665 research outputs found

    Remote sensing applications to resource problems in South Dakota

    Get PDF
    There are no author-identified significant results in this report

    Innovation: Key to the future

    Get PDF
    The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics

    An eeg based study of unintentional sleep onset

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Study to establish criteria for a solar cell array for use as a primary power source for a lunar-based water electrolysis system, phase 1 Final technical report, 1 Jul. 1967 - 30 Jun. 1968

    Get PDF
    Parametric performance and design criteria for assessing feasibility of large solar array and fuel cell systems as primary power source for lunar-based water electrolysis syste

    Effects of the brain-infecting parasite Pseudoloma neurophilia in laboratory zebrafish (Danio rerio)

    Get PDF
    Zebrafish (Danio rerio) are increasingly popular model animals in scientific fields ranging from behavioural ecology to neurobiology. It is therefore of increasing concern that half of all zebrafish research facilities are contaminated with the brain-infecting microsporidian parasite Pseudoloma neurophilia. This parasite mainly aggregates in the hindbrain, where it causes chronic yet typically sub-clinical infections. Hence, infected fish often show no obvious disease symptoms and researchers are often unaware of infection status. Previous studies indicate that P. neurophilia reduces growth and alters shoaling behaviour and habituation to fearful stimulus, in zebrafish. These changes in behavioural phenotype suggest that the parasite may affect stress, anxiety and sociability in zebrafish. However, effects of this parasite on host phenotype remains largely uncharted. Thus, in this Thesis, I investigated behavioural, metabolic, neurophysiological and brain transcriptional effects of sub-clinical infections with P. neurophilia in the zebrafish host. The first aim of the Thesis was to identify behavioural effects of P. neurophilia infection in zebrafish across a range of contexts. To this end, infected and uninfected zebrafish were tested in commonly used behavioural paradigms, namely social preference, mirror biting, open field and light/dark preference tests. I found infection to not alter classic behavioural outputs such as sociability and aggression. However, infected individuals displayed reduced activity in all arenas. Furthermore, in accordance with previous studies, infection negatively affected growth, indicating that P. neurophilia is energetically costly for the zebrafish host. This cost is likely related to immune responses mounted by the host. Moreover, behavioural changes may indicate that the parasite has direct effects on the nervous system in zebrafish. The second aim of the Thesis was therefore to study brain transcriptional changes caused by infection. Specifically, I aimed to characterise the immune responses to infection and identify biological processes affected by the parasite. In line with my predictions, RNA-sequencing analysis revealed that the parasite induces a pro-inflammatory response in the zebrafish brain. However, a distinct downregulation of specific immune-related genes also suggests that the parasite takes advantage of specific immune evasion strategies. Surprisingly, P. neurophilia infection had no significant effects on genes related to nervous system function. The initial findings that P. neurophilia reduces growth and activity and induces proinflammatory responses in the brain, indicate that infection constitutes a considerable metabolic cost for the host. In addition, certain neurophysiological (e.g. monoaminergic) responses to infection may not be detectable by RNA-sequencing. Thus, the third aim of the Thesis was to determine metabolic and neurophysiological responses following acute and long-term P. neurophilia infections. In line with my predictions, P. neurophilia infection increased metabolic rate in zebrafish. However, the increase was highest three days after acute exposure (independent of whether the fish had an established infection or not) and mitigated again on day six. Furthermore, acute parasite exposure increased serotonergic and dopaminergic activity, but only in zebrafish with no previous history of infection (naïve). The results suggest that the metabolic and neurophysiological effects of P. neurophilia depends on time post last exposure and previous infection status and that metabolic costs are higher with acute compared to established infection. Since zebrafish frequently encounter infectious spores in their environment, repeated acute infections may represent a substantial metabolic cost to laboratory zebrafish. Taken together, the results obtained in this Thesis indicate that infection is associated with decreased activity and growth, a proinflammatory immune response and elevated metabolism in zebrafish. This phenotype is reminiscent of sickness behaviour (a condition in which acutely infected individuals adopt energy reducing strategies in order to fight infection). This thesis provides evidence that P. neurophilia can affect multiple biological aspects, that potentially have severe consequences for research outcomes. Hence, the findings highlight the importance of proper and standardised health monitoring in animal research facilities, not only for improving animal welfare, but also for ensuring research reproducibility.Sebrafisk (Danio rerio) har i løpet av de siste tiårene blitt en av de mest brukte og populære dyremodellene i biovitenskapelig forskning og brukes i dag i en rekke forskningsfelt, inkludert atferdsbiologi og hjerneforskning. Det er derfor svært bekymringsverdig at halvdelen av alle forskningsfasiliteter, som holder sebrafisk, er kontaminert med den hjerneinfiserende mikrosporidia-parasitten Pseudoloma neurophilia. Denne parasitten angriper primært hjernen, der den etablerer kroniske, dog oftest subkliniske infeksjoner. Det betyr at infiserte fisk ofte ikke viser tegn på sykdom, og at forskere derfor ofte jobber med infisert fisk uten at de vet det. Tidligere studier har indikert at P. neurophilia reduserer vekst, påvirker fiskegruppedynamikk og hvordan sebrafisk responderer på faretruende stimuli. Disse funnene indikerer at denne hjerneparasitten påvirker atferdsparametre som stressrespons, angst og sosiabilitet hos sebrafisk, men stort sett er effektene av denne parasitten på vertens fenotype ukjente. I denne avhandlingen undersøker jeg effekter av subklinisk P. neurophilia-infeksjon på atferd, metabolisme, nevrofysiologi og genuttrykk i hjernen hos sebrafisk. Det første delmålet i denne avhandlingen var å identifisere og kartlegge effekter av P. neurophilia-infeksjon på atferd hos sebrafisk på tvers av flere kontekster. Til dette formålet ble både infiserte og ikke-infiserte sebrafisk testet i atferdstester som er mye benyttet av sebrafiskforskere. Disse testene brukes til å måle atferdsparametre, som for eksempel sosial preferanse, aggressivitet, angstatferd og dristighet. Til tross for parasittens privilegerte plassering i hjernen, fant jeg ingen effekter av infeksjon på disse klassiske atferdsparametrene. På den annen side fant jeg at infiserte individer viste nedsatt aktivitet i alle atferdsarenaene de ble testet i. I tråd med tidligere studier, fant jeg også at P. neurophilia-infeksjon reduserte vekst. Samlet sett tyder redusert aktivitet og vekst på at P. neurophilia utgjør en betydelig kostnad for sebrafiskens energiressurser. Antageligvis er denne kostnaden relatert til sebrafiskens immunrespons til infeksjonen. Atferdsendringene kan også skyldes at parasitten påvirker nervesystemet og hjernen mer direkte. Det andre delmålet i denne avhandlingen var derfor å karakterisere transkripsjonelle responser på P. neurophilia-infeksjon i hjernen. Mer spesifikt ville vi karakterisere immunrespons på infeksjon og identifisere biologiske prosesser påvirket av parasitten. RNA-sekvenseringsanalyse av hjernevev avslørte, ikke helt overraskende, at parasitten induserer en pro-inflammatorisk respons i sebrafiskehjernen. På den annen side tyder nedregulering av spesifikke immunrelaterte gener på at parasitten også utnytter spesifikke unnvikelsesstrategier for å unnslippe immunsystemet. En slik unnvikelsesstrategi kan være avgjørende for parasittens evne til å etablere kroniske infeksjoner. Til tross for at parasitten invaderer nerveceller i hjernen, fant vi ingen effekter på gener involvert i nervesystemets funksjon. Disse foreløpige funnene som viser at P. neurophilia reduserer aktivitet og vekst, og induserer en kraftig immunrespons i sebrafisk, peker på at infeksjonen er kostbar og kan øke sebrafiskens metabolske krav. Noen potensielle effekter på nervesystemet kan man heller ikke detektere ved hjelp av RNA-sekvensering (f.eks. monoaminresponser). Det tredje delmålet i avhandlingen var derfor å bestemme metabolske og nevrofysiologiske responser på akutt versus etablert infeksjon. I samsvar med våre forventninger fant jeg at P. neurophilia øker metabolsk rate hos sebrafisk. Økningen var riktignok størst tre dager etter akutt eksponering for P. neurophilia-sporer og uavhengig av tidligere infeksjonsstatus (ikke tidligere infisert versus etablert infeksjon). Interessant nok ble denne økningen i metabolisme reversert seks dager etter eksponering. Videre så jeg at akutt men ikke etablert parasitteksponering, økte monoaminerg (serotonerg og dopaminerg) aktivitet i hjernen til sebrafisken. Resultatene tyder på at metabolske og nevrofysiologiske effekter av P. neurophilia avhenger av tid etter siste eksponering og at akutte infeksjoner er mer kostbare enn etablerte infeksjoner. I og med at sebrafisk stadig utsettes for infeksiøse parasittsporer i akvariet, kan gjentatte akutte infeksjoner utgjøre en betydelig metabolsk kostnad for sebrafisk i forskningslaboratorier. Samlet viser forsøkene i denne avhandlingen at P. neurophilia-infeksjon reduserer aktivitet og vekst, induserer en kraftig immunrepons og øker fiskens metabolske omkostninger. Denne fenotypen kan minne om det man ser ved sykdomsatferd, en velkjent tilstand der dyr og mennesker tillegger seg energireduserende strategier for å bekjempe akutte infeksjoner. Resultatene viser også at P. neurophilia kan påvirke mange biologiske aspekter hos sebrafisk, som potentielt kan ha alvorlige konsekvenser for forskningsresultater, der man bruker sebrafisk med subklinisk P. neurophilia-infeksjon. Derfor fremhever resultatene viktigheten av ordentlig og standardisert helseovervåkning i forsøksfasiliteter som holder sebrafisk. Dette vil ikke bare forbedre dyrevelferd, men vil også være nødvendig for reproduserbarhet av forskning som benytter sebrafisk som forsøksdyr.publishedVersio

    Evolving Brains

    Get PDF
    Given that all organisms share a common ancestry, why is it that they differ so greatly in their capacities to sense, remember, and respond to the world about them? How did we gain our ability to think and to feel? How do we differ from other organisms in these capacities? Our brain endows us with the faculties and the drive to ask these fundamental questions. The answers depend crucially on understanding how brains have evolved. This inquiry into brain evolution is interdisciplinary and multifaceted, based on converging evidence obtained from the study of the genetic regulation of development, the geological history of the earth, and the behavioral ecology of animals, as well as from direct anatomical and physiological studies of brains of animals of different species. From this investigation three themes will emerge: that the essential role of brains is to serve as a buffer against environmental variation; that every evolutionary advance in the nervous system has a cost; and that the development of the brain to the level of complexity we enjoy -- and that makes our lives so rich -- depended on the establishment of the human family as a social and reproductive unit. I will begin by considering one of the basic problems faced by all organisms: how to find food and avoid hazards in a constantly changing world. This leads to the question of how nervous systems detect and integrate the vast array of information available to them and derive from this flood of data adaptive behavioral responses. The evolution of nervous systems depended on a unique mechanism for communication, the action potential, a self-renewing electrical signal that moves along specialized neural fibers called axons that serve as the wires connecting nerve cells. By permitting the development of large nervous systems, this mechanism for neuronal communication made possible the emergence of complex and diverse forms of animal life

    Deep learning for automated sleep monitoring

    Get PDF
    Wearable electroencephalography (EEG) is a technology that is revolutionising the longitudinal monitoring of neurological and mental disorders, improving the quality of life of patients and accelerating the relevant research. As sleep disorders and other conditions related to sleep quality affect a large part of the population, monitoring sleep at home, over extended periods of time could have significant impact on the quality of life of people who suffer from these conditions. Annotating the sleep architecture of patients, known as sleep stage scoring, is an expensive and time-consuming process that cannot scale to a large number of people. Using wearable EEG and automating sleep stage scoring is a potential solution to this problem. In this thesis, we propose and evaluate two deep learning algorithms for automated sleep stage scoring using a single channel of EEG. In our first method, we use time-frequency analysis for extracting features that closely follow the guidelines that human experts follow, combined with an ensemble of stacked sparse autoencoders as our classification algorithm. In our second method, we propose a convolutional neural network (CNN) architecture for automatically learning filters that are specific to the problem of sleep stage scoring. We achieved state-of-the-art results (mean F1-score 84%; range 82-86%) with our first method and comparably good results with the second (mean F1-score 81%; range 79-83%). Both our methods effectively account for the skewed performance that is usually found in the literature due to sleep stage duration imbalance. We propose a filter analysis and visualisation methodology for CNNs to understand the filters that CNNs learn. Our results indicate that our CNN was able to robustly learn filters that closely follow the sleep scoring guidelines.Open Acces
    corecore