deviation from this

condition allowed us to quantify the potential available for arbitrary ‘nonlinear’

connectivity measures. This general interpretation is allowed by the use of a

very general dependence measure – mutual information. In theory, this is able

to capture virtually any form of statistical dependence. Of course, some practical

limitations stem from the inevitably finite sample size, forcing us to summarize

the results across ROI pairs and subjects. Last but not least, we provide an

illustrative quantitative estimation of the deviation from Gaussianity by means

of the mutual information neglected by linear correlation, that should give a the-

oretical upper bound on any improvement to be made by an arbitrary nonlinear

connectivity measure. We note that an earlier attempt towards quantification of

the FC ‘nonlinearity’ was made in [104], who reported also the explained vari-

ances by the higher order (nonlinear up to order 5) terms in the predictor set

within a linear regression framework – although these variances were not cor-

rected for the effect of extra number of regressors in the model, and also the

considered model could not capture a more general form of dependence.

Despite the differences in the aims and methodology, our observations agree

qualitatively with partial results of previous studies such as [104, 180] in that

we also reject the specific hypothesis of stationary multivariate linear Gaussian

process as the structure of resting state fMRI signal.

For clarity, we stress again that the above mentioned Gaussianity condition,

rather than mere linearity of the process, is the key assumption for suitability of

use of linear correlation. To fully acknowledge this consider that, as stated e.g.
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in [12], a linear stationary process (Xt)t∈Z is usually defined by

Xt =
∞∑
j=0

φjεt−j ; (t ∈ Z), (5.2)

where εt is i.i.d with E[εt] = 0, E|εt|2 <∞ and
∑∞

j=0 φ
2
j <∞.

While the definitions of linear process may differ in details, in most cases they

are general enough to include processes with non-Gaussian distribution, which

are then not fully described by their correlation structure. This may lead to

some confusion, pointed out in [134], where it is shown that some widely used

surrogate-based linearity tests such as those used in [180] are actually sensitive

to non-Gaussianity. Careful examination of the assumptions of these tests re-

veals that the null hypothesis there is that the data come from a process that is

equivalent to a linearly filtered white Gaussian noise. Of course, if the general

definition of linearity is complemented by the condition that the generating noise

is Gaussian, such a linear process is indeed also Gaussian, with probability dis-

tribution fully characterised by the mean and covariance structure. Discussion

of the potential causes of rejection of the null hypothesis of ‘linearity’ in the

FT-surrogate framework by processes that are still linear in the general sense of

having the form (5.2) is also provided in [139].

For completeness, we note that linearity is also often discussed as an alterna-

tive to nonlinear, potentially chaotic deterministic dynamical systems. In this

context caution is warranted with the interpretation of many ‘chaotic’ character-

istics such as fractional correlation dimension or Lyapunov exponents when the

underlying system might be of stochastic (non)linear nature rather than deter-

ministic (non)linear dynamical system, and particularly when short time series

such as those acquired from fMRI are being analyzed.

5.5 Summary

Quantification of the inter-regional synchronisation of spontaneous brain activity

by functional connectivity measures is one of the most important tools for anal-

ysis of resting state fMRI data. The predominantly used functional connectivity

index is the linear correlation of the local activity time series. Nevertheless, the

use of nonlinear functional connectivity measures has been repeatedly advocated.

In this chapter we investigated the question of suitability of the linear correla-

tion for functional connectivity measurement. Our strategy was based around

71



Chapter 5: Is linear correlation suitable for fMRI FC?

the fact that linear correlation is an precise dependence measure when the stud-

ied variables follow bivariately Gaussian distribution, but when this condition is

not satisfied, the non-linear dependence contribution tends to be neglected.

Thus, we assessed the suitability of linear correlation as a functional connectiv-

ity measure for fMRI time series by testing and quantifying the deviation from

bivariate Gaussianity. To do this we used a fully general dependence measure

— mutual information. The quantitative assessment revealed that the portion

of mutual information neglected by using linear correlation instead of consider-

ing an arbitrary non-linear form of instantaneous dependence is relatively mi-

nor. Nevertheless, formal group-level test confirmed deviation of the data from

the null hypothesis of the data being sampled from stationary linear Gaussian

process. Overall we conclude that linear correlation of normalized data well

captures the full functional connectivity: although existence of non-Gaussian

contribution to bivariate dependences can be established, practical relevance of

nonlinear methods trying to improve over linear correlation might be limited by

the fact that the data are indeed almost Gaussian. We believe this provides a

robust support for the use of linear correlation as fMRI functional connectivity

measure.
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Electrophysiological

underpinnings of fMRI

functional connectivity

In this chapter we present a specific perspective to studying the electrophysio-

logical correlates of resting state fMRI signal. As discussed in section 3.5, previ-

ous studies usually correlated BOLD amplitude with instantaneous band-limited

EEG power, typically in a chosen band of interest. Instead of working with the

fMRI signal per se, we search for EEG correlates of functional connectivity as a

major resting state feature. Recently, strength of FC within the DMN has been

suggested to relate to the level of consciousness of a subject. Still, one of the

current challenges lies in the biological significance of FC. Therefore, we carry

out an inter-subject study of the electrophysiological correlates of the DMN FC,

uncovering a network specific and functionally meaningful electrophysiological

signature for decreased DMN FC. The results of this investigation have been

published in the NeuroImage journal [78].

6.1 Material and methods

The data and preprocessing steps used in this study are partially identical with

the data and preprocessing already described in the previous Chapter 4. For

convenience, we detail here the full description of the material and methods

including those that are shared with the previous chapter as well as the new

data, preprocessing and analysis carried out solely for the purpose of this study.
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6.1.1 Data acquisition

20 healthy volunteers (18 male, 2 female, age 18-35) were included after giving

written informed consent. The study was approved by the Nottingham Univer-

sity Medical School ethics committee. Subjects were instructed to lie still with

eyes closed and were awake and alert. This was confirmed behaviourally before

and after the scan by an attending anaesthetist and by inspection of concur-

rent continuous EEG. A trained anaesthetist was present during the awake alert

state as this served as a control condition in context of an unrelated study on

the effects of midazolam sedation, not reported here. No EEG sleep features

(K-complexes or sleep spindles) were detected.

Simultaneous EEG/fMRI were recorded on a Philips Achieva 3.0T MR scanner

using an 8 channel head coil and standard multi-slice EPI (TR/TE = 2100/35ms,

64 × 64 matrix, 3.25 × 3.25mm in-plane resolution, slice thickness of 3mm). A

total of 35 contiguous transverse slices and 430 volumes were acquired. EEG data

were collected inside the MR scanner from 30 scalp sites using sintered Ag/AgCl

ring electrodes with built-in 5kΩ resistors mounted on an electrode cap according

to the international 10-20 system. Electrode FCz was used as a reference site.

Two additional electrodes were placed below the left eye and on the upper back

to monitor eyeblink and electrocardiogram respectively. Electrode impedance

was maintained below 10kΩ. A BrainAmps MR high-input impedance amplifier

(BrainProducts, Munich, Germany) specifically designed for use in high magnetic

fields was utilised, placed in the scanner bore beside the head coil. Amplified

EEG signals were transmitted via fibre optic cable to a recording computer

placed outside the scanner room. The data were recorded with a pass-band of

0.016-250Hz at a sampling rate of 5kHz.

6.1.2 Data analysis

MRI

Standard pre-processing steps were applied, using FSL4.0 software package: non-

brain voxel extraction, motion correction and high-pass 0.01 Hz frequency filter-

ing. For each session, registration matrices to MNI template were computed and

their inverses used to register MNI based ROIs to individual acquisitions. The

ROIs were chosen to represent the main nodes of the DMN located in the “PC”

(Precuneus/posterior cingulate), “mPFC” (medial prefrontal cortex), “lTPC”

(left temporoparietal cortex) and “rTPC” (right temporoparietal cortex). To be
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able to control for network specificity of the EEG/FC relation, four additional

ROIs located at the main nodes of the Dorsal Attention Network (DAN) [49]

were chosen.

The following procedure for deriving the ROIs was used: firstly, for each network

a binary network template consisting of spherical regions (15 mm diameter) cen-

tred at significant network peaks was created. The peak locations were adapted

from SI Table 3 of [118]. Talairach coordinates were converted to Montreal Neu-

rologic Institute coordinates by using Matthew Brett’s tal2mni.m script, imple-

mented in Matlab (http://imaging. mrccbu.cam.ac.uk/imaging/MniTalairach)

[20]. For three of the ROIs, several mm adjustment was made, symmetrising the

bilateral ROIs - the peak closer to the brain surface was replaced by symmetric

copy of the contralateral peak, thus allowing the whole sphere ROI to be within

brain volume.

Secondly, a template-matching procedure proposed in [73] was run on ICA de-

compositions of MNI-registered fMRI data to detect individual maps for each

network. The ICA components were obtained using ICA as implemented in

MELODIC (FSL4.0) [10], utilising built-in automated estimation of number of

components. As a last step, group-based spatial mask for each network was

generated by averaging the individual maps for the given network across in-

dividuals and binarizing the resulting average map by thresholding at Z > 2.

The binary group-network masks were then split into several ROIs for subse-

quent long-range FC analysis. In particular, 4 ROIs were created for DMN:

“PC” (Precuneus/posterior cingulate), “lTPC” (left temporoparietal), “rTPC”

(right temporoparietal) and “mPFC” (medial prefrontal cortex) and 4 ROIs

for DAN network (bilaterally dorsolateral prefrontal ROI and temporoparietal

ROI). These 8 ROIs were complemented by 6 ROIs from three lower-level func-

tion networks, namely Auditory, Motor and Visual Network. The ROI for the

lower-level functions were derived with analogous procedure with the difference

that the centres of the template spheres were located at hemispheral peaks of

anatomical maps in probabilistic Harvard-Oxford Atlas included in FSL 4.0: ini-

tial template for the Auditory Network was based on Heschl’s gyrus map, for

the Motor Network on precentral gyrus map and for the Visual Network on in-

tracalcarine sulcus map. For each of these three networks, only two ROIs were

defined (splitting the final network mask into left and right half). All ROIs were

checked for spatial overlap between them and the overlapping areas (although

not constituting substantial part of any of the ROIs) were excluded from the

75



Chapter 6: EEG underpinnings of fMRI functional connectivity

ROIs. The centre locations of the sphere templates are summarised in Table 4.2,

the actual derived ROIs are shown in Figure 4.1.

Average time courses for each ROI of each subject were extracted (mean of all

included voxels) and orthogonalised with respect to motion parameters and aver-

age white matter and CSF time courses (obtained from thresholded white matter

and ventricular ROIs from the Harvard-Oxford Atlas included in FSL 4.0) to cor-

rect for nonspecific global signal fluctuations. A low-pass 0.1 Hz second-order

Butterworth filter was applied to constrain the analysis to frequencies of interest

and thus decrease the potential contribution of high-frequency content charac-

teristic of some physiological confounds to the measured FC. FC was calculated

by Pearson’s correlation coefficient for each pair of ROIs.

EEG

Brain Vision Analyzer software (Brainproducts) was used for correction of MR

gradient and ballistocardiographic (BCG) artifacts as described elsewhere [3, 2].

Gradient artifacts were removed as implemented in Vision Analyzer software

(BrainProducts,Germany) by subtracting an artifact template from the data,

using a baseline-corrected sliding average of 20 consecutive volumes. Follow-

ing scanner artifact removal, pulse artifact subtraction was applied. This pro-

cedure works analogously by averaging EEG signal synchronized to the ECG.

The MR-denoised EEG data were referenced to common average. Subsequently,

the EEG data was downsampled to 256 Hz and imported to EEGlab [43]

(www.sccn.ucsd.edu/eeglab), an open source toolbox running under the MAT-

LAB environment. Segments contaminated by artifacts due to gross movements

were removed following visual inspection (maximum total 3-4 minutes rejected

from the 15 minute data in a given subject) and rare occasions of “bad” channels

excluded from the analysis. ICA was performed on the continuous data using the

infomax algorithm and components representing eye-blink, movement artifacts

and residual ballistocardiographic (BCG) artifacts were removed from the data

[167].

The power spectrum was calculated using a Fast Fourier transform on 4.2 second

segments and averaged over the segments. The spectrum was also averaged over

all EEG channels. Subsequently, the band-limited power in the 4 frequency

bands, namely delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz) and beta (13-30Hz)

was computed by trapezoidal integration method. Note that while details of

determining EEG band-limited powers generally vary between studies, in our
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case the bands and the averaging over all channels were chosen in agreement

with [118].

Prior to power computation, the residual scanner-related artifactual peak at

16.67 Hz was removed by a notch filter. Absolute band-powers may however

not be best suited for between-subject comparison due to potential non-neural

sources of between-subject variation of overall EEG power (e.g. skull thickness).

Hence, we also computed relative band-powers (as a proportion of total EEG

power of the given subject in the 1-30Hz band). At a second level of EEG

analysis we have used the 95% spectral edge frequency (SEF 95) to assess the

general slowing of EEG. SEF 95 index was computed for each subject according

to [158, 162] from the cumulative power spectra as the frequency below which

95 percent of total EEG spectral power of the subject was located.

6.1.3 Statistical analysis

We subsequently tested the relation between EEG spectra and within DMN

FC by means of a multiple linear regression with EEG band-power indices as

explanatory variables and with the overall within DMN FC index as the depen-

dent variable. The DMN FC index was computed for each subject as an average

of the FC indices obtained for 6 possible ROI pairs within DMN - to increase

measure robustness and decrease the multiple comparison problem. We report

the explained cross-subject variance in the DMN FC index by the regression

model and also partial correlations for each band. To test for network specificity

of the EEG-FC link, the multiple regressions and partial correlations were also

computed for the within DAN FC (average of 6 FC indices), and DAN-DMN FC

(average across 16 FC indices representing FC between each of the 4 DMN sites

with the 4 DAN sites). In addition, we tested explicitly the difference in the sets

of EEG/FC regression coefficients obtained for DMN FC index and DAN FC (or

DAN-DMN FC) index within a GLM framework, namely by means of the Chow

test [30]. In brief, the Chow statistic is defined as:

(S − (S1 + S2))/k
(S1 + S2)/(n1 + n2 − 2k)

,

where S is the sum of squared residuals for a pooled regression model assuming

common regression coefficients for both dependent variables, while S1 and S2

are sums of squared residuals for each of the regression model fitted separately

for each dependent variable. Under the null hypothesis of regression coefficients
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equality this statistic has Fisher distribution with k and n1 +n2− 2k degrees of

freedom.

Further, we have used simple linear correlation to test the relation of FC indices

to SEF 95 index. The difference of the correlation coefficients of SEF 95 with

the two network FC indices was tested according to [17] by converting it to

approximate t-statistic with n− 3 degrees of freedom by:

t = (rxy − rzy)

√
(n− 3)(1 + rxz)

2(1− rxy2 − r2
xz − r2

zy + 2r2
xyr

2
xzr

2
zy)

,

where y stands for the shared variable of the compared correlations (i.e. SEF 95),

while x and z stand for the two other variables (the FC indices) and rij stands

for correlation coefficient of variables i and j. For the relative band-powers only

simple linear correlations are reported, since, due to inevitable multicollinearity,

partial correlations were not well defined. All the results are reported as statis-

tically significant based on a threshold p < 0.05; the p-values are also reported

to give an idea of the significance level of the results. Conservative Bonferroni

correction for multiple comparisons was used where appropriate; as indicated in

the text.

6.1.4 EEG band-powers explorations

Before testing the link between EEG and FC, we explored the general distribu-

tion of the EEG power (see Figure 6.1) and the structure of relations between the

EEG bands. The absolute EEG band-powers were all positively interrelated (r

= 0.18 to 0.76). These correlations are similar to within subject temporal EEG

band-power correlations reported e.g. in [39]. The relative powers showed posi-

tive correlation only between the alpha and beta band (r = 0.47), with negative

relation for the other band pairs (r = -0.74 to -0.17).

6.2 Results

6.2.1 EEG predicts DMN functional connectivity

The linear regression model revealed significant link between the band-power

EEG indices and the DMN FC index (R-square = 0.70, p=0.001). Two of the

band-powers showed significant partial correlation to DMN FC index, namely

delta (r = -0.73, p=0.001) and beta (r=0.53, p=0.028).
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Figure 6.1: The general distribution of absolute EEG powers.

6.2.2 EEG and BOLD FC correlation is specific for within DMN

FC

To assess whether the DMN-FC-related EEG profile was network specific, we

repeated the analysis for within DAN FC and functional connectivity between

DAN and DMN, with negative results. The multiple linear regression model

was neither significant for the within DAN FC nor for the between network

FC. Similarly, the partial correlations between the EEG bands and the DAN

FC, DMN-DAN FC were all statistically insignificant. See Figure 6.2 for visual

summary of the partial correlation results. Further, the explicit test rejected the

equality of the set of regression coefficients for DMN FC and DAN FC (p=0.023),

although did not reach significance for the comparison between DMN FC and

the functional connectivity between DMN and DAN.

For relative band powers the results were quite similar. The multiple linear re-

gression model showed significant link between relative EEG band-powers and

DMN FC index (R-square = 0.58, p=0.003). The Pearson linear correlation

analysis revealed significant correlation of three of the relative band-power EEG

measures to overall DMN FC index. These were beta (r = 0.69, p < 0.001),

alpha (r = 0.55, p = 0.010) and delta (r = -0.61, p = 0.004). These correlations

remain clearly significant even after conservative Bonferroni correction for mul-

tiple comparisons. On the other hand, the relative theta power link to DMN FC

proved insignificant (r = -0.05, p = 0.83). As noted in subsection 6.1.3, meaning-

ful partial correlation could not be computed due to inherent multicollinearity of

the relative EEG band-powers. None of the correlations of DMN FC and DAN

FC with relative EEG band powers was found to be significant. See Figure 6.3

for summary of the correlation analysis for the relative band-powers.
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Figure 6.2: The relation between absolute EEG band powers and the FC in
DMN, DAN and between them. Bars show partial correlation of each EEG
band power to DMN FC index (black), DMN-DAN FC index (dark grey), DAN
FC index (light grey). An asterisk (*) denotes statistically significant partial
correlation (p < 0.05).
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Figure 6.3: The relation between relative EEG band powers and the FC in DMN,
DAN and between them. Bars show Pearson’s correlation of each relative EEG
band power to DMN FC index (black), DMN-DAN FC index (dark grey), DAN
FC index (light grey). Dotted line shows threshold for correlation significance
(p < 0.05). An asterisk (*) denotes statistically significant correlations (p <
0.05). The difference between EEG/FC relation for DMN FC and both DAN
FC and DMN-DAN FC was also found significant (p < 0.05) for delta, alpha
and beta band.

6.2.3 DMN FC is correlated with EEG sedation index (spectral

edge frequency)

As the overall pattern of correlation between DMN FC and EEG suggested

that general slowing of EEG as seen in states of reduced alertness correlates

with decreased DMN FC, we investigated a direct link between DMN FC and

an established EEG-derived sedation index SEF 95. We found a strong direct

correlation between SEF 95 and DMN FC (r=0.70, p < 0.001), whereas no

correlations were seen between SEF 95 and FC within DAN or between DMN

and DAN (Figure 6.4 left). Correlation between DMN FC and EEG differed

significantly from that between DAN FC and EEG (p = 0.002) and DAN-DMN

FC and EEG (p = 0.02).

6.2.4 Further exploration of EEG/FC network specificity

Summarizing the EEG into a single SEF 95 coefficient decreased the degrees

of freedom for testing the network specificity of the detected DMN FC / EEG

relation, increasing the statistical power sufficiently to show explicitly significant

difference also for DAN-DMN FC. We also tested in exploratory fashion the

SEF 95 - FC relation for the sensori-motor networks (auditory, motor and visual
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Figure 6.4: Correlation between fMRI FC and EEG spectral SEF 95 index. Left:
correlation of SEF 95 to average FC within or across networks. An asterisk (*)
denotes statistically significant correlation (p < 0.05). Right: full matrix of
correlations of SEF 95 to between-ROI FC. The within - DMN connectivity
shows distinct pattern of correlation to SEF 95 index. ROIs: 1: Auditory: left,
2: Auditory: right, 3: DMN: IPL left, 4: DMN: IPL right, 5: DMN: MPFC, 6:
DMN: PCC, 7: DAN: DLPFC left, 8: DAN: DLPFC right, 9: DAN: PL left, 10:
DAN: PL right, 11: Motor: left, 12: Motor: right, 13: Visual: left, 14: Visual:
right.

network). We computed correlation of SEF 95 to FC within each of them as

well as to FC averaged over all pairs between given sensori-motor network and

DMN. All these correlations were found to be quite weak, ranging from -0.21 to

0.21. None of these correlations were significant, while all differed significantly

from the strong positive DMN FC/SEF relation (t= 2.60 to 3.33, p = 0.004 to

0.021).

A detailed picture of the relation between SEF 95 and pair-wise FC is shown in

Figure 6.4 right. Note that since the FC was not averaged across pairs the results

are generally more affected by noise than for the more robust network FC indices.

Nevertheless, we can observe consistent positive relation between the summaris-

ing SEF 95 EEG index and DMN FC, compared to weaker and scattered effects

within DAN, between DMN and DAN or elsewhere in the connectivity matrix.

6.3 Discussion

This study highlights a novel perspective of EEG/fMRI correlation by demon-

strating interrelations between band-limited EEG power and inter-regional BOLD

synchronisation. Using a between subject design, we found a strong link between

82



Chapter 6: EEG underpinnings of fMRI functional connectivity

DMN FC and EEG band-powers with unique negative contribution of delta

power and positive contribution of beta power. Furthermore, this association

was found to be network-specific, as it was absent when studying FC between

nodes of another cognitive network or FC between DMN and other sensori-motor

or cognitive nodes. This underlines the notion of a specific EEG signature of

the within DMN FC in addition to previously reported EEG signature of DMN

activity.

Notably, the EEG band-powers explained 70% of the between subject variance

of DMN FC using a multiple linear regression model. The strength of the asso-

ciation is intriguing in itself in light of the concern of spurious correlations in FC

analysis due to scanner and cardio-respiratory induced noise. Our data provide

evidence that careful data post-processing yields neurophysiologically meaning-

ful data with most of the variance of DMN FC explained by electrophysiological

findings that are robust against physiological factors known to confound FC

fMRI analysis.

Subsequent analysis using relative instead of absolute EEG powers confirmed

that the general EEG pattern associated with higher DMN FC consisted of

increased high frequency and decreased low frequency EEG band power contri-

bution. Univariate exploration in particular showed a close positive association

between DMN FC and relative beta power and similarly strong negative associ-

ations with relative delta power. The ratio of explained variance goes from 48%

if only beta is included slightly up to 58% when including the other frequency

bands in a linear fit, reflecting that the variance explained by beta, alpha and

delta is significantly overlapping. Taken together, the key feature of the de-

tected EEG signature underlying increased within DMN connectivity can be

summarised as a decrease in absolute and relative low-frequency (mainly delta)

and increase in high-frequency (mainly beta) EEG power.

In other words, high delta and low beta EEG power was found to be associated

with reduced individual DMN FC. Low-frequency dominant EEG is a common

feature in states of reduced alertness such as drowsiness, sleep or sedation. This

has been exploited to establish an EEG sedation index based on the spectral

edge frequency such as SEF 95 (95th percentile of the EEG power spectrum)

with higher frequencies reflecting increased alertness, lower frequencies increased

sedation [158, 162]. Thus, the observed significant positive and network specific

correlation between SEF 95 and DMN FC lends strong support that alertness

positively covaries with DMN FC.
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Several studies have been conducted to detect the robustness or sensitivity of

DMN FC with respect to deviation from normal awake state. Notably, decrease

of DMN FC has been reported in sedation [72] and, particularly a decreased

mPFC - PCC FC, was observed in deep sleep [86, 155], although a recent light

sleep study [106] did not detect significant DMN FC changes. Remarkably,

a recent study [18] has shown that DMN FC is decreased in severely brain-

damaged patients, in proportion to their degree of consciousness impairment,

ranging from coma, to vegetative state, minimally conscious state and locked-in

syndrome. DMN FC was therefore reported to be decreasing with decreasing

level of alertness. Taken together our results are well in line with the principle

of sedation underlying reduced FC within DMN. Our results extend previous

findings by demonstrating that this general association can also be observed in

healthy volunteers during relaxed wakefulness.

While both EEG slowing and decrease in DMN FC have been independently

reported as markers of significantly reduced vigilance (such as due to sleep or

sedation), in this study we have shown that these two observed phenomena are

directly and strongly mutually related. Notably, a similar EEG/FC relation

was recently reported across sleep-wake cycle within a single-subject 3 hour

acquisition [86] (Fig. 3 therein).

It is important to bear in mind that comparison with previous combined BOLD

and EEG studies is limited by the two distinctive methodological aspects of our

approach. Firstly, we focused on EEG correlates of BOLD FC rather than ab-

solute signal. Secondly, we explore between subject rather than intra-individual

dynamic variance. To our knowledge, most of resting state combined EEG/fMRI

studies reported within-subject correlation of EEG powers to fMRI signal time

series, obtained either from voxels [39, 68, 107, 109, 128] or some weighted voxel

combination such as an independent components [21, 118]. While some of these

may use functional connectivity tools to obtain the representative fMRI signal

(such as [118]), the single subject analysis presented in Figure 3 of [86] is actually

a relatively isolated attempt to directly relate EEG measures to fMRI DMN FC.

Although the relation between network activity, fluctuation magnitude and con-

nectivity is not yet fully understood [11, 50], there is growing evidence for con-

gruence of changes in LFF amplitude and coherence elicited by alteration of the

behavioural state [11, 99, 123]. For instance, [11] reported decrease in both am-

plitude and coherence of LFF in the visual cortex in eyes open fixation versus eyes

closed resting state condition. Theoretically, the decrease in correlation could
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be explained by a decreased signal-to-noise ratio due to lower signal amplitude

given constant noise - even under constant inter-regional coupling.

To allow some approximate comparison of the observed FC EEG signature to

EEG signatures of BOLD amplitude reported elsewhere, we will assume in the

following that the changes in network activity, fluctuation magnitude and con-

nectivity related to some EEG changes are in general congruent. Apart from

the reports discussed above, some support for this stems from a theoretical

speculation that while higher FC could be caused by higher BOLD temporal

fluctuation under constant noise, this increased BOLD fluctuation correlated to

particular EEG band power variability could in general relate to higher power

in the particular EEG band. Under this model, the FC EEG signature would be

inherited from the underlying BOLD EEG signature. Interestingly, conditions

that suppress DMN activity were associated with reduced DMN connectivity if

the experimental condition lasted long enough to allow FC estimation - see e.g.

[54].

While it remains unclear to what extent BOLD connectivity is associated with

BOLD amplitude it is of interest to compare our results to reported spatio-

temporal correlations between EEG and BOLD amplitudes reports. Under the

above assumption, the observed positive relation between high frequency EEG

and DMN FC could be expected to translate into positive fMRI BOLD signal

increases in DMN during transient increases of beta power (provided the effect of

variation between subjects are similar to the effects of variation within subjects.)

Indeed, this would be in line with the finding that DMN activity was positively

associated mainly with beta (and alpha) band [118]. Similarly, looking for dy-

namic correlates of 17-23 Hz activity in EEG Laufs et al. [108] reported fMRI

activity in set of areas spatially resembling DMN. For low EEG frequencies, neg-

ative associations were generally noted with the DMN activity. Scheeringa et al.

[156] reported a negative relationship between medial frontal BOLD signals and

theta power rather than delta power. This partial discrepancy may constitute

a true difference between the relationship of EEG with DMN activity and the

relationship of EEG with connectivity within the DMN or might be due to the

fact that the authors examined the relationship between BOLD signal and the

theta power in only a single fronto-central component of EEG activity, derived

by independent component analysis. Also note that while we reported analysis

using partial correlations (or relative spectral powers), absolute theta power did

indeed have negative correlation (r=-0.48) to DMN FC in our sample – likely
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due to its correlation with absolute delta power.

While covariance of sedation/alertness is the most likely interpretation of the

demonstrated EEG signature of DMN FC, we cannot exclude further contribu-

tions from inter-subject differences in mental state or predisposing personality.

In this context it is worth mentioning that a positive correlation was noted be-

tween resting state connectivity within the salience network and inter-individual

anxiety ratings [159]. Of note, an EEG profile similar to the one observed in

our study has recently been found to correlate with both trait and state anxiety

[100]. In addition, the link between EEG and state-anxiety has therein been

shown to be mediated by the trait anxiety. To study such potential influences

combined behavioural, electrophysiology and functional connectivity MRI stud-

ies will be required that will be further challenged by potential moderation or

mediation effects between alertness on anxiety.

Functional disconnection is thought to be a key pathomechanism in a number

of diseases and can be reflected in altered oscillatory brain activity. A detailed

discussion of similarities between disease signatures of oscillatory brain activity

as indexed by resting state EEG and resting state BOLD FC is beyond the scope

of this article. Nevertheless, one disease that is characterised by a resting EEG

signature similar to the one we found to predict low DMN FC is Alzheimer’s

disease [103] that is also associated with reduced DMN FC [73]. The precise

mechanism of altered EEG and DMN FC in Alzheimer’s disease remains unclear,

but may be linked to cholinergic deficit leading to impaired neocortical arousal

as a result from degeneration of the nucleus basalis (NB). In fact, lesioning of

NB in rats increases delta EEG activity [25], and delta rhythms in Alheimer’s

disease patients were found correlated to impaired memory [7] and ‘normalised’

during cholinergic treatment [8].

6.4 Summary

Integrating the findings from different neuroimaging methods is one of the key

tasks of current neuroscience. In particular, fMRI observations may due to their

indirect nature benefit from comparison to electrophysiological measurements

which may be argued to be in their nature closer to the underlying neuronal

activity. Such comparisons of instantaneous BOLD fMRI activity with instan-

taneous band-limited power in crucial EEG frequency bands have been already

reported in the literature.
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In this chapter, we presented an approach opening a new perspective to under-

standing the EEG-fMRI relationship. In particular, we link the EEG signature

represented by the powers in the main frequency bands to the strength of fMRI

functional connectivity. Using this approach we demonstrate a significant and

network specific relation between decreased functional connectivity within the

DMN and a specific EEG pattern characterised generally by slowing of EEG.

This provided a direct link between DMN FC and EEG signature that has been

previously associated with altered states of alertness and anxiety trait and state

levels providing a bridge between separate branches of research into neural corre-

lates of brain state. This gives further evidence that properties of DMN FC may

serve as index of mental state in relation to physiological and pathological varia-

tions in alertness/sedation. To the best of our knowledge this study provides the

first direct evidence that DMN FC in awake state has a neurophysiological cor-

relate thus validating its biological relevance, and providing a neurophysiological

framework to interpret altered DMN FC.
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Further data-driven

investigations

In this chapter some questions are discussed that arise from the work described

in Chapters 4 and 6 . More specifically, we ask to what extent does the mediatory

effect of motion observed in LFF play role in also in the functional connectivity

results.

7.1 Does motion mediate the link between EEG and

DMN FC?

In Chapter 4 we discussed the mediation effect that head movement could have

on the apparent increase of LFF power during sedation in comparison with base-

line resting state condition. This effect was indeed shown significant for all five of

the tested networks under standard preprocessing, and remained significant in at

least two of these networks when additional global mean correction was applied.

In addition, we have shown that motion amount correlates with the observed

LFF power across subjects even within the normal resting state condition. On

the other hand, in Chapter 6 we have discussed the inter-subject correlations

between the EEG signature and fMRI functional connectivity within (or across)

networks. Following the same logic as in our investigation of the motion effect on

LFF in Chapter 4, one can naturally ask whether the correlation between func-

tional connectivity and electrophysiological signatures as observed in Chapter 6

is genuine, or also mediated by some EEG-correlated head movement change.

We set out to test this scenario in this section. As in Chapter 4, we follow the

method of causal steps by Baron and Kenny [9].
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7.1.1 Methods

Let us first recapitulate the general data situation. We are using the data de-

scribed in detail in the Methods sections within the previous chapters. In partic-

ular, the 20 baseline sessions of resting state fMRI, the motion estimates obtained

through the motion correction algorithm and the simultaneously acquired EEG

are used in this analysis. Therefore, for each subject we have the head move-

ment estimate M representing the mean relative displacement during the scan;

four EEG measures - total powers in the delta, theta, alpha and beta band -

represented by an explanatory (multi)variable X; and the FC measures repre-

sented by the dependent variable Y - for initial analysis we will use the 3 average

FC indices for connectivities within-DMN, within-DAN and between DMN and

DAN. See Figure 4.2 for a graphical representation of the mediation model.

As discussed in Chapter 4, establishing mediation of the X → Y relation by the

variable M requires assessment of four basic points:

• the existence of a link from X to M

• the existence of a link from M to Y

• the existence of a link from X to Y in a model that does not include M

and finally

• documenting a significant decrease or indeed a complete disappearance of

the link from X to Y after inclusion of M in the model.

To check the links between motion and EEG and FC respectively, we use simple

linear correlations. As there are 4 EEG bands of interest, we also fit a multiple

regression model with the EEG bandpowers as independent variables and motion

as the dependent variable.

To assess the link between EEG and FC when motion is included, we use a

multiple linear regression model, which allows a direct comparison to the results

of Chapter 6, obtained without motion in the model. For all statistical tests, we

use the uncorrected threshold p = 0.05 for statistical significance, unless stated

otherwise. Due to the multivariate nature of the investigation, in this Chapter

we, for simplicity, use a classical parametric approach for testing linear links

rather that bootstrapping used in chapter 4. However, reviewing the evidence

we can argue that the potential slight differences in the p-value estimates are

not critical for the overall results.
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delta theta alpha beta full model
R 0.34 0.31 -0.24 -0.04 0.49
R-squared (unadjusted) 0.11 0.10 0.06 0.00 0.24
p-value 0.29 0.15 0.30 0.99 0.36

Table 7.1: Link between EEG and motion. The observed correlations were not
significant.

DMN DMN-DAN DAN
R -0.28 -0.01 0.07
R-squared (unadjusted) 0.08 0.00 0.01
p-value 0.23 0.96 0.77

Table 7.2: Link between motion and functional connectivity in cognitive net-
works. The observed correlation was not significant.

7.1.2 Results

Link between motion and EEG None of the correlations between motion

estimate and the 4 EEG absolute powers was significant, neither was the multiple

linear regression fit. See the Table 7.1 for details of the correlations.

Link between motion and fMRI functional connectivity None of the

correlations between motion estimate and the 3 summary FC indices was sig-

nificant; see the Table 7.2 for details of the correlations. Figure 7.1 shows a

more detailed picture of the relation between motion and functional connec-

tivity across the baseline scans, suggesting a trend of overall positive relation

between motion and functional connectivity within and between the lower level

networks, but not so much for the networks of our primary interest in Chapter 6.

Link between EEG and fMRI functional connectivity corrected for

motion The relation between EEG absolute powers and the FC indices did

not significantly change with the inclusion of the motion estimate as an explana-

tory variable in the regression model for FC, as can be clearly seen from visual

comparison of the partial correlation coefficients in Figure 7.2. The minuteness

of the changes is confirmed by Figure 7.3, where the partial correlations are

provided between each of the ROI-pair and EEG-band both without and with

motion included in the regression model.
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Figure 7.1: Correlation of motion and functional connectivity. Left: linear cor-
relation of motion to FC between given pair of ROIs. Right: Partial correlation
of motion to FC, correcting for 4 EEG absolute powers that were included in
the multiple regression model. ROIs: 1: Auditory: left, 2: Auditory: right, 3:
DMN: IPL left, 4: DMN: IPL right, 5: DMN: MPFC, 6: DMN: PCC, 7: DAN:
DLPFC left, 8: DAN: DLPFC right, 9: DAN: PL left, 10: DAN: PL right, 11:
Motor: left, 12: Motor: right, 13: Visual: left, 14: Visual: right
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Figure 7.2: The relation between the absolute EEG band powers and the FC
within DMN, DAN and between them. Bars show partial correlation of each
EEG band power to DMN FC index (black), DMN-DAN FC index (dark grey),
DAN FC index (light grey). Left: motion not included in the inter-subject
regression model. Right: motion included in the inter-subject regression model.
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Figure 7.3: The relation between the absolute EEG band powers and FC. The
colour-coding shows partial correlation of each absolute EEG band power and
FC for given pair of ROIs. Left: motion not included in the model. Right:
motion included in the inter-subject regression model. Numbering of the ROIs:
1: Auditory: left, 2: Auditory: right, 3: DMN: IPL left, 4: DMN: IPL right, 5:
DMN: MPFC, 6: DMN: PCC, 7: DAN: DLPFC left, 8: DAN: DLPFC right, 9:
DAN: PL left, 10: DAN: PL right, 11: Motor: left, 12: Motor: right, 13: Visual:
left, 14: Visual: right
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7.1.3 Discussion

Overall, we did not find a significant mediating effect of head motion on the

observed EEG-FC relation. This can be mainly attributed to the fact that

the head-movement was barely correlated to EEG powers. Also, within the

networks of most interest for our analysis, i.e. the default mode network and

the dorsal attention network, the observed functional connectivity was in general

independent of head-movement.

Nevertheless, we have observed quite wide-spread correlation of head-movement

to functional connectivity with, within and between the lower-level networks,

namely auditory, motor and visual network. Assuming that this represents an

artifactual correlation due to uncorrected artifacts, this would suggest that stud-

ies comparing functional connectivity across conditions that make subjects prone

to different levels of head-motion may detect functional connectivity changes spu-

riously biased towards increases in functional connectivity. We investigate this

hypothesis in more detail in the following section.

7.2 Could motion mediate sedation-induced changes

in functional connectivity?

As shown in the previous section, in the baseline resting state there was a cor-

relation between motion and functional connectivity, particularly affecting con-

nections between networks/areas that are typically weakly connected. Assuming

that is a spurious FC due to imaging artifacts, we hypothesise that this could

lead to spurious increases in FC in sedation condition, particularly of those con-

nections affected even during normal resting state. As this is already very data-

driven investigation with many degrees of freedom, we refrain here from formal

statistical testing, although we follow the general steps for testing mediation.

These consist in establishing four points:

• existence of the total effect of sedation on FC

• existence of the effect of sedation on motion

• existence of the effect of motion on FC

• non-existence of the direct effect of sedation on FC when motion is included

in the model (or significant weakening of the effect with respect to the total

effect)
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To establish the first point we show that there is indeed a sedation-induced

increase in FC. This is illustrated in the upper subfigure of Figure 7.4.

Secondly, the effect of sedation on increased motion has been already shown in

the Chapter 4. It therefore remains to inspect the effect of motion and the direct

effect of sedation.

These are documented in the middle and bottom plot of Figure 7.4. The middle

subfigure shows ab, i.e. the effect of motion b already multiplied by the scalar

value a of effect of sedation on motion. Therefore, the middle subfigure shows the

change in FC in sedation that was mediated by motion. The bottom subfigure

then shows the direct effect of sedation on FC.

7.2.1 Discussion

The comparison of the middle and bottom subfigure of Figure 7.4 documents

that most of the sedation-induced increase in FC, apparent mainly in between-

networks connections, can be attributed to increased motion. In other words,

when motion estimate is included in the inter-subject model as an explanatory

variable for the FC, the sedation-related FC change is comparably weaker and

less general. For motion-corrected FC, only one of the ROI-pairs showed motion-

corrected FC change significant (p = 0.014 < 0.05, no multiple comparison

correction), which is clearly not very reliable with as many as (14× 13/2) = 91

unique ROI-pairs in the matrix.

The fact that sedation-induced FC increases happen generally between networks,

where the FC is very low during normal resting state, gives a strong argument

for believing that these are artifactual. This is generally supported by the fact

that these links correspond to the links that have FC correlated to motion even

during baseline, see Figure 7.1. Nevertheless, as already discussed in Chapter 4,

interpretation of results of mediation analysis needs to carefully take into account

possible deficiencies of the model. In particular, we cannot fully disprove the

alternative interpretation, that this specific pattern of increased connectivity in

the between-network links is a true neuronal effect that for some reason well

correlates with the amount of head motion. For instance, one could hypothesize

that there exists some ‘global synchrony state’ in which the subjects also move

more. Moreover, this ‘global brain synchrony’ state would be supported by

sedation, but not exclusively as we have observed that the amount of motion

remains a better marker of being in this state than the fact that the subject is
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Figure 7.4: The sedation effect on FC. Top: total effect of sedation. Middle:
indirect effect of sedation on FC, mediated by motion. Bottom: direct effect of
sedation on FC, when controlling for motion increase. Numbering of the ROIs:
1: Auditory: left, 2: Auditory: right, 3: DMN: IPL left, 4: DMN: IPL right, 5:
DMN: MPFC, 6: DMN: PCC, 7: DAN: DLPFC left, 8: DAN: DLPFC right, 9:
DAN: PL left, 10: DAN: PL right, 11: Motor: left, 12: Motor: right, 13: Visual:
left, 14: Visual: right
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sedated, or than the EEG signature of the brain.

Another question is why we did not observe sedation-induced changes in DMN

FC. It seems intuitive that sedation should induce changes in EEG, and these

should be reflected in the DMN FC (according to our findings from baseline).

While we did not investigate the sedation effects on EEG in detail, we can

summarise as follows.

There indeed was a sedation induced effect on EEG, generally characterised by

slowing of the EEG - there was a strong increase in delta and theta power and

decrease of the SEF 95 index. However, we propose at least two reasons why

this did not lead to a detectable decrease of DMN FC. Firstly, the EEG/FC

link might be altered by the sedation. This is to some extent the case as can be

seen by comparing Figure 7.2 and 7.5. While the EEG/FC relation is weaker

and less specific than as described for the baseline resting state, we have still

observed a significant (r = 0.54, p < 0.05, uncorrected) correlation of decreasing

SEF 95 index characterising overall EEG slowing with decreased DMN connec-

tivity (see Figure 6.4 in Chapter 6 for results in baseline). Similarly to the

situation in baseline, this SEF 95 link was not significant for the DAN FC or

the FC between DAM and DAN. Second explanation for not observing an EEG-

mediated, sedation-induced DMN FC increase is that there might be another

process with different or negligible EEG signature taking place, compensating

for the extrapolated EEG-related FC decrease.

We have already mentioned in Section 3.4 that the reported changes of FC in

reduced states of vigilance show mixed results with both increases and decreases

being reported. Moreover, most of the studies focus on FC within networks.

While we cannot relate our observations directly to a particular published study,

they generally suggest that FC changes might be masked or escalated by motion

changes, but this effect should not be prominent in within-network FC.

7.3 Summary

Functional connectivity is a key characteristic of spatiotemporal patterns of spon-

taneous brain activity. Therefore, the study of its relation to other variables de-

scribing the brain state such as electrophysiological or behavioural indices has an

important place in neuroscience. The detected confounding role of non-neuronal

processes, in particular head-motion, on the low-frequency fluctuation power es-

timates (see Chapter 4) motivated us to explore the confounding role of motion
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Figure 7.5: The relation between absolute EEG band powers and the FC in
DMN, DAN and between them - sedated subjects. Bars show partial correlation
of each EEG band power to DMN FC index (black), DMN-DAN FC index (dark
grey), DAN FC index (light grey). Left: motion not included in the inter-subject
regression model. Right: motion included in the inter-subject regression model.
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in functional connectivity studies.

Firstly, we used the mediation model introduced in Chapter 4 to test the po-

tential mediating effect of head-motion on the link between EEG and functional

connectivity within the default mode network. This investigation did not detect

any significant mediation, supporting the biological relevance of the observed

EEG-FC pattern described in Chapter 6. Subsequently we asked if motion could

mediate sedation-induced changes in functional connectivity. Indeed, we have

observed sedation-related changes in functional connectivity, mainly between the

studied networks, and these changes were attributable to the increase in involun-

tary head-motion in the sedation condition. Overall this chapter added further

evidence and provided deeper discussion of the nature of the relation of func-

tional connectivity changes to electrophysiological and behavioural markers of

brain state.
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Chapter 8

Models in computational

neuroscience

On the quest for understanding brain function, researchers almost inevitably

formulate models of neural behaviour. These models differ in many aspects,

such as the level of formalisation, level of detail or biological realism. In this

chapter we introduce some important representatives of models of single neurons

and neuron populations, which are formalised through a full mathematical de-

scription. Models like those outlined are widely used in modern computational

neuroscience. In the last section we describe recent application of such models in

the study of spontaneous brain activity features observed in resting state fMRI

studies, to the analysis of which the previous part of this Thesis was dedicated.

Following [92], before we move towards biologically more realistic models, some-

times called biological neuron models, we make an important theoretical as well

as historical remark. In particular, we shall mention one example of a crude

abstraction from the function of a real neuron, which is nevertheless the ba-

sic model used in so-called artificial neural networks. This simplified model is

widely known as the McCulloch-Pitts model, as it was originally introduced in

the classical paper “A Logical Calculus of Ideas Immanent in Nervous Activity”

[124] by Warren McCulloch and Walter Pitts.

The model describes a network of neurons by a discrete-time dynamical system

for the activity z(i, t) of neuron i at time t ∈ Z by

z(i, t+ 1) = S

(∑
i

wijz(j, t)− εi

)
,

where wij is a weight of connection from neuron j to neuron i, S is a step function
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and εi is a ‘threshold’ of neuron i. In other words, this equation only represents

the fact that neural inputs are summed with given weights and converted to

binary output based on whether the sum exceeds the threshold.

8.1 Hodgkin-Huxley model

Contrary to the model outlined above, the Hodgkin-Huxley model bears much

more resemblance to biology. In fact, it is based on a biophysical description

of the ion currents through the neuron cell membrane. Thus, it offers insight

into the generation of the action potential, a stereotypical depolarisation of the

membrane that is triggered by sufficient stimulation of the neuron by incoming

currents. Note that the Hodgkin-Huxley model is still a very simplified neural

model, and focuses only on one, although crucial, aspect of the real neural cell —

the generation of action potential due to the action of voltage-gated ion channels.

On the other side, it does not incorporate any detailed notion of receiving input

from other neurons, its propagation through the dendritic tree modulated by

spatial properties, or the propagation of the action potential along the axon

and the mechanism of synaptic action through release of neurotransmitters to

the synaptic cleft. We refer the reader to more specific textbooks on neural

modelling such as [101] for more information on models of these processes.

In 1952, Hodgkin and Huxley performed a set of recordings from a squid gi-

ant axon, concluding that the action potential is mainly driven by sodium and

potassium currents. Based on these recordings, they proposed what may ap-

pear to be a conceptually straightforward biophysical model built from the first

principles. In particular, the crucial ordinary differential equation expresses the

conservation of electric charge via the current balance equation

C
dV

dt
= −F + Is + I, (8.1)

where C stands for the membrane capacitance, V for the membrane potential

(voltage difference across the membrane), F the membrane current, Is the sum

of the external synaptic currents and I is the current injected directly in ex-

perimental conditions. The membrane current F is further a function of the

membrane potential V as well as gating variables m,n and h:
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F (V,m, n, h) = IK + INa + IL = (8.2)

= gKn
4(V − VK) + gNam

3h(V − VNa) + gL(V − VL).

The membrane current is therefore a sum of the currents due to potassium

and sodium ions, and all the other currents (including chloride ion) that are

lumped into so-called leakage current IL. The currents depend on the difference

between the actual membrane potential and the respective reversal potentials

(VK , VNa, VL) for potassium, sodium and leakage, and further on their respective

conductances. In the case of sodium and potassium currents, the conductance is

further dependent on the state of gating variables m,n, h. These represent the

fraction of channels in an open state. Their evolution in time, dependent on the

membrane voltage, is described by:

dm
dt

= αm(V )(1−m)− βm(V )m, (8.3)

dn
dt

= αn(V )(1− n)− βn(V )n, (8.4)

dh
dt

= αh(V )(1− h)− βh(V )h. (8.5)

The model is finalised by the parameter values C = 1µFcm−2, gL = 0.3mScm−2,

gK = 36mScm−2, gNa = 120mScm−2, VL = −54.402mV , VK = −77mV ,

VNa = 50mV and by the following equations provided by fitting the model

to experimental data:

αm(V ) =
0.1(V + 40)

1− e−0.1(V+40)
βm(V ) = 4.0e−0.0556(V+65) (8.6)

αn(V ) =
0.1(V + 55)

1− e−0.1(V+55)
βn(V ) = 0.125e−0.0125(V+65) (8.7)

αh(V ) = 0.07e−0.05(V+65) βh(V ) =
1

1 + e−0.1(V+35)
. (8.8)

To investigate the behaviour of the model, we carry out simulations and bifur-

cation analysis using the XPPAUT software [46]. The same software was also

used for bifurcation analysis in the other sections of this chapter.

Under no external current input (I = 0), the Hodgkin-Huxley neuron relaxes

to a resting potential V ∼ 75mV - in other words, it is attracted to a stable

fixed point of the dynamics of the model. As the current input increases, the
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value of the voltage of the fixed point increases until at I ∼ 9.78 this stable fixed

point undergoes a Hopf bifurcation, coalescing with an unstable limit cycle to

give rise to an unstable fixed point (see bifurcation diagram at Figure 8.2). The

bifurcation structure between I = 6 and I = 10 is actually more complicated,

including a small window of chaos [75]. Nevertheless, under constant current

input I & 9.78, an unstable fixed point and a stable limit cycle are the only

invariant sets. Therefore the Hodgkin-Huxley model neuron tends to produce a

periodic chain of action potentials. Such a ‘spike train’ for I = 10 is shown in

Figure 8.1. Note that the Hodgkin-Huxley model starts firing with a non-zero

frequency. This type of behaviour is sometimes called Type II neural excitability.

A plot of the dependence of the firing frequency f on the current input (or drive)

I is shown in Figure 8.3.
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Figure 8.1: The spike train produced by the Hodgkin-Huxley model under con-
stant external current input I = 10.

8.2 Morris-Lecar model

For practical reasons, a simpler neuron model based on the work of Morris and

Lecar [130] is often considered. This model consists of two differential equations

instead of four as in the case of Hodgkin-Huxley model, and its dynamics can

therefore be more easily visualised using a planar state-space illustration. The

equations of the Morris-Lecar model are:

dV
dt

= −gL(V − VL)− gCam∞(V )(V − VCa)− gKw(V − VK) + I, (8.9)

dw
dt

= λ(V )(w∞(V )− w). (8.10)
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Figure 8.2: Bifurcation diagram of the Hodgkin-Huxley model as a function of
the external current input I. Bold lines correspond to stable fixed point, light line
to an unstable fixed point. Full (empty) circles correspond to stable (unstable)
periodic orbits. Two Hopf bifurcations are denoted as ‘HB’.
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Figure 8.3: Firing frequency of the Hodgkin-Huxley model as a function of the
external current input I. Only the frequency for the stable limit cycle is shown
(full circles). Note the onset of the oscillations with a non-zero frequency via the
Hopf bifurcation. This is characteristic of the so-called Type II neural excitabil-
ity.

104



Chapter 8: Models in computational neuroscience

The first equation describes the voltage dynamics based on current balance simi-

larly as in the model of Hodgkin and Huxley. The second equation describes the

dynamics of the recovery variable w which represents the fraction of open potas-

sium ion channels. Note that the faster calcium dynamics are approximated

here to be instantaneous. The voltage dependent gating variables m∞, w∞ and

voltage dependent rate λ are defined by:

m∞(V ) =
1
2

[
1 + tanh

(
V − V1

V2

)]
, (8.11)

w∞(V ) =
1
2

[
1 + tanh

(
V − V3

V4

)]
, (8.12)

λ(V ) = f cosh
(
V − V3

2V4

)
. (8.13)

While originally developed to describe the barnacle giant muscle fiber, the Morris-

Lecar model has become one of the favourite conductance-based models in com-

putational neuroscience. Dependent on its parameter settings, it can replicate a

wide range of behaviour of various neural cells. When set to exhibit the onset of

repetitive firing with arbitrarily low frequency, the model becomes particularly

useful for modelling pyramidal neurons of the neocortex. This neural excitabil-

ity behaviour (sometimes called Type I ) can be achieved for instance with the

following set of parameters: V1 = −0.01, V2 = 0.15, V3 = 0.1, V4 = 0.145,

gCa = 1, gK = 2.0, gL = 0.5, VK = −0.7, VL = −0.5, VCa = 1 and f = 1.15 as

in [77]. This is also the parameter set we use in our analysis and simulation in

Chapter 10.

As already mentioned, due to the reduced two-dimensional description, the be-

haviour of the Morris-Lecar model can be well visualised in the state space of the

variables V and w. Each point in this two-dimensional plane uniquely charac-

terises the state of the dynamical system. In the following, we will describe the

geometry of the model behaviour. To determine the fixed points of the model,

we first find the nullclines of the system ((8.9)), i.e. the curves in the state-space

that correspond to either V ′ = 0 or w′ = 0. Depending on the value of the in-

jected current I, the nullclines have one or three intersections, giving rise to one

or three fixed points.

The phase-plane portrait of the Morris-Lecar model for the external drive set to

I = 0.076 is depicted in Figure 8.4. For this value of I, the system has three

fixed points – a left-most low-voltage stable one, a middle unstable saddle-node

and a stable high-voltage fixed point. There is a small-amplitude unstable limit
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cycle and a large-amplitude stable limit cycle around the third fixed point –

the latter corresponds to a continuous spike train that can be generated by the

neuron under constant current input I.

The behaviour of the neuron can of course change with the level of the current

input. This dependence is captured in the bifurcation diagram in Figure 8.5.

Here, the most important features of the phase-plane portrait are reproduced as

afunction of I. The dependence of the firing frequency f on the external input

current I is depicted in Figure 8.6. It has the approximate form f ∼ −1
log(I−Ic) ,

where Ic is the critical input current value. We observe an onset of oscillations

with zero frequency, characteristic of the Type I neural excitability.

 0

 0.2

 0.4
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Figure 8.4: State-space portrait of the Morris-Lecar model with the external
drive set to I = 0.076. The nullclines are shown in green and red. Their
intersections define the fixed points. In the order from lower voltage, these are
stable, unstable and stable. There is a small-amplitude unstable limit cycle (light
blue) and a large-amplitude stable limit cycle (dark blue) around the third fixed
point. The separatrix (purple) divides the state-space into the basin of attraction
of the leftmost stable fixed point and of the stable limit cycle (and the contained
rightmost stable fixed point).

We shall come back to Morris-Lecar model in chapter 10, where we study a

synaptically coupled network of Morris-Lecar neurons endowed with regulatory

action of endocannabinoids.

8.3 Wilson-Cowan model

An example of a mesoscopic level of description is the Wilson-Cowan model. This

is a representative of a class of so-called population models, where the activity
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Figure 8.5: Bifurcation diagram of the Morris-Lecar model as a function of the
external drive I. The full lines correspond to stable fixed points, the thin lines
to unstable fixed points, full (empty) circles denote the maximum and minimum
of a stable (unstable) limit cycle. HB denotes a Hopf bifurcation, HomB a
homoclinic bifurcation.
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Figure 8.6: Firing frequency of the Morris-Lecar model as a function of the
external current input I. Only the frequency for the stable limit cycle is shown
(full circles). Note the onset of the oscillations with a zero frequency via the
homoclinic bifurcation (HomB). This is characteristic of the so-called Type I
neural excitability.
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of whole populations of neurons is modelled in a simplified form. Importantly,

among other applications, this type of models (embedded into anatomically con-

nected networks) has been used previously for modelling the dynamics of large-

scale spontaneous brain activity, see e.g. [42]. More detailed investigation of

such a population-network model is provided in chapter 9.

The equations of the ‘coarse-grained version’ of the model are:

τe
∂E

∂t
= −E + (ke − reE)Se(c1E − c2I + P ), (8.14)

τi
∂I

∂t
= −I + (ki − riI)Si(c3E − c4I +Q). (8.15)

These equations describe the evolution of variables E and I which represent

the proportion of excitatory (inhibitory) cells firing per unit time at the in-

stant t in a spatially localised neural population. The functions Se,Si are

called the subpopulation response functions - they give the expected propor-

tion of neurons receiving at least threshold excitation for given overall input.

The general form of these functions is a sigmoidal function - a real-valued

monotonous differentiable function f(x) with exactly one inflection point and

limx→−∞ f(x) = 0, limx→∞ f(x) = 1. One typical choice of the sigmoid func-

tion is the logistic function f(x) = 1/(1 + e−x). The argument of the response

function Se represents the incoming activity of the excitatory subpopulation,

where the connectivity coefficients c1, c2 represent the average number of exci-

tatory and inhibitory synapses per cell and P (t) denotes the external input to

the excitatory subpopulation. Similarly c3, c4 and Q(t) describe the input to the

inhibitory subpopulation. The constants re, ri model the effect of refractoriness

of the neurons, implementing the fact that some of the neurons might be in a

so-called refractory period. In biological neurons, this is a period of time after

firing during which the cell is not able to generate a new action potential even

when exposed to overthreshold stimulation. Finally, the constants ki, ke are in-

cluded to correct for the fact that the maximal values of the response function

are in general not equal to unity.

In the following we describe the behaviour of the Wilson-Cowan model. For

our analysis we choose a parameter setting of ke = ki = 1, re = ri = 0, c1 =

10, c2 = 10, c3 = 10, c4 = −2 according to setting used in [85]. Importantly,

the behaviour of the model still depends on the level of the variables P,Q.

These represent baseline constant activity, input from other cells or external

experimental stimulation. For example, with the above parameter settings, for
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the values P = Q = 0 the system rests in its only stable fixed point. On the

other hand when we set Q = −8, the system oscillates with a period T ∼ 4 with

a stable limit cycle centred around an unstable fixed point.

To characterise the dependence of the qualitative dynamics of the model on the

values of the external input parameters P,Q, we carry out a bifurcation analysis.

The dependence of the model dynamics on Q is shown in Figure 8.7 for fixed

P = 0. We see the origin of the oscillations in the Hopf bifurcation at Q ∼ −8.7

and its disappearance in another Hopf bifurcation at Q ∼ −3.3. The frequency

of the oscillations as a function of Q is depicted in Figure 8.8. On the other

hand, fixing the background input of the inhibitory populations at e.g. Q = −4,

we can explore the dependence of the model behaviour on the parameter P - see

Figure 8.9. Note that here the stable limit cycle disappears through a saddle-node

on limit cycle bifurcation, also known as saddle-node of invariant cycle (SNIC).

The frequency dependence is shown in Figure 8.10 – the frequency curve has

the approximate form of f ∼
√
|P − Pc|. When the excitatory population drive

P is close to the critical drive Pc, we observe oscillations with arbitrarily low

frequency. This is a characteristic feature of a Type I neural excitability.
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Figure 8.7: Bifurcation diagram of the Wilson-Cowan model as a function of
the parameter Q for fixed P = 0. The thick lines correspond to stable fixed
points, the light line to unstable fixed points, full circles denote the maximum
and minimum of a stable limit cycle.

An overview of the dependence of the structure on the two parameters P,Q is

given by the two-dimensional bifurcation diagram in Figure 8.11. Some features

of the bifurcation diagram can be derived analytically, such as the values of P,Q

corresponding to the Hopf bifurcation as shown below.
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Figure 8.8: Oscillation frequency of the Wilson-Cowan model as a function of
the parameter Q for fixed P = 0. The full circles correspond to the stable limit
cycle.
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Figure 8.9: Bifurcation diagram of the Wilson-Cowan model as a function of
the parameter P for fixed Q = −4. The thick lines correspond to stable fixed
points, the light line to unstable fixed points, full circles denote the maximum
and minimum of a stable limit cycle.
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Figure 8.10: Oscillation frequency of the Wilson-Cowan model as a function of
the parameter P for Q = −4. Note the onset of the oscillations with a zero
frequency via the SNIC bifurcation. This is characteristic of the so-called Type
I neural excitability.

First, for a point (E, I) to be a fixed point, it must hold

0 = −E + S(c1E − c2I + P ), (8.16)

0 = −I + S(c3E − c4I +Q), (8.17)

which gives

P = log(E/(1− E))− c1E + c2I, (8.18)

Q = log(I/(1− I))− c3E + c4I. (8.19)

Therefore the Jacobian matrix at the fixed point is

L =

∣∣∣∣∣−1 + c1E(1− E) −c2E(1− E)

c3I(1− I) −1− c4I(1− I)

∣∣∣∣∣ . (8.20)

We can now derive the position of the Hopf bifurcation using the conditions:

TrL = −2 + c1E(1− E)− c4I(1− I) = 0 and detL > 0. (8.21)

The former equality allows us to eliminate I as

I±(E) =
1±

√
1− 4(−2 + c1E(1− E))/(−c4)

2
, (8.22)

while the latter condition further limits the location of the Hopf bifurcation. Now
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we can plot the Hopf bifurcation fixed point equations (8.18) parametrically in

the P (E), Q(E) plane as shown in Figure 8.11.

The same approach can be used to derive the position of the saddle-node bifur-

cation in the P (E), Q(E) plane. The presence of the bifurcations in Figure 8.11

was further confirmed by numerical simulations and bifurcation continuations

using XPPAUT[46] software.

Most importantly, for the choice of parameters in the central area between the

two Hopf and two SNIC bifurcations, the Wilson-Cowan model oscillates with a

stable limit cycle. On the other hand, when this boundary is crossed the system

goes to a stable fixed point.

Nevertheless, the diagram shows only the main skeleton of the bifurcation struc-

ture of the system. In particular, the triangular areas between the lines denoting

HB, SN and SNIC bifurcation contain a relatively rich structure of bifurcations

( see [85] for more detail).
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Figure 8.11: Two-dimensional bifurcation diagram of the Wilson-Cowan model.
Full lines denote location of saddle-node on limit cycle bifurcations (SNIC),
dashed lines denote simple saddle-node bifurcations (SN), dash-dotted lines de-
note Hopf bifurcations (HB).

8.4 Networks of weakly coupled oscillators

In this section we briefly introduce some concepts that are useful for description

and analysis of networks of neural oscillators, particularly in the case when they

are interlinked by weak interactions. This theory is going to be used later in

chapter 10 for the analysis of a network of weakly coupled Morris-Lecar neurons.
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8.4.1 Introduction

So far we have dealt with models of a single neuron or a population, without

explicitly modelling the synaptic interactions. Now we will consider a system of

n identical neuronal oscillators, each with dynamics described by

Ẋi = F (Xi), Xi ∈ Rm, i = 1, . . . , n, (8.23)

for which the coupled system is given by

Ẋi = F (Xi) + εG(X), i = 1, . . . , n, (8.24)

where G denotes the coupling function. In this section we describe under what

conditions and how we may reduce a general system of neural oscillators to a

phase model of a form

θ̇i = Ωi + εgi(θ1, . . . θn), θi ∈ S1, i = 1, . . . , n (8.25)

defined on the n-torus T = S1 × · · · × S1. This effectively offers a simplified

description of the original network dynamics. Subsequently we introduce basic

techniques for determining stability of phase-locked solutions of such a phase

model.

8.4.2 Phase reduction

The reduction is given by the following theorem from [85]:

Consider a family of weakly connected systems given by (8.24) such that each

equation in the uncoupled system (ε = 0) given by (8.23) has an exponentially

stable limit cycle attractor γi ⊂ Rm having natural frequency Ωi 6= 0. Then,

the dynamical system (8.25) is a local model for (8.24). That is, there is a

neighbourhood W of M = γ1 × · · · × γn ⊂ Rmn and a continuous function

h : W → Tn that maps solutions of (8.24) to those of (8.25).

The proof of this theorem is based on the fact that the product of the exponen-

tially orbitally stable limit cycles M is a normally hyperbolic invariant manifold.

This further guarantees the existence of a continuous function mapping the solu-

tions of the system (8.24) to solutions of a corresponding system defined directly

on the invariant manifold M . For details of this part of the proof we refer the

reader to [85]. In the second part of the proof, a continuous mapping between
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the invariant manifold M and Tn is found, that maps the solutions of the re-

spective systems. This part is outlined below in detail as it demonstrates the

relation between the original and the reduced model.

Since γi is homeomorphic to the unit cycle S1, we can parametrize it using the

natural phase variable θi ∈ S1; θi = Ωit. The natural parametrization is given

by the mapping

Γi : S1 → γi, Γi(θi(t)) = Xi(t) ∈ γi, t ∈ [0, 2π/Ωi] , (8.26)

with an arbitrary but fixed choice of origin Xi(0) of the cycle and Xi(t) being

the periodic solution to Ẋi = Fi(Xi). Then we have:

Ẋi =
dΓi(θi(t))

dt
= Γ′i(θi)θ̇i = Γ′i(θi)Ωi = Fi(Γi(θi(t))) (8.27)

for all t. This further gives,

Γ′i(θi) = Fi(Γi(θi))/Ωi (8.28)

for all θi in S1. When we substitute Xi(t) = Γi(θi(t)) from (8.26) and Ẋi =

Γ′i(θi)θ̇i from (8.27) into (8.24), we obtain:

Γ′i(θi)θ̇i = Fi(Γi(θi)) + εGi(Γ(θ)), (8.29)

where θ = (θ1, . . . , θn). We further modify the left side using (8.28) and subse-

quently multiply both sides of the equation by

Ri(θi) =
ΩiFi(Γi(θi))T

|Fi(Γi(θi))|2
(8.30)

to obtain

θ̇i = Ωi + εRi(θiGi(Γ(θ))). (8.31)

This equation already has the form of (8.25). We shall call the function R(θ)

phase response curve (PRC), as it describes the dependence of the perturbation

response of the phase of the oscillator on the current phase of the oscillator.

Note that R(θ) is defined on the torus S1 and therefore periodic. The initial

value of the PRC depends on the choice of the starting point of the natural

parametrization of the limit cycle of the original oscillator.
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While the PRC summarizes the information about the behaviour of a single

oscillator of the network with respect to its phase perturbation, to determine

the stability of particular network solutions, one needs to take into account the

properties of the connections as well. In the following we consider a case of

simple synaptic coupling. Let the input of the i-th oscillator in the system be:

Gi(t) =
N∑
j=1

Wijsj(t), sj(t) =
∑
m

η(t− Tmj ), (8.32)

where sj(t) represents the synaptic activity of the j-th neuron, Tmj is the m-th

firing time of the j-th neuron and Wij is represents the anatomical connectiv-

ity from the j-th to the i-th oscillator. The synaptic function η(t) defines the

stereotypical temporal profile of synapse activity in response to action potential

generation.

We further consider a case when all the oscillators are identical, so that we

can drop the index i for the phase response curve R(θ) and for the natural

frequency Ω. For convenience, rotating coordinates ψi can be also introduced by

θi = ψi + θiΩ.

As for the firing times it holds that θj(Tmj ) = m,m ∈ Z, j ∈ 1, . . . , N , for the

firing times we have Tmj = (m − ψj)∆. Substituting into the synaptic activity

we have sj(t) =
∑

m η(t− Tmj ) =
∑

m η((θi−m)∆). Substituting into (8.25) we

obtain an equivalent system of ODEs for the new variables ψi:

ψ̇i = ε
∑
j

WijR(ψi + Ωt)P (ψj + Ωt), (8.33)

where

P (θ) =
∑
m∈Z

η((θ +m)∆), 0 ≤ θ < 1, η(t) = 0, t < 0. (8.34)

The phase evolution equations can be further simplified using the averaging

approximation, where the input from the j-th to the i-th oscillator is averaged

over the natural period ∆. Therefore we obtain:

ψ̇i = ε
∑
j

Wij
1
∆

∫ −ψj∆+∆

−ψj∆
R(ψi + Ωt)P (ψj + Ωt)dt = (8.35)

= ε
∑
j

WijHsyn(ψj − ψi),
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where

H(ψ) =
∫ 1

0
R(θ − ψ)P (θ)dθ (8.36)

is called phase interaction function.

8.4.3 Stability of phase locked solutions

An important type of a synchronous solution of a system of oscillator equations

is a so-called 1:1 phase locked solution of a form θi = φi + t/T , where φi is a

constant phase offset of the i-th oscillator and T is the collective period of the

coupled oscillators.

The stability of such a phase locked solution can be investigated by the following

standard approach. Consider a perturbation θ̃(t) of the solution θ(t) in a vicinity

of the phase locked solution. The perturbation of each oscillator is defined by

θ̃i(t) = θi(t)− φi − Ωt. (8.37)

Substituting to the equation (8.35) we obtain a system of equations for the

perturbation:

dθ̃i
dt

= ε
∑
j

WijH((φj − φi) + (θ̃j − θ̃i)). (8.38)

To determine stability of the phase locked solution, we linearise the perturbation

equation to the form

dθ̃i
dt

= ε
∑
j

Ĥij(Φ)θ̃j , (8.39)

where εĤij is the Jacobian matrix corresponding to the equation of the pertur-

bation system (8.38), i.e.

Ĥij = WijH
′(φj − φi)− δi,j

∑
WikH

′(φk − φj), (8.40)

and H ′(φ) denotes the derivative of H(φ) with respect to the argument φ.
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The eigenvalues of the Jacobian Ĥ now determine the stability of the phase

locked solutions of the original system. In particular, one of the eigenvalues

is always zero, with the corresponding eigenvector (1, 1, . . . , 1) pointing in the

direction of the flow of the phase locked solution. The other values can take in the

general case complex values. However, the phase locked solution is stable under

the condition that all the other eigenvalues have negative real parts [47], i.e.

perturbations in all directions apart from the direction of the flow asymptotically

diminish.

8.5 Models of spontaneous brain activity

Over the last decade the interest of the neuroimaging community in spontaneous

brain activity has steadily increased. Recently this trend has attracted the at-

tention of the computational modelling community to this topic, leading to the

first attempts to capture the large-scale spontaneous spatiotemporal dynamics

observed in resting state fMRI in mathematical models.

Less than three years ago a key paper [82] attempted to describe the relationship

between the underlying anatomical connectivity and the fMRI BOLD functional

connectivity pattern using a dynamical neural model. This consisted of 47 neu-

ral oscillators representing a selection of cortical areas within a macaque brain

hemisphere, linked by structural connections informed by macaque anatomical

connectivity studies collated in the neuroinformatics tool CoCoMac [102]. An

important outcome of this study was the observation of a strong correlation be-

tween the input structural connectivity matrix and the functional connectivity

matrix computed from the time series produced by the model. While the de-

tails of the model used and the interpretation of quite complex analysis of the

results can be criticized from several perspectives, this study served as a proof

of principle that explicit modelling of spontaneous large-scale brain activity is

feasible. Moreover, this made the wider community aware that, at least in prin-

ciple, such modelling studies can provide predictions that might be of interest

for experimentalists and conversely lead to amendments in the model in case of

disagreement with the observed empirical results. In the following two years,

several new studies using this or alternative models have been published in the

area.

To start with, the model of the pioneering paper was so far used in three other

related works [83, 84, 4]; the last two articles already use a human structural
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connectivity matrix obtained using tractography applied on Diffusion Spectrum

Imaging MRI data. Two of these papers focus on using the model to explore

potential changes in functional connectivity under lesions of the underlying struc-

tural substrate of the model. While such an application would be of immense

interest if reasonably accurate, at the moment the predictions are rather general

and were not directly validated on real data.

While the model discussed above is based on deterministic, although most likely

chaotic, dynamics, a different model has been implemented in other studies [42,

63]. The authors here implement noise and explicit signal transmission delays in

their models and argue that these have a key role in the emergence of spontaneous

brain fluctuations.

For completeness it is important to note that the above models, directly moti-

vated by the observed functional connectivity in resting state fMRI, seem to have

developed relatively independently of a somewhat older stream of research into

the relation between brain anatomy and brain functional organization, that par-

ticularly focused on brain modularity. A representative recent example of such

work is [93] providing further references to older works in the area. Models of

this group typically use very simplified models of neurons and their interaction,

falling into the category of artificial rather than biological neuronal networks

modelling.

It is particularly worth mentioning the work of the Potsdam group for in-

stance the concept of networks of networks described e.g. in [181] is a promising

approach for modelling multiscale neural dynamics. Here, the connectivity is

modelled on two levels - the local connectivity patterns are modelled using lo-

calised small-world networks, while the global connectivity pattern is defined by

a cortico-cortical anatomical connectivity matrix derived from histology.

8.5.1 Model architectures

The models proposed in recent years for spontaneous brain activity share some

key features. In particular, typically several dozens of cortical areas are included

in the model, whilst subcortical areas are usually omitted. The structural con-

nections between the areas are also usually defined by a matrix derived from

some anatomical study. One option used is a macaque monkey anatomy col-

lated in the CoCoMac database [102], where versions with 47 (as in [82]) or 38

(e.g. in [63]) nodes are typically used. More recently, reasonably reliable human
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whole head anatomical connectivity studies using tractography based on Diffu-

sion Spectrum Imaging (DSI) have become feasible, which enabled the use of

human connectivity matrices in modelling studies such as in [84]. Importantly,

high-quality acquisition and analysis is still a technically demanding task, with

the methods under constant development. Also, the already acquired matrices

were not yet made publicly available, limiting the use to direct collaborations.

On the other hand, details of the studies differ significantly. While each of

the cortical areas is always represented by a single neural oscillator, the choice

of the oscillator type varies widely across the modelling studies. Honey et al.

[82, 83, 84, 4] use a hybrid model based on the Morris-Lecar single neuron model.

Ghosh et al. [63] use a FitzHugh-Nagumo model, although they state that they

obtained ‘similar’ results with other models. As they study the behaviour of the

model always in a close vicinity of a Hopf bifurcation and tune the parameters,

this might be caused by a local equivalence of the models - unfortunately they

do not provide details of the implementation or results for the other models.

Finally Deco et al. [42] have used a Wilson-Cowan population model at each

cortical node.

The studies also differ in how to arrive at sustained activity of the model. While

Honey et al. [4, 82, 83, 84] set the parameters such that the single modules are

in the oscillatory regime, other researchers typically position the single modules

in the regime with a stable fixed point, but close to instability due to a Hopf

bifurcation. This system is then driven by a white noise, which leads to transient

oscillations of the system. The latter models also include cortico-cortical delays

in the model, and it is argued that the noise and delays play a crucial role in the

emergence of the typical spontaneous brain activity features [42, 63].

8.5.2 Explanatory potential

The ultimate goal of modelling spontaneous brain activity might be seen e.g.

in explaining alterations of resting state activity seen in changed brain state or

in patients with a wide range of diagnoses (see chapter 3 for more details of

results of neuroimaging studies). Nevertheless, the initial step is to be able to

elucidate the emergence of the two mutually interlinked characteristic features

observed in resting state data of healthy human subjects - functional connectivity

and low-frequency fluctuations. These features are actually quite stable across

conditions, disease states and even across species.
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The level to which this modelling goal has been accomplished by the published

studies is questionable. While some promising results have been presented that

form a proof of principle that such an enterprise is realistic, a closer observation

reveals that much of the evidence provided is indirect or potentially confusing.

When it comes to explaining the functional connectivity patterns, the initial

study of Honey et al. [82] presented a promising result of up to 80% overlap

of the structural connectivity (SC) matrix with the thresholded model-based

functional connectivity matrix (the details of the overlap measures are reviewed

in the following section). Nevertheless, a later study by the same group [84]

argues that thresholding of resting state FC yields highly inaccurate prediction

of SC – both for FC matrices obtained from real data and model simulations.

Even more disappointing seems to be the point not particularly highlighted but

documented in the paper, that the structural connectivity itself was in many

cases a better predictor of the real functional connectivity than the simulated

functional connectivity computed using the model. Also, in many aspects a lin-

earised version of the model outperformed the nonlinear version, as documented

in the Supplementary Information of the paper.

The most promising reproduction of functional connectivity patterns so far has

been presented in the study by Ghosh et al. [63]. At realistic levels of critical

signal transmission velocity, they reported the model to be able to predict cor-

rectly the status (presence or absence) of 14 out of 15 functional connections as

presented in one of the original region-wise FC resting state studies [51]. This is

an interesting result which calls for independent validation on a different dataset,

including more than the presented 6 regions and avoiding the comparison across

species. A unique feature of this study is that it claims that these results are

present only for a narrow window of parameters of the model – a point that

would be worth a closer investigation.

Finally, the study by Deco et al. [42] proposes to explain anti-correlation of

within-cluster synchronisation of strength r = −0.1 at a narrow window of

parameters corresponding to typical frequency of 0.1Hz by a mechanism of

stochastic resonance. This raises a number of questions. First, although anti-

correlations between time series of particular resting state networks have been

reported, the extent of their validity is still a matter of a heated debate in

the neuroimaging community and therefore they might not form the best fea-

ture for assessing the models against (more detail on the problem is covered in

subsection 4.1.2). Second, this study reports anti-correlations in cluster global
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synchronisation, rather than local signal levels as reported in the neuroimaging

studies. Although the two might be linked in particular cases, such a comparison

is at the very minimum confusing. Finally, the frequency of 0.1Hz is not very

typical of resting state LFF, which are commonly almost an order of magnitude

slower.

This leads us to the question of how successful the recent studies have been in

modelling the second cardinal feature of spontaneous brain activity, i.e. the LFF

[36] (typically 0.01− 0.1Hz).

To start with, we have to deal with a basic, although often overlooked, property

of the BOLD signal. Namely, acquired BOLD MRI signal is a result of relatively

sparse sampling of a haemodynamic response to increased demands of the neural

tissue. This response is not immediate, but effectively acts as a (non-linear)

low-frequency filter. The haemodynamic response has a typical gradual onset

starting 2 seconds after the stimulus, rising to a plateau at 6-9 seconds after the

stimulus onset and then slowly returns to the baseline [113].

From this perspective, the prevalence of slow components in the frequency spec-

tra of real or modelled BOLD signal is rather trivial than surprising. Indeed, a

low-frequency signal can be produced even from white noise by simple filtering

with a linear approximation of the haemodynamic response function. Neverthe-

less, it has been shown that electrophysiological signals that are free of the neu-

rovascular low-frequency filters also show LFF in the band-limited power [110].

Further, the band-limited power fluctuations of EEG have been repeatedly shown

to correlate with the local BOLD signal (see e.g. [108, 118]). Also, band-limited

powers of direct electrocorticographic measurements in human patients have

shown correlation and reactivity patterns similar to the BOLD-derived resting

state networks [127, 135]. While due to technical reasons the electrophysiological

studies of LFF are severely limited, there seems to be sufficient evidence for LFF

in local activity independent of the smoothing action of the haemodynamic re-

sponse. Therefore it seems reasonable to require that the models of spontaneous

brain activity generate LFF not only on the level of the BOLD signal.

Taking this into account, the models presented above seem to generally fall short

of explaining the experimental LFF observations. Typically, they do mention

LFF property of some version of the signal, but the relation and relevance for

the signal observed in neuroimaging is often vague. For example, in [82] the

slow dynamics is discussed for the global synchronisation measured by mean

transfer entropy (TE, [157]) between the time series. While this finding does
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not have a direct correlate in available neuroimaging studies, the result of slow

dynamics is not completely surprising given that the TE was computed for 30-

second sliding windows with 6 seconds sampling rate, corresponding to 24-second

overlaps. We have also already commented on the weak points of the finding of

∼ 0.1 Hz fluctuations in between-module synchronisation difference [42]. On the

other hand, the finding of low-frequencies in power spectra of simulated BOLD

signal in [63] may be a trivial result of the haemodynamic response modelling.

Unfortunately, the reviewed modelling studies do not show explicitly nontrivial

low-frequency content in signal types that would be directly comparable to the

electrophysiological correlates of the BOLD LFF. Although some of the models

might produce such comparable behaviour, in the absence of direct published

evidence their ability to explain the LFF feature remains a matter of speculation.

In summary, we can characterize the field of modelling spontaneous brain activity

features observed in neuroimaging as being in an initial stage. It offers promising

concepts but provides only rather general if any explanations and predictions,

especially compared to the wealth of data gathered during the recent decade by

the experimentalists. The game of communication and integration of these two

research aspects in this field is in the early stages with the main responsibility for

further progress currently on the side of the modellers. In the following chapters,

we dive into the challenges of spontaneous brain activity modelling in more detail.

Particular attention is paid to the relationship between structural and functional

connectivity and even more so to candidate mechanisms for generation of the

underlying LFF.
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Chapter 9

Exploration of a large-scale

interaction model

In this chapter we further discuss some of the issues that arise in modelling

spontaneous brain activity with models such as those reviewed in the previous

chapter. We are particularly interested in the potential of similar models to

explain the main features of resting state brain activity as observed with neu-

roimaging methods. These are prominently the low-frequency fluctuation and

the functional connectivity patterns introduced in Chapter 3 and analysed in

some detail in Part I of this Thesis.

9.1 Introduction

To guide our discussion we use a simplistic model of large-scale spontaneous brain

activity to illustrate some pertinent points regarding spontaneous brain activity

modelling efforts. The model is similar to those detailed in Section 8.5 in that

it in principle divides the cortex into several tens of functional areas, identifies

each with a simple neural oscillator and uses an anatomical connectivity matrix

of connections to describe the links between the models. In agreement with e.g.

[4, 82, 84], but in contrary to e.g. [42, 63], we do not embed any explicit noise

or delays in the model. Also, in contrast to the somewhat confusing choice of

single neuron models for each node representing a cortical area such as in [63],

we use a proper population model. This latter strategy was also adopted e.g. in

[42].

As already discussed, functional connectivity is a central concept in the study of

complex brain dynamics, defined as temporal correlations between remote neu-
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rophysiological events [56]. The functional connectivity study covers the aspect

of functional integration of brain function as opposed to the functional segre-

gation/localisation aspect. One of the aims of modelling (spontaneous) brain

activity is to explain the patterns of temporal synchronisation of activity within

brain networks, as captured by functional connectivity analysis of neuroimaging

data. The role of structural connectivity as the underlying substrate for the

functional connectivity has been repeatedly suggested.

By exploring the behaviour of a simple model we can show some important chal-

lenges of the spontaneous brain activity modelling enterprise. Most importantly,

we illustrate two points. Firstly, the functional connectivity matrix, i.e. the de-

pendence structure of the resulting time series, crucially depends on the choice

of parameters of the model. Secondly, we discuss the challenges in modelling the

low frequency fluctuations and introduce a simple mechanism for emergence of

LFF in population networks that does not rely on delays or noise.

9.2 Model description

In the following we study a large-scale cortical model consisting of interconnected

neural populations. For simplification, we assume that a parcellation of the

cerebral cortex into functional areas is available, such that each area corresponds

to a functional unit that can be represented by a single instance of a localised

neural population model. We also assume that the approximate structure of

neural connections between the functional areas is available in the form of a

connectivity matrix. The limitations of these and other assumptions of this type

of model are discussed later.

We choose here the parcellation of the cerebral cortex and the structural con-

nectivity matrix in agreement with [82] - 47 areas of macaque cortex together

with an anatomical connectivity matrix collated in the CoComac database [102]

are used. Note that for the purposes of this chapter the specific choice of cor-

tical parcellation scheme and structural connectivity is not crucial as we shall

comment rather on the general properties of such a type of model. Each cortical

area in the model is represented by a Wilson-Cowan module – a model of two

interacting populations of neurons – the excitatory and inhibitory neuron pool.

The Wilson-Cowan model was described in detail in Section 8.3. Using the pa-

rameter setting ke = ki = 1, re = ri = 0, c1 = 10, c2 = 10, c3 = 10, c4 = −2 in

agreement with [85] it gives the following system of two ODEs for the activity
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levels E, I of the two populations:

τ
∂E

∂t
= −E + S(10E − 10I + P ), (9.1)

τ
∂I

∂t
= −I + S(10E + 2I +Q), (9.2)

where S(x) = 1/(1 + e−x) is a sigmoid response function. In general, depending

on the choice of the non-specific inputs P,Q to the two populations, the Wilson-

Cowan model either exhibits oscillation due to a stable limit cycle or decays to

a stable fixed point (which is the only stable attractor in the other parameter

regimes). For simplicity, in the further description, we set the value of the

temporal parameters to τe = τi = τ = 1. Note that changing the common

temporal parameter τ corresponds to a simple change in the time-scale of the

model. Most commonly the time-scale is considered to be in milliseconds, but by

changing the τ parameter it can be reset arbitrarily - a common convenient choice

is such that the oscillatory behaviour corresponds to that of typical oscillations

in the neuronal populations of interest, e.g. the cortical 10Hz alpha rhythm.

Starting from this ‘cortical module’ model as a building unit, we now construct

a large-scale network by connecting 47 of these units by mutual interactions via

input to the excitatory populations. In particular, we write:

∂Ei
∂t

= −Ei + S(10Ei − 10Ii + P + γ
∑
j 6=i

wi,jEj), (9.3)

∂Ii
∂t

= −Ii + S(10Ei + 2Ii +Q), (9.4)

where Ei, Ii denote the activity of the excitatory and inhibitory populations at

the i-th cortical area and W = (wi,j)i,j∈{1,...,N} is the matrix of inter-regional

connection strengths between the N = 47 regions with zeroes on the diagonal,

wi,j being the connection strength from the j-th to the i-th area. The binary

connectivity matrix used here is shown in Figure 9.1. The parameter γ is a

global connectivity scaling parameter - we use various values between 0 and 1

in the analysis below. The model is simulated in MATLAB using the ‘ode45’

solver – an implementation of the Runge-Kutta algorithm with an adaptive step.

For each run, the model was sampled at t ranging from 0 to 10000 in ∆t = 0.1

steps. For functional connectivity analysis, the first 1000 steps were discarded

to allow for initial transients. An example of the system behaviour is shown in

Figure 9.2. All the local populations show oscillations, with slight differences in
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Figure 9.1: A connectivity matrix of 47 regions in the macaque hemisphere.
Redrawn from [82].

amplitude and frequency.

9.3 Relation between structural and functional con-

nectivity

In this section, we use our cortical model to show how the functional connectivity

changes even when the same structural connectivity matrix and model is used

and only the model parameters are varied. We document this by computing the

overlap between the underlying structural and emerging functional connectivity

matrix similarly as in [82].

9.3.1 Analysis details

As the original structural connectivity matrix is binary with a fixed number

of entries, to compute this overlap we first binarise the functional connectivity

matrix by thresholding - the threshold is chosen such that the number of over-

threshold entries is equal to the number of non-zero entries in the SC matrix.

The overlap is then computed simply as the ratio of the region-pairs connected

in both SC and FC matrices to the total number of connections present in the SC

matrix. This index has been used in [82], where they have obtained overlap of

up to 0.79, arguing that the aggregate strength of functional couplings between

regions is, on average, a good indicator of the presence of an underlying structural

link. In their analysis, the maximum value was obtained for TE used as a FC
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Figure 9.2: An example behaviour of the Wilson-Cowan network. Parameters
set to P = 0, Q = −6, γ = 0.1. The intensity denotes the variable Ei, activity
of the excitatory subpopulation of each Wilson-Cowan module. 1000 timesteps
are shown from the end of the simulation run (to avoid initial transients).

measure and for very long runs (240,000 timepoints) of their model. Notably, in

a later study by the same group [84] the authors concluded somewhat in contrary

that thresholding of resting state FC yields highly inaccurate prediction of SC,

as discussed in section 8.5.

In our analysis, we measure functional connectivity primarily by linear correla-

tion for simplicity, but include some results for TE later for comparison. Before

functional connectivity for each pair of nodes was computed by linear correla-

tion, each univariate time series was monotonically resampled to approximately

adhere to gaussian distribution similarly as in [82]. This resampling involved

assigning rank to each value in the time series according to their magnitude and

subsequently replacing the values by values with the same rank in a sample of

appropriate cardinality drawn from the standard normal distribution. The re-

sulting functional connectivity matrix was then thresholded as described in the

previous paragraph and the overlap with the structural connectivity matrix was

computed.

This process was repeated for a wide range of parameter values P,Q vary-

ing in small steps of 0.125. Thus, the graph of the dependence of the over-

lap on the model parameters is generated - see Figure 9.3. When the pa-
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Figure 9.3: The agreement between structural and functional connectivity as a
function of the Wilson-Cowan network model parameters P,Q. The colourcoding
represents the ratio of the entries shared in the two binary connectivity matrices.
Overlaid is the bifurcation structure of a single Wilson-Cowan neural oscillator
for orientation - see section 8.3 for details. The central region bordered by the
Hopf and SNIC bifurcations corresponds to full-blown oscillations in a single
oscillator model. The parameter γ was set to 0.1 for this set of simulations.

rameters P,Q are set such that a single Wilson-Cowan module is in the os-

cillatory regime, the overlap between the observed functional connectivity and

the underlying structural connectivity is clearly above the level expected by

chance. Note that for our structural connectivity matrix this ‘chance’ overlap is

Nconnections/(Nnodes ∗ (Nnodes − 1) = 505/2162 ∼ 0.23. Nevertheless, the com-

puted overlap varies widely in an approximate range of 0.2 to 0.8 within the

‘oscillatory’ parameter settings.

This documents the extent to which the correlation structure may depend on

other parameters of the system apart from the matrix of relative interconnec-

tion strengths. This observation was confirmed by another set of simulations

when the overall connectivity has been weakened by setting γ = 0.01 in equa-

tion (9.3). The range of overlaps for different parameter settings remains quite

broad. Nonetheless, the overlap values and even the form of dependence on the

parameters P,Q was noticeably altered, as shown in Figure 9.4. We hypothesise

that for other models a similar range in SC/FC agreements could be observed

when varying model parameters.
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Figure 9.4: The agreement between structural and functional connectivity as a
function of the Wilson-Cowan network model parameters P,Q. Graphical display
as in Figure 9.3. The parameter γ was set to 0.01 for this set of simulations.
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Figure 9.5: The agreement between structural and effective connectivity (mea-
sured by transfer entropy) as a function of the Wilson-Cowan network model
parameters P,Q. Graphical display as in Figure 9.3. The parameter γ was set
to 0.1 for this set of simulations.
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9.3.2 Discussion

The observation of mismatch between the structural and functional connectivity

is in itself not counterintuitive. There is no theoretical argument for a complete

agreement between structural and functional connectivity in the sense that cor-

relation matrix of any dynamical system should equal to that of the matrix of

coupling coefficients. What deserves more attention is the fact that the level of

agreement can be quite low for some parameter settings. This is in contrast with

the view that the functional and structural connectivity closely match, which is

to various levels proposed in the recent literature [82, 175]. There are several

reasons for the mismatch. In the following we generally assume that functional

connectivity is computed by linear correlation of the time series, although the

argument remains valid to variable level even for other functional connectivity

measures.

First, the functional connectivity matrix is inherently symmetric, which is un-

likely to be the case for the underlying structural connectivity matrix. This

effectively puts an upper bound on the overlap, with its stringency critically

dependent on the level of asymmetry of the structural connectivity matrix. In

the case of the matrix used for our analysis, the upper bound for the over-

lap between any symmetric matrix and the structural connectivity matrix was

(1 − Na/2Nc) ≈ 0.88, where Na = 120 is the number of asymmetric connec-

tions in the structural connectivity matrix and Nc = 505 is the total number of

connections.

On top of the symmetry, there are further limitations on the functional connec-

tivity matrix. In particular, there are some limitations on the correlation matrix

stemming from the positive semi-definity of any covariance matrix. The simplest

example is a sort of ‘weak’ transitivity - for any three random variables X,Y, Z

a strong positive correlation between two pairs of them implies a positive corre-

lation within the third pair. More precisely, ρ2
XY + ρ2

Y Z > 1 implies ρXZ > 0,

i.e. positivity of the third correlation coefficient (for a proof of a general form of

this inequality see [105]). In practical terms this relates to the already reported

fact that functional connectivity is sensitive to indirect connections. The level of

this sensitivity has not been studied in detail and is likely to depend on the form

of the underlying dynamical system and specific functional connectivity measure

used.

Problems such as those outlined suggest that it might not be most suitable to

compare structural connectivity with functional connectivity directly such as in
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[82]. More adequate appears to be the approach adopted more recently in [84],

where the observed human fMRI functional connectivity was compared with the

functional connectivity predicted by a computational model that used human

structural connectivity matrix for the inter-modular coupling. Clearly, such a

model requires at least a basic model of haemodynamic response to model the

process of conversion of neural activity to BOLD signal temporal variations.

In the context of comparison between structural and functional connectivity

it is also important to consider the distinction between functional connectivity

and effective connectivity as introduced in [56] and discussed in section 3.3.2.

A careful consideration of the distinction provides support for the notion that

effective connectivity should be more closely than functional connectivity linked

to the underlying structural connectivity. Apart from potential use of systematic

perturbations of the system, causal relations implied in effective connectivity can

be in principle studied in time-series due to temporal precedence of causes before

effects. Particular methods include causality measures such as Granger causality

[70], conditional mutual information (widely known under the name transfer

entropy [157]) and fitting parameters of a dynamical model of a more constrained

form that uses more prior information about the system. A prominent example

of the latter approach to effective connectivity extraction is DCM [60]. The

notion that effective connectivity measures might be linked more closely to the

structural connectivity is supported by an observation from our model. The

SC/FC overlap yielded generally higher values when TE was used instead of

simple linear correlations - compare the Figures 9.5 and 9.3. While this effect

might be partly due to the nonlinearity of TE, the crucial advantage of TE

might also stem from the fact that it yields generally asymmetrical connectivity

matrices.

When considering various functional or effective connectivity measures available,

one should bear in mind that they provide different information about the un-

derlying system, and their suitability may depend on the context. This context

can be seen to have two main aspects. The first important issue is the nature

of the data available. Neuroimaging data are collected by very different tech-

nologies and with wide range of settings and preprocessing approaches. At the

very least, this yields time series with variable temporal and spatial resolution,

intrinsic smoothness, distribution and dimensionality. Thus, connectivity mea-

sures useful for some data may not be so suitable for other datasets. While

maybe less overt, this is also true about the structural connectivity - an evident

example is the limitation of typical structural connectivity matrices yielded by
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diffusion weighted imaging, which are not able to distinguish the direction of the

fibre connection - in contrast to some invasive tracing approaches.

The second point of view is the question of the aim of the connectivity study.

It is important to ask the question of what exactly do we actually look for

when we study functional connectivity. To illustrate this issue we suggest the

following simplified picture: two extreme approaches to functional connectivity

could be roughly described as ‘utilitarian’ versus ‘theoretical’. The utilitarian

approach follows the promise functional connectivity holds for applications. As

mentioned earlier, changes in functional connectivity have been reported in many

patient groups, suggesting potential for diagnostic use of functional connectivity.

Similarly, functional connectivity may prove very useful for presurgical mapping

of areas of so-called ‘eloquent’ cortex. Examples of the research promising such

applications can be found e.g. in a recent review [175]. From a clinician’s point

of view, it may not be as important to know what the functional connectivity

measure represents, how it is related to structural connectivity and the nature of

the underlying system and the data acquisition method – as long as the measure

proves useful for the goals of interest such as diagnosis. On the other hand,

the theoretical approach sees the challenge of functional connectivity study in

the question ‘What can be learned about the underlying system (brain) from

the spatiotemporal structure of its measured activity’. To study this question,

models of the underlying system inevitably have to be constructed. Despite the

necessary simplification and abstraction of variable extent, at least in principle

the variables in the model should have identifiable counterparts in biophysical

quantities describing the real brain.

While these outlined approaches may seem to aim in different directions, in

practice they are intertwined. The basic research into brain dynamics is strongly

motivated, supported and funded due to the aim of clinical applications. On the

other hand, the search for the most useful measures of functional connectivity

calls for deeper understanding of the underlying systems. Naturally, where the

theoretical understanding is not yet available, pragmatic engineering choices have

to be made.

It is valuable to ponder that the already widely used functional and effective

connectivity measures already represent some strong theoretical assumptions,

which can be related to very specific underlying models. Only understanding

the underlying models allows proper interpretation of the coefficients or matrices

that form output of these methods.
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DCM is in this way the least cryptic, even containing the word ‘modelling’ in the

name of the method. The basic bilinear dynamical system model is also coupled

with a detailed model of the haemodynamic response, giving the model more

biophysical realism. Note that DCM has not been widely applied on resting

state data, also because in its current formulation it requires a definition of a

stimulation time series. In other words, the method is not intended for direct

application to intrinsic dynamics and would require some amendments.

An excellent example of a ‘hidden’ model is Granger causality. The most com-

mon implementation actually involves fitting a linear autoregressive model to

the data and testing the hypothesis that some of the lagged linear regression

coefficients are zero. This model implicitly assumes that the data are autocor-

related, and have a structure of stationary linear, but not necessarily symmetric

interactions, which happen on a timescale comparable to that of the sampling

frequency. Direct application of the method further assumes that the observable

quantities do not suffer from different lags in different areas due to spatially

variable haemodynamic response - a hidden model assumption that forms one

of the main complications for use of Granger causality on fMRI BOLD data. A

recent heated debate of the consequences of the different set of model assump-

tions underlying DCM and GC highlighted the importance of an understanding

of the background of the connectivity models [57, 153].

As a third and last example, we note that even the most common linear cor-

relation as an functional connectivity measure effectively reflects an underlying

assumption of bivariate normality and lack of temporal autocorrelation of the

time series. While the correlation might still bear valuable information about

the dependence structure even under deviation from these assumptions, strong

violation of these assumptions would render linear correlation suboptimal or even

misleading as a measure of connectivity.

9.4 Modelling LFF

A second central aspect of spontaneous brain activity based on the neuroimag-

ing observations is the low-frequency fluctuation of signals. While this LFF is

directly observed in low-temporal resolution (∼ 1 Hz) fMRI signal, they have

been proposed to correspond to fluctuation of band-power of the underlying fast

oscillations in electrophysiological signals [110, 118, 127]. As discussed earlier,

the computational models of spontaneous brain activity presented in section 8.5
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have not satisfactorily captured this behaviour.

In the model presented in this chapter, the time courses of activity of the cor-

tical populations correspond to sustained fast oscillations of apparently stable

amplitude and frequency (Figure 9.2). Nevertheless, the model activity is not

completely periodic. In the following the temporal dynamics of the model are

explored in a little more detail and potential emergence of low-frequency modu-

lation of the fast oscillations is investigated.

While the individual areas slightly differ in their typical frequency due to varying

level of incoming connections, for a given parameter setting the frequencies are

in a relatively narrow band. For the following analysis we choose the parameter

setting P = −2, Q = −6, γ = 0.01. Our particular parameter choice leads to os-

cillations with frequency around 19Hz (18.8− 19.1Hz), when the time unit is set

to 10ms. With these parameter settings, 1000 seconds of the system behaviour

were simulated with a sampling step ∆t = 1ms. In the first analysis, we focus

on the fluctuation of amplitude of a single module. To this end, the single mod-

ule time course was first band-pass filtered with a third order Butterworth filter

with a pass-band 18.6-19.2Hz. Subsequently, the Hilbert transform was used to

extract the amplitude of the band-pass filtered signal. Finally, the amplitude

spectra of the resulting amplitude ‘envelope’ was computed. This amplitude

spectra shows clear prevalence of low frequencies (< 1Hz) with highest ampli-

tude for frequencies < 0.1Hz (see Figure 9.6). While such spectral distribution

corresponds to the observations of band-power ‘envelope’ spectra [111], the ac-

tual amplitude of the osculation shows only very weak fluctuations, as evident

from Figure 9.7. Such stability is in contrast with typical electrophysiological

recordings, which show waxing and waning oscillations.

Importantly, a more biologically realistic picture is obtained when the average

activation of the excitatory populations Ē(t) = 1/N
∑N

i=1Ei(t) is considered.

The spectrum of the envelope of the band-passed filter mean signal Ē(t) is shown

in Figure 9.8. The dominance of the ultra-slow frequencies (0.01−0.1Hz) is even

clearer than in the case of a single module. Also, in the case of mean signal, the

amplitude of the oscillations shows remarkable fluctuations (Figure 9.9). Such

temporal dynamics strongly resemble the dynamics of EEG amplitude including

the long-temporal correlations and the strong variability in the amplitude [111].

This observation suggests that a potential mechanism for the emergence of LFF

in the EEG oscillation amplitude or the downstream fMRI signal might be re-

lated to averaging over a big set of neural oscillators. This needs to be consid-
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Figure 9.6: The amplitude spectra of the E variable of a single module of the
Wilson-Cowan network. The parameters were set to P = −2, Q = −6, γ = 0.01.

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

E
 (

ex
ci

ta
to

ry
 p

op
ul

at
io

n 
ac

tiv
ity

)

Figure 9.7: The time-course of the E variable of a single module of the Wilson-
Cowan network. The parameters were set to P = −2, Q = −6, γ = 0.01.
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Figure 9.8: The amplitude spectra of the Ē variable - the excitatory module
activity averaged over all Wilson-Cowan nodes of the network. The parameters
were set to P = −2, Q = −6, γ = 0.01.

ered as a rather abstract principle, as the model shown does not implement a

sufficient level of biological detail. The most obvious problem disqualifying the

straightforward interpretation is that in this particular model the Wilson-Cowan

modules were originally considered as each representing a separate cortical area.

Simple unweighted averaging of their signals therefore does not provide the most

suitable model for the signal obtained from a specific electrophysiological sensor.

Nevertheless, especially if the Wilson-Cowan modules were considered as models

of cortical columns (which is also closer to the original Wilson-Cowan model

assumptions [178]) the interpretation of suitably weighted averaged signal as a

proxy for an electrophysiological recording would gain in relevance. While the

original CoCoMac connectivity matrix loses its anatomical support in this con-

text, we conjecture that the qualitative results will not be crucially dependent

on a particular connectivity matrix used and (and particular averaging weights)

as long as the main properties of the model are reproduced.

9.5 Summary

In the recent years, the large-scale spontaneous brain activity research matured

to a stage where first explicit mathematical models of the structure and dynam-
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Figure 9.9: The time-course of the Ē variable - the excitatory module activity
averaged over all Wilson-Cowan nodes of the network. The parameters were set
to P = −2, Q = −6, γ = 0.01.

ics of the system are being formulated. In this chapter we have carried out an

analysis of such a basic inter-regional model of spontaneous brain activity from

several aspects. The main purpose was to document some of the challenges in

resting state modelling. Firstly, we have discussed the relation between the un-

derlying structural and the generated functional connectivity. Importantly we

have shown that this relation depends strongly on the parameters of the under-

lying model, even when the model and structural connectivity matrix is kept

constant. This basic observation suggests possible problems with computational

models when the parameters lack direct biophysical interpretation and therefore

their choice remains largely arbitrary. This may also explain in part the differ-

ence in the structure/function relationship observed even in studies carried out

by the same group [82, 84].

In general, any computational models of spontaneous brain activity come across

interpretation challenges. We propose that as close linking to measurable quan-

tities as possible is crucial to overcome these problems.

This is also important in the second central topic we have touched in this chapter

– that is modelling of the LFF. Here we have shown that even a simple model

can reproduce the slow modulations of the dominant fast cortical rhythm, corre-

sponding to the LFF as discussed in the section 8.5. Contrary to the suggestions
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in recent literature, this was possible even without explicit inclusion of noise and

delays in the model. Importantly, averaging across populations was needed to

show realistic level of temporal variability of the band-limited power of the sig-

nal. This motivates a question about the reasonability of the typical modelling

choice of representing each cortical area by a single population or even a sin-

gle neuron model. In the following chapter we focus in detail on an alternative

model of a population of neurons that leads to the generation of nested fast and

(ultra)slow oscillations.
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Chapter 10

Local model of LFF

As reviewed in Section 8.5 and further discussed in Chapter 9, current models

of spontaneous brain activity have not yet fully addressed the question of the

origin of LFF. Importantly, all of the proposed mechanisms rely on long-range

inter-regional interactions, and some advocate the necessary role of transmission

delays and noise. On the contrary, in this chapter we propose a local model

of emergence of LFF within a local population of cortical neurons. The work

presented in this chapter appeared in Physical Review Letters [80].

10.1 Introduction

The principle of the proposed model lies in postulating a local feedback loop regu-

lating the activity level based on previous memory of the localised system. As an

example of such a regulatory process we have implemented a simple phenomeno-

logical model of the action of endogenous cannabinoids on synaptic activity.

Indeed, other known regulatory mechanisms could be also considered. Impor-

tantly we document that the local network activity can show slow to ultra-slow

fluctuations that do not have to match the timescale of the memory mechanism

in action. In principle, they can exhibit arbitrarily slow frequencies dependent

on other parameters of the model.

Endogenous cannabinoids (CBs) represent a fundamentally new class of retro-

grade messengers [55], which are released postsynaptically and bind to presy-

naptic CB receptors. CB synthesis is stimulated when levels of calcium rise

inside the neuron or when certain G-protein-coupled receptors are activated.

One function of endogenous CBs is to regulate neurotransmitter release via acti-

vation of presynaptic CB receptors, allowing neurones to regulate, via feedback,
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their upstream neuronal inputs [179]. This suppression of upstream presynaptic

release of GABA or glutamate is termed depolarisation-induced suppression of

inhibition (DISI) or depolarisation-induced suppression of excitation (DISE) re-

spectively [137, 171]. Cannabinoid receptors are ubiquitous within the brain and

CB1, the most abundant CB receptor, can be found in different areas such as the

hippocampus, neocortex, amygdala, basal ganglia and hypothalamus [55]. They

have already been implicated in the temporal coordination of cell assemblies and

the modulation of certain brain rhythms [55, 152].

In the following section we endow a synaptically coupled network of Morris-Lecar

neurons with a phenomenological form of retrograde second messenger signalling

that can support DISE. The analysis in the subsequent section documents the

emergence of nested fast and ultra-slow oscillations. We hypothesise that when

linked to other modules in a larger network the latter would be reflected as an

ultra-slow component of the macroscopic network dynamics and could therefore

underlie those seen in spontaneous brain activity (SBA).

10.2 Model description

10.2.1 Synaptically coupled network of Morris-Lecar neurons

For the single neuron we have chosen the Morris-Lecar (ML) [130] neuron model.

This is a classical two dimensional conductance based model, often used as an

idealized fast-spiking pyramidal neuron, written in the form

v̇ = f(v, w) + I + s(t), ẇ = g(v, w). (10.1)

Here v plays the role of a voltage variable, w that of a gating variable, I is a

fixed input and s(t) represents a time varying synaptic input. The details of

the functional forms for f(v, w) and g(v, w), which we take from [77] (with time

measured in ms), have been reviewed previously in Section 8.2. The structure

of the phase-plane and nullclines is recapitulated in Figure 10.1 for s = 0. In

brief, the model can support either one or three fixed points, dependent on the

choice of I. A crucial section of the bifurcation diagram is shown in the inset

of Figure 10.1. This shows that the largest of the fixed points undergoes a

sub-critical Hopf instability at I ∼ 0.0756. Beyond this bifurcation there is a

window of parameter space where a fixed point is bistable with a periodic orbit

(see Section 8.2 including a more complete bifurcation diagram in Figure 8.5 for
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additional details).
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Figure 10.1: Phase-plane portrait for the Morris-Lecar model with constant
external drive I = 0.0761. The voltage (gating) nullcline is in red (green). A
large amplitude stable limit cycle (blue) coexists with a stable fixed point at
v ∼ 0.04. A small amplitude unstable orbit also exists (light blue) that can
undergo a saddle-node of periodic orbits bifurcation with increasing I. The
separatrix (pink, stable manifold of saddle at v ∼ −0.2) delimits the basin of
attraction for the stable fixed point at v ∼ −0.3. The associated bifurcation
diagram illustrating bistability of the large amplitude limit cycle and the fixed
point at v ∼ 0.04 is shown in the inset. Here unstable orbits emerge in a Hopf
bifurcation.

Indexing each neuron in the network with i = 1, . . . , N the synaptic drive to the

i-th neuron is given by

si(t) = gs(vs − v(t))
N∑
j=1

Wij

∑
m∈Z

η(t− Tmj ), (10.2)

where Tmj is the m-th firing time of the j-th neuron, vs the synaptic reversal

potential and Wij the connection strength between neurons i and j with a global

conductance scaling gs. The function η(t) captures the shape of a conductance

change in response to the arrival of an action potential. Here we choose an alpha

function and write η(t) = α2te−αtH(t), where H is a Heaviside step function.
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The firing times are specified in terms of a threshold h according to

Tmi = inf{t | vi(t) > h, v̇i > 0, t > Tm−1
i }. (10.3)

We focus on the case of an excitatory globally coupled network with homogeneous

connectivity and therefore set Wij = 1/N and vs = 2 > 0 with respect to the

resting state.

10.2.2 DISE mechanism

To implement a phenomenological model of DISE (or DISI if vs < 0) we first

introduce an effective spatio-temporal average level of depolarisation ve(t):

ve(t) =
1
N

N∑
j=1

∫ ∞
0

K(t− s)vj(s)ds, (10.4)

where K is a temporal kernel reflecting the cannabinoid dynamics, K(t) = 0

for t < 0. Since CBs are free to diffuse through neural tissue they allow for

volume signalling, which we will consider as a form of global feedback. The

endocannabinoid level is directly linked to the effective depolarisation, which we

shall take to be the average tissue level as defined by (10.4). Here we choose

K(t) = λe−λtH(t), where λ−1 is an indirect measure of the long time-scale

for cannabinoid dynamics, which is on the order of tens of seconds to minutes

[171]. As a minimal model of DISE we will imagine that if the global CB level

is sufficiently high then all excitatory synapses are blocked. In this case the

network becomes uncoupled in the sense that excitatory synaptic currents drop

to zero. By noting that this is equivalent to the suppression of firing events in

(10.2), we may implement this model of DISE by letting the firing threshold

adjust in response to ve(t) according to

h =

vth ve ≤ vth
e

∞ ve > vth
e

. (10.5)

The threshold vth
e controls when the level of CB is sufficient to trigger DISE.

In essence the model (10.5) means that synaptic interaction is curtailed if the

effective level of depolarisation becomes too large.
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10.3 Results

10.3.1 Model properties

To probe the effects of DISE on network dynamics we first focus on the most

symmetric oscillatory states expected to exist in a globally coupled system –

namely the fully synchronous and asynchronous ‘splay’ (evenly distributed) so-

lution. These are guaranteed by symmetry arguments [5].

Synchronous solutions

In the synchronous state all neurons have identical T -periodic trajectories with

firing times given by Tmi = mT for all i. In this case the synaptic drive to

every neuron takes the identical form s(t) = gs(vs − v(t))P (t), where P (t) =∑
m∈Z η(t−mT ) can be shown to equal to

P (t) =
α2e−αt

1− e−αT

[
t+

T e−αT

1− e−αT

]
, t ∈ [0, T ), (10.6)

with P (t) periodically extended outside [0, T ). Equation (10.1) may then be

solved as a periodic boundary value problem (PBVP) for the periodic orbit

(v(t), w(t)) = (v(t+T ), w(t+T )) with v(0) = vth. This describes the synchronous

orbit given that the corresponding mean depolarisation does not trigger the DISE

mechanism.

We solve this PBVP numerically, using xppaut[46] – see the source code in Ap-

pendix A. As mentioned earlier, existence of the synchronous solution for weak

coupling is guaranteed by symmetry arguments. The period of these solutions

as a function of the coupling gs is shown in the Figure 10.2.

Whilst these synchronous solutions must exist for small enough gs, using a weakly

coupled oscillator description with standard techniques described in section 8.4

and also reviewed in [85], we further establish that such solutions are unstable.

As mentioned in section 8.4, the stability of a phase-locked solution of the

system of oscillators depends on the eigenspectra of the Jacobian Ĥij (8.40) of

the linearized perturbation equation (8.38). In particular, while one eigenvalue is

always zero, the solution is stable if all the remaining eigenvalues have negative

real parts.

For the synchronous solution we have ∀i, j ∈ {1, . . . , N} : φi − φj = 0. Substi-
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Figure 10.2: The period of the synchronous and splay solutions as a function of
the coupling strength gs. The unstable synchronous oscillatory solution for weak
coupling is shown in blue, the synchronous solution branch for strong coupling
is shown in green (numerically stable section in thick line). The unstable splay
solution is shown in red.

tuting into (8.40) we obtain

Ĥij =
1
N
H ′(0)− δijH ′(0) = H ′(0)


1−N
N

1
N · · · 1

N

1
N

1−N
N · · · 1

N
...

...
. . .

...
1
N

1
N · · · 1−N

N

 . (10.7)

It is easy to show that the latter matrix has the eigenspectra

σ = (0,−1,−1, . . . ,−1)

with an (N−1)–fold eigenvalue −1. Therefore, the synchronous solution is stable

if the H ′(0) > 0. To check this condition, we generate the phase response curve

R(θ) of the isolated Morris-Lecar neuron using XPPAUT [46] and convolve it

after time-reversal according to (8.36) with the synaptic input (10.6). We obtain

the phase interaction function H plotted in Figure 10.3. Clearly, the derivative

of the function at zero is H ′(0) < 0. Therefore, the synchronous solutions are

unstable.

Note that another branch of synchronous solutions exists for a wide window of
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Figure 10.3: The phase interaction function of the synaptically coupled Morris-
Lecar neurons.

gs. This branch of solutions, distinct from the one corresponding to perturbation

of the single neuron oscillatory solutions by a weak synaptic coupling, undergoes

two turns, and putatively stable solutions are observed in the numerical simu-

lations (implemented in Python using the Brian module [69] and in MATLAB)

between these two turns (shown in thick green line in Figure 10.2). The Python

source code is included in Appendix A.

Splay solutions

For an asynchronous splay state the firing times are given by Tmj = mT + jT/N .

In the limit N →∞ network averages may be replaced by time averages due to:

lim
N→∞

1
N

N∑
j=1

F (jT/N) =
1
T

∫ T

0
F (t)dt, (10.8)

for any T -periodic function F (t) = F (t + T ). Hence a splay state in which all

neurons fire is given by vi(t) = v(t+ iT/N), where v(t) is a T -periodic solution

of (10.1) with s(t) = gs(vs − v(t))P0 and P0 =
∫ T

0 P (t)dt/T = 1/T .

Solving the PBVP (source code in Appendix A), we find that for small gs the

splay state has a similar period to that of the synchronous solution. The period

of these splay solutions is shown also in the Figure 10.2 (red line). Note that for

the splay state ve(t) takes on the constant value v0 =
∫ T

0 v(t)dt/T . This is lower
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than the DISE threshold and therefore the DISE mechanism is not triggered. A

weak-coupling analysis shows that the splay solution is also unstable – see the

derivation below.

The phase differences between the oscillators φi − φj span the values

0,
1
N
,

2
N
, . . . ,

N − 1
N

,

leading to Jacobian

Ĥij =
1
N



−
N−1∑
i=1

H ′( i
N ) H ′( 1

N ) H ′( 2
N ) · · · H ′(N−1

N )

H ′(− 1
N ) −

N−1∑
i=1

H ′( i
N ) H ′( 1

N ) · · · H ′(N−2
N )

H ′(− 2
N ) H ′(− 1

N ) −
N−1∑
i=1

H ′( i
N ) · · · H ′(N−3

N )

...
...

. . .
...

...

H ′(−N−1
N ) H ′(N−2

N ) H ′(N−3
N ) · · · −

N−1∑
i=1

H ′( i
N )


.

(10.9)

This matrix is a Toeplitz matrix of a special form called a circulant matrix. A

nice analytical result shows that the eigenvalues of a circulant matrix are given

by Fast Fourier Transform of the first column of the matrix [37]. Indeed, the

eigenvalues are

λn =
1
N

N∑
j=1

H ′
(
j

N

)(
e2πinj

N − 1
)

= (10.10)

= −
N−1∑
j=1

H ′
(
j

N

)
· 1 +

N∑
j=1

H ′
(
j

N

)(
e2πinj

N

)
. (10.11)

To sidestep the numerical computation of derivative of the phase interaction

function, we can use the fact that the Fourier coefficients of the derivative are

linked to the Fourier coefficients of the original function, giving in the limit of

large N

λn = −2πinHn, (10.12)
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where Hn are the Fourier coefficients of H(θ) =
∑

nHne
2πinθ. These Fourier co-

efficients Hn can be further conveniently computed from the Fourier coefficients

of the synaptic input P (θ) and phase response function R(θ) as shown below.

Consider the Fourier series

R(θ) =
∑
n

Rne
2πinθ, P (θ) =

∑
n

Pne
2πinθ. (10.13)

It can be easily shown from the definition (8.36), using
∫ 1

0 dθe2πi(n+m)θ = δn,−m,

that for the coefficients Hn of the series

H(θ) =
∑
n

Hne
2πinθ (10.14)

it holds that Hn = PnR−n.

Since we use the synaptic response in a relatively simple analytical form of

an alpha function, we can obtain the Pn coefficients in an analytical form as

Pn = α2∆/(α∆ + 2πin), where ∆ is the period of the oscillation. Therefore, the

only numerical operation necessary is computation of the Fourier coefficients of

the Phase Response Curve R(θ) of the Morris-Lecar neuron.

Carrying out the outlined computations, we finally obtain the eigenvalues given

by (10.12). The real parts of the first 50 eigenvalues are plotted in Figure 10.4.

Clearly, after the initial zero eigenvalue there are several eigenvalues with positive

real part, confirming the instability of the splay solution.

The computations necessary to check the stability of both the splay and syn-

chronous solution were carried out in MATLAB. See Appendix A for the relevant

source code.

Clustered solutions

Whilst we have shown by theoretical arguments the instability of both the syn-

chronous and splay solution, direct numerical simulations of the network suggest

that another specific stable oscillatory solution exists even for the weak cou-

pling. This has a hybrid form where the network splits into several clusters

of fully synchronised neurons. These clusters then form a splay with evenly

distributed phases.

Interestingly this type of solution typically further combines with a special type

of clustered solution that can also occur for a wide range of gs. This type of
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Figure 10.4: The real parts of the first 50 eigenvalues of the Jacobian Ĥij of the
linearised perturbation system of the splay phase-locked solution of the synap-
tically coupled Morris-Lecar neuron network. The existence of eigenvalues with
positive real parts proves the instability of the splay solution.

solution can be predicted purely from the theory as described below.

Consider two clusters of neurons. One is in a (clustered) splay state, populating

the orbit corresponding to the stable limit cycle of a single neuron. The other

cluster consists of neurons sitting at rest at the central fixed point, which is stable

for a sufficient level of synaptic input from the oscillating cluster of neurons. This

can be described using the differential-algebraic system

v̇ = f(v, w) + I + r
gs
T

(vs − v), ẇ = g(v, w),

0 = f(v, w) + I + r
gs
T

(vs − v), 0 = g(v, w), (10.15)

where r is the fraction of firing neurons and (v(t+iT/M), w(t+iT/M)) with M =

Nr, and (v, w) describe neurons in the splay and resting cluster respectively. In

this case ve = rv0 + (1− r)v.

For ve < vth
e the parameter region of existence for such a solution is illustrated

in the inset of Figure 10.5, where a pair of splay states (with r 6= 1) only coexists

with a rest state for rgs ∈ [L,H]. Here the splay state is annihilated in a saddle-

node bifurcation at rgs = H, while below rgs = L the central fixed point becomes

unstable (assuming the oscillating cluster sitting at the upper branch of the limit

cycle solution). For fixed rgs, as gs is increased, ve grows until it reaches vth
e
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Figure 10.5: Fraction of firing neurons r as a function of the synaptic coupling
strength gs. The inset shows the bifurcation diagram (in maximum amplitude)
for a splay state with ve < vth

e as a function of the product rgs. The rest state v
is less than the threshold vth = 0.05 (blue line). Two branches of splay solution
corresponding to stable (solid line) and unstable (dashed line) limit cycle of a
single neuron model coalesce in a saddle-node of periodics at rgs = H. L defines
the loss of stability of the rest state under synaptic activity corresponding to the
upper limit cycle branch. In the main figure the unlabelled magenta curved line
shows the values of r for which ve = vth

e = 0.02. The green and red lines define
the band of feasible values of r as a function of gs corresponding to the splay
cluster living on the larger orbit.

and activates the DISE mechanism. The border in the (r, gs) parameter plane

where ve = vth
e for a cluster state is shown in Figure 10.5 (magenta line), and

we see that it defines a critical curve marking the onset of DISE which we can

write in the form gs = gc(r). In the absence of DISE, cluster states with limit

cycle corresponding to the upper branch of the limit cycle solution would exist

for a greater area of parameter space defined by the right-infinite strip between

the lines L/gs and H/Gs.

For gs < gc(r) direct numerical simulations do indeed show cluster states with

properties in excellent agreement with the solution of (10.15) (with v(0) = vth)

up to small fluctuations. An example is shown in Figure 10.6.

For a given value of gs the fraction of neurons r in the firing state is a function of

initial data, as expected. Importantly, after transients, the mean depolarisation

signal is flat (no oscillations) and the period of oscillation of a firing neuron is

of the same order of magnitude as a single isolated neuron.
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Figure 10.6: A cluster state for N = 100, g = 0.03, vth
e = 0.02, λ = 10−5. Top

left: a plot of the average signal ve(t), showing that after transients the emergent
state lies below the threshold to activate DISE (red line). Top right: A raster
plot of spike times, illustrating the drop-out of some neurons and the emergence
of a splay state with the fraction of firing neurons r = 0.38. Bottom left: The
average network potential v̂ =

∑N
i=1 vi/N oscillates around the predicted value

rv0 + (1− r)v (magenta line) for r = 0.38. Bottom right: Phase plane dynamics
for the network (dropping transients) showing that the network has split into
two clusters (one with a common periodic orbit shown in blue with a period
T ∼ 6 and a rest state in purple). vth = 0.05 (green line), vth

e = 0.02 (red line).

10.3.2 Emergence of LFF

In the region where gs > gc(r) and DISE precludes the existence of the above

discussed cluster state we expect more exotic non-periodic network states to

emerge. Notably, while stable synchronous oscillations are possible with increas-

ing gs, the average depolarisation for these rhythms is relatively high and also an

increasing function of gs. Hence there is also a critical value of gs at which the

DISE mechanism will also preclude the existence of this periodic synchronous

state.

The mechanism for LFF emergence for this stronger coupling is as follows. A

synchronous (or near synchronous) solution can lead to a strong level of aver-

age depolarisation for which ve(t) > vth
e . This activates the DISE mechanism,

precluding further synaptic input and subsequently leading to a drop in network

firing activity and hence a drop in ve(t). Once ve(t) drops sufficiently to cross vth
e

from above then excitatory synaptic currents can once again drive the network

leading to an increase in ve(t) so that the process may repeat over. In this case

the emergent time scale of the network rhythm is set by the duration of ve(t)

above vth
e . Even for a synchronous solution this will depend on initial data, so

that network oscillations would not generically be periodic.
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Figure 10.7: The predicted synchronous population ISI (in ms) as a function of
gs, for w0 = 0.121 (green line), fits the ISIs seen in direct numerical simulations
with N = 100 (red dots). Other parameters as in Figure 10.6. The inset shows
the increase in ISI with decreasing vth

e for gs = 1.

To quantify the value of possible inter-spike intervals (ISIs) we focus on syn-

chronous rhythms with (v(0), w(0)) = (vth, w0) for some given w0 and solve the

BVP ve(0) = vth
e = ve(∆) with s(t) = gs(vs − v(t))P (t). The relevant XPP

source code is included in Appendix A.

The growth of the ISI, ∆, as a function of gs is shown in Figure 10.7, together

with results from direct simulations. The numerical spread of ISIs for low gs can

be ascribed to fast multi-spike bursts. With higher gs a single spike response is

more common and the period of the network state is accurately predicted by the

theory.

Note that the spike times considered here are only those that contribute to synap-

tic currents, while the neurons do in fact spike on a fast time scale during the

synaptically silent period. Hence, the network as a whole shows nested oscilla-

tions with a slow variation of synaptic currents superimposed on fast oscillations

of the instantaneous average network voltage (see Figure 10.8 bottom left).

To understand how decreasing vth
e can lead to a rapidly increasing ∆, as shown

in the inset of Figure 10.7, it is useful to develop the correspondence of the

evolution of the network (fixed parameters) with that of a single neuron with

varying background drive I. Referring to the inset of Figure 10.1 the network can

leave point A, corresponding to a synchronous firing state with average voltage

v2, when ve(t) drops below vth
e . The subsequent large increase in synaptic drive
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Figure 10.8: A similar plot to Figure 10.6 showing the emergence of slow syn-
chronized firing patterns in the strong coupling regime with gs = 0.5. Other
parameters as in Figure 10.6. Bottom right shows voltage traces of 5 neurons
(arbitrary offset for better display). Any variability due to heterogeneous initial
conditions does not affect the emergence of ultra-slow near-synchronous oscilla-
tions.

causes a transition to the right of the saddle-node of periodics, where firing is

not possible, and so synaptic currents fall which causes the transition to point B.

This unstable fixed point, with voltage v1, generates orbits which spiral outward

for a time T1 = T1(gs) generating a signal with ve(t) > vth
e (so that synaptic

currents are suppressed). These transition to full blown nonlinear oscillations,

with average voltage v2 and v̇e(t) < 0, and complete the path to point A so

that the process may repeat over. Making the convenient (and obviously not

accurate) assumption that v1,2 are constant then the BVP may be solved by

hand for λ = 0 to give ∆ = T1(gs)(v1−v2)/(vth
e −v2), explaining the dependence

of ∆ on vth
e seen in Figure 10.7.

10.4 Discussion

Importantly, without any parameter fine-tuning, we see the emergence of very

large ISIs for large values of gs, which are largely independent of the network

size. Moreover, in contrast to other network models of slow oscillations (< 1

Hz) [35] we do not require a mixture of excitation and inhibition, and as shown

in the inset of Figure 10.7 with decreasing choices of vth
e can easily achieve ISIs

on the order of tens of seconds. Thus DISE in the strong coupling regime is a

candidate mechanism for the generation of ultra-slow rhythms.
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10.5 Summary

Low-frequency activity fluctuations constitute a characteristic feature of spon-

taneous brain activity. The recent pioneering models of large-scale spontaneous

brain activity offer valuable contributions, but were so far not fully successful in

suggesting or explaining mechanisms of the emergence of this feature. Moreover,

these models often require the action of noise and signal transmission delays due

to long-range cortico-cortical interactions.

In this chapter we have proposed a model for the emergence of low-frequency fluc-

tuations in a localised neural population, independent of cortico-cortical delays

or specific role of noise. The key mechanism involves a feedback loop regulating

the activity level based on the previous states of the local system. We implement

an example of such a regulatory process in a phenomenological model of the ac-

tion of endogenous cannabinoids. These are retrograde messengers that suppress

synaptic transmission under long-term increase in average depolarisation levels.

To understand the behaviour of the model, we have analysed its dynamics in

detail, including the existence and stability of synchronous and asynchronous

solutions in the limit of weak synaptic coupling. We have also observed ex-

istence of less symmetric but stable clustered solutions and described some of

their properties. Most importantly, we document the emergence of solutions ex-

hibiting nested fast and ultra-slow oscillations under relatively stronger synaptic

coupling. This behaviour makes the action of such a regulatory loop a promis-

ing candidate for the mechanism of emergence of low-frequency fluctuations in

spontaneous brain activity.
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Discussion

In this thesis, I have described the state of the research of large-scale patterns of

spontaneous brain activity. Special attention has been paid to the results stem-

ming from the use of modern neuroimaging methods, in particular the functional

Magnetic Resonance Imaging, and to computational neuroscience models that

attempt to integrate the experimental evidence within a formal framework. The

main current challenges of the field have been outlined, and I have presented

several original research contributions directed towards addressing these chal-

lenges. Needless to say, this enterprise generated many new research questions,

which are discussed in the following within the wider context of the field.

Confounding role of non-neuronal signals

The first original contribution of this thesis presented in chapter 4 was related

to the potential confounding effects that increased head-movement can have on

some indices of spontaneous brain activity. The main message of this chapter was

the support for critical interpretation of the neuroimaging data. While the neu-

ronal origin of a part of the BOLD fMRI signal has been firmly established over

the last fifteen years, differences between conditions and groups may potentially

arise from alterations in non-neuronal component of the signal.

Especially in a field without a strong underlying theoretical framework, where

experimental results are likely to be interpreted a posteriori rather than against

strict prior theoretical predictions, the danger of generating both false positive

and false negative results cannot be overestimated.

It is pleasing to observe that more rigorous control of the equivalence of the po-

tentially confounding variables such as motion is becoming increasingly adopted
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in the most recent studies of effect of altered brain state of spontaneous brain

activity features such as in [106].

Nongaussianity in fMRI functional connectivity

The question of appropriateness of the use of linear correlation for functional

connectivity assessment in resting state fMRI is not only of abstract theoretical

interest. To the opposite, the recent presentation of the message of chapter 5

at the Human Brain Mapping Conference (Barcelona 2010), confirming the very

good fit of the gaussian approximation to the bivariate fMRI time series dis-

tribution, seemed to comfort the community of practical resting state fMRI

researchers, worrying about potentially missed functional connections.

However, this result may be a bit confusing and disappointing to those more

familiar with the electrophysiological and computational neuroscience research,

where the nonlinear nature of the neuronal processes is highly acknowledged.

This opens a range of relevant questions regarding the degree of potential gener-

alisation of these results to other preprocessing methods and time-lagged depen-

dencies. Explicit modelling might have something to say regarding the emergence

of largely ‘linear’ or ‘gaussian’ dependencies on the macroscopic level of regional

fMRI signals from the highly nonlinear nature of the small-scale neuronal dy-

namics.

Electrophysiological correlates of fMRI functional con-

nectivity

The topic studied in detail in chapter 6 was the problem of existence of electro-

physiological correlates of the fMRI functional connectivity. I have described an

inter-subject relation between a slow EEG pattern and decreased functional con-

nectivity in the default mode network, probably the most studied cortical resting

state network. This can be seen as part of the general stream of research into

resting state fMRI validation, focusing here directly on the functional connec-

tivity construct rather than on the spontaneous fluctuation of the BOLD signal

itself. On the other hand, this finding holds promise for potential relevance

of fMRI FC for clinical (potentially diagnostic) application, since it documents

that spontaneous functional connectivity has neuronally relevant inter-subject

correlates.
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These findings left several questions open. The most appealing is probably the

question of the mechanism underlying the EEG-FC link. Only a speculative con-

ceptual model was outlined in the respective chapter, but potentially in future

work this question could be better addressed by development of dedicated mod-

els. Unfortunately, as discussed in the third part of this thesis, general models

of large-scale spontaneous brain activity with sufficient predictive power are not

yet readily available.

Challenges in spontaneous brain activity modelling

As described earlier, modelling large-scale spontaneous brain activity is a rela-

tively new enterprise, still in the stage of initial attempts. This is reflected in the

nature of the questions studied in the relevant chapters of this thesis – the focus

is on the feasibility discussion and potential candidate mechanisms for some of

the observed phenomena.

A careful reader may notice that a slightly different perspective on SBA mod-

elling priorities is adopted from the one prevalent in the current literature, in

focusing more on the emergence of the low-frequency fluctuations rather than

reproducing the functional connectivity structure. The reason for this approach

is two-fold. The first aspect is rather practical. The quality of predictions of

functional connectivity may be currently seriously limited by the information

available about the existence, directionality and relative strength of structural

connections. Despite the improvements in the anatomical connectivity methods

such as diffusion imaging based tractography, the sufficiency of the available data

is still questionable.

The second reason is more principal. Functional connectivity represents nothing

else than temporal synchronisation of activity of distant cortical modules. In

this sense it can be considered secondary to the temporal dynamics, although

this simplistic view has some limitations. Therefore, even a significant degree of

recovery of synchronisation structure among cortical regions, when obtained from

signals of grossly unrealistic temporal properties would raise questions about the

wider interpretability of results of such a model.

The initial stage of the research in modelling of large-scale spontaneous brain

activity phenomena is also reflected in the width of open questions revealed

by the investigation in this thesis. From the richness of these open problems,

I highlight two most closely related to potential future work on validation of
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the proposed mechanism for low-frequency fluctuation emergence. First, further

investigation is needed to reveal what is the role of regulatory feedbacks in the

slow brain activity dynamics. The search should not be limited to the action

of endocannabinoids that served as an example carrier of this mechanism - the

role of other neuromodulators or metabolic fatigue should be investigated. On

the other hand, attention should also be paid to the explanatory potential of

the local synchronisation dynamics as a minimalistic model for low-frequency

fluctuations. Here, a comparison with localised electrophysiological recordings

might prove extremely beneficial.

Open questions in the broader context

The relatively wide scope of this thesis has inevitably led to some selectivity

in the topics covered and limited detail devoted to particular areas. There are

several areas I consider worth special attention of the community investigating

the spontaneous brain activity, that could however be sufficiently represented in

this thesis.

The first is the psychological and more widely functional relevance of the spon-

taneous brain activity. Indeed, there is a wealth of knowledge as well as methods

available in the field of psychology that waits to be properly integrated with the

newest neuroimaging results in spontaneous brain activity.

The second underrepresented area concerns the breadth of results of neurocom-

putational modelling mainly of electrophysiological signals that have been pub-

lished and discussed rather in isolation from the newest observations in func-

tional MRI. Moreover, general concepts such as dynamical synchronisation (see

e.g. [19]), self-organised criticality [29] or many other may be closely relevant

for the observed features of the resting state neuroimaging data. Integration of

these concepts is likely to be fruitful, although critical assessment of all candi-

date mechanisms is necessary to assure predictive power and biological realism

of the chosen models. The danger here is that with enough free parameters,

models could fit well some of the observed features without bringing any more

understanding of the underlying system.
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Conclusion

I would like to conclude this thesis with a few notes on the most recent devel-

opment in the field and its outlook. While it might go unnoticed at first, the

study of spontaneous brain activity has undergone a major transformation over

the last few years. To document this, several of the newest trends are outlined

below.

Probably the most noticeable of these trends is the wide interest the topic has

recently attracted in the general neuroscience and neuroimaging community.

Moreover, this interest has further materialised into establishment of a huge

publicly available database of 1000+ resting state fMRI datasets [16], a move

that will without doubt further increase the activity and recognition of the field.

A related point is the ‘warming’ of the relations with the mainstream task-

related neuroimaging studies community. In fact, integration of task-related

activations and resting state networks is one of the most appealing movements

in the neuroimaging field [165].

Importantly, the spontaneous brain activity research community has dealt with

the critical voices from the more established disciplines by internalising the crit-

ical approach. Among other things, this has lead to several recent studies crit-

ically assessing the reliability of the resting state features [183, 160, 126]. This

critical element is apparent also in the ongoing reformulation of the crucial con-

cepts of the SBA study. For instance, the notion of resting state networks is be-

coming increasingly understood in the form of multi-level hierarchical networks.

The level of detail observed then depends on solely on the method chosen –

a view closer to the intuitive understanding of organisation of brain function.

Another example is the recent upraise in the acknowledgement of the role of

subcortical structures in the SBA, including cerebellum, basal ganglia and other

structures. It is impossible to list here all the recent trends and advances – in

the end, the field has been suggested to be undergoing a change resembling a

paradigm shift [146].

Without further eluding to the discussion of the scientific paradigm in neu-

roimaging and neuroscience in general, I hope this thesis managed to build a

rich picture of the spontaneous brain activity study as a flourishing research

area. The field is definitely in a stage of rapid expansion and maturation as a

descriptive discipline. Perhaps even more importantly, this process is accompa-

nied by the increasing recognition of the important role of theoretical integration
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of experimental findings, validated through predictions of formalised models.

Throughout my doctoral studies, it has been a great pleasure to be both a

witness and an active participant in this adventurous scientific journey to the

realm of spontaneous brain activity. Although the form of this report is at places

necessarily quite technical and the level of detail might distract from the bigger

picture, I hope that I have conveyed to the reader at least part of that pleasure

of scientific discovery of one of the most intimate mysteries of human mind – the

mystery of spontaneous activity.
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Selected source code

XPP code for the PBVP for the ML neuron synapti-
cally coupled network splay solution

# Boundary value problem f o r the Morris−Lecar s ynap t i c a l l y coupled
network sp lay s o l u t i o n

# parameters ( can be used f o r numerica l cont inuat i on o f s o l u t i o n s )
p g=0.01
p I =0.075
p vth=0.05

# i n i t i a l va lue s
v (0 ) =0.05
w(0) =0.1222481
per (0 ) =6.22141

# constant s / f i x ed model parameters
gca =1.0 , gk=2.0 , g l =0.5 , vk=−0.7, v l =−0.5, f =1.15
v1=−0.01 , v2=0.15 , v3=0.1 , v4=0.145 , vs=2

# s t a t i c equat ions
minf =0.5∗(1.0+ tanh ( ( v−v1 ) /v2 ) )
winf =0.5∗(1.0+ tanh ( ( v−v3 ) /v4 ) )
tauw=1.0/ cosh ( ( v−v3 ) / (2 . 0∗ v4 ) )

# boundary cond i t i on s f o r the BVP
bndry v−vth
bndry v’−vth
bndry w−w’

# dynamical equat ions
per ’=0
v ’=( per )∗(−gca∗minf ∗(v−1.0)−gk∗w∗(v−vk )−g l ∗(v−v l )+I )+g ∗( vs−v )
w’=( per ) ∗( f ∗( winf−w)/tauw )

# XPPAUT s e t t i n g s
@ xp=v , yp=w, x lo =−0.5, xhi =0.2 , y lo =−0.1, yhi =0.5
@ bounds=100000 ,maxstore=100000 ,nmesh=200 , t o t a l =1.0
@ method=runge−kutta , dt=0.001
done
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XPP code for the PBVP for the ML neuron synapti-
cally coupled network synchronous solution

# Boundary value problem f o r the Morris−Lecar s ynap t i c a l l y coupled
network sychronous s o l u t i o n

# parameters ( can be used f o r numerica l cont inuat i on o f s o l u t i o n s )
p g=0.01
p I =0.075

# i n i t i a l va lue s
v (0 ) =0.05
w(0) =0.125
per (0 ) =5.9

# constant s / f i x ed model parameters
gca =1.0 , gk=2.0 , g l =0.5 , vk=−0.7, v l =−0.5, f =1.15
v1=−0.01 , v2=0.15 , v3=0.1 , v4=0.145
vs=2, vth =0.05 , alpha=1

# s t a t i c equat ions
minf =0.5∗(1.0+ tanh ( ( v−v1 ) /v2 ) )
winf =0.5∗(1.0+ tanh ( ( v−v3 ) /v4 ) )
tauw=1.0/ cosh ( ( v−v3 ) / (2 . 0∗ v4 ) )
PT=alpha ∗ alpha ∗( exp(−alpha ∗ theta ∗per ) /(1−exp(−alpha ∗per ) ) ) ∗( theta ∗

per+(per ∗exp(−alpha ∗per ) ) /(1−exp(−alpha ∗per ) ) )

# boundary cond i t i on s f o r the BVP
bndry v − vth
bndry v’− vth
bndry w−w’
bndry theta

# dynamical equat ions
per ’=0
v ’=( per )∗(−gca∗minf ∗(v−1.0)−gk∗w∗(v−vk )−g l ∗(v−v l )+I )+g∗per ∗PT∗( vs−v )
w’=( per ) ∗( f ∗( winf−w)/tauw )
theta ’=1

# XPPAUT s e t t i n g s
@ xp=v , yp=w, x lo =−0.5, xhi =0.2 , y lo =−0.1, yhi =0.5
@ bounds=100000 ,maxstore=100000 ,nmesh=200 , t o t a l =1.0
@ method=runge−kutta , dt=0.001
done
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XPP code for the BVP for the ML neuron network
solution with DISE

# Boundary value problem f o r the Morris−Lecar synchronous s o l u t i o n
endowed with the DISE mechanism

# parameters ( can be used f o r numerica l cont inuat i on o f s o l u t i o n s )
p w0=0.121
p g=0.1
p I =0.075
p veth =0.02

# i n i t i a l va lue s
v (0 ) =0.05
w(0) =0.121
per (0 )=25

# constant s / f i x ed model parameters

gca =1.0 , gk=2.0 , g l =0.5 , vk=−0.7, v l =−0.5, f =1.15
v1=−0.01 , v2=0.15 , v3=0.1 , v4=0.145
vs=2, vth =0.05 , alpha=1

# s t a t i c equat ions
minf =0.5∗(1.0+ tanh ( ( v−v1 ) /v2 ) )
winf =0.5∗(1.0+ tanh ( ( v−v3 ) /v4 ) )
tauw=1.0/ cosh ( ( v−v3 ) / (2 . 0∗ v4 ) )
PT=alpha ∗ alpha ∗( exp(−alpha ∗ theta ∗per ) /(1−exp(−alpha ∗per ) ) ) ∗( theta ∗

per+(per ∗exp(−alpha ∗per ) ) /(1−exp(−alpha ∗per ) ) )

# boundary cond i t i on s f o r the BVP
bndry v − vth
bndry w−w0
bndry theta
bndry vv
bndry vv’−veth

# dynamical equat ions
per ’=0
v ’=( per )∗(−gca∗minf ∗(v−1.0)−gk∗w∗(v−vk )−g l ∗(v−v l )+I )+g∗per ∗PT∗( vs−v )
w’=( per ) ∗( f ∗( winf−w)/tauw )
theta ’=1
vv’=v

# XPPAUT s e t t i n g s
@ xp=v , yp=w, x lo =−0.5, xhi =0.2 , y lo =−0.1, yhi =0.5
@ bounds=100000 ,maxstore =10000000 ,nmesh=200 , t o t a l =1.0
@ method=runge−kutta , dt=0.001

done
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MATLAB code for computation of the Phase Interac-
tion Function of the synchronous ML network solution

function y=PIF(PRC, lengthEta , v , vs , alpha )

% Jaros l av Hlinka
% ver s i on from July 2010
%
% FUNCTION: computes Phase In t e r a c t i on Function . Note t ha t

d e r i v a t i on o f PIF at 0
% determines s t a b i l i t y o f synchronous s o l u t i o n o f network o f weakly

coup led
% o s c i l l a t o r s
%
% INPUT:
% PRC − Phase Response Curve . Accepted in th r ee column format as

expor ted
% from XPP: f i r s t column time , second V−component o f PRC, t h i r d W−

component
% of PRC ( d i s r e ga rded )
% alpha − speed o f synapse − t y p i c a l l y 1
% leng thEta − l e n g t h o f s ynap t i c impulse to cons ider ( I guess now

high va l u e s more prec i s e , but take l onger to compute ?)
% v − v o l t a g e t r a c e s in one per iod . Accepted in th r ee column format

as expor ted
% from XPP: f i r s t column time , second V−component o f PRC, t h i r d W−

component
% of PRC ( d i s r e ga rded )
% vs − shunt v o l t a g e
%
% NOTES:
% synapse o f a lpha func t i on form implemented

%% computation
i f nargin < 5

alpha = 1 ;
end
[ s1 , s2 ] = s ize (PRC) ;
d e l t a t = PRC(2 ,1 )−PRC(1 ,1 ) ;
t = 0 : d e l t a t : lengthEta ;
N = alpha ˆ2 .∗ t .∗exp(−alpha ∗ t ) ;
R = PRC( : , 2 ) ’ ;
i f nargin <4

shunt = ones ( s1 , 1 ) ;
else

shunt = ( vs−v ( : , 2 ) ) ’ ;
end
Rshunt = R.∗ shunt ;
y = de l t a t ∗ cconv (N, Rshunt (end :−1:1) , s1 ) ;
%% p l o t t i n g
f igure ;
plot ( 0 : 1 / ( s1−1) : 1 , PIF , ’ k ’ ) ;
xlabel ( ’ \Phi ’ ) ;
ylabel ( ’H ’ ) ;
set ( f i n d a l l ( gcf , ’Type ’ , ’ t ex t ’ , ’−depth ’ , i n f ) , ’FontName ’ , ’ t imes ’ , ’

FontSize ’ , 20)
set ( f i n d a l l ( gcf , ’Type ’ , ’ axes ’ , ’−depth ’ , i n f ) , ’FontName ’ , ’ t imes ’ , ’

FontSize ’ , 20)
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MATLAB code for computation of the eigenvalues of
the ML network splay solution Jacobian

function lambdas=e i g enva l u e s s p l a y (PRC, v , vs , alpha , Nd i s t i n c t )

%% i n i t i a l i s a t i o n
i f nargin < 5

Nd i s t i n c t = ce i l ( s ize (PRC, 1 ) /2) ;
end
i f nargin < 4

alpha = 1 ;
end

%% computation
newsamplepoints = PRC(1 , 1 ) : (PRC(end , 1 )−PRC(1 ,1 ) ) /(2∗ Ndis t inct −2) :PRC

(end , 1 ) ;
PRC = interp1 (PRC( : , 1 ) ,PRC, newsamplepoints ) ; % resample the PRC
v = interp1 ( v ( : , 1 ) , v , newsamplepoints ) ; % resample the v o l t a g e t race
shunt=vs−v ( : , 2 ) ;
Rns = f f t (PRC( : , 2 ) .∗ shunt ) ;
d e l t a = PRC(end , 1 ) ;
l = length (Rns ) ;
i f mod( l , 2 )==0

Rns = Rns ( 1 : ( end−1) ) ;
end
RevertedRns = Rns ( [ Nd i s t i n c t :−1:1 ,end :−1:( Nd i s t i n c t +1) ] ) ;
nva lues = (−Ndi s t i n c t +1: 1 : Ndi s t inct −1) ;
Pnvalues = ( alpha ˆ2∗ de l t a ) . / ( ( alpha ∗ de l t a+2∗pi∗1 i .∗ nvalues ) . ˆ 2 ) ;
Hnvalues = Pnvalues .∗RevertedRns ’ ;
lambdas = −2∗pi∗1 i ∗ nvalues .∗ Hnvalues ;
%% p l o t t i n g
f igure
stem( nva lues ( nvalues >=0) , real ( lambdas ( nvalues >=0)) , ’ k ’ ) ;
xlabel ( ’n ’ ) ;
ylabel ( ’Re(\ lambda n ) ’ ) ;
set ( f i n d a l l ( gcf , ’Type ’ , ’ t ex t ’ , ’−depth ’ , i n f ) , ’FontName ’ , ’ t imes ’ , ’

FontSize ’ , 20)
set ( f i n d a l l ( gcf , ’Type ’ , ’ axes ’ , ’−depth ’ , i n f ) , ’FontName ’ , ’ t imes ’ , ’

FontSize ’ , 20)
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Python code for the DISE-endowed Morris-Lecar synap-
tically coupled network simulation

#ipython −py lab DISE globa l . py
#ipython −py lab −wthread DISE globa l . py
#e x e c f i l e ( ’ DISE globa l . py ’ ) from python
’ ’ ’
Morr i s Lecar s ynap t i c a l l y coupled network with Depo l a r i s a t i on

Induced Suppress ion o f Exc i ta t i on (DISE)
J HLinka July 2010
’ ’ ’

import b r i an no un i t s
from br ian import ∗
import time
t i c = time . time ( )

#parameters
J=0.075; gca =1.0 ; gk =2.0 ; g l =0.5 ; vk=−0.7; v l =−0.5; f =1.15; v1

=−0.01; v2 =0.15; v3 =0.1 ; v4=0.145
vth =0.05; kappa =1.0; veth =0.02; vsyn =2.0 ; alpha =1.0
N=10
durat ion=20
#loop ing parameters
gmin=0.03
gstep=0
grange=1 # number o f g samples

# i n i t i a l i s a t i o n
gsave =[ ]
Fract ionsave =[ ]
Per iodsave =[ ]
v e f i n a l s a v e =[ ]
AverPeriodsave =[ ]

#main code in a loop over g va l u e s
for i g in range ( grange ) :

c l e a r ( )
g=gmin+ig ∗ gstep
s imu l a t i on c l o c k=Clock ( . 1 )
print ’ g i s %f ’ % g
print ’N i s %d ’ % N
print ’ dt i s %f ’ % s imu l a t i on c l o c k . dt
print ’ durat ion i s %5.2 f ’ % durat ion , ’ time un i t s ’

# The model
eqs=Equations ( ’ ’ ’
dv/dt = −gca∗minf ∗(v−1.0)−gk∗w∗(v−vk )−g l ∗(v−v l )+J+s ∗( vsyn−v )

: 1
dw/dt = f ∗( winf−w)/tauw : 1
ds/dt = alpha∗(− s+x ) : 1
dx/dt = alpha∗(−x ) : 1
dve/dt = v : 1
minf = 0.5∗ (1 .0+ tanh ( ( v−v1 ) /v2 ) ) : 1
winf = 0.5∗ (1 .0+ tanh ( ( v−v3 ) /v4 ) ) : 1
tauw = 1.0/ cosh ( ( v−v3 ) / (2 . 0∗ v4 ) ) : 1
’ ’ ’ )

def vdot (v ,w, s ) :
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minf = 0.5∗ (1 .0+ tanh ( ( v−v1 ) /v2 ) )
winf = 0.5∗ (1 .0+ tanh ( ( v−v3 ) /v4 ) )
tauw = 1.0/ cosh ( ( v−v3 ) / (2 . 0∗ v4 ) )
return −gca∗minf ∗(v−1.0)−gk∗w∗(v−vk )−g l ∗(v−v l )+J+s ∗(

vsyn−v )

def mynewthreshold (v , w, s , x , ve ) :
#we need a t h r e s h o l d func t i on t ha t on ly genera t e s a s p i k e

upon c ro s s i n g t h r e s h o l d f o r the f i r s t time
#f ind a l l the neurons f o r which dv/ dt > 0 and v be low

t h r e s h o l d on l a s t s t ep
#return v>v th f o r t h i s s e t on ly

r=v [ : ] ∗ 0 #zeros o f s i z e N
vv=sum( ve ) /(N∗ s imu l a t i on c l o c k . t ) #average v o l t a g e

across neurons and time ( s ince ve i s cumula t ive
v o l t a g e o f each neuron )

for i in range ( l en (v ) ) :
vd = vdot (v [ i ] ,w[ i ] , s [ i ] )
# check t ha t v o l t a g e increas ing , in l a s t

s t ep be low vth and average v o l t a g e now
below ve th

i f vd > 0 and v [ i ]−vd∗ s imu l a t i on c l o c k . dt <
vth and vv < veth :

r [ i ]=v [ i ]>=vth
else :

r [ i ]=v [ i ]>1000
return r

P=NeuronGroup (N, model=eqs , th r e sho ld=FunThreshold (
mynewthreshold ) , c l o ck=s imu la t i on c l o ck , order =2, f r e e z e=
True )

C=Connection (P,P, ’ x ’ ) #why ’ x ’? −
v a r i a b l e to be k i c k ed !

C. c o nn e c t f u l l (P, P, weight=alpha ∗g/N)

# I n i t i a l i z a t i o n
# non− i n i t i a l i s e d x has IC=0

# ICs random :
P. v=0.03+0.001∗ randn ( l en (P) )
P.w=0.11+0.001∗ randn ( l en (P) )
P. s =0.001∗ randn ( l en (P) )
P. ve=veth +0.001∗ randn ( l en (P) )

# Record the number o f s p i k e s and a few t r a c e s
t racev=StateMonitor (P, ’ v ’ , r ecord=True , c l o ck=s imu l a t i on c l o c k

)
tracew=StateMonitor (P, ’w ’ , r ecord=True , c l o ck=s imu l a t i on c l o c k

)
t raceve=StateMonitor (P, ’ ve ’ , r ecord=True , c l o ck=

s imu l a t i on c l o c k )
t r a c e s=StateMonitor (P, ’ s ’ , r ecord=True , c l o ck=s imu l a t i on c l o c k

)
M=SpikeMonitor (P)

run ( durat ion )
t t = arange ( s imu l a t i on c l o c k . dt , s imu l a t i on c l o c k . t ,

s imu l a t i on c l o c k . dt ) # l i k e range , but a l l ow s f l o a t s

f i g u r e (None , (10 , 7 . 5 ) , 100)
c l f ( )
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#ca l c u l a t e per iod − ISI o f l a s t neuron to f i r e
Period=0
Fract ion=0
i f l en (M. sp i k e s ) < 2∗N :

print ’No sp i k e s \n ’ ,
subp lot (224)
p l o t ( )

else :
index = M. sp i k e s [ −1 ] [ 0 ] # l a s t s p i k e

neuron index
Tend = M. sp i k e s [ −1 ] [ 1 ] # l a s t s p i k e

time
Tlast = 0

for k in range ( l en (M. sp i k e s ) ) : # f i n d s the prev ious
s p i k e o f the l a s t s p i k i n g neuron

i f M. sp i k e s [−1−k−1 ] [ 0 ] == index :
Tlast = M. sp i k e s [−1−k−1 ] [ 1 ]
break

else :
T last=Tend

Period = Tend − Tlast
print ’ Per iod i s %f ’ % Period

#ca l c u l a t e f r a c t i o n o f s up e r t h r e s ho l d neurons
myspikes = [ 0 ]
myspikes = myspikes∗N
s t a r t c o e f =0.75
v a l i d s t a r t=s t a r t c o e f ∗ durat ion
v a l i d s p i k e s =[x for x in M. sp i k e s i f x [1] > v a l i d s t a r t ]

for k in range ( l en ( v a l i d s p i k e s ) ) :
myspikes [ v a l i d s p i k e s [ k ] [ 0 ] ]+=1

sub = [ ]
for k in range ( l en ( myspikes ) ) :

i f myspikes [ k ] < 5 : # counts o f f a l l
neurons wi th < 5 s p i k e s

sub . extend ( [ k ] )

X=se t ( range (N) )
Y=se t ( sub )
super = X−Y
Fract ion = len ( super ) ∗1 .0/N
print ’ Fract ion i s %f ’ % Fract ion
i f l en ( v a l i d s p i k e s )==0:

AverPeriod=0
else :

AverPeriod=(1− s t a r t c o e f ) ∗ durat ion ∗N/ len (
v a l i d s p i k e s )

print ’ Average Period i s %f ’ % AverPeriod
subplot (224)
s t = [ ]
sn = [ ]
s t = s t + [ f l o a t ( a [ 1 ] ) for a in M. sp i k e s ]
sn = sn + [ a [ 0 ] for a in M. sp i k e s ]
p l o t ( st , sn , ’ . ’ )

index =[ ]
index=in t ( l en ( t racev [ 0 ] [ : ] ) ∗ . 7 5 )

subplot (222)
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p lo t ( t racev [ : ] [ index : ] , tracew [ : ] [ index : ] , ( vth , vth ) , ( 0 , 0 . 7 ) , ’
r− ’ , ( veth , veth ) , ( 0 , 0 . 7 ) , ’ g− ’ )

x l ab e l ( ’ v ’ )
y l ab e l ( ’w ’ )

ve = mat( t raceve [ : ] [ 1 : ] ) .T∗1 .0/ t t [ 0 : s i z e ( t raceve [ : ] [ 1 : ] , 0 ) ]
ve=sum( ve , 0 ) /N

subplot (221)
p l o t ( t t [ 0 : l en ( array ( ve .T) ) ] , array ( ve .T) )
p l o t ( t t [ 0 : l en ( array ( ve .T) ) ] , [ veth ]∗ l en ( ve .T) )
x l ab e l ( ’ t ’ )
y l ab e l ( ’ ve ’ )
yl im (ymax=vth )

print ’ ve f i n a l va lue i s %f ’ % ve .T[−1]

subplot (223)
i f super == se t ( [ ] ) :

ham=0
else :

ham = min( super )
p l o t ( t t [ : −1 ] , t racev [ham ] [ 1 : l en ( t t ) ] , ’ r− ’ , t t [ : − 1 ] , [ vth ]∗ l en (

t t [ : −1 ] ) , ’ g− ’ )
x l ab e l ( ’ t ’ )
y l a b e l s t r = ’v [ ’ + s t r (ham) + ’ ] ’
y l ab e l ( y l a b e l s t r )
yl im (ymax=0.3)

t i t l e s t r = ”g = ” + s t r ( g ) + ” , Period = ” + s t r ( Period ) +
” , Fract ion = ” + s t r ( Fract ion )

t ex t ( 0 . 5 , 0 . 9 5 , t i t l e s t r )

toc = time . time ( )
print toc−t i c , ’ seconds have e lapsed ’

gsave . append ( g )
Fract ionsave . append ( Fract ion )
Per iodsave . append ( Period )
v e f i n a l s a v e . append ( ve .T[−1])
AverPeriodsave . append ( AverPeriod )

g f i l e=open ( ’ gsave . txt ’ , ’w ’ )
g f i l e . wr i t e ( s t r ( gsave ) )
g f i l e . c l o s e ( )
F r a c t i o n f i l e=open ( ’ Fract ionsave . txt ’ , ’w ’ )
F r a c t i o n f i l e . wr i t e ( s t r ( Fract ionsave ) )
F r a c t i o n f i l e . c l o s e ( )
P e r i o d f i l e=open ( ’ Per iodsave . txt ’ , ’w ’ )
P e r i o d f i l e . wr i t e ( s t r ( Per iodsave ) )
P e r i o d f i l e . c l o s e ( )
v e f i n a l f i l e=open ( ’ v e f i n a l s a v e . txt ’ , ’w ’ )
v e f i n a l f i l e . wr i t e ( s t r ( v e f i n a l s a v e ) )
v e f i n a l f i l e . c l o s e ( )
Ave rPe r i od f i l e=open ( ’ AverPeriodsave . txt ’ , ’w ’ )
Ave rPe r i od f i l e . wr i t e ( s t r ( AverPeriodsave ) )
Ave rPe r i od f i l e . c l o s e ( )
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