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ABSTRACT

LOSS OF SYNCHRONY IN AN INHIBITORY NETWORK OF
TYPE-I OSCILLATORS

by
Myongkeun Oh

Synchronization of excitable cells coupled by reciprocal inhibition is a topic of significant

interest due to the important role that inhibitory synaptic interaction plays in the

generation and regulation of coherent rhythmic activity in a variety of neural systems.

While recent work revealed the synchronizing influence of inhibitory coupling on

the dynamics of many networks, it is known that strong coupling can destabilize

phase-locked firing. Here we examine the loss of synchrony caused by an increase

in inhibitory coupling in networks of type-I Morris-Lecar model oscillators, which

is characterized by a period-doubling cascade and leads to mode-locked states with

alternation in the firing order of the two cells, as reported recently by Maran and

Canavier (2007) for a network of Wang-Buzsáki model neurons. Although alternating-

order firing has been previously reported as a near-synchronous state, we show that

the stable phase difference between the spikes of the two Morris-Lecar cells can

constitute as much as 70% of the unperturbed oscillation period. Further, we examine

the generality of this phenomenon for a class of type-I oscillators that are close to their

excitation thresholds, and provide an intuitive geometric description of such "leap-

frog" dynamics. In the Morris-Lecar model network, the alternation in the firing order

arises under the condition of fast closing of K+ channels at hyperpolarized potentials,

which leads to slow dynamics of membrane potential upon synaptic inhibition, allowing

the presynaptic cell to advance past the postsynaptic cell in each cycle of the oscillation.

Further, we show that non-zero synaptic decay time is crucial for the existence

of leap-frog firing in networks of phase oscillators. However, we demonstrate that

leap-frog spiking can also be obtained in pulse-coupled inhibitory networks of one-



dimensional oscillators with a multi-branched phase domain, for instance in a network

of quadratic integrate-and-fire model cells. Also, we show that the entire bifurcation

structure of the network can be explained by a simple scaling of the STRC (spike-

time response curve) amplitude, using a simplified quadratic STRC as an example,

and derive the general conditions on the shape of the STRC function that leads

to leap-frog firing. Further, for the case of a homogeneous network, we establish

quantitative conditions on the phase resetting properties of each cell necessary for

stable alternating-order spiking, complementing the analysis of Goel and Ermentrout

(2002) of the order-preserving phase transition map. We show that the extension of

STRC to negative values of phase is necessary to predict the response of a model cell

to several close non-weak perturbations. This allows us for instance to accurately

describe the dynamics of non-weakly coupled network of three model cells. Finally,

the phase return map is also extended to the heterogenous network, and is used

to analyze both the order-alternating firing and the order-preserving non-zero phase

locked state in this case.
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2.3 Effect of an increase in coupling strength on the stability of phase-locked firing
in (a) an excitatory network, and (b) an inhibitory network. changes
from 0.01 to 0.2 in both cases. In the case of excitation (a), anti-phase
synchronous firing is stable for a wide range of coupling strength, while the
phase-locked synchronous firing is readily destabilized in the case of mutual
inhibition (b)  20

2.4 Effect of non-weak coupling on the phase-plane trajectory of the postsynaptic
cell. Double arrows indicate the movement of the V-nullcline during each
cycle of the network oscillation. (a) In the case of excitation, an increase in
synaptic coupling causes no qualitative change in the phase-plane dynamics.
(b) For sufficiently strong inhibition, the V-nullcline of the post-synaptic cell
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spiking, φ2 = φ (φ1). In one cycle of the alternating-order spiking, one of
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retrograde to the peak of the action potential (red curve). If the next
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CHAPTER 1

INTRODUCTION

1.1 Synchronization of Oscillators

The most spectacular example of synchronous phenomenon in nature is a rhythmic

flashing of fireflies [8, 7, 36, 79]. It was reported that thousands of male fireflies

congregate in trees and flash in synchrony in certain parts of southeast Asia at

night. Synchronization occurs in many other populations of biological oscillators.

For instance, the pacemaker cells of the heart [66], central pattern generation [46, 68],

chemical waves [50], the networks of neurons in the circadian pacemaker [14, 65, 92,

93, 94] and hippocampus [85], rhythmic activity in the brain [34, 74], crickets that

chirp in unison [87], the insulin-secreting cells of the pancreas [73], and groups of

women whose menstrual periods [54, 71] become mutually synchronized.

Also, many synchronized phenomena such as the transition from a periodic

orbit to a chaotic attractor, the attraction to the periodic orbit, and noise-induce

synchronization, can be observed in various regions of the brain. Such synchronous

firing has been observed in the sensory processing of cat visual cortex [33, 23, 49] in

early experiments (see below). For another example, Freeman et al. [21, 22] have

shown that spatial electroencephalogram (EEG) patterns in the olfactory bulb of

rabbits are transformed into equilibrium, periodic or chaotic states with conditioning

to odors.

Many phenomena in biology, chemistry, and engineering can be described by

a network of oscillators. Many biological rhythms, ranging from breathing to walking,

are described in part by central pattern generating (CPG) networks built from neurons.

Oscillations are a prevalent phenomenon in biological neural networks and manifest

themselves experimentally in electroencephalogram (EEG), recordings of local field

1
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potentials (LFP), and multi-unit recordings. Oscillations play an important role in

the coding of sensory information. In the olfactory system an ongoing oscillation of

the population activity provides a temporal frame of reference for neurons coding

information about the odorant [51, 12]. Similarly, place cells in the hippocampus

exhibit phase-dependent firing activity relative to a background oscillation [59]. Finally,

rhythmic spike patterns in the inferior olive may be involved in various timing tasks

and motor coordination [52, 90, 44]. Moreover, synchronized behavior in the nervous

systems can be frequently illustrated as a nonlinear dynamical model of large or small

numbers of coupled oscillators [28, 6, 25].

The first observation of synchronization reported by Dutch scientist Huygens

in his experiments with pendulum clocks in the 17th century. This synchronized

phenomenon was also discovered in neuronal systems. The experiments showing

synchronized phenomena have been performed on awake behaving kittens that had

multiple electrodes implanted in the visual cortex in 1986. The goal of these experiments

was to follow the time course of experience dependent changes in the receptive field

properties of cortical neurons following short periods of monocular deprivation [55].

During these experiments it was noted that groups of neurons which are recorded

simultaneously and segregated spatially engaged in synchronous oscillatory activity

when activated by visual stimuli. These oscillations suggested that the oscillations

and their synchronization were due to internal neuronal interactions.

Motivated by the discovery of the synchronization phenomena more and more

labs joined into the search for relations between cognitive and executive functions

and the synchronization of oscillatory activity. Laboratories applying EEG- and

MEG- recording methods provided rapidly growing evidence for a close relation

between synchronous oscillatory activity in the beta- and gamma- frequency range

and a variety of cognitive functions such as perceptual grouping focused attention,
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maintenance of contents in short term memory, poly-sensory integration, formation

of associative memories and sensory motor coordination (review in [75]).

This phenomenon is best seen in local field potentials (LFP) which reflect the

synchronous activity of local groups of neurons in the first studies on synchronous

gamma oscillations in the visual cortex. This led to a revival of studies exploiting the

field potential recordings for the detection of synchronized activity in these studies.

This performed by a number of laboratories, provided independent evidence from

a variety of species (monkeys, cats, ferrets, rats, mice and birds). The cognitive

and executive functions are often associated with the oscillatory patterning and the

synchronization of the responses of neuronal groups. And it can occur over widely

distributed networks.

Synchronous firing of two or more neurons is one mechanism for conveying

information in a population correlation code, which means individual spikes do not

encode independently of each other and correlation between spike times may carry

additional information. Rhythmic oscillations of population activity provide another

possible mechanism. Both synchronous firing and oscillations are common features

of the activity of neuronal populations. Synchronization depends on the intrinsic

mechanism of oscillation as well as on the nature of coupling.

From the evidence above, it appears that the oscillatory patterning of neuronal

activity and the associated synchronization of discharges serve important functions for

the computations performed by neuronal networks. The main effect of the oscillatory

modulation of membrane potential is that it constrains the time interval during which

cells are susceptible to excitatory input and can emit action potentials themselves.

These effects of an oscillatory modulation of cell excitability can be exploited in

many different ways in order to encode information and to define relations between

the activity of spatially distributed neuron groups. When neuronal groups become

entrained in synchronous oscillations, they will tend to emit spikes in synchrony
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and this enhances the impact that these output signals will have on target cells.

Synchronization can thus be used to select signals for further joint processing and to

accelerate the propagation of the signals across distributed networks.

The discovery of synchronous oscillatory activity in the cerebral cortex has

motivated a very large number of theoretical studies investigating the functional

properties of networks consisting of coupled oscillators in neurobiology. These studies

provided deep insights into both the mechanisms that sustain oscillations and their

synchronization as well as the putative functions that can be accomplished by such

networks with essentially non-linear dynamics. Thus, theoretical studies of such

synchronization phenomena of coupled oscillators in neuronal networks is of fundamental

importance for understanding highly integrated neural information processing in

physiological nervous systems, such as learning, associative memory and consciousness

[82, 60, 6, 37]. Synchronization phenomena also occur in a system of two reciprocally

coupled oscillators. In order to better understand the dynamics of multi-neuron

networks, it is important to fully examine the case of a two-cell network, particularly

relevant in the study of central pattern generators which often contain sub-circuits

composed of mutually inhibitory pairs of cells.

The rhythmic activity of coupled oscillators in networks results from an interplay

of synaptic interactions and intrinsic membrane properties. Much of the theoretical

work in this area uses the analysis of phase-coupled oscillators developed by Kuramoto

[50]. The Kuramoto model was originally motivated by the phenomenon of collective

synchronization, in which an enormous system of oscillators spontaneously locks to a

common frequency, despite the inevitable differences in the natural frequencies of the

individual oscillators. A useful approach method was pioneered by Winfree [92] on

collective synchronization. He formulated the problem in terms of a huge population

of interacting limit cycle oscillators and intuitively recognized that simplification

would occur if the coupling were weak and the oscillators nearly identical. Using
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numerical simulations and analytical approximations, Winfree discovered that such

oscillator populations could exhibit the temporal analog of a phase transition. Kuramoto

himself began working on collective synchronization in 1975. He used Winfree's

intuition about phase models. Kuramoto [50] used the perturbation method of

averaging to show that a model of weakly coupled oscillating neurons having nearly

identical limit cycle can be reduced to a phase model, where each neuron is represented

by a phase coordinate. The Kuramoto model is the simplest method in the phase

approximation which describes the effect of a small forcing in the phase framework.

[50]. The issue of stability and partially synchronized states is discussed by Strogatz

[81].

When the coupling between oscillators is weak, synchronization and its stability

can be analyzed using the well-known geometric phase-reduction approach and the

method of averaging (reviewed in [50, 15, 16, 38, 42]). The general method to analyze

synchronization is a phase resetting curve (PRC), also called a spike time response

curve (STRC) in the weakly coupled neural oscillators. A phase resetting curve is

measured by perturbing the oscillation with a brief stimulus at different times in

its cycle and measuring the resulting phase-shift from the unperturbed period. The

theory of weakly coupled neural oscillators [16] requires the infinitesimal PRC (iPRC),

which is mathematically equivalent to the partial derivative of phase with respect to

voltage, since generally only perturbations in voltage are considered and for weak

coupling a perturbation in current can be assumed to be equivalent to a perturbation

in voltage. Hansel et al. [35] identified two types of neural phase resetting curves

corresponding to distinct bifurcation structures that determine the classification of

excitable membranes.

The weak-coupling theory is very general in its applicability and powerful analysis,

and for a homogeneous two-cell network predicts stable phased-locked firing, either
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synchronous or anti-synchronous, depending on the properties of the coupling and

the intrinsic dynamics of the oscillators [35, 86, 18].

For example, a variety of models shows that the weak coupling leads to stable

antisynchronization in the case of excitatory synaptic coupling and stable synchronization

in the case of inhibitory synaptic coupling if synaptic response is slower than the

width of an action potential. Vreeswijk et al. [86] showed this using two identical

integrate-and-fire (IF) neurons mutually coupled by identical excitatory or inhibitory

synapses (see also Hansel et al [35]). They also show that this can be extended

to any model that can be described by averaging as a phase-coupled model. Any

pair of oscillators coupled with arbitrary synaptic dynamics can be reduced to a

pair of phase equations if the interactions are sufficiently weak (see also [15]). In

particular, the phase interaction function can be written as a convolution of the

instantaneous interaction function with the synaptic response function. Using both

the phase description and computer simulation, they show how inhibition and not

excitation synchronizes two Hodgkin-Huxley model neurons. The results of both

integrate-and-fire models and phase-coupled models apply to more accurate models

provided that the synaptic rise time is not short. Sato and Shiino [72] also show

anti-synchronous dynamics for excitatory coupling and synchronous dynamics for

inhibitory coupling in the coupled IF model and the piecewise-linear (PL) version of

FitzHugh-Nagumo (FHN) when the decaying relaxation rate of synaptic current is

small and synaptic strength is not strong. They present these results by reconstructing

a phase diagram in the parameter space of the strength and the decaying relaxation

rate of synaptic couplings. The phase reduction method is also applied when neuron

models of the PL and FHN types are mutually connected by weak couplings.

But this assumption of weak coupling may give rise to incorrect predictions if the

coupling is not sufficiently small. Strongly coupled networks can exhibit a much richer

variety of dynamic behaviors, but their analysis presents a much greater challenge,
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as there is no general method of determining the stable modes of network activity

in this case, However, in the case of pulsatile coupling which is lasting only briefly

relative to the length of the unperturbed period, the dynamics of strongly coupled

networks can be analyzed using Poincaré return maps for the inter-spike intervals,

derived from the phase-resetting curves of the coupled cells [27, 94, 45, 48, 9, 1, 43].

The Poincaré firing map approach is also useful in the analysis of strongly coupled

relaxation oscillators [80, 40, 70], and for networks of one-dimensional model cells

such as integrate-and-fire units [56, 86, 4].

1.2 Background

1.2.1 Phase of Oscillation

Many physical, chemical, biological systems can produce rhythmic oscillations [94],

which can be describe as a periodic orbit γ  of a nonlinear dynamical system

f (x),	 x E Rm

Let x0 be an arbitrary point on γ , then any other point on the periodic orbit can

be characterized by the time, 0, since the last passing of x0 . The variable 0 is called

phase of oscillation, and it is bounded by the period of oscillation T, The phase is

often normalized by T or T/2π , so that it is bounded by 1 or 2 π , respectively.

The phase of oscillation can also be defined outside γ  using the notion of

isochrons. Isochron is a set of points that relax to the same point on γ  in the limit

t --> ∞ , i.e. a set of points with the same asymptotic phase value, The change of

variables θ  = θ (x(t)) transforms the nonlinear system in a neighborhood of γ  into a

simpler phase model

θ'=1
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1.2.2 Phase Model for Weakly Coupled Oscillators

Consider dynamical systems of the form

describing periodic oscillators, x' = f(x), forced by a weak time-depended input

€S(t), e.g., from other oscillators in a network (for a Morris-Lecar neurons, m = 2

and x = (V, w)T). The same change of variables transforms (1.1) into the phase model

where the dot, ".", denotes the dot product of two vectors; The vector function Δ(θ)

is called linear response function, or infinitesimal phase response curve (PRC). It

can be found from the gradient of the phase transform, (0) = grad 8(x). Each

component of vector function 21(0) describes the effect of perturbation in each of the

components of x on the phase variable 0. In the case we consider, coupling is only

through the voltage variable (S(t) has only one component), and so the dot product

can be replaced with the scalar product.

Let us treat S(t) in (1.1) as the input from the network, and consider weakly

coupled oscillators

The corresponding phase model

where each xi(θi ) is the point on the limit cycle having phase O.

Introducing a rotating reference frame θ i = t + θi where the fast variable t is

normalized to the resting period, one can transform the system above Eqs. (1.3) into
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the form

Notice that the right hand-side is of order e, reflecting the slow dynamics of phase

deviations θi . Thus, it contains two time scales: fast oscillations (variable t) and slow

phase modulation of phase {variable 4i). The classical method of averaging, reviewed

by Hoppensteadt and Izhikevich [38] consists in nearly identity change of variables

that transforms this system into the phase model

where each function

describes the interaction between oscillators, and each wi = Hii( φi - φi ) = Hi= (0)

describes constant frequency deviation from the free-running oscillation.

1.2.3 Two Oscillators

Consider Eqs. (1.2) with n=2, describing two mutually coupled oscillators. Let us

introduce "slow" time τ = et and rewrite the corresponding phase model (1.4) in the

form

where ' = d/dτ  is the derivative with respect to slow time. Let x = φ2 - φ1 denote

the phase difference between the oscillators, then the two-dimensional system above
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becomes one-dimensional

where 11(x) = H21( —X) — Hi2(X), w =w2-w1, Δ(t) is a linear PRC, and S(t) is a

synaptic variable.

If oscillators are identical, w  = 0 and the H(x) is an odd function (i.e., H(-x) =

-Hex)), and x = 0 and x = T/2 are always equilibria, corresponding to the in-phase

and anti-phase synchronized solutions, Then the stability of all equilibria of Eqs.

(1.5) is determined by the sign of

Equilibrium xeq is stable if H'(xeq) > 0, and unstable otherwise. This integral in Eqs.

(1.6) can be rewritten in terms of derivative of PRC, Δ'(t), by integration by parts:

The first term in right-hand side in first equality in Eqs. (1.7) vanishes because we

consider the case of fast synaptic decay time, whereby the synaptic current S(t + x)

is shorter than intrinsic period T of each oscillator.

In other words, the stability of each equilibrium is determined by the slope of

PRC. For example, synchronous firing is stable if Δ'(t) < 0 for t < τsyn where τsyn

is synaptic decay time. This condition is satisfied for a weakly coupled network of

Morris-Lecar (ML) model neurons. Since we are concerned with inhibitory networks

of type-I oscillators, synaptic perturbation will always lead to a phase delay, so for

convenience we introduce Δ(φ0) = Δ(φ)> 0.
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Figure 1.1 Frequency as a function of injected current for two different membrane
models: (a) type-I model - the frequency f during a limit cycle oscillation is a
continuous function of the applied current I (b) type-II model - the frequency f
is a discontinuous function of applied current I.

1.2.4 Type-I Oscillator

Rinzel and Ermentrout [69] reviewed the classification of excitable membranes by

Hodgkin (1948) in terms of their dynamics as a current is injected. There are two main

types of excitable axons: type-I and type-II. Type-I membranes are characterized

mainly by the appearance of oscillations with arbitrarily low frequency as current is

injected whereas for type-II membranes, the onset of repetitive firing is at a nonzero

frequency. The Connor model [11] and the Morris-Lecar model [57] (in a certain

parameter range) are examples of type-I excitability. The Hodgkin-Huxley model is

an example of type-II membranes.

The difference between these two models arises in the mechanism by which

repetitive firing ensues. In "type-II" membranes, the following occurs: For low

currents, there is a single equilibrium state and it is asymptotically stable. As the

current increases, this state loses stability via a (subcritical) Hopf bifurcation and
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repetitive firing ensues. By contrast in "type-I" membranes, there are three fixed

points for currents below the critical current: a stable fixed point to the left, a saddle

point in the middle, and an unstable fixed point to the right. If I (applied current)

is increased, the V-nullcline moves upwards and the stable fixed point merges with

the saddle and disappears. At the bifurcation point, there is homoclinic trajectory

starting and ending at the fixed point which has an infinite period. It has zero

frequency because it passes through the two merging fixed points (saddle-node) where

the velocity of the trajectory is zero. If I is increased further, the saddle-node

disappears, and the homoclinic orbit transforms into a periodic limit cycle. The

velocity along the limit cycle close to the position of the fixed points is very low. Thus

the onset of oscillation is continuous and occurs with zero frequency. Figure 1.1(a)

and (b) show the frequency as function of injected current for the type-I membrane

and for the type-II membrane, respectively.

Hansel et al. [35], have numerically shown that the phase resetting curve is

strictly positive and as a consequence brief stimuli can only advance the oscillator.

Ermentrout [18] showed that this is a general property of Type-I membrane models

using singular perturbation methods and averaging.



CHAPTER 2

HOMOGENOUS NETWORK

2.1 Introduction

While recent work has revealed the synchronizing role of inhibitory synaptic interaction

on the activity of many networks (reviewed in White et al. [91]), it is known that

non-weak coupling can destabilize phase-locked dynamics [17]. For instance, many

network models exhibit the transition to the "oscillator death" mode as the coupling

strength is increased, whereby some of the neurons become trapped at a fixed point

by the strong synaptic currents arriving from the active cell [16, 3]. Further, several

recent studies explored the emergence of more complex non phase-locked states in the

case of heterogeneous networks, whereby both neurons are active at different intervals

of the oscillation period (see e.g. [91, 4]). In particular, recent work of Maran and

Canavier [53] revealed that the assumption of preserved firing order does not hold in a

network of Wang-BuzsáKB model neurons with type-I excitability [88]. They showed

the emergence of 2:2 mode-locked states (see Figure 2.1(b),(c)), and examined the

influence of heterogeneity and second-order phase resetting on this network activity

state.

The goal of our work is to reveal the generality of such alternating-order firing

(termed "leap-frog" spiking by G.B. Ermentrout, or "leader switching" by Acker

et al. [1]) for inhibitory networks of type-I oscillators. In particular, we examine

leap-frog dynamics observed in a network of simpler Morris-Lecar model neurons

in a parameter regime corresponding to type-I excitability. This network exhibits

synchronous firing for weak coupling, which is readily destabilized even by a moderate

increase in coupling strength (Figures, 2.1 and 2.2). Our aim is to provide an intuitive

geometric description of this activity state, by examining the features of the phase-

13
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space trajectory of the two cells during spike-order switching. We show that leap-frog

dynamics can arise in inhibitory networks of cells which are close to their excitation

thresholds, under the additional condition of slow dynamics of membrane potential

upon hyperpolarization. In the Morris-Lecar model we consider, such slow dynamics

is caused by the fast closing of K+ channels at hyperpolarized potentials, which leads

to time-scale separation and associated trapping of the trajectory by the nullcline of

the recovery variable. This allows even a moderate synaptic inhibition to retard the

dynamics of the postsynaptic cell for a duration which is greater than the interval

since the preceding spike of that cell, leading to the change of the spiking order.

An interesting aspect of the alternating-order spiking is that it cannot be

obtained in a network of phase oscillators with instantaneous synaptic coupling, and

that non-zero synaptic time constant is crucial for achieving leap-frog spiking in such

networks. However, we show that order alternation can be obtained in a purely

pulse-coupled network if the phase domain of each oscillator is augmented with an

additional negative-value branch representing the strong suppression of the cell upon

synaptic inhibition. For instance, we find that leap-frog spiking can also be achieved in

a network of pulse-coupled quadratic integrate-and-fire model neurons. Further, such

pulse-coupled augmented phase model network provides an accurate description for

the dynamics of the Morris-Lecar model network. Following Maran and Canavier [53],

we use the phase-resetting method to analyze leap-frog spiking on a quantitative level,

and provide a simplified analysis of existence and stability conditions for leap-frog

spiking for the case of identical cells. Restricting our consideration to a homogeneous

network allows us to establish the most basic conditions on the phase-resetting properties

necessary for leap-frog spiking.

We note that alternating-order firing was examined previously in homogeneous

networks of two coupled relaxation oscillators with excitatory synapses by Bose et

al. [2] and with inhibitory synapses by Sato and Shiino [72]. However, in both
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works the stable phase difference between successive spikes of the two cells is much

smaller than the width of an action potential. This is also true for the activity

states explored by Maran and Canavier [53]. For this reason, earlier studies referred

to the alternating-order spiking as a near-synchronous state. In contrast, here we

show that the interval between the neighboring spikes of the two cells can constitute

more than one half of the resting oscillation period. This is particularly true for the

multiple-period leap-frog spiking, in which case the interval between the spikes of the

two cells can reach 70% of the unperturbed period, and is an order of magnitude longer

than the decay time of synaptic inhibition (see e.g. Figure 2.1(c) and Figure 2.2(a)

when gsyn = 0.23). Thus, alternating-order activity represents a distinct activity

state that cannot be described as a near-synchronous state.

2.2 Model

We consider a pair of two identical model neurons with type-I excitability [69], each

modeled as a Morris-Lecar oscillator [57]. Each cell possesses a periodic limit cycle

trajectory corresponding to an action potential, which results from the interplay

between the depolarizing calcium current Ica and the activation w of the repolarizing

potassium current, The two cells are assumed to be identical, and are coupled by

an inhibitory synaptic current, Isyn(V, s):

where C = 2 μF/cm2  is the membrane capacitance, V is the cell membrane voltage

in mV, t is time in ms, IL  is the passive leak current, and Iapp= -14 μA/cm2 is
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the applied current. The remaining parameters are Vca 	 VK = —84mV,

= —60mV, 9Ca 4mS/cm2 , 	 8mS/cm2, 9i 2mS/cm 2 .

The steady-state activation of calcium current is

The potassium current activation amplitude and activation rate are

Given this choice of model parameters, each of the two uncoupled oscillators exhibits

periodic spiking with a period of about 45 ms. Note the fast approach of τw(V)

to zero at hyperpolarized potentials (Eq. 2.2), whereby the trajectory overlaps the

w-nullcline in the quiescent phase of the oscillation (see schematic representation

of the limit cycle in Figure 2.4). The fast closing of the K+ channels is a critical

condition for achieving alternating-order spiking in the Morris-Lecar model. Such fast

kinetics of the w variable can be somewhat relaxed without destroying the qualitative

aspects of the dynamics, and alternating-order firing can also be achieved in the type-I

parameter regime corresponding to Figure 7.7 of Rinzel and Ermentrout [69}.

The two cells are coupled through the synaptic current given by

where gsyn is the maximum synaptic conductance and Vinh = —80 mV is the reversal

potential. The dynamics of the synaptic gating variable s(t) depends on the presynaptic

cell potential, y pre:
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where Vth = —3 mV is the synaptic threshold, a•) is a sigmoid function, σ(x) =

[1 + tanh(4x)] /2, and τsyn and Ty = 0.2 ins are the synaptic decay and rising time

constants, respectively. We focus primarily on short synaptic decay times of about

τed = 1 — 5 ms, and in Subsection 2.3.8 discuss the effect of longer τ syn .

2.3 Two-Cell Network

2.3.1 Network Activity States

We start by exploring in detail the behavior of the system described by Eq, 2.1, the

two identical ML model neurons with mutually inhibitory synaptic interaction. Figure

2.1 shows the diversity of behaviors exhibited by this network for different values of

the maximal synaptic conductance, g syn , and the bifurcation diagram presented in

Figure 2.2 demonstrates the transitions between the different activity states, For

very small values of this coupling parameter, the two neurons fire in synchrony, as

predicted by the weak coupling theory. When gsyn is increased, the synchronized state

loses stability, and the network transitions to the alternating-order 2:2 mode-locked

state shown in Figure 2.1(b), also referred to as "leap-frog" spiking by Maran and

Canavier [53]. In this state, there is a stable non-zero time interval between the

spikes of the two cells, with cells changing firing order in each cycle of the oscillation.

For yet higher values of the coupling, the interval between consecutive spikes of the

two cells alternates in each cycle between two distinct values, as shown in Figure

2.1(c), For higher still values of g,, the alternating-order firing state undergoes

a period-doubling cascade and gives way to chaotic firing in which the inter-spike

intervals and the spiking order change irregularly, Further, for narrow ranges of gsyn

values multi-spike m : n alternating order firing states emerge, as shown in Figure

2.1(e), which represent a form of bursting, Finally, very strong coupling leads to the

so-called "oscillator death" state shown in Figure 2.1(f), whereby the spiking of one



18

Figure 2.1 Network activity states at different values of coupling strength, g syn. The
potentials of the two cells are shown as red and black traces, respectively. (a) Synchronous
phase-locked firing (g syn = 0.03). The spiking period is close to the unperturbed period of 45
ms, (b) Alternating-order (leap-frog) spiking (gsyn = 0.17) (c) Period-2 alternating-order
spiking (Nu, = 0.22) (d) Chaotic state, irregular inter-spike intervals (gsyn, = 0.29) (e)
Bursting (3:3 alternating-order firing, g syn = 0.34) (f) Spike-suppress state ("oscillator
death" , gsyn = 0.5)

neuron provides enough inhibition to completely prevent the spiking of the partner

cell [16, 3].

Bifurcation diagram presented in Figure 2,2 explores the transitions between

these different behaviors, showing the coupling-strength dependence of the asymptotic

(equilibrium) intervals between two consecutive network spikes, which may or may

not be the spikes of the same cell, These inter-spike intervals are normalized to the

period of the uncoupled cell, and are denoted ISI ∞.  The values of g syn corresponding

to each of the activity states shown in Figure 2,1 are marked by vertical dashed lines.

Even though the set of ISIc° values does riot fully characterize the network state,

since it does not explicitly contain information about the spiking order of the two

cells, it allows one to easily infer the dynamics at any given value of g syn , Note in

particular that the presence of the value ISI,, ti 1 indicates that at least one of the

cell spikes twice in a row in each cycle, with negligible interference from the other cell,
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Figure 2.2 Bifurcation diagram of the Morris-Lecar model network, ISIS , the
asymptotic values of the intervals between consecutive spikes (not necessarily spikes of
the same cell) are plotted as a function of the coupling strength, gsyn, for two values of
synaptic decay time: (a) τsyn = 1 and (b) Tsyn = 2. The dotted lines correspond to each of
the six activity states in Figure 2.1(a)-(f). Note the difference in scale along the g syn axis,

This is only possible if the cells change their firing order in each oscillation cycle, The

fact that the interval between the spikes of the same cell in Figure 2.1(b)-(c) is close to

the unperturbed period indicates that the second-order phase resetting is riot crucial

for the alternating order state, and that the first-order phase resetting dominates (cf.

Maran and Canavier [531). It is one of our main goals to provide a simple geometric

explanation and quantitative analysis of the alternating-order spiking behavior seen

in Figure 2.1(b)-(c), and to explain the period-doubling cascade evident in Figure 2.2.

Figure 2,2(b) presents the bifurcation diagram for a larger value of the synaptic

decay time constant (τsyn = 2 as opposed to τsyn = 1 used in all the simulations in

this paper), and demonstrates that the qualitative features of the network behavior

are preserved for a range of τsyn values, The main effect of prolonging synaptic decay

is to increase the total amount of inhibition that each cell receives from its partner,

thereby compressing the bifurcation diagram along the gsyn axis, The dynamics of

the network undergoes a significant change only for values of τsyn beyond about 6
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Figure 2.3 Effect of an increase in coupling strength on the stability of phase-locked
firing in (a) an excitatory network, and (b) an inhibitory network. g syn changes from 0.01
to 0,2 in both cases, In the case of excitation (a), anti-phase synchronous firing is stable
for a wide range of coupling strength, while the phase-locked synchronous firing is readily
destabilized in the case of mutual inhibition (b).

ms, or roughly 1/8 of the unperturbed period of 45 ins. The case of longer synaptic

decay time is examined in Subsection 2,3.8.

2.3.2 Destabilization of Phase-Locked Firing: Comparison of Excitation

and Inhibition

Given the type-I Morris-Lecar parameter regime we consider, the weak coupling

theory predicts stable anti-synchronous and synchronous firing for excitatory and

inhibitory synaptic coupling, respectively [86, 35, 18]. As demonstrated in Figure

2.3, this agrees with the dynamics exhibited by our model in the case of small

synaptic conductance (top panels, gsyn = 0.01). As the synaptic conductance is

increased however, there is a qualitative difference between the stability of phase-

locked firing in the case of excitation versus inhibition. Namely, the anti-synchronous

state remains stable for non-weak excitatory coupling (see Figure 2,3(a)), but an

increase in inhibitory coupling quickly destabilizes phase-locking and leads to the

alternating-order state shown in Figure 2.3(b).
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Figure 2.4 Effect of non-weak coupling on the phase-plane trajectory of the postsynaptic
cell, Double arrows indicate the movement of the V-nullcline during each cycle of the
network oscillation. (a) In the case of excitation, an increase in synaptic coupling causes no
qualitative change in the phase-plane dynamics. (b) For sufficiently strong inhibition, the
V-nullcline of the post-synaptic cell intersects the w-nullcline with each presynaptic input,
pushing the cell below the excitation threshold and off the limit cycle trajectory. Thick blue
curve indicates the trajectory of each cell during one cycle of the alternating-order spiking
shown in Figure 2.1(b),(c), Note that the trajectory overlaps the w-nullcline during the
hyperpolarized phase of the oscillation,
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This difference between the effects of non-weak excitation and inhibition becomes

obvious when one considers the phase plane dynamics of the system. Figure 2.4

illustrates schematically the effect of non-weak synaptic interaction on the phase-plane

dynamics of the post-synaptic cell. Note that there is no qualitative change in

the geometry for a wide range of excitatory conductances. However, an obvious

qualitative change occurs when the inhibition strength becomes sufficiently strong

to suppress the cell below its excitation through the saddle-node on the invariant

cycle bifurcation [381. If such suppression last for the entire period of the oscillation,

the oscillator death occurs ("spike-suppress" state, Figure 2.1(f)). However, for

intermediate strength of inhibitory coupling, the suppression occurs only for part

of the oscillation period, resulting in a transient subthreshold trapping of each cell

during each cycle of the oscillation. This may lead to the alternation of the firing

order (Figure 2.1(b),(c)), whereby one cell is able to bypass its partner cell along the

limit cycle by transiently keeping the other cell in the subthreshold "tail" branch of

the trajectory, as depicted in Figure 2.5. Therefore, synchrony in networks of type-I

oscillators can be destabilized even for moderate increase in inhibitory coupling.

Interestingly, we find that in the Morris-Lecar model network we consider, this

leader-switch mechanism remains valid even in the limit of infinitely short synaptic

current. This is the result of a fast approach of the trajectory to the w-nullcline

at hyperpolarized potentials, as shown in Figures 2.4(b) and 2.5(b), which leads to

the separation of time scales, with slow dynamics in the V direction, whereby the w-

nullcline plays the role of the slow manifold of the system. A perturbation of sufficient

strength along the slow manifold (the w-nullcine) allows to achieve a strong time delay

which is longer than the time to the preceding spike. This condition is crucial for

achieving leader-switching for infinitesimally short synaptic interaction. Such strong

reset corresponds to an isochron that curls around the limit cycle, intersecting it at

a position that is retrograde to the peak of the action potential, as shown in Figure
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Figure 2.5 Phase-plane dynamics of the coupled Morris-Lecar model cells during periodic
alternating-order spiking. (a) Tadpole-shaped curves represent the phase-plane trajectory
in panel (b), schematically shown in Figure 2.4(b). The sequence of four panels describes
the leap-frog spike sequence at the top, with filled red and open blue circles representing
the two cells: (i) "red" cell spikes; (ii) "blue" cell spikes, pushing the "red" cell into the
subthreshold branch of the trajectory (tadpole tail); (iii) "blue" cell bypasses the "red"
cell along the unperturbed limit cycle trajectory; (iv) "blue" cell spikes again, The process
then repeats itself, with the "red" cell emitting the next spike, (b) Isochron foliation of the
limit cycle neighborhood. Thick blue curve labels the leap-frog trajectory, which partially
overlaps the w-nullcline (not shown) at hyperpolarized values of potential. Note that an
isochron corresponding to the hyperpolarized portion of the trajectory may intersect the
limit cycle at a position (filled circle) which is retrograde to the peak of the preceding action
potential (open circle).
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2.5(b) (cf. discussion in Brown et al. [5]). This dynamical feature is closely linked to

the cell's characteristic phase-resetting properties and the concept of negative phase,

explored in the following subsections.

The mechanism described above has some generality and is not specific to the

Morris-Lecar model cells that we consider. In particular, we believe that the same

mechanism is at play in the network of Wang-BuzsáKB oscillators [88] studied by

Maran and Canavier [53]. However, the existence and stability of this dynamical

state must require certain conditions on the phase-resetting properties of the cells

(implicitly described by the isochron pattern of Figure 2.5(b)), which will be established

in Subsection 2.3.4.

2.3.3 Phase-Reduced Descriptions

Before we analyze the observed leap-frog spiking transition on a quantitative level

in the next subsection, let us explore qualitatively the conditions required for the

existence of this activity state. In particular, it is instructive to examine whether

leap-frog firing can be obtained using a phase-reduced description of the coupled

oscillators, with two phase variables φ1 and φ2 describing the position of each of

the two cells along their unperturbed limit cycles. Note that this phase description is

only possible in the weak-coupling limit, whereby the cells stay close to the limit cycle

trajectory, and the phase value can be defined using the isochron foliation of its basin

of attraction [94, 42]. Figure 2.6(a) schematically illustrates the phase plane trajectory

of the 2:2 periodic alternating-order firing state in terms of the corresponding (φ1, φ2)

variables in such a general phase-reduced description, not necessarily corresponding

to the specific ML network that we examine. Here the right and top boundary values

(φ1,2 = 1) correspond to the peak of an action potential of the respective cell. In the

case of continuous synaptic interaction, the periodic trajectory is a continuous closed

curve on the (0 1 , 02 ) torus, and its curvature is a measure of synaptic current that
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Figure 2.6 Reduced phase description of the alternating-order state. (a) In the model
with continuous synaptic interaction, the alternating-order state describes a continuous
trajectory on the 2-torus. The spike times of the two cells correspond to the intersections
of the trajectory with the φ 1 = 1. and the φ 2 = 1 boundaries, respectively. The change in
spiking order requires the trajectory to self-intersect. The dashed gray lines indicate the
correspondence between the continuous coupling description and the pulse-coupled model
description shown in (b)). In (b), the spike of cell i ( φ 2 = 1) causes a discontinuous drop
(dashed arrow) in the phase of the partner cell j by amount Δ(φj ), where Δ(φ ) is the
spike-time response characteristic of the cell, defined to be positive in case of a phase delay.
The change in firing order requires the phase domain to be augmented with an additional
negative value branch. In order for the spiking order to change, the spike-triggered phase
delay Δ (φ ) should be greater than current phase φ  during the first spike that a cell receives
in one cycle of the oscillation.
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deflects the trajectory from a straight line. Note that the trajectory would have to

self-intersect on the 2-D surface of the torus in order for the cell spike order to change

in each cycle of the oscillation. Therefore, the network exhibiting alternating-order

firing cannot be described in terms of autonomous flow on the (φ , φ2) torus. In

particular, it cannot be obtained in the framework of the weak-coupling theory, which

reduces network dynamics to such an autonomous flow (reviewed in [38, 69, 42]):

Here H(φ ) is the connection function that quantifies the weak synaptic interaction,

averaging it out over one oscillation period. In the case of leap-frog spiking, this

averaging cannot be performed since the phase perturbation in each cycle is not

an infinitesimal quantity relative to the unperturbed oscillation period. The non-

existence of alternating-order firing in a network of phase oscillators is a corollary of

a more general theorem of Golubitsky et al. [32].

However, the phase topology of Figure 2.6(a) provides an entirely valid description

of the 2:2 activity state if it is viewed as a projection of a higher-dimensional trajectory

onto the (φ1, φ2 ) plane. The additional degrees of freedom could represent the two

synaptic gating variables si,2(t) that evolve according to Eq. 2.3 (buffer variables in

the terminology of Golubitsky et al. [32]):

where σ (φ ) is a sigmoid spike thresholding function.
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Thus, we conclude that the presence of synaptic degrees of freedom is crucial

for achieving leap-frog firing in a network of phase oscillators. In particular, the

non-zero synaptic decay time course is indispensable in order for such networks to

exhibit the change in the firing order. In order to verify the phase description in

Figure 2.6(a), we constructed its implementation involving two S 1 phase oscillators

coupled by continuous synaptic gating variables, and observed leap-frog spiking for

an appropriately chosen functional form of the interaction term (see Appendix B).

Although non-zero synaptic decay time is a crucial condition for leap-frog spiking

in a network of phase oscillators, we find that this dynamical state can also be achieved

in a purely pulse-coupled network of oscillators that are not phase oscillators on the

S 1 phase domain. Figure 2,6(b) illustrates such a possibility, and can be viewed

as the formal limit of the dynamics in Figure 2.6(a) with respect to shortening the

duration of the synaptic current ("straightening out" the trajectory), while keeping

fixed the total amount of phase resetting due to each spike. In this limit the synaptic

interaction is no longer continuous, but becomes pulsatile (i.e., it can be described

by a delta function). Although the descriptions in panels (a) and (b) are formally

similar in terms of the spike sequence and the spike-time phase-resetting values, note

that the latter description requires the extension of the phase domain to negative

values, and therefore is not a true phase-reduced model. The negative phase value is

induced when the spike-triggered phase delay is greater than the inter-spike phase

difference between the two cells, i.e. 0(0) > 0, where 0(0) is the spike-time

response curve, STRC (described below). Thus, the alternating-order firing state

can be obtained in the framework of an extended phase model with instantaneous

coupling, with no additional synaptic degrees of freedom, if the phase domain is

supplanted with a negative value branch. In particular, in Subsection 2.3.7 we show

that it can be obtained in a pulse-coupled network of quadratic integrate-and-fire

cells. Alternatively, the dynamics in Figure 2.6(b) can be implemented by explicitly
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prohibiting the model cell to spike again if its winding number is not increased since

the preceding spike [5, 32]. Note however that in the latter case it would be impossible

to independently define the magnitude of phase resetting caused by a second synaptic

input that arrives while the postsynaptic cell is still in the negative-phase suppressed

subthreshold state.

In the Morris-Lecar model network we consider, the synaptic decay time is short

relative to the unperturbed limit cycle period, and the leap-frog spiking corresponds

to the phase diagram of Figure 2.6(b) rather than Figure 2.6(a). In fact, the negative

phase has a definite biophysical meaning in this case, and represents the transient

suppression of a cell into the subthreshold branch of the trajectory (off the limit cycle)

by the inhibitory input, as shown in Figs. 2.4(b) and 2.5, allowing the presynaptic

cell to pass ahead, reversing the spiking order of the two cells.

2.3.4 Analysis of Existence and Stability of Periodic Alternating-Order

Firing

Although Figures 2.5-2.6 explain qualitatively the dynamics of the alternating-order

firing state, we turn to the phase return map approach to study it on a quantitative

level. The return map analysis is a powerful method of describing the dynamics of a

coupled network [94], but relies on several crucial assumptions. It requires that the

cell's spike width and amplitude are invariant and are not affected by the afferent

synaptic currents, and also assumes that the perturbation only affects the time to

the next spike of the perturbed cell, and has no effect on the dynamics of the cell

thereafter. However, this method can be extended to the case where perturbation

affects several periods of the post-synaptic cell, under an additional assumption of

linear summation of the phase resetting effects due to multiple presynaptic inputs. In

fact, Maran and Canavier [53] demonstrated alternating-order firing in an inhibitory

network of type-I Wang-BuzsáKB model cells in the presence of significant second
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Figure 2.7 Constructing the inter-spike phase return map for the periodic alternating-
order spiking, φ2 = φ (φ1 ). In one cycle of the alternating-order spiking, one of the cells
spikes twice between two spikes of the partner cell (dashed blue and solid red bars in top
panel). The phase intervals φ1 are inter-spike intervals normalized by the unperturbed
period of each oscillator. Bottom panel shows the phase time-course of the cell emitting
the red spikes in top panel. Note that the phase difference between two dashed blue spikes
equals 1 (the unperturbed period). The phase delays due to each of the two spikes (blue
arrows) equal Δ(φ1) and Δ (ξ1 ), where ξ1 is the phase of the cell at the time of arrival of
the second input, ξ1 = 1 - φ1-Δ(φ1). The second inter-spike intervalφ2 is found by the
first-passage time condition ξ1-Δ (ξ1 ) + φ2 = 1, yielding the phase return map, Eq. 2,6

order phase resetting, although they also showed that alternation in the firing order

could emerge in a pulse-coupled map without second-order resetting. We follow the

approach of Maran and Canavier [53], but restrict ourselves to the special case of

identical cells, with only first-order phase resetting.

The alternating-order firing is completely characterized by the inter-spike phase

sequence labeled {φ 1 , φ2 in Figure 2,7, Here we will construct the return map relating

these alternating phase differences, using the phase-resetting curve, or the spike-time

response curve (STRC) of each cell, Δ(φ ). We define Δ(φ ) to be positive if it produces

a phase delay, and negative if it produces a phase advance, with φ = 0 point defined as
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the peak of the membrane potential, V. (0) is computed numerically, by calculating

the time between successive membrane potential maxima, while synaptic conductance

pulses are applied at different positions of the model cell along the numerically

reconstructed limit cycle. The applied perturbation represents a single spike of the

presynaptic cell, and is defined numerically by recording the spike-triggered synaptic

conductance, s(t) in Eq. 2.3. Figure 2.8(a) presents the STRCs for three different

values of the synaptic conductance parameter, g syn , corresponding to the distinct

activity states shown in panels (a)-(c) of Figure 2.1.

The phase return map derived here is a special case of a more general return

map derived by Maran and Canavier [53]. Apart from simplifying the analysis,

restricting ourselves to the case of a homogeneous network with only first-order phase

resetting allows us to probe the most elementary conditions on the phase resetting

properties required for the change in firing order. Our derivation can be viewed

as complementary to the analysis of the order-preserving phase transition map by

Goel and Ermentrout [27], since we explicitly break the map invertibility assumption

adopted in that study (condition 2 on p. 199 therein), by allowing the phase variable

to turn negative. The case of strong phase resetting was previously considered in the

analysis of strongly coupled neurons by Acker et al. [1] (see also [43, 47, 58]), and in

the study of strongly forced oscillators by Glass et al. [26].

Note that the homogeneous network case implies a permutation symmetry

between the two neurons, which means that the map relating phases 02 and 01 in

Figure 2.7 is identical to the map relating phases 0 3 and 02. Therefore, it is sufficient

to analyze the phase dynamics of only one of the two cells, while it receives two spikes

from its partner cell. Let 01 denote the phase of cell 1 (red spike and red trace in

Figure 2.7) at the arrival time of the first synaptic current pulse due to the spike of

the pre-synaptic cell (dashed blue line), where phase is defined as the time since the

last spike, normalized to unperturbed oscillation period. The amount of phase delay



Figure 2.8 Phase resetting properties of the Morris-Lecar oscillator. (a) Numerically
reconstructed STRC, Δ(φ ), for three different values of coupling strength corresponding
to distinct activity patterns (a)-(c) of Figure 2,1. (3) Phase return maps for each of the
three STRCs in panel (a); the intersections of each curve with the diagonal line represent
fixed points of that map. For gsyn = 0.03, the order-preserving map is shown, with only
one stable fixed point at φ  = 0+ (φ  = 1-), corresponding to synchronous firing. The two
curves corresponding to gsyn = 0.17 and gsyn = 0.22 show both the order-alternating phase
map (Eq. 2.6) on the phase interval where Δ(φ)>Δ, and the order-preserving map of
Goel and Ermentrout (2002) on the portion of the phase domain where Δ(φ) < φ . Note
that there is one stable fixed point for gsyn = 0.17 corresponding to leap-frog spiking, while
the alternating order fixed point for gsyn = 0.22 is unstable, leading to period-2 leap-frog
dynamics shown in Figure 1(c), The order-preserving fixed point on the right end of the
interval is unstable for both gsyn = 0.17 and gsyn = 0.22.

31
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induced by the synaptic input at phase φ 1 equals Δ(φ 1 ), since we define phase delay

as positive phase resetting, contrary to the sign convention of Goel and Ermentrout

[27]. For sufficiently strong synaptic inhibition this phase reset satisfies Δ(φ1) >

φ1which delays the first passage time to next spike of the post-synaptic cell (cell 1) to

a value greater than 1, the intrinsic (uncoupled) oscillation period. Note that this

breaks the conditions on the STRC assumed by Goel and Ermentrout [27]. As a

result, the pre-synaptic cell 2 has a chance to spike again (second dashed line), after

a phase interval corresponding to the unperturbed oscillation period, Δφ  = 1, since

cell 2 receives no input from cell 1 during this period. This second synaptic current

from cell 2 arrives when the phase of cell 1 equals ξ1=1+φ1-Δ(φ1), which takes

into account the delay due to the first spike. Therefore, the second spike induces a

phase delay equal to Δ(1-φ1-Δ(φ1 )). It is only after receiving this second input

that cell 1 finally has a chance to spike, after a phase interval defined as φ2. The total

phase delay due to both inputs is thus equal to

Therefore, the return map for the phase intervals φi is given by

or, expressed in terms of the phase of the post-synaptic cell at the time of arrival of

the second spike, ξ1 = 1+φ 1-Δ (φ1):

Figure 2.8(b) shows this phase transition map for each of the three STRCs shown in

panel (a). Note that this map is only defined on the phase domain where Δ (φ ) >

φ. On the rest of the domain, Figure 2.8(b) shows also the order-preserving map of Goel

and Ermentrout [27]. Fixed points of map (2.6)-(2.7) correspond to the periodic 2:2
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alternating-order (leap-frog) activity:

Since ξ = 1 + φ  - Δ(φ) , this condition can be written in a more symmetric form

Taking into account the constraint on the phase domains, ξ< 1 and Φ(φ) ≤ 1, we

also obtain

Conditions Eqs. 2.9-2.11 are examined geometrically in Figure 2.9. Note that the

synchronous firing solution { φ  = 0+, ξ=1--} always satisfies the periodicity condition

(2.9), if one assumes Δ (0+) = Δ (1- ) = 0.

If the inequality ξ ≤1 is violated (i.e. whenΔ(φ) <φ), the cells fire sequentially,

so their firing order does not alternate, while the violation of the condition ,Φ (φ ) ≤

1 (i.e. if Δ(ξ ) > ξ ) indicates that the postsynaptic cell will emit more than two

consecutive spikes. The latter is true for instance for n:n bursting states with n > 2

(see Figure 1(d)), in which case one can derive an extended map analogous to Eq. 2.6:

Φ(φ)=1-Δ(ξn-1), ξn = 1+ξn-1-Δ(ξn-1). An additional alternating-order

constraint Φ (φ ) > 0 requires that Δ (ξ  >-(1-ξ). This condition is automatically

satisfied if the resetting is sign-definite (pure delay resetting).

Stability of the 2:2 periodic spiking depends on the value of the derivative of

the phase map given by Eq. 2.6 at equilibrium:
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Figure 2.9 Phase-map analysis of alternating-order spiking. Top panel shows the cell
potential time course of the two coupled ML oscillators as red and black traces, for g syn =
0.2. Equilibrium inter-spike phase difference ( φ  = 0.144) in the alternating-order state
satisfies Eq. 2.8. Note that δ = Δ(φ)-φ =φ=-Δ (ξ) , where ξ is the phase of the
postsynaptic cell at the time of arrival of the second spike, ξ = 1 - δ. In this simulation,

= 0,0468, and Δ (1 - δ ) = 0.095, The stability condition given by Eq. 2.12 is satisfied.
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The fixed point will be stable if |Φ'(φ )| < 1. Therefore, the periodic alternating-order

firing is stable when the slope of the STRC at the time of arrival of either of the two

synaptic inputs (corresponding to phases φ  and ξ = 1 + φ -Δ (φ )) is sufficiently close

to 1. This is equivalent to the stability condition derived by Maran and Canavier

[53]. The stability of synchronous firing is determined by an analogous map slope

expression, with φ  = 0+ and ξ = 1- (Eq. 12 in [27]). Since Δ'(1) ≈0 in the

Morris-Lecar model (see Figure 2.10), the bifurcation from synchronous to leap-frog

firing occurs when the slope Δ'(φ ) at φ  = 0 becomes greater than 2, forcing φ to

increase (and thus ξ to decrease) until the stability condition is satisfied. Thus, the

characteristic sharp initial rise of Δ(φ)  followed by a less steep increase at larger φ ,

seen both in Figures 2.8(a) and 2.9 of this work, and in Figure 2(b) of Maran and

Canavier [53], is essential for the transition from synchronous to leap-frog spiking.

This feature corresponds to the characteristic dip to negative values in the phase

transition return map noted by Maran and Canavier [53].

Finally, let's briefly consider the case where the intervals 0 1 and 02 between the

spikes of the pre- and the post-synaptic cells alternate between two distinct values,

as in Figure 2.1(c). We call this state the period-2 alternating-order 2:2 firing, since

it results from the period-doubling of the equal-phase alternating-order state (Figure

2.2). Both φ 1 and φ 2 are period-2 fixed points of the map given by Eq. 2.8, i.e.

Φ(Φ(φ1,2)) = Φ (φ2,1) = φ 1,21 therefore

where ei = 1 + — i 1, 2.

We note that our choice of the "period-2" designation is somewhat arbitrary,

since it can also be applied to the equal-phase leap-frog spiking: both of these states

are characterized by a period-2 trajectory of each cell in its phase space, composed of
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two unequal loops comprising one period of the oscillation (see Figure 2.5). Note also

that the cell permutation symmetry does not hold in this case, and therefore this map

is closer to the more general leap-frog spiking map derived by Maran and Canavier

[53]. The stability of period-2 leap-frog spiking depends on the derivative of the map

F(φ ) = Φ(Φ(φ)) at equilibrium values φ1 and φ2: Φ'(φ2)Φ'(φ1) =

(Δ'(ξ1)-1)Δ'(φ1)(Δ'(ξ2)-1(1-Δ'(φ2)]. We note that this stability conditions is equivalent to

the stability condition for a sequential phase-locked mode obtained by Oprisan and

Canavier [61] (see also [63]).

An important feature of higher-period 2:2 modes is the large value of the

equilibrium inter-spike interval relative to the unperturbed period. In the ML network

we consider, this interval can constitute as much as 70% of the uncoupled oscillation

period (Figures 2.1(c) and 2.2), and is an order of magnitude larger than the time

scale of synaptic interaction that underlie this dynamic state.

2.3.5 Second-Order STR,C

Figure 2.10 shows that the second-order phase resetting Δ2 (φ ) is non-zero only for

phase values close to 1, since the synaptic time constant is short (τsyn = 1-2 ms). For

the two characteristic phases in Figure 2.9, the second-order phase resetting values

equal Δ2 (0.144) ≈ 0 and Δ(0.9532) ≈  1.4 10-4 . Therefore, second-order resetting

provides only negligible contribution to the alternating-order periodic firing shown in

top panel of Figure 2.9. This is to be contrasted with the network of Wang-BuzsáKB

model cells studied by Maran and Canavier [53], who showed that 2-nd order phase

resetting provides a more significant, albeit not necessary, contribution to leap-frog

spiking in that network.

Although the second-order phase resetting is not critical to achieving stable

alternating-order activity, it will influence the critical value of gsvi, at the bifurcation

from synchrony to leap-frog spiking, since it affects the stability of both states. Noting
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Figure 2.10 Comparison between the first- and the second-order spike-time response
curves of the Morris-Lecar oscillator, The first-order STRC is shown in blue ( Δ (φ )), while
the second-order STRC is shown in red ( Δ2 (φ )), for synaptic conductance of gsym = 0,2.
The inset zooms in on the part of the phase domain where Δ2 (φ ) is non-negligible. The two
functions satisfy the consistency condition Δ (0+) = Δ 2(1-), Vertical dashed lines mark
the two phase intervals characterizing the leap-frog state, and in Figure 2.9. Note that

Δ2(φ) = 0,Δ2(ξ)≈1.4 • 10-4, therefore second-order phase resetting does not contribute
to the alternating-order dynamics for this value of coupling strength,
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once again that the second-order phase-resetting is negligible for small values of the

phase, we find that the map slope previously given by Eq. 2.12 is modified according

to (see Appendix A for derivation):

Φ(φ) = [Δ'(ξ)-1][1-Δ'(φ)]+Δ'2(ξ) 	(2.14)

In particular, synchronous firing is stable if

|[Δ'(1-) -1][1-Δ'(0+)]+Δ'2(1-)|< 1 	(2.15)

Further, taking into account the small slope of the first-order STRC at φ  = 1 (see

Figure 2.10), we obtain an approximate condition

|Δ'(0+)+Δ'2(1-)-1|< 1

Since both derivatives are positive, synchrony is stable if

Δ'(0+)+Δ'2(1-) < 2 	 (2.16)

Therefore, the bifurcation from synchronous to leap-frog spiking occurs when Δ '(0+)+

Δ'2(1-)= 2. The stability condition (Eq. 2.14) suggests that second-order phase

resetting has a generally destabilizing effect on both synchronous and alternating-

order activity. This agrees with our finding that stable alternating-order spiking

cannot be achieved when τsyn is comparable to the length of the uncoupled oscillation

period (see Subsection 2.3.8).

2.3.6 Effect of Variation in Coupling Strength

Given the knowledge of the STRC, one can readily determine the stable network

activity modes for the corresponding value of the coupling strength. However, the

full range of activity states demonstrated in the bifurcation diagram of Figure 2.2

requires one to know the STRC at each value of the synaptic conductance. In the
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Figure 2.11 Emulated bifurcation diagram for the inter-spike (inter-event) interval
differences as a function of the amplitude of a quadratic STRC, Δ (φ ) = 4mφ (1 - φ ),
Asymptotic inter-spike interval differences ISI∞  are plotted as a function of the STRC peak
amplitude, rn. Bifurcation from synchronous to alternating-order event sequence occurs at

mcrit =2-3/2, while the oscillator death requires m≥1. Note that bursting dynamics
similar to Figure 1(e) is also obtained, for instance for m = 0,785.

case of weak coupling, the STRC is assumed to scale linearly with the strength of the

coupling, a condition which is violated in the case of non-weak interactions that we

consider, as shown in Figure 2,8(a), In particular, the right-ward shift in the peak of

the STRC curve evident in Figure 2,8(a) is a well-known feature of the Morris-Lecar

model [181. The question then arises whether this change in the shape of the STRC

has a qualitative effect on the bifurcation structure of the network dynamics shown

in Figure 2.2, or whether this bifurcation structure describes a stereotypical period

doubling cascade, representing universal behavior expected for a large class of STRC

functions with respect to a simple scaling of their amplitudes.

To verify the generality of the observed leap-frog spiking and the associated

bifurcation structure, we considered the case of a quadratic STRC defined as Δ(φ) =
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Amφ(1 -φ). Note that the STRC of this shape agrees with the existence conditions

for leap-frog spiking, illustrated in Figure 2.9, as does any continuous function with

a sharp initial rise and downward concavity at small phases, and decaying to zero

as the phase approaches 1- . We employed the "emulator" algorithm introduced by

Canavier et al. [9] to artificially generate the "inter-spike" phase sequence,

φ+1 =Δ(φn) +Δ(1 +φn -Δ(φn)) -φn

for the quadratic STRC, and explored the effect of increasing the STRC amplitude,

m. We verified that the entire bifurcation structure of the ML network dynamics

is reproduced by the quadratic STRC emulator, and is presented in Figure 2.11 (cf.

Figure 2.2). Note that the map amplitude corresponding to the bifurcation from

synchronous to alternating-order firing can be obtained analytically for the case of

quadratic PRC, using Equation 2.12: Φ'(0) > 1 for m > mcrit = 2 -3/2 (see Figure

2.11). The bifurcation to the oscillator death is also easily analyzed, and occurs at

m 1. Finally, the bursting states such as the one shown in Figure 1(e) are also

obtained using the quadratic STRC. Although it is well-known that the iteration of

a quadratic map leads to a period-doubling cascade and chaos, these results are of

value in proving that the alternating-order firing is a general phenomenon for models

characterized by STRC of a given shape, and that the observed bifurcation structure

is explained by the change in STRC amplitude only, and does not require a change

in the shape of the STRC characteristic of the Morris-Lecar oscillator.

2.3.7 Alternating-Order Spiking in a Pulse-Coupled Network

As discussed in Subsection 2.3.3, leap-frog spiking can be achieved in a purely pulse-

coupled network if the coupled cells do not represent phase oscillators, but include

an additional subthreshold branch, implemented for instance by augmenting the

standard S 1 phase domain with a negative phase value interval, leading to the dynamics
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Figure 2.12 Phase-resetting analysis of a pulse-coupled network of two quadratic
integrate-and-fire cells, dvi/dt = v2i + 1 - g δ (t - tj), with asymmetric threshold and
reset values, vt = 5 and vr = -1 (a) STRCs for pulse amplitude values of g=0.4, 0.8,
and 1.2 are given by Δ(φ ) = φ +[arctan vr - arctan(tan(Tφarctan vr) -g)]/T,where
T = arctan vt - arctan vr is the oscillation period, (b) Phase return maps corresponding to
each of the STRCs shown in (a). As in Figure 2,8, each of the three curves switches from
order-alternating to order-preserving map at point φ  = Δ(φ) = [π/4 + arctan(g - 1)]/T.
For each value of g, there is one stable leap-frog spiking fixed point, and one unstable fixed
point corresponding to phase-locked order-preserving dynamics. The equal-phase (period-1)
leap-frog spiking is stable for g < 4/3.
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in Figure 2.6(b). This negative-phase branch represents the tail of the "tadpole"-

shaped trajectory shown in Figure 2.5(b). The topology of such an extended phase

model is in fact equivalent to the topology of an integrate-and-fire class of models, as

noted by Golubitsky et al. [32]. If a given IF model includes a finite reset potential,

then the interval between such reset value and the threshold potential can be identified

with an S1 phase domain. However, an inhibitory perturbation of sufficient strength

can lower the voltage of a cell below the reset value, which can be viewed as a negative

phase.

Since the standard integrate-and-fire model is characterized by a monotonically

increasing STRC with downward concavity [56], it does not satisfy leap-frog firing

existence conditions, Eqs. 2.9-2.11. However, the quadratic integrate-and-fire model

(QIF) is a more promising candidate, due to its close association with the canonical

model of type-I SNIC excitability bifurcation ([16, 18, 38]). In order to satisfy

the leap-frog existence conditions, we modify the standard non-dimensionalized QIF

model, dv / dt = v2 + 1, by assuming finite threshold and reset values, which we set

asymmetrically to vt = 5 and vr = -1, respectively, in order to obtain an STRC

shown in Figure 2.12(a). This STRC shares the characteristic shape of the STRC of

the Morris-Lecar model shown in Figs. 2.8 and 2.9, and therefore it too satisfies the

leap-frog spiking conditions, Eqs. 2.9-2.11. Figure 2.12(b) shows the corresponding

phase return map for the three different values of pulse amplitude, illustrating both

the order alternating and the order preserving maps. For each of the three chosen

values of the coupling strength, the order-alternating state is stable. Although a

finite threshold value is not necessary for achieving alternating-order firing, note that

a finite reset value is crucial for creating a multi-branched phase domain.
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2.3.8 Effect of Increasing Synaptic Decay Time

The dynamics of the two-cell network that we study undergoes a qualitative change

as the synaptic decay time is increased beyond short durations of 1-4 ms. Namely, we

observe emergence of bistability between synchronous spiking and alternating-order

dynamics, and a narrower domain of stability of the alternating-order state, which

disappears completely when the synaptic decay time becomes longer than about 1/6

of the unperturbed oscillations period in our ML model. Note that bistability between

synchrony and leap-frog spiking was also observed by Maran and Canavier [53] in the

Wang-BuzsáKB model network. This change in dynamics can be understood in terms

of the measured changes in the first- and second-order STRC, shown in Figure 2.13.

The two panels (a) and (b) of this Figure also present the phase return map, Φ(φ ), for

synaptic decay times of 6 and 7 ms, respectively. Note that the second-order STRC

becomes more pronounced at larger τsyn , which is associated also with an increase

in non-zero value of the 1-st order STRC at zero phase. Therefore, the second-order

STRC cannot be ignored, leading to the modified stability conditions, Eq. 2.14,

derived in the Appendix (Eq. A.6) and approximated as Δ'(φ) + Δ'2(ξ) < 2 (Eq.

A.7). Note that the increase in Δ (0+) is associated with a decrease in the initial slope

of the STRC at longer synaptic decay time, as is evident in Figure 2.13 (cf. Figure

2.8). This leads to stable synchronous firing, achieved when 0 < Δ '(0+) + Δ'2(1- ) < 2

(Eq. 2.16), and results in the bistability between synchronous and leap-frog spiking,

captured by the alternating-order phase return maps shown in Figure 2.13.

Finally, we note that the STRC analysis is not applicable if the synaptic decay

time is large enough to be comparable in duration to the interval between incoming

spikes.
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Figure 2.13 Longer synaptic decay leads to bistability between synchronous and leap-
frog dynamics. Each of the two panels shows the first-order STRC ( Δ(φ ), blue), second-
order STRC (Δ 2 (φ ), red) and the phase-return map (black) for τsyn = 6 ms in (a) andτ

syn = 7 ms in (b), Note the two stable and one unstable fixed points for eachτsyn, with
one stable equilibrium at the origin, corresponding to synchronous firing, and another stable
fixed point corresponding to leap-frog spiking,
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Figure 2.14 Network of three all-to-all coupled ML oscillators exhibits splay states in a
certain range of synaptic coupling strength (gsyn = 0.14), The potentials of the three cells
are shown as black, red, and blue traces. Note the change in spiking order: 1,2,3—>  3,2,1
—> 1,2,3 —>...

2.4 Three-Cell Network

In order to explore the effects of non-weak inhibitory coupling in a larger network,

we simulated the dynamics of three identical neuron with all-to-all coupling, and

observed a diversity of network behaviors that are analogous to the activity states

exhibited by a two-cell network. As the coupling strength (g.,) is increased, the

synchronized state becomes unstable, giving way to the alternating order state shown

in Figure 2.14, which is followed by a period-doubling cascade to chaotic activity, and

at sufficiently strong value of the coupling we observe the transition to the oscillator

death mode. Note that in the three-neuron network, the alternating order state

represents a splay state (Figure 2.14), Our results are in agreement with the results

of Maran and Canavier [53] for the heterogeneous network of Wang-BuzsáKB model

neurons, Larger networks of up to ten neurons were examined by Maran and Canavier
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[53], who described similar activity states, with an additional property of clustering,

whereby distinct synchronized subgroups of neurons fire in a splay-state temporal

order (see Figure 12 therein).

2.5 Classification of STRC Shapes Leading to Alternating-Order Firing

We found that the alternating-order dynamics exhibited by the Morris-Lecar model

network can be explained by the particular shape of the STRC characterizing each of

the two cells. The question then arises about the generality of such order-alternating

dynamics. Here we examine the general conditions on the shape of STRC of coupled

oscillators that leads to leader switching based on phase return map.

For the existence for alternating-order firing, Φ(φ) = φ  should have at least one

solution in (0, 1) where Φ (•) is a phase return map defined in Subsection 2.3.4. Let

F(φ )= Φ(φ)- φ = Δ(φ) + Δ(1 + φ - Δ(φ)) - 2φ = 0 	 (2.17)

where Δ

(•)

 is a STRC.

We assume that STRC is continuous in [0, 1]. Then we use the Intermediate-

value theorem to find the condition on STRC that the function F in Eq. 2.17 has

at least one root, satisfying the existence conditions, Eq. 2.9-2.11. We classify the

condition without requiring the existence of the second derivative of STRC, Δ "(.), in

several cases:

2.5.1 Case of One Root of Δ (φ ) = φ

Let φc be the single solution of Δ (φ ) -φ= 0 in (0, 1), i.e.Δ(φc) =φc, and suppose

that STRC satisfies the condition Δ (φ ) > φ for 0 < φ < φc  (see Figure 2.15), which

means the root of function F should be in (0, 0,) if the alternating-order firing exists.

Let ψbe the root ofFwhen it exits, and use the expression ofξψ= 1 +ψ-Δ(ψ)
for the phase of post-synaptic cell at the time arrival of the second synaptic input as
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in Subsection 2.3.4. Then we need Δ(ξψ) < ξψ  from the condition Eq. 2.11 which is

equivalent to

φc< 1 +ψ - Δ(ψ)

Since < 0,, this inequality leads to the following condition, satisfied for all cases

we consider below:

Δ(ψ) < 1 	 (2.18)

for ψ  C (0,φc ).

Case 1 Δ (1) <φc

For φ = φc, we have

F(φc ) = Δ (1) - < 0

If F(0) = Δ (0) + Δ(1- Δ (0)) > 0 then there exists at least one non-zero

root of F in (0, φc ). Taking into account the constraint on the phase domains,

0 ≤  1 - Δ (0) ≤  1, it is equivalent to 0 ≤  Δ (0) ≤  1. We consider three subcases

depending on STRC value at two end points of phase domain, 0 and 1.

1. Δ (0) = Δ (1) = 0.

Since F(0) = 0, we need another condition with Ft(0) > 0 to show that F

has at least one non-zero root in (0, φc ). This is equivalent to

( Δ '(0) - 1)(1- Δ'(1)) > 1 	 (2.19)
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If we consider a symmetric STRC, we can find the more specific condition

since Δ '(1) = -Δ '(0):

F'0) =Δ'(0) +Δ'(1)(1 -Δ'(0)) - 2

= Δ '(0) - Δ'(0)(1 - Δ '(0)) - 2

= Δ' (0)2 - 2 > 0 	 (2.20)

So if Δ'(0) > √2 then F has at least one non-zero root in (0, φc ). In other

words, the symmetric STRC satisfying Eq. 2.20 can generate alternating-

order firing in (0, φc ). In particular, a simple quadratic function represented

by Δ (φ ) = 4mφ (1 - φ ) has alternating-order spiking if m > √2/4≈0.3536

which is same as the mcrit = 2-3/2 bifurcation from synchronous to alternating-

order event sequence shown in Subsection 2.3.6 and Figure 2.11

2. Δ(0) = 0 and Δ(1) ≠ 0.

We have F(0) = Δ (0) + Δ (1 - Δ (0)) = Δ (1), which should be greater than

0 to generate alternating-order firing. So we need following condition:

Δ(1) > 0 	 (2.21)

3. Δ(0) ≠ 0.

From F(0) = Δ (0) + Δ (1 - Δ (0)), a STRC needs the lower bound at

1 - Δ (0) to generate alternating-order firing:

Δ(1 - Δ(0)) > -Δ(0) 	 (2.22)

Case 2 Δ(1) > φc.

For φ  = φc , we have

F(φc ) = Δ (1) - φc > 0
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Figure 2.15 Classification of STRC shapes leading to alternating-order firing in the case
of a single root of Δ (φc ) = φc and assuming Δ (φ ) > φ for all φ  E (0,φc ). The root of F,
should satisfy Δ (ψ ) < 1 from the condition Eq, 2,11 in all cases. (a) case 1-1 ( Δ (1) < φc
and Δ (0) = Δ (1) = 0): a symmetric quadratic case represented by Δ (φ ) = 4mφ (φ - 1)
and amplitude m should be greater than √2/4 (b) case 1-2 (Δ (1) < φc, and Δ (0) = 0 &

Δ(1) ≠ 0): the required condition is Δ (1) > 0(c) case 1-3 ( Δ (1) < φc, and Δ (0) ≠0):
the required condition is Δ (1 - Δ (0)) > - Δ (0) (d) case 2 (Δ (1) > φc): the required
condition is Δ (1 - Δ (0)) < - Δ (0) and 0 < Δ (0) < 1 (e) case 3 (Δ (1) = φc ): the required
condition is Δ (1 - Δ (0)) > -Δ (0) and ( Δ '(φc ) - 1)(1 - Δ '(1)) < 1 for the black curve, and
A(1 - Δ (0)) < - Δ (0) and ( Δ '(φc ) - 1)(1 - Δ '(1)) > 1 for the red dashed curve, The black
dot-dashed curve represents possible variation of the STRC in each case
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If F(0) = Δ (0) + Δ (1- Δ (0)) < 0 then there exists at least one root of F in

(0, φc ). So a STRC needs the upper bound at 1 - Δ (0) to generate alternating-

order firing:

Δ(1 - Δ(0)) < -Δ(0) 	 (2.23)

This condition is violated both for Δ (0) = 0 and for Δ (0) = 1. Thus we need

to restrict Δ (0) as 0 < Δ (0) < 1.

Case 3 Δ (1) = φc

For φ = φc we have

F(φc ) = Δ (1) - φc = 0.

We consider two subcases depending on the sign of F(0).

1. (F(0) > 0 i.e. Δ (1 - Δ (0)) > -Δ (0))

If F'(φc ) < 0 then there exists at least one root of F in (0,φc ). This is

equivalent to

(Δ'(φc) - 1)(1 - Δ'(1)) < 1 	 (2.24)

2. (F(0) < 0 i.e. Δ (1 - Δ (0)) < -Δ (0))

If F'(φc ) > 0 then there exists at least one root of F in (0, φc ). This is

equivalent to

(Δ'(φc) - 1)(1 - Δ'(1)) > 1 	 (2.25)

2.5.2 Case of Two Roots of Δ (φ) = φ

Now let φ1c and φ2c be two solutions of Δ (φ ) - φ = 0 in (0,1), i.e. Δ(φ1c) = φ1c and

Δ(φ2c) = φ2c for 0 < φ2c < φ2c < 1 and let STRC satisfy the condition Δ (φ ) > φ
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only for φ1c < φ<φ2c (see Figure 2.16), which means the root of functionFshould

be in (φ1c , φ2c ) if the alternating-order firing exists. For the root, ψ , of F and ξψ =
1 + ψ - Δ(ψ) for the phase of post-synaptic cell at the time arrival of the second

synaptic input, we need Δ(ξψ) < ξψ  from the condition Eq. 2.11 which is equivalent

to (i) 0 < 1 + ψ  - Δ (ψ ) < φ 1c, or (ii) φ2c< 1 +ψ-Δ(ψ) <1. We obtain

1 + d1c < Δ (ψ ) < 1 + ψ = 1 + d1c + φ1c 	 (2.26)

where d1c = ψ - φ1c >  from the inequality in (i) or

Δ(ψ) < 1 - d2c 	 (2.27)

where d2c = φ2c - ψ > 0 from the inequality in (ii).

Case 4 Δφ1c, < Δ (1) < φ2c

For φ = φ1c, and φ = φ2c, we have

F(φ1c) = Δ (1) - φ1c > 0

F(φ2c) = Δ (1) - φ2c < 0

The function F always has at least one root in ( φ1c, φ2c ) then the root, ψ  of F

should satisfy the condition Eq. 2.26 or Eq. 2.27 depending on the position of

ξψ = 1 + ψ - Δ(ψ). These two conditions correspond respectively to the dashed

and the solid STRC curves in Figure 2.16 (a) and (d).

Case 5 Δ (1) < φ1c

For φ = φ1c, and φ = φ2c, we have

F(φ1c) = Δ (1) - φ1c < 0

F(φ2c) = Δ (1) - φ2c < 0
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If F(φ ) = Δ (φc ) + Δ (1 + φc - Δ (φc )) - 2φc > 0 for some φc E (φ1c, φ2c)

then there exists at least two roots of F in ( φ1c, φ2c ). Since the phase of the

post-synaptic cell at the time of arrival of the second synaptic input is expressed

by ξc= 1 +φc -Δ(φc) as in Subsection 2.3.4, this condition can be written as

Taking into account the constraint on the phase domains, 0 ≤  1 + φc - Δ(φc ) ≤  1,

it is equivalent to

Let ψ1 and ψ2 be the two roots of F in (φ1c , φc ) and (φc , φ2c), respectively. Then

both of ψ1 andψ2should satisfy the condition Eq. 2.26 or Eq. 2.27 depending

on the position of ξψ1= 1 +ψl -Δ(ψ1) andξψ2= 1 +ψ2 -Δ(ψ)2). In other

words, we have the following conditions for each ψ1 and ψ2:

or

where d1c = ψ1  - φ1c, d1c = ψ2 - φ1c, d2c = φ2c - ψ1, and d'2c - φ2c - ψ2..

Case 6 φ2c < Δ (1) ≤  1

For φ  = φ1c andφ = φ2c, we have



53

Figure 2.16 Classification of STRC shapes leading to alternating-order firing in the case
of two roots of Δ (φc ) = φc and assuming Δ (φ ) > φ for all φ E(φ1c, φ2c). The root, ψ , of F
should satisfy 1+ d1c < 1 + Δ(ψ) < 1 + ψ = 1+ d1c + φ1c (i.e. 0 < ψ < φ1c which corresponds to
the red bar on x-axis of each figure) or Δ (ψ ) < 1 - d2c (i.e. φ2c < ξψ < 1 which corresponds
to the blue bar on x-axis of each figure) where d1 = ψ - φ1c and d2 = φ2c -ψ > 0
(a) case 4 (φ1c < Δ (1) < φ 2c): F always has at least one root in (φ1c , φ2c ) (b) case 5
(Δ (1) < φ1c ): the required condition is Δ (ξc) > 2φc - Δ (φc ) and Δ (φc ) < 1 + φc where

ξc= 1 +φc -Δ(φc) (c) case 6 (φ2c <Δ(1)≤1): the required condition isΔ(ξc) < 2φc - Δ(φc)
and Δ (φc) < 1 + φc(d) case 7 ((i)Δ(1) =φ1cor (ii)Δ(1) =φ2c):the required condition is
(i)(Δ'(φ1c) - 1)(1 - Δ'(1)) > 1 for the red dashed curve or (ii)( Δ '(φ2c) - 1)(1 - Δ'(1)) < 1
for the black curve. The black dot-dashed curve represents possible variation of the STRC
in each case.
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If F(φC ) = Δ (φc ) + Δ (1 + φc - Δ (φc )) - 2φc < 0 for some φc E (φ1c, φ2c) then

there exist at least two roots of F in (φ1c, φ2c ). This condition can be written

as

Further, the two roots ψ1 and ψ2 of F, and Δ (φc ) have to also satisfy the

conditions, Eqs. 2.29 - 2.31 as in Case 5.

Case 7 (i) Δ (1) = φ1c or (ii) Δ (1) =

φ2cForφ =φ1candφ =φ2cwe have

in case of (i) Δ (1) = φ1c or

in case of (ii) Δ (1) = φ2c

If F'(φ1c) > 0 in case of (i) or F'( φ2c) < 0 in case of (ii) there exists at least

one root of F in (φ1c, φ2c ). This is equivalent to

in case of (i) Δ (1) = φ1c or

in case of (ii) Δ (1) = φ2c .  Note that the root of F, ψ , has to also satisfy one of

the conditions given by Eqs. 2.26 and 2.27.



55

2.6 Conclusion

We have shown that phase-locked firing of two coupled type-I oscillators becomes

destabilized if the inhibition from one cell is sufficient to transiently bring the post-

synaptic cell below the excitation threshold. In this case, the two cell network will

exhibit leap-frog (alternating-order) spiking, which was also demonstrated recently by

Maran and Can  avier [53] in the case of a heterogeneous network of type-I oscillators.

Thus, the range of applicability of the weak coupling results may be quite narrow in

inhibitory networks of type-I oscillators that are close to their excitation thresholds

[38]. As the coupling strength is increased, the leap-frog spiking state gives way

to a period-doubling cascade, leading to more complex m:n bursting states, as well

as chaotic activity. Finally, at sufficiently strong values of the coupling strength

oscillator death occurs, whereby only one of the cells continues spiking, suppressing

the activity of the post-synaptic cell. The entire bifurcation structure of the network

activity as a function of the synaptic coupling can be explained by the first-order

spike-time response curve.

Here we proved that the leap-frog dynamics cannot be achieved by a standard

phase reduction of the coupled system, and that more than two degrees of freedom

are required to obtain leap-frog spiking in a model with continuous coupling function.

However, we also demonstrated that the alternating-order spiking in the network

of two pulse-coupled ML model neurons can be described entirely in terms of the

augmented phase model with the phase domain extended to negative values, which

represents the suppression of each cell below the excitation threshold in each cycle of

the oscillation. We note that the topology of the augmented phase model is similar

to the topology of an integrate-and-fire model. Therefore, it is possible to achieve

alternating-order spiking in a network of appropriately modified integrate-and-fire

model neurons, as shown in Figure 2.12
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Our results for the Morris-Lecar network hold in a certain range of synaptic

decay times that are significantly shorter than the uncoupled period of each cell. In the

particular parameter regime we consider, second-order phase resetting effects become

significant and can no longer be ignored when the synaptic decay time becomes larger

than about 1/8 of the unperturbed oscillation period. In this case we see significant

bistability between the synchronous and alternating-order states (Figure 2.13), which

is consistent with the observed change in the shape of the STRC with increasing τ syn .

As the synaptic decay time is increased, the region of attraction of the leap-frog state

shrinks, and at sufficiently large τs,, the homogeneous network is no longer capable

of sustaining leap-frog activity. In this case significant heterogeneity may be required

to destabilize phase-locking; this conjecture is in agreement with the results of Maran

and Canavier [53].

Finally, we showed that the network dynamics we report is not specific to the

details of the model and the coupling, since the same activity states and the transitions

between them can be obtained in an emulated network of phase oscillators with a

simplified quadratic phase-resetting curve. In fact, the alternating-order dynamics

can be explained by the particular shape of the STRC characterizing each of the two

cells. Here we provided a complete classification of STRC shapes that lead to periodic

order-alternating dynamics studied in Chapter 2. This would allow one to extend our

analysis and results beyond networks of Morris-Lecar type. Note in particular that

most STRC shapes considered here may have negative values on part of the phase

domain. Therefore the results obtained here are applicable to networks of excitable

cells not belonging to type-I excitability class. Note that the stability condition given

by Eq. 2.12 is straightforwardly extended to all STRC shapes considered here, since

they only involve the value of the derivative of STRC at fixed point of the return map

i.e. root of F = Cθ) —



CHAPTER 3

NEGATIVE PHASE AND STRC

3.1 Negative Phase and Extended STRC

In Chapter 2 we have shown that a one-dimensional phase reduction of a non-

weakly perturbed limit cycle oscillator may require the extension of the phase variable

defining the state of the oscillator to a multi-branched phase domain. Such multi-

branched domain is easiest to implement by extending the [0, 1] phase interval to

negative values. The simplest illustration of such negative phase is provided by

a model of the integrate-and-fire type, when it is hyperpolarized below its reset

potential. As we have shown, this notion of negative phase enables us to extend

the phase return map analysis based on the STRC characteristic to describe novel

dynamical states of non-weakly coupled oscillators, in particular the alternating-order

spiking state.

Note however that until now we have restricted the STRC to the usual [0, 1]

interval (see Figures 2.8, 2.9, and 2.10), and we did not examine the case whereby the

perturbation arrives while the phase of the cell is negative. This is because we were

primarily concerned with the dynamics of a two-cell network, with only one synaptic

input per period. In this situation the phase of the postsynaptic cell is positive when

the perturbation arrives from the presynaptic cell. However, in the case of sufficiently

strong synaptic input, the phase of the postsynaptic cell may not have time to return

to positive values at the time of arrival of the second synaptic input. Although for

a two-cell network such a scenario is only possible in the spike-suppressed (oscillator

death) state, this situation is more common in the case of three or more coupled cells

(Figure 2.14), since in a larger network there will be in general several spikes arriving

from several different cells within a single oscillation cycle. This strong coupling,

57
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Figure 3.1 Effect of two consecutive synaptic perturbations. When one of the cells
reaches phase 0, corresponding to the peak of its potential ( φpre = 0), a synaptic current
hyperpolarizes the postsynaptic cell, which has phase φ . If this first synaptic input (green
arrow) is sufficiently strong, the resulting phase delay is greater than the phase difference
between the two cells (i,e. Δ (φ ) > φ), and the new phase will be negative, φnew = φ - Δ(φ ) <

φ. This negative phase corresponds to an isochron that intersects the limit cycle at a
position retrograde to the peak of the action potential (red curve), If the next synaptic
input arrives from some other cell immediately after the first one (purple arrow), the phase
of the postsynaptic cell will still be negative, and the resulting phase delay will require the
knowledge of the STRC at this hyperpolarized branch of the trajectory.
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Figure 3.2 Defining the negative phase on the subthreshold branch, Zero phase is
redefined as the minimum value of voltage (top panel). All points on the subthreshold
branch of the hyperpolarized trajectory are defined as negative phase O n 	1 - —T1 < 0,To
where T0 is the intrinsic period of the cell, and T1 is the time it takes for the cell to spike
and its potential to reach its minimum (zero phase).
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Figure 3.3 Constructing the STRC on the negative phase domain. For any point
corresponding to a negative phase φn , phase resetting is defined as Δ (φn ) = T2 - T1/T0 where T2
is the perturbed period of cell (red curve) after receiving synaptic current at φn(< 0), Tl is
the corresponding first-passage time in the absence of perturbation, and T0 is the intrinsic
period of the cell
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Figure 3.4 Numerically generated STRC of the Morris-Lecar oscillator with type-I
excitability, extended to the negative phase domain. This STRC corresponds to a synaptic
current perturbation generated by a single presynaptic spike, with the synaptic conductance
value of gsyn 0.2

negative phase scenario is described on the limit cycle plot in Figure 3.1. In order to

describe the network dynamics in this case, the information provided by the STRC

values on the [0, 1] domain (Figures 2.8, 2.9, and 2.10) are not sufficient, and we also

have to know the values of the STRC along the negative branch of the phase domain.

Since negative phase corresponds to the hyperpolarized values of the membrane

potential, it is convenient to re-define the zero phase as the boundary of this hyperpolarized

branch, which is the minimum of V along the unperturbed limit cycle, and not

its maximum according to our previous definition of the zero phase (Figure 3.2),

All points on the limit cycle always correspond to positive phase values between

0 to 1, as in the .9 1 phase model, whereas negative phase values correspond to

the hyperpolarized potentials which are below the minimum of voltage along the

unperturbed limit cycle, Let 0„ correspond to any point on this hyperpolarized
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potentials. Then the negative phase value φn  is defined as

φn= 1 - T1/T0 < 0

where T0 is the intrinsic period of the cell, and T1 is the time it takes for the cell to

spike and its potential to reach its minimum (zero phase).

We are now ready to extend STRC to the negative phase domain, as shown in

Figure 3.3. For any point corresponding to the negative phase θ n , the phase resetting

is defined as

Δ(φn) = T2- T1/ T0

where T2 is the time it takes for the cell to spike and its potential to reach its minimum

following a synaptic perturbation, and T1 is the corresponding first-passage time in

the absence of perturbation.

Figure 3.4 shows the resulting numerically generated STRC. Note that the

STRC is not periodic on [0, 1], i.e Δ (0) ≠ Δ(1), indicating the presence of second-

order phase resetting (shown in Figure 2.10 for a different phase domain definition).

The STRC is continuous across phase 0, and decreases to zero as the absolute value

of negative phase increases, as one moves along the subthreshold branch in the

negative V direction. This decrease in the value of Δ (φ ) indicates the weakening

effect of an inhibitory perturbation of a given amplitude administered at strongly

hyperpolarized potentials, since for large hyperpolarizations the rate of repolarization

is faster. This increase in membrane potential recovery speed can be easily understood

geometrically since large negative V values correspond to phase plane regions far from

the V-nullcline, where the dynamics of the V variable become exponentially fast. In

this case a slight change in membrane potential achieved by synaptic perturbation

does not significantly influence the first passage time of the postsynaptic cell (T2 ≈

T1 ). We observe that the phase delay becomes approximately zero at the negative
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phase values less than —0.2, for a wide range of perturbation amplitudes, gsym and

for different values of synaptic decay time, τsym. Figure 3.4 shows the STRC extended

to the negative phase domain when the synaptic coupling is gsym = 0.2.

3.2 Phase Prediction for Two Close Inputs: Using STRC Extended to

Negative Phase Domain

As discussed above, if the synaptic current is sufficiently strong and the time interval

between two inputs is sufficiently small, the phase of the postsynaptic cell at the time

of arrival of the second perturbation is negative. We predict that in this case the

knowledge of the STRC on the negative phase domain is indispensable in order to

accurately describe the dynamics of the postsynaptic cell. Here we analyze this case

by examining the dynamics of a single model neuron in response to two close synaptic

inputs (open-loop configuration), and test the accuracy of the spike time prediction

based on the STRC extended to negative phase values, as shown in Figure 3.5.

For our Morris-Lecar model, when the time interval between two synaptic inputs

is fixed at ts = 4ms, the phase φ2 at the time of arrival of the second synaptic input

becomes negative if maximum conductance of synaptic current, gsym, is made greater

than 0.28. Note that the time interval between two synaptic currents should be

greater than the synaptic decay time, τsym, in order for the STRC approach to be

applicable. The first synaptic input is applied at fixed time of 0.3ms following the

spike repolarization, corresponding to the phase of φ1 = 0.0067. The second synaptic

input is applied at a phase φ2 which is obtained from

φ 2 = φ 1 - Δ(φ) +ts/T0

where To is the intrinsic period, Δ (φ1) is the phase delay at φ1 , and ts is the time

interval between two synaptic currents. For our example in Figure 3.5, φ2 = —0.063

when gsyn = 1.5.
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Figure 3.5 Effect of two close synaptic inputs for strong value of the coupling, 9syn = 1.5.
The first synaptic input is applied at a fixed interval of 0,3ms (i,e φ1 = 0.0067) following
the time of repolarization of the cell (time when the voltage is minimal, φ  = 0). The second
synaptic input is applied at phase φ2 = -0.063, ts = 4ms after the first input, The second
phase is obtained from φ2 = φ1 - Δ (φ1 ) + ts/T0. The actual total phase delay due to both
inputs is measured as Δ (φ1 , φ2) = The where T2 is the period perturbed by the combined
application of both inputs in one cycle of the oscillation (solid blue curve), and T 0 is the
intrinsic period.
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The actual total phase delay produced by the two synaptic inputs received at

phases φ1 and φ2 is measured as

Δ(φ1, φ2) = T2 - T0/T0 	 (3.2)

where T2 is the period perturbed by both synaptic inputs arriving in one cycle (solid

blue curve in Figure 3.5), and T0 is the intrinsic period of the cell. The phase delay

at each phase is predicted using the numerically computed extended STRC as Δ (φ1)

and Δ (φ2 ). Thus, we get the prediction

T2-T1/T0	=Δ(φ1,φ2)≈Δ(φ1) +Δ(φ2)	(3.3)T0

In Figure 3.6 we compare this prediction to the actual value of the perturbed

period, and show that the extended STRC gives a good approximation to the total

phase delay even if φ2 < 0. We vary the coupling strength gsyn, from 0.5 to 1.5,

the strong coupling parameter range corresponding to the spike-suppress (oscillator

death) state in the two-cell network in Figure 2.1, and compare the actual value of the

total delay obtained by numerically integrating the model equations using MATLAB

with the predicted value obtained using three distinct STRC-based methods: (1)

using the STRC computed on the negative phase domain (red dashed curve, Eq.

3.3); (2) using the STRC defined only in [0, 11, as in Chapter 2, and assuming that

the phase of the cell is "frozen" by the first inhibitory input for the duration equal to

Δ(φ1), in which caseΔ(φ2) =Δ(φ1) whenφ2 <0 (blue dot-dashed curve); and finally

(3) again using the STRC defined only in [0,11 as in (2), but with STRC extended

to negative values by the condition of periodicity, Δ(φ) = Δ (φ  + 1), for φ  E [-1, 0]

(green dotted curve). Note that the absolute magnitude of the negative phase at the

time of arrival of the second synaptic input is increasing as the coupling strength

gsyn increases (Figure 3.6, bottom panel). These results show that computing the

STRC on the negative phase domain gives the best approximation among these three
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Figure 3.6 Comparing the actual and the predicted combined phase delay produced by a
pair of close synaptic inputs. Black solid curve labels the actual total inhibition measured by
Eq. 3.2, red dashed curve presents the predicted total phase delay using STRC extended to
the negative phase domain (Eq, 3.3), blue dot-dashed curve shows the total delay according
to the "frozen" phase assumption, using the STRC only defined in [0,1], and the green dotted
curve shows the total phase delay obtained using the periodic extension of the STRC to
negative phase values, Δ (φ ) = Δ (φ  + 1) if -1 < φ< 0. The coupling strength gsym varies
form 0.5 to 1,5, The lower panel shows the value of phase at the time of arrival of the 2nd
synaptic input, for each value of gsym
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Figure 3.7 Reconstructing three-cell network dynamics using phase description based
on the STRC extended to the negative phase domain, for gsyn = 0.15. Voltage versus time
trace by the emulator (top panel) and by the real model (bottom panel).

methods, even in the case of strong coupling strength. The absolute error between

the actual total inhibition and the predicted phase delay using the extended STRC

approach (case 1) remains within 1% over the entire range of gsyn that we used, Note

that the "frozen" phase model (case 2) is the second-best method, whereas the third

prediction method based on the simple periodic extension of the STRC is the least

accurate, since such a periodic extension is completely arbitrary and is not justified

by the dynamical properties of the underlying spiking model.

Three-cell network gives a concrete example of the usefulness of extending the

STRC to the negative phase domain, For the splay state shown in Figure 3.7 (bottom

panel), there are two consecutive synaptic inputs arriving to each cell in every cycle,

and the phase of the postsynaptic cell may remain negative at the time of arrival of the

second input. Using the phase description based on the STRC on the extended phase

domain, numerically calculated for a particular g syn value, we were able to accurately

reproduce the splay state activity, as shown in Figure 3.7 (top panel). Since the second
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input is usually applied before the first synaptic input has decayed, synaptic currents

of two inputs overlap by 1— 2ms. So there is a measurable quantitative discrepancy

between the actual total phase delay and the one predicted using the STRC, but the

error is relatively small and the qualitative features of network activity are accurately

predicted.

3.3 Extending the Spike Emulator to Negative Phase Values

Note that the utility of the negative phase extension of the STRC is more crucial for

strong values of gsyn. In particular, in Subsection 2.3.6 we presented the bifurcation

diagram of a spike emulator model based on a simple quadratic STRC. This predicted

the spike-suppress state when the STRC amplitude satisfied m > 1, and more

complicated dynamics for yet higher values of m, approximately 1.5. In the latter case

the phase of the suppressed cell drops below zero as m increases, and this phase does

not recover to a positive value when the next input arrives. Therefore we assumed

that the phase of the cell is "frozen" upon receiving inhibition for the duration equal

to Δ(φ)  instead of reducing the phase by Δ (φ ). These two approaches are equivalent

if the period between two synaptic inputs is greater than Δ (φ ). However, during

the spike-suppress state this leads to a monotonic reduction of the phase value with

each synaptic input, so the phase diverges with time. In contrast, we would expect

the phase of a biophysically realistic model to reach a negative but stationary value

when receiving a constant-frequency inhibitory input. Therefore, extending the phase

domain to negative values is crucial in order for the spike emulator approach to be

more realistic.

Introducing the negative phase domain requires changing the shape of the

STRC. The STRC now has non-zero value at phase φ  = 0. The question arises

whether this change in the shape of the STRC has a qualitative effect on the bifurcation

structure of the spike emulator dynamics shown in Figure 2.2. To verify this, we have
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Figure 3.8 (a) Spike emulator STRC is chosen as an a-function defined as Δ (φ ) =
-ma2(φ -1)exp(a(φ -1)) where a = 3,5 andφE [-0.2, 1], for three different values of

amplitude m = 0.2 (dot-dashed black curve), m = 0.4 (dashed blue curve), and m = 0.6
(solid red curve) (b) Emulated inter-spike interval bifurcation diagram as a function of the
amplitude of the a-function STRC. We obtain the alternating-order firing and bursting
dynamics similar to Figure 2.1 (b),(c), and (e), Note that stable synchrony is not obtained.

chosen an α -function as our model STRC, defined as Δ (φ ) = -ma2 (φ -1)exp(a(φ -1))

where a = 3,5 and φ E [-0.2, 1], Note the a = 3.5 is chosen so that the STRC

agrees with the existence conditions for leap-frog spiking illustrated in Figure 2.9,

and this STRC is continuously extended to the negative phase domain. We employed

the emulator algorithm to generate the corresponding inter-spike phase sequence,

and explored the effect of increasing the STRC amplitude, m, We verified that the

entire bifurcation structure of the ML network dynamics is qualitatively reproduced

by the α -function STRC, as shown in Figure 3.8, except for the synchronous state

(cf. Figures 2.2 and 2.11). Reducing the amplitude of the STRC doesn't rescue

the stable synchrony state since the slopes of STRC at phase 0 and 1 are not close

to 1, and therefore the stability condition of synchronous firing determined by map

slope expression (Eq. 12 in Goel and Ermentrout [27]) are not satisfied. But the

iteration of a-function as STRC does lead to period-1 and 2 leap-frog firing, chaotic
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and spike-suppress states similar to those illustrated in Figures 2.2 and 2.11 for the

quadratic STRC. A more complicated functional form of STRC would clearly allow

us to obtain stable synchrony as well, and to match more closely the bifurcation

structure of the Morris-Lecar network.

3.4 Conclusion

The extension of phase domain to negative values naturally arise when deriving phase

return maps in the case of non-weak inhibition, as previously shown by Canavier and

coworkers [10, 53]. However, the geometric meaning of such negative phase domain

has not been previously analyzed. Further, in previous studies the domain of the

STRC was always restricted to positive values.

For the first time, we have shown that the phase return map approach based on

the STRC can be extended to models with multi-branched phase domain supplanted

with a negative value branch, which arises in the analysis of strongly coupled networks

of cells that are characterized by fast closing of K+ channels. We showed that the

utility of negative phase extension of the STRC is more crucial for strong values of

coupling strength gsyn and accurately describes the dynamics of the postsynaptic cell

in a larger network by allowing to predict the effect of multiple consecutive synaptic

inputs. Although the value of STRC on the negative phase domain is relatively small

in our Morris-Lecar neuron model (see Figure 3.4), the extension of STRC approach

to the multi-branched domain may be useful in analyzing the dynamics of networks

of other cells with more significant phase delays at hyperpolarized potentials.

Note that the redefinition of phase zero as the minimum of potential rather

than its peak allowed us to maintain the continuity of the STRC, Δ(φ)across =φ,

the boundary between the two branches of the extended phase domain. However, the

advantage of the standard definition of zero phase as the peak of potential that we

adapted in Chapter 2 is that the negative phase necessarily leads to order alternation,
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whereas in the new phase definition there is a small range of negative phase values

for which the spiking order is preserved. In our model, this range is -0.03 < φ < 0.

Note also that the phase map (Eq. 2.6) derived in Chapter 2 relied on the standard

definition of phase, and would be somewhat modified with the new definition of zero

phase.



CHAPTER 4

HETEROGENEOUS NETWORK

4.1 Introduction

Modeling studies showed that it is possible to obtain synchronous output from purely

inhibitory networks [89] over a decade ago. Since then, several modeling and theoretical

studies of inhibitory networks have been performed [76, 86]. The prediction that slow

inhibition leads to synchrony under assumptions of homogeneity [20, 24, 86], must be

modified in the presence of mild heterogeneity. Heterogeneity of inputs to inhibitory

networks strongly affect their ability to synchronize [30, 84, 88, 91]. In addition,

the effects of inhibition are more complex in mildly heterogenous networks that in

homogenous ones. Synchrony is never perfect in mild heterogeneous networks, i.e.

near synchronous modes were explored in several studies [77, 78, 91, 53].

In two recent studies Skinner and coworkers [77, 78] explored how the amount of

input heterogeneity of two-cell inhibitory network affects their dynamics and found

that the ability of heterogeneous inhibitory networks to synchronize depends non-

monotonically on each of the synaptic time constant, synaptic conductance and

external drive parameters. Further, recent work by Maran and Canavier's [53] showed

how nearly synchronous modes including both 1:1 and 2:2 phase-locked modes arise

in heterogenous networks of type-I Wang-Buzsáki neurons. They used the phase

resetting curve to derive the existence and stability criteria for 2:2 phase-locked modes

in reciprocally coupled two-neuron circuits, without the assumption of weak coupling

(see also [64]).

Here we extend the approach of Maran and Canavier to analyze how the amount

of input current heterogeneity affects the dynamics of the network of two Morris-Lecar

oscillators that we studied in Chapter 2. Our goal here is to describe the changes

72
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in network dynamics caused by increase in heterogeneity in terms of the differences

between the STRCs of the two cells. We extend the phase return maps derived in

Subsection 2.3.4 to the heterogeneous network case, for both the alternating-order

firing and the order-preserving non-zero phase locked state.

4.2 Model

We consider a pair of two model neurons with type-I excitability, each modeled as a

Morris-Lecar oscillator, same as in Chapter 2. I app represents the applied or external

drive to the cell, and we use this parameter to introduce heterogeneity into the system.

We consider two-cell networks that are reciprocally coupled. The external drive to

cells 1 and 2 is:

	Iapp,1 =  Iapp,

	Iapp,2 =  Iapp — δ

respectively, where Iapp = -14μA/cm2 . We define the heterogeneity, €, as€

= T1 - T2/T2	(4 . 1)

where T1 and T2 are the intrinsic periods of the isolated cells 1 and 2, respectively,

Note that the intrinsic frequency is increasing as Iapp increases.

4.3 Activity of a Heterogeneous Two-Cell Network

Figure 4.1 shows the diversity of behaviors exhibited by the two-cell Morris-Lecar

network for different values of the maximal synaptic conductance, gssyn1 and heterogeneity,

E(%). When mild heterogeneity is introduced into the two-cell inhibitory network,

the network exhibits the alternating-order firing, chaotic, and oscillation death states

that are also observed in a two-cell homogeneous network. However, for small values
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Figure 4.1 Network activity states in heterogeneous two-cell networks, The potentials
of the two cells are shown as red and black traces, respectively. (a) Near-synchronous
phase-locked firing when gsyn = 0.05, Iapp,2 = 14.005μA/cm2(€ = 1.68%) . The
spiking order is preserved, (b) Period-2 alternating-order (leap-frog) spiking , when
gsyn = 0.1, Iapp,2 	 14.005μA/cm2 (

€

 = 1.68%) (c) Phase locked firing when gsyn =
0.03, Iapp,2 = 14.01μA/cm2 (€ = 3.3%). The spiking order is preserved (d) Mixed pattern
with alternating-order and order preserving phase-locked firing when gsyn = 0.2, Iapp,2 =
14.0μA/cm2(

€

 = 3.3%). Note the change in spiking order:1 	 --> 2 --> 1 --> 1 --> 2
--> 2 --> 1 --> 2 --> ... (e) 2 : 3 mode-locked alternating-order spiking when gsyn

0.28, Iapp,2 = 14.01μA/cm2(€ = 3.3%) (f) Chaotic state, irregular inter-spike intervals when
syn = 0.26, Iapp,2 = 14.02 μA/cm2 (6 = 6.3%)

of the coupling, we observe a near-synchronous state instead of exact synchrony, with

a small but non-zero interval between the neighboring spikes of the two cells.

Bifurcation diagram presented in Figure 4.2 explores the transitions between

these different behaviors, showing the coupling-strength dependence of the asymptotic

intervals between two consecutive spikes for two different values of heterogeneity,

€

= 3.3% and 

€

 = 6,3%. In case of mild heterogeneity, 

€

 = 3.3%, network activity

shows more varied behaviors: as the coupling strength is increased, the activity

changes from the order-preserving near synchronous firing, becoming the non-zero

phase-locked state, which bifurcates to alternating-order firing, mixed activity with

order alternation and non-zero phase locking (Figure 4.1 (d)), then to chaotic, 2 : 3

mode-locked alternating-order firing (Figure 4.1 (e)), then chaotic and spike-suppress



75

Figure 4.2 Bifurcation diagram of the heterogeneous two-cell Morris-Lecar model
network. ISI∞ , the asymptotic values of the intervals between consecutive spikes (not
necessarily spikes of the same cell) are plotted as a function of the coupling strength, gsyn
for two values of heterogeneity: (a) € = 3.3% and (h) € = 6.3%.

state (in that order). In contrast, Figure 4.2(b) shows that the diversity of network

states becomes smaller for larger heterogeneity (€ > 4.8%). In this case there

is asynchronous firing at small synaptic coupling strength, followed by the order-

preserving phase-locked firing, and followed again by the asynchronous or chaotic

firing, and the spike-suppress state at large coupling values.

Figure 4.3 presents the dependence of network activity on the degree of heterogeneity,

as a two-parameter bifurcation diagram. The non-zero phase locked state (including

near-synchrony state) is observed for mild to moderate heterogeneity, € < 11%. Note

that spiking order is preserved in near-synchrony and non-zero phase locked state.

For a network with mild heterogeneity (Figure 4.2(a)), this non-zero phase locked

state appears for small coupling strength. The minimum value of coupling strength

required for this pattern increases as the heterogeneity increases. The period of the

non-zero phase locked solution and the phase difference between the spikes of two

cells vary depending on both on the coupling strength ( -gsyn) and heterogeneity (€ ).

For example, when gsyn = 0.17 and € = 4.81%, the period-2 phase locked solution

is observed with phase difference between the spikes of two cells of 0,4% to 7% of
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Figure 4.3 Dynamic states of the network on the coupling strength - heterogeneity
(gsyn - €) parameter plane, Stable synchrony appears for gsyn = 0 to 0,06 when only € = 0%
(blue thick bar on gsyn axis). The red region represents stable alternating-order firing. The
green region represents stable non-zero phase-locked firing including near-synchrony state
(order-preserving). The gray region represents the spike-suppress state. White area includes
all other patterns - chaotic, mixed patterns, arid bursting.

the unperturbed period, whereas for gsyn = 0.05 and €= 6.3% the phase difference

of period-16 non-zero phase locked solution constitutes from 0,3% to 67% of the

unperturbed period (data is not shown).

The alternating-order firing state is exhibited when coupling strength is varied

in the range 0.08 < gsyn < 0.21 in a mildly heterogeneous network (€ < 4.8%), but

the interval between the neighboring spikes of the two cells is small, whereas it can

reach 70% of the unperturbed period in homogeneous network case. Also, Figure

4,3 shows that the coupling strength parameter region supporting alternating-order

firing becomes narrower as heterogeneity is increased. If heterogeneity (0 is greater

than 4,8%, the alternating-order firing can riot be observed for any value of coupling

strength, gsyn •
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Mixed pattern appears for a narrow region of coupling strength parameter

(0.16 < gsyn < 0.22) in the transition from alternating-order firing to chaotic state

in mild heterogeneity ( € < 4.8%). The possible coupling strength parameter region

showing mixed pattern shrinks as heterogeneity increases, and no gsyn value generates

this pattern when heterogeneity, €, is greater than 4.8%. Finally, 2 : 3 mode-locked

alternating-order spiking is observed for a very narrow region of coupling strength

parameter (0.27 < gsyn < 0.29) in the transition between two chaotic states when the

heterogeneity is small ( € < 4%), as shown in Figure 4.2 (a) when € = 3.3%.

4.4 STRC in the Heterogeneous Case

Since heterogeneity is implemented by increasing the applied current of one of the

cells, this induces a change of the intrinsic period of the corresponding cell, resulting

in a change of its STRC as a function of heterogeneity level. In Figure B(a) we

numerically constructed STRC for different values of heterogeneity from 0% to 16%

to show how the amount of input current heterogeneity affects the difference between

STRCs of the two cells. The peak amplitude of STRC decreases and the peak of STRC

is shifted slightly to the left as heterogeneity is increased (i.e. intrinsic frequency is

increased) for fixed stimulus amplitude. Note that the corresponding changes in

STRC are relatively small, and mostly occur at its peak (cf. Figure 2.8). We fit a

2nd order polynomial with m = -0.15 €2 - 0.21€ + 0.75 to describe the change in the

peak amplitude of the STRC, m, versus heterogeneity c, neglecting the shift of the

peak of STRC, as illustrated in Figure B (b).

In a mildly heterogeneous two-cell network let Δ1 (.) and Δ2(.) be the STRCs

of cells 1 and 2, respectively. Then the STRC of one cell can be approximated by one

of the other cell:

Δ2(φ) ≈ Δ1(φ) + δ(φ, €) 	(4.2)
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Figure 4.4 (a) Numerically constructed STRC for different values of heterogeneity from
0% to 16%, Four curves correspond to € = 0% (black curve), € = 6% (blue dashed curve),

= 12% (red curve), and € = 16% (green dash-dotted curve). The amplitude of STRC
decreases and is slightly shifted to the left as heterogeneity increases. (b) The amplitude (m)
of numerically constructed STRC in (a) versus heterogeneity (c). The change of amplitude
is interpolated in terms of € by 2nd-order polynomial with m = -0,15€2 - 0.21€  + 0.75.

where € << 1 and δ (0, €) represents the discrepancy between two STRCs, which is a

quantity of order E. Note that obviously δ(0, €) = δ(1, €) = 0 for any value of €.

4.5 Analysis Based on Phase Return Map

In Subsection 2,3.4 we derived the phase return map in homogenous network to

analyze the dynamics of coupled network on a quantitative level. Now we extend

it to the heterogenous network case, with only first-order phase resetting, as in the

homogenous network, and with Eq. 4.2 relating the two STRCs. In the heterogeneous

network case, the phase return map should consider the phase dynamics of both

coupled cells, since they have different intrinsic frequencies, whereas it was sufficient

to analyze the phase dynamics of only one of the two cells in the homogeneous network



79

case. We will derive the phase return maps for each of the two firing patterns, the

alternating-order firing and the order-preserving non-zero phase locked state.

First, we consider firing pattern for the order-preserving non-zero phase-locked

state given in Figure 4.5(a), and define the phase return map for the phase intervals

On and C512 in cell 1. We consider one period of phase-locked firing for each cell,

while the cell receives one spike from the partner cell (represented as the bold part

of each trace in Figure 4.5 (a)). The inter-stimulus time intervals tj and sj represent

the time elapsed between the firing of cell 1 and the reception of the j-th input from

cell 2, and between the firing of cell 2 and the reception of the j-th input from cell

1, respectively. Let φ1j in cell 1 (red spike and red trace in Figure 4.5 (a)) and ξ2j in

cell 2 (blue spike and blue trace in Figure 4.5 (a)) denote the phase of each cell at

the arrival time of the j-th synaptic current pulse due to the spike of the pre-synaptic

cell, and ξ1j in cell 1 and φ2j in cell 2 be the phase of each cell at the next spike time,

after receiving the j-th input from the other cell. Then the time intervals tj and sj

can be expressed in terms of the phase variables φij and ξij, as follows:

tj = φ1jT1 = φ2jT2, sj = ξ1jT1 = ξ2iT2 	 (4.3)

where T., (i = 1, 2) are the unperturbed oscillation periods of cells 1 and 2. Since the

amount of phase delay of cell 1 induced by the synaptic input at phase φ11 equals

Δ1(φ11), whereΔ1(•) is the STRC of cell 1, the phaseξ11is given byξ11-Δ(φ11) +

φ11= 1, which follows from the first-passage time condition in cell 1. Similarly, we

get ξ21 - Δ2(ξ21) + φ22 = 1 where Δ2(.) is the STRC of cell 2, from considering one

period of cell 2 (represented in bold in Figure 4.5 (a)). Combining it with the relation

ξ21 = T1/T2ξandφ22 = T1/T2φ12from Eq. 4.3, we obtain

φ12 = T2/T1 - ξ11 + T2/T1Δ2(T1/T2ξ11)		(4.4)
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Figure 4.5 Constructing the inter-spike phase return map. Right panel shows the phase
time-course of each cell emitting the spikes in left panel. (a) Phase-locked spiking: the phase
intervals φij , ξij (i = 1, 2) are inter-spike intervals normalized by the unperturbed period of
each oscillator, T1 and T2. The phase delays due to one spike from partner cell equal Δ1 (φ11 )

in cell 1 and Δ2(ξ21) in cell 2. The next inter-spike intervals are ξ11 = 1 - φ11 + Δ1 (φ 11) in
cell 1 and φ22 = 1 - ξ21 + Δ2(ξ21) in cell 2. Note that ξ21= T1/T2ξ11andφ22 =T1/T2φ12.The
inter-spike interval φ12 in cell 1 is found by combining two equations for inter-spike interval

ξ11 and φ 22 in each cell, yielding the phase return map, Eq. 4.4 (b) Alternating-order spiking:
the phase intervals ( φij (i = 1, 2) are inter-spike intervals normalized by the unperturbed
period of each oscillator, T1 and T2. The phase delays due to each of the two spikes
equal Δ1 (φ11) & Δ1(ξ11) in cell 1, and Δ2 (φ22) & Δ2 (ξ22) in cell 2, where ξ11 , ξ22 are
the cell phases at the time of arrival of the second input in cell 1 and cell 2, respectively,

ξ 11 =  t2/t1 + φ11 - Δ(φ11)andξ22= T1/T2 +φ22 - Δ2(φ22).The second inter-spike interval
φ12in cell 1 andφ23in cell 2 is found by the first-passage time condition
ξ11 - Δ2(ξ22) + φ23 = 1andξ22 - Δ2(ξ22) + φ23=1, respectively, yielding the map in each cell, Eq. 4.11 and 4.13.

The phase return map is obtained by the composition of two maps in each cell.
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Therefore, the return map for the phase intervals φ1j in cell 1 is given by

substituting ξ11 = 1 - φ11 + Δ1 (φ11) into Eq. 4.4. Or it can be expressed in terms of

the heterogeneity defined as € -1 :

where T2/T1 ≈€if terms of higher order in c are ignored in the asymptotic series.

To simplify the phase return map in mildly heterogeneous network we expand

the last term in Eq. 4.6 in a Taylor series with respect to €, and use Δ2(φ ) =

Δ1(φ) +δ(φ, €δ) from Eq. 4.2 to represent the two different STRCs. Then we obtain

for the last term:

where ξ11 = 1 - φ11 + Δ1  (φ11) and € << 1. Therefore the phase return map is

approximated as

if second- and higher-order terms in € are neglected.

If we consider the condition for synchronous firing, φ11  0 and ξ11 = 1, we

obtain
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since Δ1 (1) = 0, δ (1, E) = 0 and aΔ1(1)/aE = 0. Therefore, even for the case Δ1 (0) = 0,ae
synchrony state doesn't exist for non-zero heterogeneity E.

To derive the condition for non-zero phase-locked firing, φ , we have to find the

roots of

For φ  = φc denoting φc the root of φc = Δ(φc ), we get

Note that F(φ ) has to be a decreasing function of φ  at the stable fixed point, φeq,

(-2 < F'(φeq) < 0). Given that F(φc ) < 0, this means that F(φ ) has to change sign

to positive values on the interval [φc , 1), followed by a change in sign back to negative

values at the stable fixed point of Φ (φ ). Therefore, a necessary but not sufficient

condition for the existence of a stable phase locked spiking is F(1) ≤  0. To first order

in E we have

Thus, we obtain the following lower bound on the heterogeneity parameter E: E ≥

Δ1(0)/1+Δ1(0).Note that in the caseΔ(0) = 0 stable order-preserved firing is achieved

even for zero heterogeneity value, in which case synchronous firing is obtained. For

sufficiently high values of c the map Φ (φ ) has no stable fixed points, since F(φ ) < 0 on

the entire phase domain [0, 1]. Note that the condition we obtained does not depend

on the discrepancy, δ(ξ, E), of STRCs.

In the case of the alternating-order firing, phase return map is similar but more

complex than in homogenous network case. Since the intrinsic periods of cell 1 and

cell 2 (red and blue traces in Figure 4.5) are not same, the map relating phases

φ11 and φ12 is not identical to the map relating phases φ12 and φ 13 in Figure 4.5 (b),
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Therefore, the corresponding phase return map should combine the dynamics of both

cells, describing the evolution of their phases while each cell receives two spikes from

its partner cell. So we take two consecutive cycles of alternating-order firing from each

cell (represented as bold part of each trace in Figure 4.5(b)) and define the maps for

the phase intervals φ11 and φ12 in cell 1, and φ22 and φ23 in cell 2.

Let ti be the inter-stimulus time interval between the firing of the two cells,

and let φij (i = 1, 2) denote the inter-spike intervals normalized by the unperturbed

period of the ith oscillator, Ti. Then tj=φ1jT1 =φ2jT2. If synaptic inhibition is

sufficiently strong at φ11 , i.e. Δ l(φ11) > φ11 , then pre-synaptic cell 2 has a chance

to spike again, and the time interval between the two consecutive spikes of cell 2 is

equal to its intrinsic period T2, which corresponds to the phase interval of T2/T1 in cell

1. This second synaptic current from cell 2 arrives when the phase of cell 1 equals

ξ = T2/T1 + φ1 - Δ1 (φ11) and the resulting phase delay is equal to Δ l (T2/T1 +φ11 -Δ1(φ11)).

Therefore, the total phase delay due to both inputs is equal to

	 φ11+ φ 12 = 1 - T2/T1 + Δ(φ11) + Δ1(T2/T1 + φ11 - Δ1 (φ11)) 	 (4.10)

Thus, the return map for the phases φ11 and φ12 in cell 1 is given by

φ12=Φ1(φ11) = 1 - T2/T1 + Δ1(T2/T1 + φ11 -Δ(φ11))-φ11	(4.11)

or, expressed in terms of the phase of the post-synaptic cell at the time of arrival of

the second spike, ξ11 = T2/T1 + φ11 - Δ(φ11)

	 φ12 ≡ Φ1(φ11) = 1 + Δ1(ξ11) - ξ11 	 (4.12)

Similarly, the return map for the phases φ22 and φ23 in cell 2 is given by

φ23 ≡ Φ2(φ22) =  1 - T1/T2 + Δ2(T1/T2 + φ22  -Δ2(φ22))  - φ22	(4.13)
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also, expressed in terms of the phase of the post-synaptic cell at the time of arrival

of the second spike, ξ22 = T1/T2 + φ22 - Δ2(φ22) :

Finally, combining Eq. 4.11 (or 4.12) and Eq. 4.13 (or 4.14), and applying φ1j

= T2/T1 φ2j, the return map in cell 1 is given by

where T2/T1 ≈ 1 - E if higher order terms are ignored in asymptotic series of heterogeneity

parameter €.

Eq. 4.15 can be used to examine both the existence and stability of alternating-

order firing in terms of the heterogeneity parameter, E.

4.6 Conclusion

For homogeneous network, it has been known that slowly decaying inhibition generally

has a synchronizing influence [24, 83, 86]. However, for mildly heterogenous networks,

the relationship between the frequency and the synaptic decay time must also be

considered in affecting network dynamics [91, 77, 78]. In our studies, synaptic decay

time is fixed as tsyn = 1ms, which is very fast (tsyn/T <<1) and the amount of

heterogeneity (€) due to the change of applied current is used as a parameter in

two-cell network studies, emphasizing the role of heterogeneity in affecting network

dynamics.

Our results show that the network oscillations depends on the applied current

and the synaptic conductance. With mild heterogeneity, we have shown that stable

alternating-order firing and order-preserving non-zero phase locked state occur. The

alternating-order state is lost as the heterogeneity is increased, which happens much

earlier than the breaking of non-zero phase lock state including near-synchrony. When
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these two states break, states of asynchrony, mixed pattern firing, bursting or spike-

suppression may arise in certain range of coupling strength, andand heterogeneity,

E,

We have shown that the phase return map approach based on the STRC can

be extended in heterogeneous network case, and it is expressed in terms of the

difference between the STRCs of the two cells and the difference between their periods,

expressed in terms of heterogeneity parameter, c. The heterogeneity induces the small

discrepancy between STRCs of the two cells, which is of order c. Interestingly, our

predictions of phase dynamics based on the phase return map depend mostly on the

heterogeneity in the periods of the two oscillators, and are much less sensitive to the

difference between the STRCs of the two cells, S(0, c). In fact, for small heterogeneity

the existence criteria for a particular pattern derived here hold regardless of the form

of S(0, c), as long as S(0, c) = 6(1, c) = 0.

Note that our results (Eqs. 4.6 - 4.9) can also be used to analyze the case where

heterogeneity is primarily due to the differences in individual synaptic conductances

rather than the differences in intrinsic periods of the cells. Contrary to the case

examined above, in this case the main heterogeneity parameter would be S(0), the

difference in STRCs of the two cells.



CHAPTER 5

DISCUSSION

We have shown that the non order-preserving activity recently observed by Maran

and Canavier [53] in an inhibitory network of Wang-Buzsáki oscillators can also be

obtained in a network of lower-dimensional Morris-Lecar model neurons, and therefore

is a general property of a wider class of type-I excitable cells. Namely, we found that

such "leap-frog" dynamics results when the inhibition from one cell is sufficient to

transiently bring the post-synaptic cell below the excitability threshold, producing

a phase delay that is greater than the time elapsed since the preceding spike. As

the coupling strength is increased, the leap-frog spiking state gives way to a period-

doubling cascade, leading to more complex m:n periodic bursting states, as well

as chaotic activity. Finally, at sufficiently strong values of the coupling strength

oscillator death occurs, whereby only one of the cells continues spiking, suppressing

the activity of the postsynaptic cell. Analogous activity states can also be obtained

in larger inhibitory networks of type-I oscillators, including heterogeneous networks

[53].

Interestingly, in a narrow range of synaptic conductance values, one obtains

m : m mode-locked states whereby each cell emits several consecutive spikes in each

cycle, followed by several spikes of the partner cell (see Figure 2.1(e)). Note that

this represent a novel mechanism of bursting, which is much simpler than the more

widely known mechanisms [41], since it does not rely on any intrinsic cell currents.

This bursting mechanism is an emergent property of the synaptic interaction between

the two oscillators, and there is no intrinsic time scale setting the length of the burst.

We will explore the possible implications of this bursting mechanism in our future

work.

86
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One of our goals was to reveal the conditions required for periodic alternating-

order dynamics, and we showed that it can be achieved under two different sets

of conditions. First, it can be exhibited by a network of phase oscillators, in the

presence of independent synaptic degrees of freedom with non-zero synaptic decay

time. Second, leap-frog spiking is also possible in networks of oscillators whose

dynamics cannot be reduced to a single phase variable. In the latter case order

alternation can be achieved even in a purely pulse-coupled network. This is true in

particular for a network of appropriately modified quadratic integrate-and-fire model

cells (Figure 2.12). We found that the ML network we examined also falls within the

latter class of models, in that order alternation is achieved for very short synaptic

decay time, and the periodic trajectory of each cell significantly deviates from the

unperturbed limit cycle due to periodically received inhibition.

In both classes of models, periodic spike-order alternation requires the same

conditions on the phase resetting characteristic of the coupled cells. To establish

these conditions, we followed the approach of Maran and Canavier [53], but restricted

ourselves to the case of a homogeneous network in Chapter 2, in order to determine

the most basic requirements leading to spiking order alternation (Eqs. 2.9-2.11). In

Chapter 4, we extended our analysis to the heterogenous network case, and analyzed

both the order-alternating firing and the order-preserving non-zero phase locked state

in this case. The principle condition for order alternation is that the phase delay

produced by an input arriving shortly after the spike-time should be larger than the

time elapsed since this last spike, A(0) > 0. Thus, the phase-transition map (Eq.

2.6) is complementary to the map of Goel and Ermentrout [27] derived under the

assumption of phase map invertibility, A(0) < O. In a pulse-coupled network, such

strong resetting automatically breaks the phase structure of each oscillator, since it

leads to a delay past the spike-time, requiring an additional negative-phase domain

branch, or, alternatively, an additional condition that a cell does not emit a spike
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unless its winding number is increased [5, 32]. In contrast, in a network of cells with

a non-zero synaptic decay time this complication does not arise, since such strong

phase delay resetting is spread out over a finite time interval, and the phase variable

may remain positive. For the Morris-Lecar model in the type-I parameter regime we

consider, this strong phase resetting property is directly related to the fast kinetics

of the K+ channels relative to the rate of change of the membrane potential, which

clamps the trajectory to the w-nullcline during the quiescent subthreshold phase of

the limit cycle. An inhibitory current pulse applied in this oscillation phase perturbs

the dynamics along the w-nullcline, which plays the role of a slow manifold, allowing

to achieve a phase delay greater than the time to the preceding spike.

For cells that can be reduced to such a dual-branched phase model, we showed

that the extension of the STRC to negative phase values allows to accurately predict

the response of the cell to several close non-weak perturbations. Such an extended

STRC can then be used to analyze the dynamics of three or more non-weakly coupled

cells, whereby more than one synaptic perturbation arrives per oscillation cycle into

each cell. In the future work we will explore the implications of such an extended

STRC approach for predicting the dynamics of networks with more than three cells.

Further, we also showed that the entire bifurcation structure of the network

activity obtained by increasing the synaptic conductance parameter, and involving

a period-doubling cascade to chaos and more complex m : n mode-locked bursting

patterns, can all be explained by a simple scaling of the peak amplitude of a simplified

quadratic STRC function. Therefore, the observed dependence of network activity on

the synaptic inhibition strength is very general, and does not require the non-trivial

change in the shape of the STRC arising from the biophysics of a particular cell

model.

These results further illustrate the qualitative features of periodic spike train

patterns that can be produced by simple inhibitory networks of cells with type-I
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excitability, beyond the simple phase-locked firing states that can be predicted using

the weak-coupling theory (see also White et al. [91]). This may have implications for

the study of central pattern generators, which are responsible for producing distinct

firing sequences, for instance in enervating opposing muscle groups during motor

activity, and which often contain subnetworks of several cells coupled by reciprocal

inhibition. We note that the classification of possible network activity states, and its

relationship to the underlying network architecture and the qualitative properties of

cell dynamics, is a subject of significant recent interest [31, 32, 1].

Our results also demonstrate the fact that the range of applicability of the weak

coupling results is quite narrow in inhibitory networks of type I cells that are close

to their excitation thresholds [38]. Therefore, asynchronous dynamics may be quite

prevalent in neuronal networks with strong inhibitory synaptic currents, possibly

including some interneuron networks in the mammalian brain, even in cases where

the weak coupling tends to synchronize the neurons. In our future work we will use

computer simulations of networks consisting of a large number of coupled cells in order

to investigate the interaction between synchronizing and desynchronizing effects of

non-weak synaptic inhibition in large neural circuits.

It is important to explore whether the phenomenon we describe is even more

general, and whether similar dynamical behavior is exhibited by non-weakly coupled

cells of a different excitability class, satisfying the crucial condition of strong phase

delay, A(0) > 0. To address this question, in Section 2.5 we fully examined the

general conditions on the shape of STRC functions leading to order switching dynamics,

using the conditions, Eqs. 2.9-2.11. This would allow one to extend our analysis and

results to networks of excitable cells not belonging to type-I excitability class, whose

phase-resetting characteristic can change the sign over part of its phase domain [18].

In this case an inhibitory synaptic input may produce a phase advance rather than

a phase delay, and order alternation may in principle be achieved in an excitatory
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network of such cells, given that the conditions Eqs. 2.9-2.11 on their phase resetting

properties are satisfied. In the future we will search for specific biophysical excitable

cell models that would yield some of the different STRC shapes examined in Section

2.5, with the aim to demonstrate the existence of periodic leader switching in excitatory

networks. This would significantly increase the generality of our results.

Finally, we hope that future experimental studies will be able to validate some

of our conclusions, through a detailed study of synaptically coupled simple-spiking

(non-bursting) neurons. One promising experimental approach to verify our results

about the behavior of non-weakly coupled networks is provided by the dynamic clamp

protocol [67], which would allow one to artificially couple a small number of isolated

cell in order to study in detail the effect of synaptic coupling parameters on the

resulting network dynamics [58, 63].



APPENDIX A

DERIVATION OF THE ALTERNATING-ORDER PHASE MAP WITH

SECOND-ORDER PHASE RESETTING

We will use the diagram in Figure 2.7(a) to derive the map in the case of non-negligible

second-order phase resetting, Δ2 (φ ). Let {φn , ξn}denote the two phases of the

postsynaptic cell at the time of arrival of each of the two spikes in n-th period of

the oscillation. In the case of zero second-order resetting, Figure 2.7 illustrates the

relationship between these phases, ξ= 1 +φn -Δ(φn).However, due to non-zero

second-order phase resetting received by the presynaptic cell in the preceding cycle,

Δ2(ξn - 1)(whereξn-1is its phase at the time of arrival of the first black spike in

Figure 7(a)), the interval between two spikes of the presynaptic cell in the current

cycle, denoted γn , will not be equal to 1:

Therefore, the modified relationship between ξn and φn reads

Note that we neglect the much smaller second-order phase-resetting due to the first

spike of the presynaptic cell in each period of the 2:2 mode: Δ 2(φn) << Δ 2(ξ n).

Finally, given the phase en of the postsynaptic cell right before receiving its second

input, one can easily find its first passage time, φn+1 (i.e. interval φ2  in Figure 7(a)),

using the first passage time condition
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Solving this system of equations for ξn yields the map

which can be re-written in a more compact form as

If we substitute the conditions for synchronous firing, ξn = 1, φn = 0, we obtain

Δ2(1) =Δ(0),which is the correct periodicity condition relating the first- and second-

order STRC curves. Therefore, the synchronous solution is always a fixed point of

Eq. A.4.

Differentiating Eq. A.5 yields the stability condition

which agrees with Eq. 2.12 when Δ2 (•)=0. Close to the bifurcation from synchrony

to leap-frog spiking, ξ ≈ 1, Δ(ξ) ≈ 0, and therefore

which yields

Recall that φ  = 1 - ξ + Δ(ξ) (Eq. A.3). A more general stability condition for the

case of non-negligible Δ2(φn.) is given by Maran and Canavier [53].



APPENDIX B

STABLE LEAP-FROG DYNAMICS IN A PHASE OSCILLATOR

NETWORK

The 2-cell network of phase oscillators producing stable alternating-order firing in

Figure 2.6(a) is easy to implement. Here is the most straightforward implementation

that is far from elegant, but serves the purpose:

Where kgr. = 3 and kdecay = 10 are synaptic growth and decay rates, respectively,

gsyn = 200 is the coupling constant, σ - (φ ) is a sigmoid spike thresholding function,

and P(φ ) is the STRC function defined by:

In the spike-time resetting term P(φ ), the phase argument is assumed to be modulus

1. Note the asymmetric shape of the STRC.

The result of a run over 6 times units clearly shows the fast approach to stable

leap-frog dynamics:
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