
Imperial College London

Department of Computing

Deep learning

for automated sleep monitoring

Orestis Tsinalis

Thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London, June 2016

Declaration of originality

I hereby declare that this thesis entitled ‘Deep learning for automated sleep monitoring’

is my own work. The work of others has appropriately been acknowledged.

Orestis Tsinalis, June 2016

i

Copyright declaration

The copyright of this thesis rests with the author, and it is made available under a

Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND 3.0)

licence. Researchers are free to copy, distribute and transmit this thesis on the condition

that it is appropriately attributed, that they do not use it for commercial purposes and

that they do not alter, transform or build upon it. For any reuse or redistribution,

researchers must make clear to others the licence terms of this work.

ii

Abstract

Wearable electroencephalography (EEG) is a technology that is revolutionising the longi-

tudinal monitoring of neurological and mental disorders, improving the quality of life of

patients and accelerating the relevant research. As sleep disorders and other conditions

related to sleep quality affect a large part of the population, monitoring sleep at home,

over extended periods of time could have significant impact on the quality of life of people

who suffer from these conditions. Annotating the sleep architecture of patients, known

as sleep stage scoring, is an expensive and time-consuming process that cannot scale to

a large number of people. Using wearable EEG and automating sleep stage scoring is

a potential solution to this problem. In this thesis, we propose and evaluate two deep

learning algorithms for automated sleep stage scoring using a single channel of EEG.

In our first method, we use time-frequency analysis for extracting features that closely

follow the guidelines that human experts follow, combined with an ensemble of stacked

sparse autoencoders as our classification algorithm. In our second method, we propose a

convolutional neural network (CNN) architecture for automatically learning filters that

are specific to the problem of sleep stage scoring. We achieved state-of-the-art results

(mean F1-score 84%; range 82–86%) with our first method and comparably good results

with the second (mean F1-score 81%; range 79–83%). Both our methods effectively ac-

count for the skewed performance that is usually found in the literature due to sleep

stage duration imbalance. We propose a filter analysis and visualisation methodology for

CNNs to understand the filters that CNNs learn. Our results indicate that our CNN was

able to robustly learn filters that closely follow the sleep scoring guidelines.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Stefanos Zafeiriou, for believing in my work and

supporting me immensely on many levels. It was a great pleasure working with him. I

would also like to thank Professor Paul Matthews, without whom this thesis would have

not been possible. I am grateful that I had the chance to work with him.

I would like to thank my colleagues Akara, Axel, Bertan, Chao, David, Diana, Dilshan,

Evann, Florian and Ibrahim for the good and creative times we had together. I would

also like to thank the providers of the Physionet dataset on which this work is based.

My friends Max, Sne, Mihalis, Yannis, Maria, Phaedon and Ioanna supported me

when I most needed it, and for that I will forever be grateful. My sister, Myrto, and my

family were always there for me.

I dedicate this thesis to Sofia.

iv

Contents

Declaration of originality i

Copyright declaration i

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Contributions . 2

1.2 Publications . 3

1.3 Thesis structure . 3

2 Sleep and sleep stage scoring 5

2.1 Sleep . 5

2.2 A brief history of sleep science . 7

2.3 Polysomnography and sleep staging . 9

2.4 Sleep disorders and their diagnosis . 15

2.5 Wearable electroencephalography . 24

2.6 Sleep scoring metrics . 29

2.7 Automated sleep scoring literature review 33

2.8 Data: The PhysioNet dataset . 36

v

3 Signal processing background 38

3.1 The dot product . 38

3.2 Convolution . 40

3.3 Time-frequency analysis . 41

4 Deep neural networks 45

4.1 Machine learning background . 45

4.1.1 Supervised learning . 46

4.1.2 Unsupervised learning . 47

4.1.3 Cross-validation . 47

4.1.4 Overfitting . 48

4.2 Logistic regression . 49

4.3 Softmax regression . 52

4.4 Single-layer neural networks . 53

4.5 Deep neural networks . 55

4.6 Prediction in deep neural networks: Forward propagation 56

4.7 Learning in deep neural networks: Stochastic gradient descent 58

4.8 Partial derivatives in deep neural networks: Backpropagation 60

4.9 Regularisation . 62

4.10 Stacked sparse autoencoders . 63

5 Convolutional neural networks 67

5.1 Principles of feature engineering for classification 68

5.2 The motivation for CNNs . 69

5.3 CNNs in biomedical engineering . 72

5.4 The minimal CNN . 74

5.5 Pooling . 76

5.6 Deep CNNs . 78

5.7 Forward propagation and backpropagation in CNNs 82

vi

6 Automated sleep scoring using time-frequency analysis and stacked

sparse autoencoders 86

6.1 Methodology . 87

6.1.1 Feature extraction methodology 87

6.1.2 Machine learning methodology . 92

6.2 Evaluation . 93

6.3 Results . 98

6.4 Discussion . 100

7 Automated sleep scoring using convolutional neural networks 107

7.1 Convolutional neural network architecture 108

7.2 Evaluation . 110

7.3 CNN filter analysis and visualisation . 111

7.4 Results . 112

7.4.1 Sleep stage scoring performance 112

7.4.2 CNN filter analysis and visualisation 114

7.5 Discussion . 116

8 Conclusion 126

8.1 Discussion . 126

8.2 Future work . 128

Bibliography 130

vii

List of Figures

2.1 Electrode locations according to the International 10-20 system of elec-

troencephalography (EEG) electrode placement. Image downloaded from

http://www.diytdcs.com/tag/1020-positioning/, and edited to include

the mastoid electrodes M1 and M2. 10

2.2 An example of a hypnogram of a subject from the Physionet dataset (see

Section 2.8. 14

2.3 A raw confusion matrix (left) and a normalised confusion matrix (right)

for a 5-class classification problem. The normalised confusion matrix is

derived from the raw confusion matrix by dividing each row of with its sum. 30

2.4 A normalised confusion matrix for a 5-class classification problem (left)

divided into four quadrants by considering class 1 as the ‘positive’ class

and all other classes as a single ‘negative’ class, and the binary confusion

matrix derived from it (right). 31

3.1 Two vectors a and b and the angle θ between them. 39

4.1 Logistic regression, or the minimal neural network 50

4.2 A single-layer neural network . 53

4.3 Activation functions - green: ReLU, red: sigmoid, blue: tanh 54

4.4 An example neural network with 2 hidden layers and 3 classes 55

4.5 Forward propagation . 56

4.6 Backpropagation . 62

viii

http://www.diytdcs.com/tag/1020-positioning/

4.7 Autoencoder for pre-training layer 1 of the network of Figure 4.4. 64

4.8 Autoencoder for pre-training layer 2 of the network of Figure 4.4. 66

4.9 Softmax classifier for pre-training the softmax layer of the network of Fig-

ure 4.4. 66

5.1 The minimal CNN. We show the three parts of the computation that occurs

in the minimal CNN from left to right. The first layer is the input, the

second layer is a convolutional layer, the third layer is the result of the

convolution, and the output layer is logistic regression. 75

5.2 A deep CNN with 7 layers: an input layer, two convolutional layers (C1

and C2), two pooling layers (P1 and P2), one fully connected layer (F1)

and an output layer. The elements in bold in the figure highlight a single

instance of the operation that each layer performs. Convolutional units

are denoted with the ∗ symbol. 80

5.3 CNN forward propagation . 83

5.4 CNN backpropagation . 84

6.1 A plot of signals from the Physionet dataset. There is one 30-second signal

at 100 Hz (3,000 timepoints) per sleep stage. 88

6.2 F1-score as a function of sleep efficiency. 102

6.3 F1-score as a function of transitional epochs. 103

6.4 The original manually scored hypnogram (top) and the estimated hypno-

gram using our algorithm (bottom) for the second night of subject number

2. 104

7.1 CNN architecture . 109

7.2 F1-score as a function of sleep efficiency. 116

7.3 F1-score as a function of transitional epochs. 117

7.4 The original manually scored hypnogram (top) and the estimated hypno-

gram using our algorithm (bottom) for the first night of subject 1. 118

ix

7.5 Filter visualisation for the hand-engineered filters from [94]. 118

7.6 Filter visualisation for folds 1 to 5. 120

7.7 Filter visualisation for folds 6 to 10. 121

7.8 Filter visualisation for folds 11 to 15. 122

7.9 Filter visualisation for folds 16 to 20. 123

x

List of Tables

2.1 Frequency bands (modified from [20, Ch. 3]) 8

2.2 The Rechtschaffen and Kales sleep staging criteria [81], following the ex-

position in [87], [64, Ch. 2], [88, Ch. 1], and [98, Ch. 1]. 12

2.3 The transition rules summarised from the AASM sleep scoring manual [49,

Chapter IV, pp. 23–31]. 13

2.4 Variables derived from the hypnogram, some of which are used as sleep

quality metrics from [88, Ch. 15] and [98, Ch. 2]. 15

2.5 Major categories of sleep disorders summarised from the International

Classification of Sleep Disorders (ICSD) [2] of the American Academy of

Sleep Medicine. 16

2.6 Sleep problems associated with psychiatric disorders

(adapted from [98, Ch. 7]) . 17

2.7 The different methods used in a comprehensive evaluation of patients for

diagnosing sleep disorders [30], [98, Ch. 2] 18

2.8 Example of variables monitored by a subject in a sleep diary [98, Ch. 2] . 19

2.9 The general characteristics of the single-channel EEG sleep scoring studies

in the literature. 34

6.1 Peak frequencies and number of wavelet cycles per frequency for time-

frequency analysis using complex Morlet wavelets. 90

6.2 Features extracted from the single-channel EEG signal. 91

6.3 Confusion matrix from cross-validation using the Fpz-Cz electrode. 98

xi

6.4 Comparison between our method and the literature across the five scoring

performance metrics (precision, sensitivity, F1-score, per-stage accuracy,

and overall accuracy). 100

6.5 Normalised confusion matrices from 20-fold cross-validation using the Fpz-

Cz electrode without and with neighbouring epochs. All values are per-

centages. Pairs of stages with mutual improvement are in bold (N1-N2,

N1-R and N2-R). 101

6.6 Correlation between sleep efficiency and percentage of transitional epochs,

and scoring performance (F1-score and overall accuracy). 101

7.1 The CNN architecture that we used in this chapter. It has two pairs of

convolution and pooling layers, one stacking layer between the two pairs,

two fully connected layers, and one softmax layer for classification. 110

7.2 Confusion matrix from cross-validation using the Fpz-Cz electrode. 114

7.3 Comparison between our CNN method [95] and our state-of-the-art results

with hand-engineered features (Chapter 6, [94]) on the same dataset across

the five scoring performance metrics (precision, sensitivity, F1-score, per-

stage accuracy, and overall accuracy). 115

7.4 R2 between sleep efficiency and percentage of transitional epochs, and

scoring performance (F1-score and overall accuracy). 115

xii

Chapter 1

Introduction

Clinical-grade longitudinal monitoring of human sleep could have a significant positive

impact on the lives of people suffering from sleep disorders and diseases associated with

sleep quality. It could also significantly accelerate the relevant research in sleep science

by giving researchers access to larger patient populations and more data per patient.

To monitor their sleep, currently patients need to go to a specialised sleep clinic,

and wear a multitude of sensors on their body. Human experts are a core part of a

session at a sleep clinic, both for ensuring that all sensors are properly placed and for

manually annotating the sensor data after the session is over. Sleep monitoring is therefore

an expensive and time-consuming process. Because of this, a patient can usually be

monitored for only two nights at a time. Unfortunately, depending on the condition

that the patient suffers from, the information derived from these two nights may not be

representative of the patient’s sleep quality.

With the emergence of wearable sensors it has become possible to conveniently monitor

a wide range of physiological signals. Sleep monitoring relies chiefly on the interpretation

of electrical activity generated by the brain by placing sensors on the surface of the scalp.

These sensor technologies are collectively called electroencephalography, or EEG. Current

EEG technology makes it possible to acquire and transfer brain signals wirelessly. For

an EEG device to be wearable and suitable for sleep monitoring, it must be easy to wear

1

without expert supervision, be stable, and have sufficiently long battery life. All these

requirements could be fulfilled by reducing the number of EEG sensors that are used.

The second requirement for an automated sleep monitoring system would be au-

tomated annotation of the data. This annotation, called sleep stage scoring (or sleep

staging, or sleep scoring), is now done by human experts inspecting visually EEG and

other physiological signals. Sleep stage scoring is a time-consuming process, and a major

bottleneck for the automation of sleep monitoring.

In this thesis we combine the two requirements above, and investigate automated sleep

stage scoring using a single channel of EEG. To achieve this we employed deep learning, a

family of machine learning algorithms, which recently had tremendous success in domains

such as computer vision and natural language processing.

1.1 Contributions

In our work we achieved state-of-the-art results in automated sleep stage scoring using

a single channel of EEG, avoiding skewed performance in favour of the most represented

sleep stages, which is common in the literature. We proposed two methods. The first

is based on time-frequency analysis with hand-engineered features that are fine-tuned to

capture sleep stage-specific signal characteristics that the human sleep scorers identify in

EEG signals. The second method is a convolutional neural network (CNN) architecture

for automatically learning the filters without utilising prior knowledge of the sleep scoring

problem. By analysing and visualising the filters that the neural network learns, we show

that the filters are related to the sleep scoring guidelines that human experts follow. This

is an important finding, because it shows that CNNs, which are commonly viewed as

‘black boxes’, are in fact interpretable.

2

1.2 Publications

Our work is summarised in two papers, the first published in the journal Annals of

Biomedical Engineering, and the second in preparation for the journal IEEE Transactions

on Biomedical Engineering (preprint available online on arXiv) at the time of writing:

• Tsinalis, O., Matthews, P. M. and Guo, Y. 2016. Automatic sleep stage scoring

using time-frequency analysis and stacked sparse autoencoders. Annals of Biomed-

ical Engineering, 44(5), pp. 1587–1597. [94]

• Tsinalis, O., Matthews, P. M., Guo, Y. and Zafeiriou, S. 2016. Automatic sleep

stage scoring with single-channel EEG using convolutional neural networks. arXiv

preprint arXiv:1610.01683. [95] (in preparation)

1.3 Thesis structure

The thesis is structured as follows:

Chapter 2: In this chapter we give the background on sleep, sleep science, sleep dis-

orders, wearable electroencephalography, (automated) sleep stage scoring, and the data

that we used in our experiments.

Chapter 3: In this chapter we give the background on signal processing. The focus of

this chapter is on convolution and time-frequency analysis.

Chapter 4: In this chapter we give a detailed description of deep neural networks. We

begin with an overview of the general machine learning background on supervised and un-

supervised learning, cross-validation, and overfitting. We then describe how deep neural

networks can be built from simpler units, starting with logistic and softmax regression,

and continuing with single-layer neural networks and, finally, deep neural networks. We

describe prediction (forward propagation), learning (stochastic gradient descent), and

partial derivatives computation (backpropagation) in deep neural networks. The chap-

ter concludes with a section on regularisation as a method for avoiding overfitting, and

3

stacked sparse autoencoders, a deep neural network variant that involves unsupervised

pre-training.

Chapter 5: In this chapter we give a detailed description of convolutional neural net-

works (CNNs). We describe the connection between CNNs and hand-engineered features

for classification and give the motivation behind the development of CNNs. After an

overview of the use of CNNs in biomedical engineering, we proceed with a description

of the minimal CNN, pooling layers, and deep CNNs. We conclude the chapter with a

description of forward propagation and backpropagation for CNNs with one-dimensional

inputs.

Chapter 6: In this chapter we present our work on automated sleep scoring using time-

frequency analysis and stacked sparse autoencoders. This is a work in which we combined

hand-engineered features with deep learning to achieve state-of-the-art results in sleep

scoring using a single channel of EEG.

Chapter 7: In this chapter we present our work on automated sleep scoring using

convolutional neural networks. We show that our algorithm can automatically learn

features relevant to the problem of sleep scoring without utilising prior knowledge about

the problem as in Chapter 6. In this chapter we show how the filters that are learned

by a CNN can be analysed and visualised given a specific classification problem such as

sleep scoring.

Chapter 8: In this chapter we conclude this thesis with a summary of the contributions

of the work, and the potential avenues for future work.

4

Chapter 2

Sleep and sleep stage scoring

In this chapter we give the required background on sleep and sleep science. We then

describe the ‘gold standard’ process for sleep monitoring, called polysomnography (PSG),

with a particular focus on sleep staging. Next, we describe how PSG and other sleep

monitoring methods are used for the diagnosis of sleep disorders. We then describe

the recent developments in wearable electroencephalography (EEG) which can lead to

affordable and portable sleep monitoring. We close this chapter with a review of the

literature on automated sleep staging using single-channel EEG.

2.1 Sleep

Sleep is central to human health. The health consequences of reduced sleep, abnormal

sleep patterns or desynchronized circadian rhythms can be emotional, cognitive, or so-

matic [100]. Disruption of normal sleep patterns can negatively affect cognitive abilities,

memory, reaction time, productivity, and creativity [64]. Associations between disrup-

tion of normal sleep patterns and neurodegenerative diseases are well recognised [100].

Recent research suggests that detection of sleep/circadian disruption could be a valuable

marker of vulnerability and risk in the early stages of neurodegenerative diseases, such as

Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, and that sleep stabilisa-

tion could improve the patients’ quality of life [100]. Bad sleep quality is also associated

5

with psychiatric disorders, most notably depression [98, Ch. 7], as well as metabolic

disorders, such as obesity and diabetes [64, Ch. 7].

Duration is probably the aspect of sleep that most people are familiar with. Lockley

and Foster [64, p. 2] note on the duration of human sleep:

Adults, on average, sleep about 7 hours a night, with 5% sleeping fewer

than 5 hours, and 6% sleeping more than 9 hours . . . By contrast, some histor-

ical reports suggest that we slept significantly longer in the past. During the

long nights of winter, sleep probably occurred for extended periods of time

with two or sometimes more discrete bouts of sleep separated by intervals

of resting wakefulness. In pre-industrial times, we may have slept up to 10

hours a day, depending on the season. Modern day experiments support these

ideas: if people are kept on a winter schedule (long nights, short days), they

do sleep more than when kept on a summer pattern. If subjects are given

very long opportunities to sleep, they will eventually reach a stable sleep du-

ration of about 8.5 hours in young adults, and 7.5 hours in older adults, more

than most people currently get. The introduction of electric lighting in the

19th century, and the restructuring of work hours and social schedules caused

by industrialization, have meant that our species has become progressively

detached from the natural 24-hour cycles of light and dark.

It seems likely that we sleep less now than at any other time in our recent

history. Most data collected from industrial nations over the past 50 years

show a general decline in sleep in line with the culture of long work hours,

more shift-work, long commutes, global communication across multiple time

zones, and freedom from many economic and social constraints.

As Lockley and Foster further note ‘[t]he natural pattern and duration of human sleep

is essentially unknown. . . . Urban human sleep patterns are no more natural than those

of . . . laboratory mice’ [64, p. 47].

6

We have so far used the term sleep in a more or less colloquial way, without giving a

precise definition of what sleep is. However, in order to measure sleep we need a definition

of sleep as well as a description of the means by which sleep is measured. It is instructive

to start from the behavioural criteria used to define sleep across species. Lockley and

Foster give the following behavioural criteria [64, p. 41]:

1. A rapidly reversible state of immobility with greatly reduced sensory

responsiveness.

2. Increased arousal thresholds . . . and a decreased responsiveness to exter-

nal stimulation.

3. Species-specific posture and place preference.

4. Behavioural rituals before sleep (e.g. circling, yawning, nest-making).

5. Circadian regulation and persistence of a ∼24-hour rhythm under con-

stant conditions.

6. ‘A behaviour that is homeostatically regulated such that lost sleep is

associated with an increased drive for sleep, with subsequent “sleep re-

bound”.

Understanding the reasons for sleep could have significant impact on treating sleep

disorders. As Lockley and Foster note ‘[w]e don’t know exactly why we sleep’ [64, p. 40].

There are currently three theories regarding the evolutionary reasons for sleep: (i) cellular

restoration, (ii) energy conservation, and (iii) consolidation of memory and learning [64,

pp. 40-54].

2.2 A brief history of sleep science

The study of sleep has a long history that goes back at least 2,500 years with the Greek

philosophers and physicians Alcmaeon, Hippocrates, and Aristotle, who wrote a treatise

titled ‘On Sleep and Sleeplessness’ around 350 BC [64, Ch. 1]. The first scientist to

7

Table 2.1: Frequency bands (modified from [20, Ch. 3])

Frequency band Frequency Range

Delta 0–4 Hz

Theta 4–8 Hz

Alpha 8–13 Hz

Beta 15–30 Hz

Lower gamma 30–80 Hz

Upper gamma 80–150 Hz

suggest that the brain is central to sleep was René Descartes in the early 17th century,

and, in the early 19th century, Luigi Rolando and Jean Pierre Flourens developed this

idea with experiments on birds [64, Ch. 1].

Modern sleep science developed as a result of the technological advances that offered

the capability of measuring brain activity during sleep. The first studies [16] in which

electrical activity from the surface of the brain was recorded were performed in animals

in 1875 by Richard Caton [49]. The first electroencephalogram (EEG) in humans was

recorded by Hans Berger in 1924 [21], who developed Caton’s methods for measurement in

humans [64, Ch. 2]. Berger [10] demonstrated differences between sleep and wakefulness

using external scalp recordings [49]. ‘Berger was able to show that when subjects were

awake, the EEG showed a fast (high frequency) and small amplitude pattern of activity

which became slower (lower frequency) and had larger amplitude waves as individuals

drifted towards sleep’ [64, pp. 7-8].

The first study to classify what is now known as non-REM sleep into five stages based

on differences in the electrical activity of the brain using scalp EEG recordings was [65]

by Loomis, Harvey and Hobart in 1937. Blake and Gerard in 1937 [13] observed that

delta waves (high amplitude <4 Hz activity) are associated with how deep (as determined

by response to an auditory stimulus) sleep is in a subject at a particular time, and Davis

et al. in 1938 [25] described the first part of sleep in more detail [12].

Rapid eye movements (REM) were first studied by Aserinksy and Kleitman [4, 5].

8

REM sleep was first formally introduced as a sleep stage associated with rapid eye move-

ments by Dement and Kleitman in 1957 [27]. The first sleep scoring manual which formed

the basis for the American Academy of Sleep Medicine (AASM) sleep scoring manual [49]

that experts follow today was developed and published under the direction of Rechtschaf-

fen and Kales in 1968 [81]. As Edinger and Morin note [30, p. 363], ‘it was not until the

1960s and 1970s when researchers increasingly began studying individuals with contrast-

ing forms of sleep/wake pathology including those with chronic nighttime sleep difficulties,

those with excessive daytime sleepiness, and those with unusual sleep-related behaviours’.

2.3 Polysomnography and sleep staging

In humans sleep is defined by distinct patterns extracted from electrophysiological signals—

signals that capture the electrical activity at different parts of the human body. The

central electrophysiological signal for the definition of sleep is the electroencephalogram

(EEG), which measures electrical activity on the scalp by attached electrodes. In Figure

2.1 we show 21 electrode positions and their names according to the International 10-20

system.

EEG electrodes record voltage changes from the surface of the brain, which are pro-

duced by the electrical and chemical (neurotransmitter) signals that the brain’s neurons

(nerve cells) exchange with each other. As the brain is assembled of approximately 100

billion neurons, the electrical activity that is recorded from the scalp electrodes is the

result of collective interactions of populations of neurons [64, Ch. 2]. ‘In general, EEG

is not well suited for studies in which precise functional localization is important’ [20, p.

16].

The unit of measurement of EEG is volts (more specifically, microvolts or µV). The

values of EEG signals are relative values. Effectively, each EEG signal from a particular

electrode is the difference in voltage between the electrode at that particular location and

a reference electrode placed at a different location (or the average voltage across multiple

9

Figure 2.1: Electrode locations according to the International 10-20 system of
electroencephalography (EEG) electrode placement. Image downloaded from

http://www.diytdcs.com/tag/1020-positioning/, and edited to include the mastoid
electrodes M1 and M2.

electrodes) [20, p. 17]. The EEG derivations (electrode-reference pairs) recommended

by AASM for sleep stage scoring are F4-M1, C4-M1 and O2-M1, or, alternatively Fz-Cz,

Cz-Oz and C4-M1 [49, p. 23].

To measure sleep, EEG is complemented by the electrooculogram (EOG), which mea-

sures eye movements through electrodes on the forehead, and the electromyogram (EMG),

which measures muscle activity of the submental muscle through electrodes on the chin.

These three sensing modalities are the fundamental components of the polysomnogram

(PSG), which means the measurement of multiple physiological sleep variables [98, Ch.

2]. The PSG can also include an electrocardiogram (ECG), which measures the electrical

activity of the heart, EMG from leg muscles, measurements of respiratory variables, and

measurements of body movements [98, Ch. 2]. To record a PSG, subjects are usually

admitted to a specialised sleep clinic, but there are portable systems to record PSGs at

home as well. Subjects are usually admitted to the sleep clinic for one or two nights [73].

According to the new American Academy of Sleep Medicine (AASM) manual [49],

10

http://www.diytdcs.com/tag/1020-positioning/

sleep is categorised into four stages. These are Rapid Eye Movement (stage R) sleep

and 3 Non-REM stages, stages N1, N2 and N3. Formerly, stage N3 (also called Slow

Wave Sleep, or SWS) was divided into two distinct stages, Non-REM Stage 3 and Non-

REM Stage 4 [81]. To these a Wake (W) stage is added. These stages are defined by

the characteristics of the electrical activity recorded from the different modalities in the

PSG, mainly the EEG, EOG and chin EMG. After the PSG is recorded, it is divided

into 30-second intervals, called epochs. Then, one or more experts classify each epoch

into one of the five stages (N1, N2, N3, R or W) by quantitatively and qualitatively

examining the signals of the PSG in the time and frequency domains. Sleep scoring is

performed according to the Rechtschaffen and Kales sleep staging criteria [81]. In Table

2.2 we reproduce the Rechtschaffen and Kales sleep staging criteria [81], merging the

criteria for Non-REM Stage 3 and Non-REM Stage 4 into a single stage (N3), following

the exposition in [87], [64, Ch. 2], [88, Ch. 1], and [98, Ch. 1]. The ‘% Time Asleep’

gives a range of the percentage of time spent at each sleep stage relative to total time

asleep (i.e. excluding awakenings in the middle of sleep) in people with normal sleep.

Apart from the electrophysiological features that formally characterise each sleep

stage, the sleep stages are also differentiated from behavioural characteristics [88, Ch.

1]. During stage N1, which is called a transitional stage because most people enter sleep

through it, people are often unaware that they are asleep and can sometimes detect or

respond to external stimuli. During stage N2 people start being unresponsive to external

stimuli. Stage N3 is a stage of deep sleep, as people are very difficult to awaken out of it.

Finally, stage R, is also called ‘paradoxical sleep’, because the brain activity during it is

similar to brain activity during wakefulness. However, muscle tone as captured by chin

EMG is virtually absent during stage R.

The scoring rules that we see in Table 2.2 refer to the features of the epoch that is to be

scored. Additionally, the AASM manual [49] includes a number of rules that recommend

taking into account neighbouring epochs for the scoring of each current epoch under

certain circumstances. We identified 12 rules in total concerning the transition between

11

Table 2.2: The Rechtschaffen and Kales sleep staging criteria [81], following the
exposition in [87], [64, Ch. 2], [88, Ch. 1], and [98, Ch. 1].

Sleep

Stage

% Time

Asleep [88]

EEG Features [87, 98, 64] Eye Move-

ments [98]

Chin EMG

Activity [98]

W N/A Low-amplitude, mixed (2-7 Hz), and

sometimes alpha (8-13 Hz) activity for

> 50% of epoch. Beta (15-30) activity

can also be present.

Many, varied,

usually fast

High

R 20-25% Low-amplitude, irregular mixed (2-

7 Hz) activity, and sometimes saw-

toothed waves. Beta (15-30) activity

can also be present.

Rapid, jerky,

and usually lat-

eral movements

in clusters

Virtually ab-

sent, occasional

short bursts

N1 5-10% 50% of the epoch contains low-

amplitude, mainly irregular theta (4-7

Hz) and mixed (2-7 Hz) activity, and

triangular vertex waves. < 50% of

the epoch contains alpha (8-13 Hz)

activity

Slow, rolling,

lateral move-

ments

Slightly lowered

N2 40-50% Sleep spindles, K complexes, some

low-amplitude theta (4-7 Hz) activity,

and < 20% of the epoch may con-

tain high amplitude (> 75µV) low

frequency (<2 Hz) activity

None Low

N3 20-25% 20− 50% (formerly Non-REM Stage 3)

or > 50% (formerly Non-REM Stage

4) of the epoch consists of high ampli-

tude (> 75µV), low frequency (<2 Hz)

activity. Spindles less prominent, and

K complexes longer, and less discrete.

None Low

12

Table 2.3: The transition rules summarised from the AASM sleep scoring manual [49,
Chapter IV, pp. 23–31].

Stage Pair Transition Pattern Rule Differentiating Features

N1-N2

N1-{N1,N2} 5.A.Note.1 Arousal, K-complexes, sleep spindles

(N2-)N2-{N1,N2}(-N2)
5.B.1 K-complexes, sleep spindles

5.C.1.b Arousal, K-complexes, sleep spindles

N2-{N1-N1,N2-N2}-N2 5.C.1.c Alpha, body movement, slow eye movement

N1-R
R-R-{N1,R}-N2

7.B Chin EMG tone

7.C.1.b Chin EMG tone

7.C.1.c Chin EMG tone, arousal, slow eye movement

R-{N1-N1-N1,R-R-R} 7.C.1.d Alpha, body movement, slow eye movement

N2-R

R-R-{N2,R}-N2 7.C.1.e Sleep spindles

(N2-)N2-{N2,R}-R(-R)

7.D.1 Chin EMG tone

7.D.2 Chin EMG tone, K-complexes, sleep spindles

7.D.3 K-complexes, sleep spindles

Curly braces indicate choice between the stages or stage progressions in the set based on the dis-

tinctive features, and parentheses indicate optional epochs.

certain sleep stage pairs that refer to 7 distinct transition patterns, as shown in Table

2.3. These rules apply to three sleep stage pairs, N1-N2, N1-R and N2-R. The transition

patterns include up to two preceding or succeeding neighbouring epochs.

An additional feature that is included in Table 2.3 is an arousal. According to the

AASM sleep scoring manual an arousal is scored ‘during sleep stages N1, N2, N3, or R

if there is an abrupt shift of EEG frequency including alpha, theta and/or frequencies

greater than 16 Hz (but not spindles) that last at least 3 seconds, with at least 10 seconds

of stable sleep preceding the change. Scoring of arousal during REM requires a concurrent

increase in submental EMG lasting at least 1 second’ [49, p. 37].

It should finally be mentioned that an additional scoring rule exists for epochs that

include a major body movement, defined as a ‘movement and muscle artifact obscuring

the EEG for more than half an epoch to the extent that the sleep stage cannot be

13

Figure 2.2: An example of a hypnogram of a subject from the Physionet dataset (see
Section 2.8.

determined’ [49, p. 31]. An epoch that includes a major body movement is scored either

as stage W (if alpha activity is present, or an epoch scorable as stage W precedes or

follows the epoch), or, otherwise, as the same stage as the epoch that follows it [49, p.

31].

After each epoch of a subject’s PSG has been scored as belonging into one of the

five sleep stages, a plot of the progression of an entire sleep episode (also called sleep

architecture) can be created. This plot is called the subject’s hypnogram. An example of

a hypnogram of a subject with normal sleep is shown in Figure 2.2.

As we see in Figure 2.2 there is a certain progression from one sleep stage to the

next, and this progression is repeated multiple times during a sleep episode. A single

occurrence of this progression, which at a high level is N1-N2-N3-R is called a sleep cycle

and has duration of 90-100 minutes. A night of sleep for a subject that has normal sleep

corresponds to 4-5 sleep cycles [64, Ch. 2]. In general, as we can see in Figure 2.2, for

subjects with normal sleep, stage N3 sleep occurs during the first half of the night, while

stage R sleep is more prevalent during the second half of the night [64, Ch. 2]. Subjects

can wake up for short periods of time during their sleep.

The hypnogram can be used to calculate a number of variables that are useful for

sleep research and for diagnosing sleep disorders. In order to derive these variables from

the hypnogram a ‘Lights Off’ and a ‘Lights On’ indicator must be included with the

hypnogram. The ‘Lights Off’ indicator marks the beginning of the sleep study. When

the subject turns the lights off this is viewed as an indication of the subject’s intention to

fall asleep [88, Ch. 15]. The ‘Lights On’ indicator marks the end of the study. In Table

14

Table 2.4: Variables derived from the hypnogram, some of which are used as sleep
quality metrics from [88, Ch. 15] and [98, Ch. 2].

Variable Definition / Details

Time in bed (TIB) Total time in minutes from ‘Lights Off’ to ‘Lights On’

Total sleep time (TST) Total time spent asleep, i.e. in one of stages N1, N2, N3 and R

Sleep efficiency (SE) Percentage of time asleep while in bed: SE = TST / TIB

Total awake time (TWT) Total time spent awake during study: TWT = TIB - TST

Sleep onset Time when sleep (stage N2 >1 min) first occurs after ‘Lights Off’

Sleep onset latency (SOL) Time between ‘Lights Off’ and sleep onset

Wake after sleep onset (WASO) Time spent awake after sleep onset: WASO = TWT - Sleep latency

Number of awakenings Lasting for longer than 30 seconds to 2 minutes

Stage R onset Time at which stage R sleep (>1 min) first occurs after sleep onset

Stage R latency Time between sleep onset and stage R onset

Time in each sleep stage Total and sometimes separately for first and second half of night

% time in each sleep stage As above but as a percentage of total sleep time

2.4 we list some of the most common variables which are included in polysomnography

reports, as they are given in [88, Ch. 15] and [98, Ch. 2].

2.4 Sleep disorders and their diagnosis

Sleep disorders are formally classified using three main classification systems (or tax-

onomies) [30]. These are the International Classification of Diseases (ICD) [99] from the

World Health Organisation, the Diagnostic and Statistical Manual of Mental Disorders

(DSM) [3] from the American Psychiatric Association, and the International Classifica-

tion of Sleep Disorders (ICSD) [2] from the American Academy of Sleep Medicine.

As shown in Table 2.5 the ICSD [2] classifies sleep disorders into six major categories:

insomnias, sleep-related breathing disorders, central disorders of hypersomnolence, circa-

dian rhythm sleep-wake disorders, parasomnias, and sleep-related movement disorders.

These include approximately 60 sub-categories in total (we can see some examples in

15

Table 2.5: Major categories of sleep disorders summarised from the International
Classification of Sleep Disorders (ICSD) [2] of the American Academy of Sleep

Medicine.

Category General Characteristics [98] Examples

1. Insomnias Sleep too short, too interrupted, of poor

quality, or a combination of these

Psychophysiological insomnia,

behavioural insomnia of childhood

2. Sleep-related

breathing disorders

Breathing difficulties during sleep Obstructive sleep apnoea, sleep-

related hypoventilation/hypoxemia

3. Central disorders

of hypersomnolence

(or hypersomnias

of central origin)

Excessive daytime sleepiness; central

means not due to a circadian rhythm

sleep-wake disorder, sleep-related

breathing disorder, or other cause of

disturbed nocturnal sleep

Narcolepsy due to medical condi-

tion, idiopathic hypersomnia with

long sleep time

4. Circadian rhythm

sleep-wake disorders

Disturbance of the normal sleep-wake

rhythm

Jet lag disorder, shift-work disor-

der

5. Parasomnias Unusual behaviours that occur during

sleep

Sleep walking, sleep terrors, night-

mare disorder

6. Sleep-related

movement disorders

Abnormal movements during sleep Restless legs syndrome, periodic

limb movement disorder

Table 2.5). ‘Sleep problems are common in patients with psychiatric conditions, includ-

ing depression, anxiety (post-traumatic stress disorder, generalised anxiety disorder, and

panic disorder), bipolar disorder, schizophrenia, dementia, and substance abuse’ [98, Ch.

7]. In 2.6 we provide a summary of the sleep problems that are associated with psychiatric

disorders.

Regarding the validity and reliability of sleep disorder classification systems, Edinger

and Morin say: ‘Despite limited evidence supporting their validity and reliability, these

classification systems remain widely used by clinicians and researchers . . . Future research

is needed to examine more closely the validity and reliability of various sleep disorders

16

Table 2.6: Sleep problems associated with psychiatric disorders
(adapted from [98, Ch. 7])

Psychiatric disorder Associated sleep disorders

Depression Insomnia (about 75% of patients), Hypersomnia (5-10 %)

Post-traumatic stress disorder Insomnia, parasomnias (nightmares, night terrors, sleep-

walking)

Generalised anxiety disorder Onset insomnia (about 20-30%)

Panic disorder Nocturnal panic attacks, onset insomnia (when fearing

these attacks)

Schizophrenia Onset and maintenance insomnia, free-running circadian

rhythm sleep disorder

Dementias Insomnia, agitation at bedtime, delayed sleep phase circa-

dian rhythm sleep disorder

Withdrawal from opiates or alcohol Insomnia, irregular sleep-wake circadian rhythm sleep

disorder

as well as the clinical utility of current taxonomies’ [30, p. 361].

Sleep disorders are affected by multiple psychological, medical, environmental, and

circadian factors [30]. Therefore, in order to produce an accurate diagnosis of sleep dis-

orders, sleep clinicians need to perform a comprehensive evaluation of patients. This

evaluation should include a clinical interview, screening questionnaires, self-monitoring,

polysomnography, multiple sleep latency test (MSLT) and other methods, such as actig-

raphy [30], [98, Ch. 2] (see Table 2.7) 1.

The methods of evaluation of patients for diagnosing sleep disorders presented in

Table 2.7 have different degrees of objectivity, standardisation, and usefulness [30], [98,

Ch. 2]. These characteristics affect their potential for being automated, as well as the

impact that such automation could have.

According to Edinger and Morin [30, p. 376] ‘[t]he clinical interview is the most

important assessment component for any sleep disorder’. It can be partly standardised

1The data that we used in this thesis included exclusively polysomnography.

17

Table 2.7: The different methods used in a comprehensive evaluation of patients for
diagnosing sleep disorders [30], [98, Ch. 2]

Method Purpose

Clinical interview ‘[G]ather[ing] detailed information about the presenting sleep

complaint, psychiatric and medical history, use of prescribed and

over-the-counter medications, history of alcohol and drug abuse,

psychosocial and family history, and previous treatments and

their outcomes’ [30, p. 376]

Screening questionnaires

(or psychometric instruments)

General screening, evaluating the severity and impact of sleep

disorders, and assessing the presumed mediating factors of a

given disorder [30]

Self-monitoring (sleep diary) ‘[I]ncludes entries for bedtime, arising time, sleep latency, num-

ber and duration of awakenings, total sleep time, naps, use of

sleep aids, and various indices of sleep quality and daytime func-

tioning’ [30, p. 379]

Polysomnography (PSG) Overnight recording of electrophysiological signals such as EEG,

EOG, and EMG, as well as respiratory and cardiac activity,

which is scored by human experts to produce a visualisation of

the sleep architecture (hypnogram) of a subject (see Section 2.3)

Multiple sleep latency test

(MSLT)

‘[D]aytime laboratory test conducted after a full night of PSG

recording. During the MSLT, the patient is offered five, 20-

minute nap opportunities’ [30, p. 377]

Actigraphy Monitoring rest/activity cycles using a non-invasive method

(usually a wrist-worn device which contains an accelerometer

that measures movement) [98, Ch. 2]

through various structured interview guides that have been developed based on the dif-

ferent sleep disorder classification systems, ‘but they are all designed for use by those

who have some knowledge and experience in the area of sleep disorder diagnosis’ [30,

18

Table 2.8: Example of variables monitored by a subject in a sleep diary [98, Ch. 2]

Variable

1. Time you went to bed last night

2. Time you fell asleep (roughly)

3. Time you finally woke up this morning

4. Did the alarm wake you up?

5. Time you got up

6. Number of times you woke up during the night

7. How many hours of sleep you got overall

8. Quality of sleep (out of 10, from 1 = very bad to 10 = very good)

9. Comment (can include morning feeling, medication taken, etc)

p. 376]. Questionnaires are standardised, but subjective. Although there are multiple

questionnaires that are used in practice, ‘none of [them] have been specifically validated

to make a formal diagnosis’, as Edinger and Morin note [30, p. 378]. As such, they should

not be used in isolation as evidence of a sleep disorder diagnosis. Rather, they should be

used as complementary tools to the other clinical and laboratory assessment procedures’

[30, p. 378]. Self-monitoring methods, such as sleep diaries, are usually standardised but

subjective. Their main advantage is that they offer valuable information for the sleep

schedules of patients over extended periods of time [30, 14] (see Table 2.8). Their main

disadvantage is that the collected data might be inaccurate [14].

‘Polysomnography (PSG) is considered the gold standard for measuring sleep and is

essential to confirm the diagnosis of several sleep disorders such as sleep apnoea, periodic

limb movements, narcolepsy, and some parasomnias’ [30, p. 376] [57]. PSG may also be

used to assist in the diagnosis of certain types of insomnia, as in some cases a patient

might be having what is called ‘sleep misperception’, i.e. they might be significantly

underestimating the amount of sleep that they are getting [98, Ch. 3]. ‘Individuals with

insomnia tend to overestimate SOL [sleep onset latency, see Table 2.4] and WASO [wake

after sleep onset, see Table 2.4] and to underestimate TST [total sleep time, see Table 2.4]

19

in comparison to PSG measures’, so a PSG gives more reliable data than a sleep diary

[14] (see Table 2.4 for the definition of these sleep quality metrics). There has also been

research involving the examination of PSG recordings in the context of hypesomnias,

such as [35].

PSG studies have also shown that patients with depression exhibit a number of distur-

bances during their sleep. Increased wakefulness, reduced sleep efficiency, increased sleep

onset latency, decreased total sleep time, potentially reduced stage N3 sleep, decreased

stage R latency, increased first stage R period duration, and increased stage R density

are some of the differences between subjects with depression and normal controls [6, 83].

A PSG study in patients with major depression has shown that ‘sleep abnormality was

predictive of a lower recovery rate and a higher risk of recurrence’ [93]. Patients suffering

from neurodegenerative disorders also exhibit abnormal sleep characteristics that can be

identified using PSG recordings [100]. For example, patients with Alzheimer’s Disease

exhibit nocturnal awakenings, altered K complex and sleep spindle patterns, decrease in

beta activity in stages R and W, and decrease in stage N3 sleep [100, Supplementary

Information].

PSG is standardised and offers largely objective measurements, based on the technical

guidelines and sleep scoring rules in the AASM manual [49]. There are, however, cases

of low inter-rater agreement among human scorers, to which we will refer in Section 2.6.

Also, as Kushida et al. [57] note:

Since the PSG is considered the reference standard, the reliability and techni-

cal accuracy of PSG is generally accepted without question. However, PSG,

even when accurately measured, recorded, and analysed, may misclassify pa-

tients based upon night-to-night variability in measured parameters, the use

of different types of leads that may lead to over- or underestimation of events

. . . , and the vagaries of the clinical definitions of disease.

One of the main problems with PSG recordings recorded in laboratory settings is that

the sleep of the subjects is affected by the change in setting [29]. A common characteristic

20

of laboratory PSG are the so-called ‘first night effects’, which include ‘reduced total sleep

times, lower sleep efficiencies, decreased slow-wave sleep, and elevated REM latencies’

[29]. As Edinger et al. note [29]:

As a consequence of these FNEs [first night effects] sleep researchers and

clinicians have adopted the common practice of ignoring first night data and

relying on findings from subsequent nights to address their research and clin-

ical questions . . . Even when multiple LPSG [laboratory PSG] recordings can

be conducted, sleep data from some types of subjects/patients might be con-

founded by residual laboratory effects that persist beyond the first night in a

short series of nocturnal sleep recordings.

Because of these reasons, ‘home [PSG] studies are probably more representative of the

participants’ typical sleep and sleep-related behaviors, they may require less technician

time and cost, and they are less influenced by “first-night effects”’ [14].

The multiple sleep latency test (MSLT) is an objective and standardised method of

sleep disorder evaluation. ‘The MSLT should be an integral component of the evaluation

whenever daytime alertness is compromised. It is particularly useful to determine the

degree of impairment associated with disorders such as sleep apnoea and narcolepsy’ [30,

p. 377]. The MSLT should always be preceded by an overnight PSG.

Actigraphy is the process of monitoring movement via wrist-worn devices which con-

tain an accelerometer, i.e. a sensor that measures acceleration. It is an objective and

mostly standardised method of sleep disorder evaluation, but its exact results depend on

the specific hardware and algorithms that are used to quantify the level of activity of a

subject. ‘Usually an actigraph records both intensity and duration of movements. It is

light and easy to wear and can be used in non-compliant subjects (e.g. infants, patients

with dementia). The actigraph gives a recording of rest and activity over a period of

weeks and can be downloaded quickly to give an instant picture when the patient comes

to clinic’ [98, Ch. 2]. Also, ‘[a]ctigraphy may be useful for studies in which PSG may

21

not be feasible’ [14]. The main advantage of actigraphy is, therefore, the fact that it

is unobtrusive and can offer a longitudinal (over many weeks) picture of the subject’s

physical activity. However, as Wilson and Nutt note (original emphasis) [98, Ch. 2]:

Actigraphy may be useful for quantifying sleep as long as wakefulness is as-

sociated with moving and sleep is associated with being still. Thus the patient

who lies still but awake in bed will be assumed to be asleep when the software

sleep analysis is used, and people who are very restless during sleep will be

assumed to have awoken, even if they have not. Actigraphy is best accompa-

nied by some kind of daily log or diary so that unusual patterns may be seen

in context.

The different methods of evaluation of sleep disorders have distinct advantages and

disadvantages. Buysse et al. note one important advantage of sleep diaries over ques-

tionnaires and PSG recordings in the context of insomnia: ‘By tracking sleep over sev-

eral consecutive nights (sometimes up to 3 weeks for representative parameters such as

WASO), 70 sleep diaries are more likely to capture the night-to-night variability that

often characterizes the sleep of chronic insomnia. As such, sleep diaries may yield a more

representative sample of an individual’s sleep than 1-time questionnaires or 1 or 2 nights

of PSG’ [14]. Edinger and Morin state that ‘[t]he diagnostic value of a single night of

PSG for many parasomnias is unclear, as these conditions rarely occur on a nightly basis’

[30, p. 361]. Wilson and Nutt also highlight the need for large-scale longitudinal studies:

‘While clinical trials will be useful in establishing cause and effect of sleep disruption

on short-term health risks, more accurate measurements of sleep, in large populations

followed over many years, are needed to determine whether sleep has life-long small ef-

fects on long-term health outcomes.’ [64, p. 102]. Compared to sleep diaries, actigraphy

offers equally longitudinal but more reliable measurements (because the measurements

are objective). However, as we noted above quantifying sleep can be problematic. PSG

recordings capture the entire sleep architecture of subjects, but they do not offer longitu-

dinal measurements, and, very importantly, they can alter the sleep patterns of subjects

22

due to the adaptation to the environment of the laboratory, and the obstructive nature

of the multiple wires that connect the different sensors to the data collection hardware.

Moreover, while sleep diaries and actigraphy are cheap methods, PSG recordings are very

costly [57, 14, 29] as multiple experts need to be involved for data collection and sleep

staging.

If PSG recordings could be done at home, over extended periods of time, with less

obstructive equipment, and less cost, they could substitute many of the measurements

for which we now rely on sleep diaries, actigraphy and questionnaires. Specifically, vari-

ables 2, 3, 6, 7 and 8 from the sleep diary in Table 2.8 can be objectively recorded with

PSG. Also, compared to actigraphy, a PSG recording is (for the most part) not affected

by movement, so that sleep and wakefulness can be more reliably distinguished without

needing to make use of the unreliable hypothesis that wakefulness is associated with mov-

ing and sleep with being still. Finally, questions regarding sleep quality and disturbances

from various questionnaires could also be objectively answered with PSG recordings. We

should note, however, that the subjective view of a subject regarding his or her sleep

will still be important, as, for example, the diagnosis of insomnia is based on a patient’s

subjective complaint [14, 30].

In at-home PSG recordings there are three additional variables that need to be mea-

sured:

1. the ‘Lights Off’ and ‘Lights On’ indicators (see Section 2.3 and Table 2.4);

2. whether the subject was woken up by his or her alarm clock (See variable 4 in the

sleep diary in Table 2.8);

3. whether the subject was in bed at any point in time.

An inexpensive light sensor could be used for obtaining the ‘Lights Off’ and ‘Lights

On’ indicators. However, this measurement would be very noisy as electronic reading

devices such as tablets and smartphones may still remain in use after subjects have

switched off the lights. A mobile phone application installed in the subjects’ devices can

23

be used in combination with the light sensor. As many people use their mobile phone as

an alarm clock, a simple mobile phone application could also be used to record the alarm

clock timing, but this could also be achieved with an inexpensive sound sensor. To record

whether a subject was in bed at any point in time, a wrist-worn actigraph is the simplest

option. Including these three variables would allow the measurement of variables 1, 4 and

5 from the sleep diary in Table 2.8, leaving only the ‘Comment’ field for the subject to

fill in manually. Importantly, all of the variables derived from the hypnogram, shown in

Table 2.4 can be calculated. Many of the questions of questionnaires for the assessment

of sleep quality and disturbances could also be objectively answered.

We can therefore see that, if PSG recordings could be done at home, sleep clinicians

and researchers would be able to obtain longitudinal information for a large number of

variables that are essential for diagnosing and monitoring sleep disorders. We should,

however, note that the information from a single night of at-home PSG would still be

relatively less reliable than a PSG recording in a sleep clinic. There is a trade-off in the

two methods between long-term data collection and recording accuracy.

2.5 Wearable electroencephalography

The essential sensor modality in PSG recordings is EEG, as the majority of the sleep

scoring guidelines are based on EEG (see Section 2.3, and Tables 2.2 and 2.3 in particular).

The other two important modalities are EOG and chin EMG. These three modalities

together cover all the criteria for sleep staging. Leg EMG, respiratory variables and ECG

are very important from a diagnostic perspective for many sleep disorders, but they are

not used for sleep staging. Depending on the sleep disorder that one might be focusing

on, they may or may not be of interest. Furthermore, for certain body movements (e.g.

going out of bed) actigraphy could be used.

If PSG recordings are to be done at home, we need to examine the suitability of

different modalities for long-term wearability. In terms of wearability different modalities

24

vary significantly in size, weight and comfort levels. A wrist-worn actigraph is possibly

the most unobtrusive of all the above sensors. It is small, light, and does not cause

any discomfort to a subject. ECG and leg EMG come next in terms of size, weight

and comfort. The wearability of sensors that measure respiratory variables can vary

depending on what is measured. Sensors that go into the nose, such as the nasal cannula,

can be very obstructive. EEG, EOG and chin EMG can be quite uncomfortable when

worn for a whole night.

When examining the potential wearability of different sensors one should take into

account that in a sleep clinic most of these sensors are wired, so that data collection and

storage are handled by a non-portable unit next to the bed [15]. In an at-home moni-

toring system this is not desirable. People need to be comfortable, and their movements

unconstrained during the night. For example, subjects must be able to get out of bed to

go to the toilet without removing the sensors.

The first step is to make the system wireless, so that there are no wires from the

subject’s body to a computer. Making the system wireless means that data collection

has to happen on a microcontroller board attached to the subject’s body, and that the

data needs to be transferred wirelessly either to a local computer or to a remote server

in the cloud.

Wireless communication and on-body data collection entail that there should be power

provision on the body that should last for at least 10 hours (to be able to monitor the sleep

of people with longer sleep duration). This means that computational requirements (on-

board data handling and signal processing) and power consumption need to be minimised.

The reason is that computational requirements and power consumption (which are related

to each other as well) affect the overall size and weight of the board, mostly through the

battery size.

There are two ways to reduce the processing and power requirements of a wearable

sensor system: (1) design more energy-efficient hardware (sensors and circuits), and (2)

reduce the number of sensors required by developing software that can accomplish the

25

task of interest using less information [15]. These two ways are frequently combined.

Reducing the number of sensors not only positively affects the battery life, size and

weight of a device, but also makes it easier for the subjects to wear the device without

assistance, which is an important factor when we consider its wearability. Finally, if

the data is transferred to the cloud this could be done via an application installed on

the subject’s mobile phone, so that the battery consumption on the wearable board is

minimised.

The central modality in PSG is EEG. Therefore, if one had to use a single sensor for a

wearable sleep monitoring system, a reasonable choice would be a single EEG channel (a

single EEG channel entails two electrodes, one at the position of interest and another one

as a reference). The EEG derivations that AASM recommends require either 4 electrodes

(F4-M1, C4-M1 and O2-M1) or 5 electrodes (Fz-Cz, Cz-Oz and C4-M1) [49, p. 23]. In the

case of the first derivation recommended by the AASM, there is a recommendation for

placing backup electrodes on the opposite side of the scalp, which give the following

alternative setup: F3-M2, C3-M2 and O1-M2 [49, p. 23]. For the second derivation the

recommended backup electrodes give multiple alternative derivations by substituting Fpz

for Fz, C3 for Cz or C4, O1 for Oz, and M2 for M1 [49, p. 23]. Including the backup

electrodes the two derivations recommended by the AASM can amount to up to 8 and

9 electrodes respectively. Some more recent PSG studies in the literature, such as [76]

include as many as 21 electrodes (for 20 EEG channels).

There are two main considerations for choosing a single EEG channel. The first

is the effectiveness of the channel in capturing the characteristic EEG patterns that

are used by experts for sleep scoring. To that end, understanding the topographical

characteristics of different frequency-band activity can be useful. For example, delta

activity [32], K-complexes [40] and lower frequency sleep spindles [51] are predominantly

frontal phenomena. Theta activity [32] and higher frequency sleep spindles [51] are mostly

parietal phenomena. Alpha activity is predominantly an occipital phenomenon [49], but

can manifest itself in frontal derivations [32].

26

The second consideration for choosing a single EEG channel is the stability and com-

fort of the electrode and reference location. Stability is particularly important since for

a light wearable device there will be no backup electrodes. For longitudinal sleep moni-

toring comfort is a very important factor as well. In general, for the main electrode any

location could be used with a cap that includes the sensor. Frontal pole (Fp) and occipital

(O) locations can be very easily incorporated into a head-band, improving stability and

wearability. Central (C) locations could also be added on an additional band attached

to a head-band from above the two ears, or from Fpz to Oz (See Figure 2.1). In that case

frontal (F) electrodes could be considered too.

It is typical in PSG studies for the left or right mastoid electrode (M1 or M2 respec-

tively) to be used as the reference electrode. In other studies the left or right earlobe

electrode (A1 or A2 respectively) can be also used. However, these locations can be

uncomfortable or unsuitable for keeping the electrode stable. Mastoid electrodes need

sticky medical tape to be stabilised. This might not be extremely uncomfortable, but

can be difficult to localise easily without expert supervision. Earlobe electrodes are sta-

bilised by using clips. These can be unstable as they might get detached when a subject

moves during the night. Earlobe clips can also be uncomfortable for longitudinal sleep

monitoring.

Given the wearability, stability and comfort considerations, as well as the AASM

recommendations, the most promising candidate derivations for single-channel EEG are

likely to be the ones derived from the Fpz, Fz, Cz and Oz electrodes, such as Fz-Cz, Fpz-Cz,

and Cz-Oz.

There are two main categories of electrode technologies: traditional wet electrodes

and dry electrodes [15]:

Traditional EEG electrodes . . . are made from silver/silver chloride (Ag/AgCl)

and are wet: a conductive gel is used to make the connection between the

electrode and the scalp. This lowers the electrode impedance and allows

recording of EEG through a high input impedance input amplifier. Over time,

27

however, the conductive gel dries out and reduces the quality of the electrode

contact and the EEG recording produced . . . [D]ry electrodes ... require no

special preparation of the subject, are simply placed on the scalp, and can

be easily held in place by a hat . . .Multiple potential methods have been

investigated, e.g., stainless steel with various coatings for capacitive coupling

of the EEG [91, 33], hybrid resistive-capacitive coupling of the EEG [67], [and]

carbon nanotube and micro electro mechanical systems electrodes based on

piercing the outer layers of skin for better electrical conductivity [63, 85].

There are now many consumer electronics EEG devices which utilise dry electrodes.

These include Emotiv Insight (https://emotiv.com/insight.php), Muse (http://www.

choosemuse.com/) and MyndPlay BrainBandXL (http://myndplay.com/products.php?

prod=9). The major drawbacks of Emotiv Insight and Muse are the lack of stability, and

their relatively low battery life (maximum 5 hours). MyndPlay BrainBandXL, on the

other hand, has a battery life of 10 hours and looks very stable as it is a head-band. How-

ever, the reference electrode is on an ear clip, which can be uncomfortable for longitudinal

monitoring.

There are two smartphone applications in the market that claim to be analysing sleep

architecture, without using EEG. The first, SleepCycle (http://www.sleepcycle.com/)

uses the accelerometer of the phone. The phone has to be placed next to the user’s

pillow. The output is a ‘simplified’ hypnogram, which includes ‘Awake’, ‘Sleep’ and ‘Deep

sleep’ as labels in a continuous axis. As we have shown, sleep stages are discrete, but the

creators of the application do not explain how they derive continuous measurements from

discrete sleep staging or what their continuous scale means. Our understanding is that

they merge stages N1, N2 and R under the single ‘Sleep’ label, which significantly lowers

the validity and usefulness of the derived ‘sleep architecture’. The second smartphone

application is SleepRate (https://www.sleeprate.com/). SleepRate is the only sleep

monitoring application in the consumer market for which there is an evaluation published

in a scientific journal [26] (some of the co-authors of the paper work for the company that

28

https://emotiv.com/insight.php
http://www.choosemuse.com/
http://www.choosemuse.com/
http://myndplay.com/products.php?prod=9
http://myndplay.com/products.php?prod=9
http://www.sleepcycle.com/
https://www.sleeprate.com/

makes the application). SleepRate uses ECG and outputs the total sleep spent in four

sleep stages, and not the sleep architecture. The creators of the application have merged

stages N1 and N2 into a single ‘light sleep’ stage.

Given the number of people that suffer from sleep disorders and the psychiatric and

neurodegenerative diseases [100] that are associated with sleep, there is currently a lack of

a robust, clinically validated system for longitudinal monitoring of the full sleep architec-

ture of patients for clinical and research purposes. With the recent advances in wearable

EEG, we think that it is possible to create an affordable, portable and unobtrusive sleep

monitoring system for unsupervised at-home use. The core software component of such

a system is a sleep scoring algorithm, which can reliably perform automatic sleep stage

scoring given the subject’s EEG signals.

2.6 Sleep scoring metrics

All performance metrics are derived from the confusion matrix. If there are N classes in

a classification problem (in our case N = 5), the confusion matrix is an N × N matrix

whose rows correspond to the true class of the training examples and whose columns

correspond to the predicted class by a machine learning algorithm (or the transpose of

such a matrix). Specifically, if a test example belongs to class i and it is classified as class

j 6= i, we add 1 to the count of the (i, j) cell of the confusion matrix. If an example from

class i is correctly classified as class i, we add 1 to the count of the (i, i) cell.

Using a ‘raw’ confusion matrix in the presence of unbalanced classes implicitly assumes

that the relative importance of correctly detecting a class is directly proportional to its

frequency of occurrence. This is not desirable for sleep staging. To mitigate the negative

effects of unbalanced classes on classification performance measurement, what we need is

effectively a normalised (per row) or ‘class-balanced’ confusion matrix that places equal

weight into each class. This can be achieved by dividing each row of the confusion

matrix with its sum (Figure 2.3). Surprisingly, in the single-channel EEG sleep staging

29

Figure 2.3: A raw confusion matrix (left) and a normalised confusion matrix (right)
for a 5-class classification problem. The normalised confusion matrix is derived from the

raw confusion matrix by dividing each row of with its sum.

literature there are examples of such mistakenly reported performance results using the

raw confusion matrix. For this reason, we compare our work only with the studies in the

literature that provide the raw confusion matrix, from which we compute the performance

metrics after class-balancing.

The metrics we compute are precision, sensitivity, F1-score, per-stage accuracy, and

overall accuracy. All these metrics (apart from overall accuracy) are binary. However, in

our case we have 5 classes. Therefore, after we perform the classification and compute the

normalised confusion matrix, we convert our problem into 5 binary classification problems

each time considering a single class as the ‘positive’ class and all other classes combined

as a single ‘negative’ class (this is known as one-vs-all classification).

A normalised multiclass confusion matrix can be converted into a normalised binary

confusion matrix as follows. Assume that we are doing a one-vs-all evaluation for class

i. The (i, i) cell of the normalised confusion matrix is the percentage of true positives

(TP). The sum of all (i, j) cells, where j 6= i, is the percentage of false negatives (FN),

since each row of the normalised confusion matrix already sums up to 100. The sum of

all (j, i) cells, where j 6= i, is the fraction of false positives (FP). However, in order for it

30

Figure 2.4: A normalised confusion matrix for a 5-class classification problem (left)
divided into four quadrants by considering class 1 as the ‘positive’ class and all other
classes as a single ‘negative’ class, and the binary confusion matrix derived from it

(right).

to become a percentage we have to divide it by the number of all the other classes apart

from class i. The sum of all the remaining cells divided by the number of classes minus

one, as in the case of FP , is the percentage of true negatives (TN), since for binary

performance with respect to class i misclassifications among the remaining classes are

not taken into account. An illustrative example is shown in Figure 2.4.

Precision (or selectivity, or positive predictive value) is the fraction of examples clas-

sified as belonging to class i that truly belong to class i. It is computed by:

precision =
TP

TP + FP
. (2.1)

Sensitivity (or recall, or hit rate) is the fraction of examples belonging to class i that

were correctly classified as belonging to class i. It is computed by:

sensitivity =
TP

P
=

TP

TP + FN
. (2.2)

The F1-score is the harmonic mean of precision and sensitivity (recall). It is computed

31

by:

F1−score = 2
precision× sensitivity

precision + sensitivity
. (2.3)

The F1-score is a more comprehensive performance measure than precision and sen-

sitivity by themselves. The reason is that precision and sensitivity can each be improved

at the expense of the other. During the training of our machine learning algorithm we

used F1-score as our main learning target.

Accuracy is the number of examples correctly classified as belonging or not belonging

to class i with respect to all the examples in the dataset. It is computed by:

accuracy =
TP + TN

P +N

=
TP + TN

TP + FN + FN + FP
. (2.4)

Our problem is a multiclass classification problem, so we will call this accuracy per-

class accuracy. The mean per-class accuracy is a measure of the class-wide accuracy of a

multiclass classifier, however, accuracy is also defined for multiclass problems. Denoting

the normalised confusion matrix as C for a multiclass classification problem with K

classes, overall accuracy is computed by:

overall accuracy =

∑K
i=1 Ci,i

∑K
i=1

∑K
j=1 Ci,j

, (2.5)

where Ci,j is the element of matrix C in the i-th row and the j-th column. Overall

accuracy takes all misclassifications into account at the same time (i.e. they are not

hidden within a ‘negative’ class, as in per-class accuracy), therefore it is a more suitable

accuracy measure for multiclass classification problems than the mean per-class accuracy

(which can nevertheless be useful if one wants to focus on particular classes).

Although PSG is considered the ‘gold standard’ for sleep staging, interrater agreement

between human sleep scorers across subjects and stages can vary significantly. Interrater

agreement is the proportion of epochs that are classified as belonging to the same sleep

32

stage by two or more human scorers. In [89] the consensus agreement among three experts

was between 60-80%, and in [23] the authors report overall agreement of approximately

80%.

2.7 Automated sleep scoring literature review

The related work we considered in this thesis is research on automated sleep scoring using

single-channel EEG. The differences between our methodology and the related literature

can be identified in the following aspects: data characteristics, EEG channel used, feature

extraction method, machine learning algorithm, and evaluation methodology. The high-

level aspects of these studies and the present study’s are outlined in Table 2.9.

The first study we considered is [34], which has the best reported performance among

the existing literature. The data consists of 16 subjects (aged 30-75 years) that were

admitted for possible diagnosis of sleep disorders, and the EEG channel used was C3-

A1. The authors used time-frequency analysis based on the Choi-Williams Distribution

(CWD), the Continuous Wavelet Transform (CWT), and the Hilbert-Huang Transform

(HHT) and Renyi’s entropy for feature extraction. The machine learning method they

used was the random forest classifier. They asserted that the CWT-based feature extrac-

tion performed better, with which we compare our work in this paper. Their evaluation

methodology has a serious drawback, as they train and test using epochs from all the sub-

jects. As they state in the paper [34] ‘Features from the 16 data records were assembled

in one complete feature dataset . . . and further divided randomly into two sets: a training

dataset that contained two thirds of the features dataset . . . and a testing dataset that

contained the remaining one third of the features data’. This means that the training

and test datasets are not independent. Moreover, in a real automated sleep monitoring

system we do not expect that it will be feasible to obtain training data from each new

subject that is going to use the system, because this would require them visiting a sleep

clinic, which is what wearable EEG technology was proposed to avoid in the first place.

33

Table 2.9: The general characteristics of the single-channel EEG sleep scoring studies
in the literature.

Study Channel Data

accessibility

Training-testing

independence

Performance

evaluation type

Fraiwan et al. (2012) [34] C3-A1 Private No Single split

Liang et al. (2012) [62] C3-A2 Private Yes Single split

Liang et al. (2012) [62] Pz-Oz Open [80] Yes Single split

Berthomier et al. (2007) [11] Cz-Pz Private Yes All data

Finally, the authors of [34] evaluate their method using a single training-testing split of

the data, and do not perform any type of cross-validation.

The second study we considered is [62]. In this study, the authors use two different

datasets, one of which is a subset of the one we used in the present study. This offers us

the opportunity for a more direct comparison. Their first dataset comprises 20 healthy

subjects (aged 20-22 years), and the authors chose channel C3-A2. The second dataset,

which is openly available in [80], comprises 8 healthy subjects (aged 21-35 years), and

the authors chose channel Pz-Oz. The authors used multiscale entropy (MSE) for feature

extraction from the EEG signal, and they also fitted an autoregressive (AR) model to

the signal. They then trained a linear discriminant analysis (LDA) model using the MSE

features and the fitted parameters of the AR model as features, employing a set of 11 a

priori ‘smoothing rules’ on the hypnogram after the initial sleep scoring. MSE entropy

measures the average uncertainty of a signal at progressively lower levels of granularity

[22]. An AR model models each current value of a variable as a linear combination of

past values of the variable. Effectively, it is a regression of the variable against itself

[48, Ch. 8]. The coefficients of that regression measure the linear dependency of the

current value of the variable to the corresponding past values of the variable. A LDA

model is a popular linear method for classification that learns linear decision boundaries

between classes with the assumption that the distributions of the data given each class

are multivariate Gaussian with a common covariance matrix [41, Ch. 4]. The authors

34

assess the informativeness of the MSE features by visualising their correlation with the

sleep stage scoring. Methodologically, this is not a correct way of assessing feature quality

[1], because the class labels are revealed outside of the machine learning process, despite

the fact that this is a form of training [41, pp. 241–249], and this can lead to overfitting.

The authors of [62] do not state that they chose or tuned their features based on this

flawed process, however, they present this correlation analysis with their final features as

evidence that their features are informative for their machine learning task. With the first

dataset the authors of [62] train on 10 subjects and test on the remaining 10 subjects.

With the second dataset the authors train on 4 subjects and test on the remaining 4

subjects. Finally, the authors evaluate their method using a single training-testing split

of the data, and do not perform any type of cross-validation.

The third study we considered is [11]. In this study, the authors use a dataset compris-

ing 15 subjects (aged 29.2 ± 8 years, 9 female and 6 male). Unfortunately, the feature

extraction methods and the machine learning algorithm are not described in detail in

[11]. The general information that the authors provide is that they use spectral/temporal

feature extraction with microstructure detection, rough identification of awakening and

REM, and ‘an adaptive fuzzy logic iterative system to repeatedly update the sleep stage

pattern definitions’ [11] as their machine learning algorithm. The machine learning algo-

rithm is already trained and is tested on all 15 subjects. No information on training is

provided by the authors.

We did not include the study in [18] because the authors do not report the confusion

matrix.

There are two main limitations in the existing literature. First, regarding the results

of the proposed methods, in all three studies we observe imbalance in the scoring perfor-

mance across sleep stages. For example, the F1-score for the worst-classified sleep stage

(N1) can be as low as 30% in [62]. Second, regarding the evaluation methodology, in

all three studies the authors evaluated their methods using a single training-testing split

of the data, and did not perform any type of cross-validation. Furthermore, in [34] the

35

authors trained and tested their algorithm using epochs from all subjects, which means

that the training and testing datasets were not independent. In our work we mitigated

skewed sleep scoring performance in favour of the most represented sleep stages, and ad-

dressed the problem of misclassification errors due to class imbalance in the training data

while significantly improving worst-stage classification. Our experimental design employs

cross-validation across subjects, ensuring independence of training and testing data.

2.8 Data: The PhysioNet dataset

The dataset that we used to evaluate our methods is a publicly available sleep PSG dataset

[54] available on the PhysioNet repository [37] that can be downloaded from [79]. We

used the first dataset available on [79], which was originally recorded between 1987-1991

for a study of age effects on sleep in healthy subjects [70]. The data was collected from

electrodes Fpz-Cz and Pz-Oz. The sleep stages were scored according to the Rechtschaffen

and Kales guidelines [81]. The epochs of each recording were scored by a single expert (6

experts in total). The sleep stages that are scored in this dataset are Wake (W), REM

(R), Non-REM stages 1–4 (N1, N2, N3, N4), movement and not scored. For the work in

this thesis, we removed the very small number of movement and not scored epochs (not

scored epochs were at the start or end of each recording), and also merged the N3 and

N4 stages into a single N3 stage, as it is currently the recommended by the American

Academy of Sleep Medicine (AASM) [49, 87]. There were 61 movement epochs in our

data in total, and only 17 of the 39 recordings had movement artifacts. The maximum

number of movement epochs per recording was 12. The rationale behind the decision

of removing the movement epochs was based on two facts. First, these epochs had not

been scored by the human expert as belonging to any of the five sleep stages, as it is

recommended in the current AASM manual [49, p. 31]. Second, their number was so

small that they could not be used as a separate ‘movement class’ for learning. The public

dataset includes 20 healthy subjects, 10 male and 10 female, aged 25–34 years. There are

36

two approximately 20-hour recordings per subject, apart from a single subject for whom

there is only a single recording. To evaluate our method we used the in-bed part of the

recordings. The sampling rate is 100 Hz and the epoch duration is 30 seconds.

37

Chapter 3

Signal processing background

Signal decomposition is the process of analysing a signal by separating it into more prim-

itive components. The aim of performing signal decomposition is to use those primitive

components to better understand a given signal. The Fourier transform, wavelet filter-

ing, bandpass filtering and the Hilbert transform are examples of signal decomposition

methods that are commonly used in practice. In machine learning practice in particular,

signal decomposition is commonly used as a feature extraction methodology, in which the

primitive components and their relationships are the features that are used as input to a

machine learning algorithm. In this chapter our exposition will be based on real-valued

one-dimensional signals, and we will focus on wavelet-based signal decomposition (or

wavelet filtering) using complex Morlet wavelets. This exposition provides the necessary

background for understanding the connection between deep neural networks (particularly

convolutional neural networks) and signal decomposition methods.

3.1 The dot product

The basis for signal decomposition using wavelets is convolution. In turn, the basis of

convolution is the dot product. The dot product 〈a,b〉 between two real column vectors

a and b of equal length M is defined as the sum of the element-wise multiplication of the

38

Figure 3.1: Two vectors a and b and the angle θ between them.

two vectors:

〈a,b〉 =
M
∑

i=1

aibi = aTb, (3.1)

where ai is the i-th element of vector a. The dot product is a measure of similarity

between two signals. The geometric intuition behind the dot product is that it is a

measure of how much two vectors point in the same direction. It is the product of the

length of the ‘part’ of the vectors that points in the same direction. It can be written as:

〈a,b〉 = ‖a‖2‖b‖2 cos θa,b, (3.2)

where θ is the angle between the vectors a and b (Figure 3.1), and ‖a‖2 is the l2-norm

or Euclidean norm of vector a:

‖a‖2 =

√

√

√

√

M
∑

i=1

|ai|2. (3.3)

The term ‖a‖2 cos θa,b in Equation 3.2 is the length of the projection of vector a on

vector b. From Equation 3.2, the cosine of the angle θ can be written as:

cos θa,b =
〈a,b〉

‖a‖2‖b‖2
. (3.4)

If the two vectors are normalised by subtracting their means from each of their ele-

ments (ai− ā) the cosine of the angle between the two vectors is equivalent to the Pearson

correlation coefficient between these two vectors. The cosine is in the range [−1, 1]. If the

39

dot product is 0, the cosine of the angle between the two vectors is 90◦ (or, equivalently,

the length of the projection of one vector onto the other is 0), and therefore the two

vectors are orthogonal to each other. Using the dot product as a measure of similarity

implies that two vectors are maximally dissimilar if they are orthogonal to each other

(cos θ = 0), and maximally similar if they are collinear and pointing to the same direction

(cos θ = 1). If cos θ = −1 then the two vectors are still collinear but point towards exactly

opposite directions.

3.2 Convolution

Convolution can be intuitively viewed as the result of a sliding dot product operation.

Our case of interest is when one of the signals, for example b with length N , is shorter

than signal a with length M, i.e. N < M . We could then slide signal b over signal a,

and compute the dot product M −N + 1 times. The sliding dot product is given by:

(a ⋆ b)t =
N−1
∑

i=0

at+ibi+1, for 1 ≤ t ≤ (M −N + 1). (3.5)

In signal processing Equation 3.5 is called the cross-correlation between signals a and

b. If signal b is flipped (time-reversed) before this operation, this is the definition of

convolution, which is denoted as a ∗ b. Formally, the element of the convolution (a ∗ b)t
at time t is defined as:

(a ∗ b)t =
N−1
∑

i=0

at+ibN−i, for 1 ≤ t ≤ (M −N + 1). (3.6)

The subscript N − i for vector b is the flipping operation. If vector b is symmetric,

convolution and cross-correlation produce the same result. Equation 3.6 is time-domain

convolution. Equation 3.6 does not permit signal b to fall outside the signal a. The

result of the convolution has length equal to M−N+1 (commonly called ‘valid’ in signal

processing frameworks). In another form of convolution, signal a is padded with N − 1

40

zeros at its start and N − 1 zeros at its end. The result of this convolution has length

equal to M +N − 1 (‘full’). A third type of convolution is to retain only the central part

of a full convolution that has length equal to vector a. This is done by removing N/2

points from the start of the result and N/2 + 1 points from the end of the result, so that

the convolution has length M (‘same’). Both valid-length and same-length convolution

can be extracted from the result of full-length convolution.

Convolution can also be computed in the frequency domain. Denoting the Fourier

transform of a as F [a] and the inverse Fourier transform as F−1[a], from the Convolution

Theorem we have [96]:

F [a ∗ b] = F [a] · F [b] (3.7)

a ∗ b = F−1
[

F [a] · F [b]
]

, (3.8)

where · denotes element-wise multiplication. Equation 3.8 states that convolution in

the time domain is multiplication in the frequency domain. To apply Equation 3.8 to

signals a and b, signal a needs to be padded with N − 1 (the length of signal b minus 1)

zeros in its end, and signal b needs to be padded with M−1 (the length of signal a minus

1) zeros in its end. The result is full-length convolution, of length M +N − 1. From that

valid-length or same-length convolution can be extracted as needed. Frequency-domain

convolution can be computed more efficiently than time-domain convolution by using the

Fast Fourier Transform (FFT) algorithm.

3.3 Time-frequency analysis

Time-frequency analysis is the process of decomposing a signal into different components

by designing suitable filters (or wavelets, or kernels), with which the signal is convolved.

Sliding the (flipped) filter across the signal and taking the dot product between the

two we effectively compute the similarity between the signal and the filter over time (in

41

the case of images it would be similarity across space, using a two-dimensional filter).

Convolution can be interpreted as a measure of how similar the signal is to the filter

at different locations within the signal. Alternatively, we can interpret it as a filtering

operation in the sense that only the parts of the signal that are similar to the filter will

‘pass’ from it (the more similar a part of the signal is to the filter the further away its

dot product with the filter is from zero).

When wavelet filtering is applied to signals whose dimension is time, like EEG signals,

it is commonly called time-frequency analysis. As wavelets of different frequency content

are passed across a signal, at each point in time the dot product of the signal with the

(flipped) wavelet is the similarity of the signal with the wavelet. When the convolution is

complete the result is similarity of the signal with the wavelet across time, or the amount

of the frequency content of the wavelet which is present in the signal. Time-frequency

analysis is the analysis of that resulting signal.

Compared with the Fourier transform, time-frequency-based feature extraction has

the advantage of extracting features that capture the mixture of frequencies and their

interrelations at different points in time. These interrelations can be useful features for

problems like sleep stage scoring (see Tables 2.2 and 2.3).

The time-frequency analysis method we will analyse is complex Morlet wavelets, a

widely used wavelet-based time-frequency analysis method (see, for example, Chapters

12 and 13, pp. 141–174 in [20]). Complex Morlet wavelets are very intuitive for describing

time-frequency analysis, as a complex Morlet wavelet is a complex sine wave windowed

with a Gaussian taper, and its peak frequency is simply the frequency of the sine wave. By

virtue of those characteristics, when they are used to filter other signals the interpretation

of filtering in terms of the frequency content of those signals is also intuitive. The equation

of a complex Morlet wavelet w at time t, given amplitude a, peak frequency f and

standard deviation s, is:

wt = a exp

(

− t2

2s2

)

exp (i2πft) , (3.9)

42

where the first exponential is a Gaussian and the second exponential is a complex

sine wave, with f the peak frequency of the wavelet in Hz, t the timepoint in seconds,

s the standard deviation of the Gaussian taper in seconds, and a the amplitude of the

Gaussian taper (there exist alternative parameterisations of the equation of a complex

Morlet wavelet).

The reciprocal of the lowest peak frequency of the wavelets (seconds per cycle) cannot

be larger than the duration of the signal in seconds. For example, if the peak frequency

is 2 Hz we must have a signal of at least 1÷ 2 = 0.5 seconds in duration. Moreover, it is

better to have multiple cycles of the wavelet per epoch, commonly at least 4 [20]. In the

example above, it would be better to have a signal of 4×0.5 = 2 seconds in duration. The

highest peak frequency of the wavelets cannot be higher than the Nyquist frequency, i.e.

one half of the sampling rate. For example, for a signal sampled at 100 Hz, the highest

peak frequency of the wavelets can be at most 50 Hz.

The standard deviation s is given by the equation:

s =
n

2πf
, (3.10)

where n is the number of wavelet cycles, which define the width of the wavelet. This

parameter controls the trade-off between temporal and frequency precision. Specifically,

increasing the number of cycles increases the frequency precision but decreases the tem-

poral precision, while decreasing the number of cycles increases the temporal precision.

The amplitude a of the Gaussian taper is given by the equation:

a =
(

s2π
)−1/4

. (3.11)

For time-frequency analysis using complex Morlet wavelets there are therefore two

sets of parameters that need to be decided, the peak frequencies f and the number of

wavelet cycles n per frequency.

After creating a complex Morlet wavelet we take its convolution with our signal. The

43

power at the frequency band centred at the peak frequency of the wavelet is the squared

length of the result of the convolution in the complex plane (the result of convolution of

a real signal with a complex wavelet is a complex signal). For a complex number a + ib

the length in the complex plane |a+ ib| is defined as
√
a2 + b2. The square of the length

is therefore a2 + b2. This is most easily computed by taking the element-wise product of

the convolution with its complex conjugate. The complex conjugate of a complex number

a+ ib is defined as a− ib. Multiplying the two yields a2 + b2 [20, pp. 158-162].

44

Chapter 4

Deep neural networks

In this chapter we give an overview of deep neural networks (DNNs) [7, 59]. We aim

to provide a detailed view of DNNs, following an exposition that will set the scene for

convolutional neural networks and with a view to highlighting the links between the

signal processing background of Chapter 3 and neural networks. We begin by defining

supervised learning (classification and regression) and unsupervised learning. Sleep stage

scoring is a classification problem, and, therefore, our exposition concentrates on this

type of problem. The machine learning methods we describe in this chapter are logis-

tic and softmax regression, ‘standard’ neural networks, autoencoders, and, finally, the

method we used for our work in Chapter 6, stacked sparse autoencoders. We give the de-

tails of prediction (forward propagation), optimisation (stochastic gradient descent), and

partial derivative computation (backpropagation) in neural networks. We also describe

regularisation as a method for avoiding overfitting.

4.1 Machine learning background

Machine learning is the field that concerns itself with the construction of models that

learn how to predict or infer the value or category of a variable of interest (the target

variable or label) given the values of another set of variables that comprise a data point or

input vector, or to discover patterns in unlabelled data, i.e. using only the input vectors.

45

When labelled data are available, the machine learning paradigm is called supervised

learning. When there are no labels in the data the machine learning paradigm is called

unsupervised learning. In unsupervised learning the objective is to find patterns and

structure in the data. The most common form of unsupervised learning is clustering.

Other machine learning paradigms, which are beyond the scope of this thesis, are semi-

supervised learning (combining both labelled and unlabelled data), reinforcement learning

(learning based on rewards to actions), and transfer learning (using models learned in

similar tasks). In this thesis we focus on supervised learning for classification, and, to a

lesser extent, unsupervised learning.

The statistical models used in machine learning have parameters that are learned by

using training data. Models may also contain hyperparameters which are pre-set. After

learning, the model with the learned parameters is used for prediction or inference in

previously unseen data points, the testing data. The generalisation performance (on the

testing data) of a machine learning model is what we are interested in. Good performance

on training data alone is not an indication of a good model. In particular, if a model

exhibits good performance on the training data, but poor performance on testing data,

this is called overfitting.

4.1.1 Supervised learning

In classification problems the aim is to associate an input vector with one or more classes

to which it belongs. An input vector can belong to more than one class if the classes

are not mutually exclusive. In this thesis we will focus on classification problems with

mutually exclusive classes. For example, the input vector may comprise multiple variables

from a patient record (e.g. age, gender, blood pressure, triglyceride level, cholesterol

level), and the target variable is whether the patient belongs to one or more different

classes (e.g. healthy or with cardiovascular problems). In regression problems the aim is

to associate an input vector with a continuous-valued vector (or scalar). In our previous

example, the target variable could be the patient’s blood glucose level. Sleep stage scoring

46

is a classification problem. Our exposition of deep neural networks and convolutional

neural networks will therefore be focused on classification.

4.1.2 Unsupervised learning

In unsupervised learning class labels are not available. Common objectives in unsuper-

vised learning are the generation of classes from the data by clustering together input

vectors which are statistically similar, learning a model of ‘normality’ and classifying

abnormal input vectors based on their dissimilarity with that model, or learning a more

parsimonious representation of the input data, e.g. by reducing their dimensionality or

imposing sparsity constraints. In this thesis we will use a type of unsupervised neural

network model, the sparse autoencoder, which can be used to extract features from a

dataset by imposing sparsity constraints.

4.1.3 Cross-validation

To evaluate the generalisability of a model, we need to validate it on a separate dataset

with previously unseen data. It is common to split the full dataset into a training and

testing set with, e.g., 80% of the data in the training dataset and 20% of the data in the

testing dataset.

The problem with this approach approach is that it sacrifices the data in the testing

dataset. There are applications for which collecting and labelling the data is expen-

sive, and, in such cases, it would be desirable that the held-out testing dataset be used.

Moreover, the particular split between the training and the testing dataset might not

be representative. It is also impossible to assess the variability in performance. All of

these issues are addressed by using cross-validation. The most commonly used method

of cross-validation is K-fold cross-validation. In K-fold cross-validation the dataset is

split into K folds, and the training-testing process is repeated K times with one of the K

folds as the testing dataset and the rest as the training dataset each time. The reported

performance is commonly the mean performance across the K folds, which is a better

47

estimate of out-of-sample performance than a single training-testing split of the data. In

most applications K-fold cross-validation is applied over data points. However, in ap-

plications such as sleep stage scoring it is better to split the data in terms of subjects,

because of the inherent similarities between the data points of the same subject. Doing

K-fold cross-validation at the level of data points when the data is obtained from different

subjects may erroneously inflate the performance of a machine learning algorithm.

The training dataset (for each fold in the case of K-fold cross-validation) can be

further split into a training dataset and a validation dataset. The validation dataset is

used to assess the performance of the model before finally testing it on the testing dataset.

This is useful for two main reasons. The first is that complex models, such as DNNs,

have non-trainable hyperparemeters. To evaluate their choice an independent validation

dataset is needed, before fixing them and testing on the testing dataset. The second

reason is that many models, among them DNNs, are trained iteratively, and a stopping

criterion is needed to avoid overfitting. A common choice for the stopping criterion is

the performance of the model on the validation dataset, after each training iteration.

If performance keeps on improving on the training dataset, but does not improve or

deteriorates on the validation dataset, this is an indication of overfitting, and training

should stop.

4.1.4 Overfitting

Overfitting is the situation when a model exhibits good performance on the training

dataset but poor performance on the testing dataset. There are two main reasons for

overfitting. The first is model complexity. The more complex a model is the better it

can model the training data. However, fitting well to training data may lead to over-

specialisation to the training data, so that the model is not general enough to capture

relationships out of sample. A common solution to that is reducing model complexity.

Model complexity can be reduced either by reducing the number of trainable parameters

in a model, or by imposing constraints on the magnitude that these parameters can take.

48

A common way to restrict the magnitude of the parameters is regularisation, which we

describe in Section 4.9.

4.2 Logistic regression

Logistic regression is the most widely-used supervised learning algorithm for classifica-

tion in binary (two-class) problems. The logistic regression algorithm outputs a class

probability per class, which can then be combined with a decision rule (most commonly

argmax) to output the estimated class to which the input belongs. Importantly, for our

purposes, logistic regression is also the basis of neural networks. We will review logistic

regression in some detail as it is fundamental for understanding the mechanics of neural

networks.

Logistic regression can be viewed as the minimal neural network. Visualising and

analysing logistic regression as the minimal neural network will help us assemble a full-

scale neural network by combining multiple of those minimal neural networks. For this

purpose, in what follows we will use the terminology of neural networks to describe logistic

regression. The minimal neural network is the basic building block for doing classifica-

tion using neural networks, and all neural network variants, even the most complex, are

extensions of it. The minimal neural network, shown in Figure 4.1, has only two layers:

an input layer (blue circles), and an output layer with a single unit (red circle).

Let us introduce our notation. For a binary classification problem with real-valued

input the input comes in the form of a vector x in R
N . Each input vector is associated

with a binary categorical variable y, for which, for notational convenience, we arbitrarily

assign the numbers 0 and 1 to its respective possible values (the two classes), so that

y ∈ {0, 1}. By convention, for example, in many biomedical problems 0 usually denotes

healthy individuals, and 1 individuals that suffer from a particular condition.

The output layer of logistic regression outputs the probability that the class associated

with the input is the first one, formally that p(y = 0|x), as shown in Figure 4.1. The

49

Figure 4.1: Logistic regression, or the minimal neural network

probability that the input belongs to the other class is then simply given by: p(y = 1|x)

= 1 - p(y = 0|x), assuming that the classes are exhaustive (otherwise we would need a

third ‘undefined’ class, and our problem would no longer be binary).

In Figure 4.1, there is an arrow from each element of the input vector x to the unit

of the output layer. Each of these arrows is associated with a weight, so that the i-th

element xi of vector x is associated with a weight wi. For each (wi, xi) pair the unit

performs a multiplication. In the input we also include a bias element which is always

equal to 1. This bias element is associated (i.e. multiplied) with the bias weight b.

To keep the notation uncluttered, without loss of generality, we will assume that the

input vector x includes the bias element and that the weight vector w includes the bias

weight b. In the remainder of the thesis we will not explicitly refer to the bias elements

or weights. N will then be the number of elements in the input vector including the bias

element.

In the unit of the output layer the results of the multiplications are added up. The

result of the addition is then supplied as input to the logistic function (hence the name

logistic regression). In the machine learning literature the logistic function is commonly

called the sigmoid function, although there are many other types of sigmoid functions.

50

We will use the term sigmoid for the logistic function in this thesis.

Denoting the sigmoid function as f , the computation that is performed inside the

output unit is:

a(x;w) = f(w1x1 + w2x2 + · · ·+ wNxN)

= f
(

N
∑

i=1

wixi

)

. (4.1)

In neural network terminology, the function f is called an activation function. In

logistic regression the activation function is by definition the sigmoid function, which is

given by the equation:

f(z) =
1

1 + e−z
. (4.2)

In neural network terminology, the result of the computation in Equation 4.1 is called

the activation of the output unit. We observe that Equation 4.1 can be more compactly

written using the definition of the dot product from Equation 3.1:

a(x;w) = f(wTx)

= f(〈w,x〉). (4.3)

This observation is fundamental for connecting wavelet filtering with convolutional

neural networks, as we will show in Chapter 5.

The logistic function outputs values in the [0, 1] interval, and is therefore suitable as

an estimate for a probability. This means we can view the activation of the output unit

given in Equation 4.1 as the probability that the class associated with the input is the

first one, i.e. that p(y = 0|x), as shown in Figure 4.1. The probability p(y = 0|x) is then

given by:

p(y = 0|x) = 1

1 + exp[−(wTx)]
, (4.4)

where exp(·) is the exponential function.

51

The logistic regression parameters w can be learned by minimising its cost function

with respect to w over a set of K training examples. Each training example is a pair of

an input vector and its associated label, identified by a superscript. Concretely, the i-th

training example is denoted as (x(i), y(i)). The logistic regression cost function (commonly

called log loss) is:

J(w;x) = − 1

K

[

K
∑

i=1

y(i) log p(y = 0|x(i);w) + (1− y(i)) log p(y = 1|x(i);w)

]

. (4.5)

The parameters of logistic regression are learned by minimising Equation 4.5 with

respect to them.

4.3 Softmax regression

If there are more than two classes in the data, we use the generalisation of logistic regres-

sion called multinomial logistic regression or softmax regression. In softmax regression

there is a different weight vector wj associated with each class j. For C classes, the

activation function for each class c becomes:

f(zc) =
e−zc

∑C
d=1 e

−zd
. (4.6)

The class probability for each class j is then given by:

p(y = j|x;wj) =
exp[−(wT

j x)]
∑C

d=1 exp[−(wT
d x)]

. (4.7)

The cost function then becomes:

J(w1, . . . ,wC) = − 1

K

[

K
∑

i=1

C
∑

d=1

1{y(i) = j} log p(y = j|x(i);wj)

]

, (4.8)

where 1{·} is the indicator function (returns 1 if the condition is satisfied and 0 otherwise).

52

Figure 4.2: A single-layer neural network

4.4 Single-layer neural networks

Going from logistic regression to a neural network is as straightforward as adding an

intermediate hidden layer between the input and the output layers of logistic regression

(Figure 4.2). A hidden layer is composed of multiple units which perform the same

computation as the output unit, as given in Equation 4.1. We should note that the

weights associated with each unit of the hidden layer are different.

The only difference from logistic regression is that the activation function f of the

units in the hidden layer can take different forms different from the sigmoid function

(which is still one of the most common choices). We will not describe all the possible

activation functions in this thesis, but it is worth mentioning the two other commonly

used activation functions.

The first commonly used activation function is the rectifier function, which is defined

as:

f(z) = max(0, z). (4.9)

A unit that employs the rectifier activation function is commonly called a rectified

linear unit (ReLU) in the literature.

53

Figure 4.3: Activation functions - green: ReLU, red: sigmoid, blue: tanh

The second commonly used activation function is the hyperbolic tangent (its math-

ematical notation is tanh), which is another form of sigmoid function. It is defined as:

f(z) =
ez − e−z

ez + e−z
. (4.10)

The sigmoid, tanh, and rectifier activation functions are shown in Figure 4.3.

Each unit of the hidden layer is connected with each of the elements in the input

layer, and produces a single activation (Equation 4.3). The set of all the activations of

the hidden layer then becomes the input of the output layer, as shown in Figure 4.2.

We remind that the output layer is simply logistic regression. The activations of the

hidden layer can then be viewed as features that are used for logistic regression instead of

the input itself. The key is that all the parameters (weights) of the neural network that

are responsible for producing those features are learned based on the error of the logistic

regression classifier in the output layer of the neural network. We describe the learning

algorithm in a later section, after our exposition of deep neural networks, which comes

next.

54

Figure 4.4: An example neural network with 2 hidden layers and 3 classes

4.5 Deep neural networks

The final step that is needed to create a deep neural network is to add more hidden layers

to it, as shown in Figure 4.4. In a deep neural network the activations of all the units of

a hidden layer become the input for the next (hidden or output) layer. The mechanics

of a deep neural network is exactly the same as in the single-layer neural network. A

deep neural network of this kind is sometimes called a multilayer perceptron [84] in the

literature.

We show an example of a deep neural network in Figure 4.4. This network has two

hidden layers with 4 and 3 units respectively, and it is applied to a 3-class classification

problem. When the classification problem has more than two classes the output layer

is softmax regression instead of logistic regression. The number of layers and units in a

deep neural network is called the architecture of the network. A deep neural network is

simply a neural network with a large number hidden layers.

LeCun, Bengio and Hinton provide us with the intuition of why making a neural

network deep works [59]: ‘Deep neural networks exploit the property that many natu-

ral signals are compositional hierarchies, in which higher-level features are obtained by

55

Figure 4.5: Forward propagation

composing lower-level ones.’ Effectively, the activations of each consecutive hidden layer

can be seen as hierarchically composed features. The activations of the first hidden layer

are ‘first-order’ features, the activations of the second hidden layer are features of the

first-order features or ‘second-order’ features, and so on.

4.6 Prediction in deep neural networks: Forward propa-

gation

Let us assume that the parameters (weights) of the neural network in Figure 4.4 have

been learned with a use of a training dataset. This means that the network can now be

used for predicting the class labels of new, previously unseen inputs. To predict the class

label associated with a training example we apply consecutively Equation 4.3 starting

from the input layer. This process is called forward propagation because the activations

of each layer are propagated forward to the next layer of the network.

56

To better understand forward propagation we introduce some notation. Here we follow

the exposition in [59]. Consider the 2-layer neural network shown in in Figure 4.5. Let xi

be the i-th element of the input, a
(1)
j be the activation of the j-th hidden unit of the first

hidden layer (the layer number is denoted with the superscript (1)), a
(2)
k be the activation

of the k-th unit of the second hidden layer, and a
(out)
l be the activation of the l-th unit

of the output layer. Accordingly the weight that connects the i-th element of the input

with the j-th unit of the first hidden layer is denoted as w
(1)
ij , the weight that connects

the j-th unit of the first hidden layer with the k-th unit of the second hidden layer is

denoted as w
(2)
jk , and, finally, the weight that connects the k-th unit of the second hidden

layer with the l-th unit of the output layer is denoted as w
(out)
kl . The set of unit indexes in

each layer is denoted as Llayer, so that the subscript is the layer that we refer to. Finally,

f is the activation function of the hidden layers, and g is the activation function of the

output layer. As we have already mentioned f and g may or may not be the same.

Taking the neural network in Figure 4.5 as our example, forward propagation proceeds

in the following steps:

z
(1)
j =

∑

i∈Lin

w
(1)
ij xi (4.11)

a
(1)
j = f

(

z
(1)
j

)

(4.12)

z
(2)
k =

∑

j∈L1

w
(2)
jk a

(1)
j (4.13)

a
(2)
k = f

(

z
(2)
k

)

(4.14)

z
(out)
l =

∑

k∈L2

w
(out)
kl a

(2)
k (4.15)

a
(out)
l = g

(

zoutl

)

= p(y = l|x) (4.16)

The input Equations 4.11 and 4.12 and the output Equation 4.15 and 4.16 are unique

in any neural network. If a network has H hidden layers there are going to be H − 1

hidden layer equation pairs like Equations 4.13 and 4.14.

57

As we indicate in Equation 4.16 (with a little abuse of notation) the activation of the

l-th unit of the output layer is equal to the probability that the class associated with the

input is l. The simplest and most common way to predict a class label using these class

probabilities is by choosing the class that has the maximum probability:

y = argmax
l

p(y = l|x). (4.17)

In the following subsection we explain how the weights that are used to get the class

labels from forward propagation are learned.

4.7 Learning in deep neural networks: Stochastic gradi-

ent descent

To learn the optimal weights for the neural network, we need to minimise the cost function

of logistic regression (Equation 4.5) or softmax regression (Equation 4.8) depending on

whether our classification problem is binary or multi-class. Since logistic regression is just

a special case of softmax regression we will focus on softmax regression for the remainder

of this section.

Minimising the softmax cost function with respect to the weights in all the layers of

the neural network has no closed form solution. For this reason, iterative optimisation

algorithms are used to learn the weights of neural networks.

The most widely used iterative optimisation algorithm in neural networks is stochastic

gradient descent. We will begin with the description of simple gradient descent, and then

will proceed with describing stochastic gradient descent.

Let us denote the set of all the weights of a neural network as W . In its most basic

form one iteration of gradient descent updates each weight w
(l)
ij from the i-th unit of the

(l − 1)-th layer (if l − 1 = 0 then it is the input layer) to the j-th unit of the l-th layer

58

in the following way:

w
(l)
ij := w

(l)
ij − α

∂J(W)

∂w
(l)
ij

, (4.18)

where α is the learning rate (a tunable parameter) and ∂J(W)/∂w
(l)
ij is the derivative

of the cost function of the neural network with respect to the weight w
(l)
ij . Effectively, at

each iteration the gradient descent algorithm updates all the weights by moving them in

the direction of the negative of the gradient at that iteration. The learning rate α defines

the size of the step in that direction.

The most commonly used variant of gradient descent that is used in practice is called

stochastic gradient descent (SGD) [71]. SGD uses a small subset of training data within

a sub-iteration of every iteration. ‘A strength of SGD [methods] is that they are simple to

implement and also fast for problems that have many training examples’ [72]. Effectively,

in SGD the weight update equation is the same as Equation 4.18, but it is applied to

only a few training examples at a time. The gradient ∂J(W)/∂w
(l)
ij is computed every

time using a few training examples. Each set of these few training examples is called a

mini-batch. To give a concrete example, if there are 1000 training examples in total and

the mini-batch size is 100, then Equation 4.18 will be applied 10 times to 100 training

examples at a time, at each single iteration of SGD. In order to avoid bias caused by the

ordering of the training data, it is common practice to randomly shuffle the training data

at the beginning of each iteration, before splitting the data into mini-batches.

A further modification of SGD includes what is called momentum. Momentum works

as follows. Each weight is associated with a velocity. We will denote the velocity of weight

w
(l)
ij as v

(l)
ij . For each mini-batch there are two update equations; one for updating the

velocity and one for updating the weights. The update equations are the following [71]:

v
(l)
ij := γv

(l)
ij + α

∂J(W)

∂w
(l)
ij

, (4.19)

w
(l)
ij := w

(l)
ij − v

(l)
ij . (4.20)

59

The parameter γ ∈ (0, 1] is the momentum. Combining Equations 4.19 and 4.20, we

get the following equation, for a more direct comparison with 4.18:

w
(l)
ij := w

(l)
ij − γv

(l)
ij − α

∂J(W)

∂w
(l)
ij

. (4.21)

4.8 Partial derivatives in deep neural networks: Back-

propagation

To apply the gradient descent algorithm we need to compute the partial derivatives of the

cost function J(W) with respect to all the weights in the neural network. This is done

using the backpropagation algorithm. The key insight for the backpropagation algorithm

comes from observing the forward propagation equations (Equations 4.11-4.16). Each

layer’s output is the next layer’s input. Therefore, the chain rule of derivatives can be

applied. And since the cost is computed on the last layer, we can apply the chain rule

backwards, starting from the output layer. Dividing the operations into dot products

and activations, to start, we only need the partial derivative of the cost with respect to

the activation of the output layer.

The cost function of the output layer with respect to the activations is always known.

The most commonly used cost function is the squared error. The cost associated with

the activation of the l-th unit of the output layer (which corresponds to the l-th class)

is:

1

2

(

1{y = l} − a
(out)
l

)2
, (4.22)

where 1{·} is the indicator function. The derivative of the squared error is:

∂J(W)

∂a
(out)
l

= 1{y = l} − a
(out)
l . (4.23)

Let us now take the example of the 2-hidden layer neural network from Section 4.6 on

forward propagation. Now that we have calculated the derivative of the output layer with

60

respect to its activations we can work backwards towards the input using the forward

propagation equations. Our goal is to derive equations for the partial derivatives of the

cost with respect to the weights of each layer.

For our 2-layer neural network the backpropagation equations are as follows (4.6):

∂J(W)

∂z
(out)
l

=
∂J(W)

∂a
(out)
l

∂a
(out)
l

∂z
(out)
l

=
∂J(W)

∂a
(out)
l

g′(z
(out)
l) (4.24)

∂J(W)

∂w
(out)
kl

=
∂J(W)

∂z
(out)
l

∂z
(out)
l

∂w
(out)
kl

=
∂J(W)

∂z
(out)
l

a
(2)
k (4.25)

∂J(W)

∂a
(2)
k

=
∑

l∈Lout

(

∂J(W)

∂z
(out)
l

∂z
(out)
l

∂a
(2)
k

)

=
∑

l∈Lout

(

∂J(W)

∂z
(out)
l

w
(out)
kl

)

(4.26)

∂J(W)

∂z
(2)
k

=
∂J(W)

∂a
(2)
k

∂a
(2)
k

∂z
(2)
k

=
∂J(W)

∂a
(2)
k

f ′(z
(2)
k) (4.27)

∂J(W)

∂w
(2)
jk

=
∂J(W)

∂z
(2)
k

∂z
(2)
k

∂w
(2)
jk

=
∂J(W)

∂z
(2)
k

a
(1)
j (4.28)

∂J(W)

∂a
(1)
j

=
∑

k∈L2

(

∂J(W)

∂z
(2)
k

∂z
(2)
k

∂a
(1)
j

)

=
∑

k∈L2

(

∂J(W)

∂z
(2)
k

w
(2)
jk

)

(4.29)

∂J(W)

∂z
(1)
j

=
∂J(W)

∂a
(1)
j

∂a
(1)
j

∂z
(1)
j

=
∂J(W)

∂a
(1)
j

f ′(z
(1)
j) (4.30)

∂J(W)

∂w
(1)
ij

=
∂J(W)

∂z
(1)
j

∂z
(1)
j

∂w
(1)
ij

=
∂J(W)

∂z
(1)
j

xi (4.31)

The partial derivatives of the cost function with respect to the weights in each layer are

given by Equations 4.31 (for the weights from the input to the first hidden layer), 4.28 (for

the weights from the first hidden layer to the second hidden layer) and 4.25 (for the weights

from the second hidden layer to the output layer). As with the forward propagation

equations, the equations that correspond to the second hidden layer (Equations 4.26-

4.28) can be generalised to apply to neural networks with more than 2 layers. If a

network has H hidden layers there are going to be H − 1 equations like the triplet of

Equations 4.26-4.28.

61

Figure 4.6: Backpropagation

4.9 Regularisation

A common addition to the cost function of deep neural networks is a regularisation or

weight decay term. The most common type of regularisation is l2-norm regularisation,

which, effectively, is the addition of the sum of the square of all the weights in the network

to the cost function. If w
(l)
ij is the weight from the i-th unit of the (l − 1)-th layer to the

j-th unit of the l-th layer, there are L layers in the network, and there are Nl units in

62

layer l, the regularisation term which is added to the cost function takes the form:

λ

L
∑

l=1

Nl−1
∑

i=1

Nl
∑

j=1

(

w
(l)
ij

)2

. (4.32)

The parameter λ is called a regularisation parameter or weight decay parameter,

and it controls the relative importance of the regularisation term compared to the cost

function. The regularisation term is used for decreasing the magnitude of the weights,

which prevents overfitting [71].

4.10 Stacked sparse autoencoders

Stacked sparse autoencoders [7] are a neural network model variant. The key difference

between stacked autoencoders and the standard neural networks described in the previ-

ous sections is greedy layer-wise pre-training before finetuning the network as a whole.

Pre-training followed by finetuning with backpropagation has been shown to result in

substantial performance improvements over finetuning using random initialisations for

the hyperparameters of the network [9]. In this section we will give an outline of stacked

sparse autoencoders (SSAEs). In this section we closely follow the exposition in the

excellent tutorial in [71].

Layer-wise pre-training is based on a neural network architecture that is called an au-

toencoder. An autoencoder is an unsupervised learning model for automatically learning

features from unlabelled data. An autoencoder is a three-layer neural network (with a

single hidden layer) whose goal is to reproduce its input. In a trained autoencoder the

activations of the third layer should closely reproduce its input. As in standard neural

networks, the activations of the second layer of an autoencoder can be regarded as fea-

tures automatically learned from the input. These features can in turn be used as input

to a second autoencoder that learns second-order features, and so on. It has been shown

that this greedy layer-wise training produces good initialisations for the parameters of the

63

Figure 4.7: Autoencoder for pre-training layer 1 of the network of Figure 4.4.

final neural network that result in better performance than random initialisation [9, 7].

In Figure 4.7 we show an autoencoder with 5 units in the input and output layers and 3

units in the hidden layer.

To train an autoencoder we only need the training data without the labels, i.e. only

x and not y. We will denote as x̂ the activations of the output layer of the autoencoder.

As shown in Figure 4.7, the task of the autoencoder is to reproduce its input x with its

output x̂. Since our aim is to reproduce x by x̂, the basis of the cost function J of the

autoencoder is:

J(W) =
1

m

m
∑

i=1

1

2

∥

∥x̂(i) − x(i)
∥

∥

2

2
, (4.33)

where x̂(i) are the activations of the third layer for the i-th training example, and ‖·‖2 is

the l2 (or Euclidean) norm.

We also apply a regularisation term to the cost function (see Section 4.9). Denoting

w
(l)
ij as the weight from the i-th unit of the (l − 1)-th layer to the j-th unit of the l-th

layer, L the number of layers, and Nl as the number of units in layer l, the cost function

64

from Equation 4.33 can be extended (see Equation 4.32):

Jreg(W) = J(W) + λ
L
∑

l=1

Nl−1
∑

i=1

Nl
∑

j=1

(

w
(l)
ij

)2

(4.34)

An autoencoder tries to reproduce its input, by learning an approximation to the

identity function. This is a trivial problem unless there are constraints placed on the

network. The first constraint that can be applied is restricting the number of nodes s2

in the second layer to be smaller than the input size. The second restriction that can be

applied is a sparsity constraint on the activations of the hidden units. Applying such a

sparsity constraint converts an autoencoder into what is called a sparse autoencoder.

A way to apply such a sparsity constraint is to demand that the average (over the

training set) activation of a unit in the second layer is a small value close to zero, which

is the sparsity parameter ρ [71]. We denote the vector of average activations of the i-th

unit of the second layer as a
(1)
i . The sparsity constraint is the Kullback-Leibler divergence

(KL) between a Bernoulli random variable with mean ρ and a Bernoulli random variable

with mean a
(1)
i :

KL(ρ||a(1)i) = ρ log
ρ

a
(1)
i

+ (1− ρ) log
1− ρ

1− a
(1)
i

. (4.35)

The cost function from Equation 4.34 can then be extended to give:

Jsparse(W) = Jreg(W) + β

N1
∑

i=1

KL(ρ||a(1)i), (4.36)

where β controls the relative importance of the sparsity penalty term.

Training a sparse autoencoder involves the minimisation of Jsparse(W) with respect

to the parameters W . This is done using the backpropagation algorithm (Section 4.8).

Taking the neural network of Figure 4.4 as an example, we can convert it into a stacked

sparse autoencoders model by training an autoencoder for its first hidden layer (Figure

4.7), then using the activations of the first hidden layer as input to an autoencoder for the

second autoencoder (Figure 4.8), and, finally, using the activations of the second hidden

65

Figure 4.8: Autoencoder for pre-training layer 2 of the network of Figure 4.4.

Figure 4.9: Softmax classifier for pre-training the softmax layer of the network of
Figure 4.4.

layer as input to a softmax regression classifier (Figure 4.9). After pre-training the two

autoencoders and the softmax classifier, the learned parameters can be used to initialise

the full neural network (Figure 4.4), and finetune it as a whole.

66

Chapter 5

Convolutional neural networks

As Goodfellow et al. state in their recently published textbook on deep learning, ‘con-

volutional networks are simply neural networks that use convolution in place of general

matrix multiplication in at least one of their layers’ [39, Ch. 9]. In this chapter we

introduce convolutional neural networks (CNNs) to make clear how one can go from the

neural networks presented in Chapter 4 to CNNs, and what the motivations behind this

transitions are. We also aim to show the connection between CNNs and signal decompo-

sition methodologies. This will motivate the analysis and visualisation of CNNs applied

to sleep stage scoring in Chapter 7.

We begin with a description of the principles for feature engineering in general, without

using CNNs. It is those same principles that form the motivation for CNNs, along

with inspiration from information processing in the animal and human visual cortex.

Given a classification task, CNNs unify feature engineering and classification into a single

algorithm for end-to-end learning. We will continue with an overview of the application of

CNNs in the field of biomedical engineering which is of particular interest for this thesis.

Finally, following the structure of Chapter 4, we will present the minimal CNN, which

is the building block from which, combined with pooling, deep CNN architectures can

be constructed. We conclude the chapter with a presentation of deep CNNs, along with

the forward propagation and backpropagation equations for CNNs with one-dimensional

67

input, as this is relevant to biosignal-based applications.

5.1 Principles of feature engineering for classification

The main reason that it is possible to create hand-engineered features is that data like

images or biosignals have local structure. This way, a feature engineer can design his or

her feature extraction methods to leverage this local structure by finding characteristic

local patterns.

There are two conditions for the notion of ‘locality’ to exist in any data:

1. The data must be homogeneous. This means that each variable in the data must

be of the same type. For example, in an image every variable is a pixel, and in an

EEG recording every variable is a measurement of electrical activity.

2. The data must be continuous. This means that each variable must have the same

distance with its preceding and succeeding variables across one or more dimensions.

For example, in an image every pixel is exactly one pixel away from its 8 neigh-

bouring pixels, and in an EEG recording every measurement of electrical activity is

exactly 1 ÷ sampling rate seconds away from its two neighbouring measurements.

Finally, these local patterns can only be useful if they are characteristic of multiple

localities. This is also called the location invariance property in the machine learning

literature [59]. In fact, if local patterns always appeared only in specific parts of the data,

it could be more effective to use the whole data as is instead of trying to discover local

patterns.

Naturally, in homogeneous and continuous data if local structure is to be useful for

feature extraction the patterns must be identified in scales smaller than the data. For

example, in a 64-by-64 image these local patterns could exist in 8-by-8 or 16-by-16 regions

of the full image, and in an EEG recording of duration of 30 seconds local patterns could

be found at 1 or 2-second segments of the recording.

68

For classification problems local patterns are useful if one or more of the following

three conditions hold:

1. They appear more frequently in some classes than others;

2. they appear at different locations in different classes;

3. they appear in different combinations in different classes.

The key idea is that local patterns become useful only when they are viewed in con-

junction with the classification problem one is trying to solve. No feature can be charac-

terised as useful a priori. In a two-stage machine learning workflow, feature extraction is

performed independently of classification. Therefore, finding features that work well for

the problem at hand is a very time-consuming manual process, which demands going back

and forth from feature extraction to classification. The reason is that the performance in

a classification task depends on the combination of the specific features that have been

extracted and the classification algorithm. However, there is no direct feedback between

the classification performance and the chosen features apart from the classification metric

(e.g. the misclassification rate) itself. CNNs address this particular problem.

5.2 The motivation for CNNs

Convolutional neural networks or CNNs can be intuitively motivated using a specific

problem setting in computer vision: image classification. Each image consists of pixels.

The ‘raw’ input to any image classification machine learning pipeline is the greyscale or

colour value (usually in the form of three RGB values) of each pixel. For simplicity let us

assume greyscale images so that each pixel has a single value. In what follows we will use

the term neural networks to refer to standard (non-CNN) neural networks, as the ones

presented in Chapter 4.

Because of their capability to learn highly nonlinear hypotheses, deep neural networks

are powerful classifiers. Their major drawbacks are the need for large amounts of training

69

data not only relative to the input size, but also the network size (number of hidden layers

and units per layer), and the closely related problem that training is notoriously time-

consuming. As we will see, these problems are exacerbated in the application domain of

image classification.

We will describe a prototypical application of CNNs, hand-written digit recognition

[60]. Consider a very small square image, of size of 64 pixels that contains a hand-written

digit. Even this small image contains 64×64 = 4096 pixels, meaning 4096 input variables

for our classification problem. Assume that the digit in each image is not arbitrarily placed

but is approximately centred inside the image. Although this makes the problem easier,

the variability in the way different people, or even the same person at different times,

write these digits is very high. This means that among images of the same digit very few

pixels will have the same value. This, in turn, means that the amount of training data

that is needed is very large, if we consider the possible combinations of pixels.

Traditionally, computer vision engineers would perform feature extraction before feed-

ing the data into a machine learning classifier. Engineering features has been one of the

most active research areas in computer vision in the last decades. By designing those

hand-engineered features the engineers were effectively trying to reduce the dimension-

ality of the input to their machine learning algorithm by extracting features that were

relevant to their problem. The major drawback of that two-stage workflow is that there

is no rigorous feedback between the two stages. Moreover, engineering new features or

tuning existing features by hand for every new application domain is time-consuming.

CNNs achieve a similar effect to the above workflow by automating feature extraction.

As we showed in Chapter 4, the activations of the hidden layers of a neural network can be

viewed as features. This means that neural networks can learn features that are specific to

the classification problem at hand. However, in standard neural networks these features

are necessarily global. Effectively, each unit of a hidden layer is fed all of the input from

the previous layer. CNNs are the result of using a neural network architecture, while, at

the same time, offering the capability to learn local patterns from data.

70

The conditions for using a CNN are essentially the same as for extracting hand-

engineered features: the input data must have local structure with location invariance

and be homogeneous and continuous. If, for example, the input variables are different

measurements from patient records, the data is heterogeneous. In this case, we cannot use

a CNN. If, on the other hand, the input is a natural image, it is both homogeneous and

continuous, and exhibits local patterns with location invariance. Therefore, going back to

the image classification problem, CNNs can be used to reduce the number of parameters

in a neural network, by exploiting the local structure of images. Then, we can benefit

from the capability of neural networks to learn highly nonlinear hypotheses, and end-to-

end learning, while reducing the training time to more acceptable levels. Concretely for

64-by-64 images, a regular neural network would have 4096 × the number of units in the

hidden layer parameters for the first hidden layer. A CNN with 8-by-8 filters in the first

hidden layer would only have 64 × the number of units in the hidden layer parameters

for the first hidden layer. Later in this chapter we will show exactly how this is achieved.

As LeCun et al. note [59], CNNs were inspired by the hierarchical structure of in-

formation processing in the visual cortex [46, 47, 31]. Specifically, a physical view of

convolution can be given by examining the receptive fields of the neurons in the visual

cortex. In 1959, Hubel and Wiesel [46] published their pioneering work on the receptive

fields of the neurons of the cat’s primary visual cortex. Receptive fields can be seen as

‘filters’ that detect light of particular shape, as defined by the excitatory or ‘on’ areas.

The more similar the light’s shape is to the excitatory areas and the less it overlaps with

the inhibitory areas, the higher the frequency of firing in the corresponding neuron is.

The incoming light can be viewed as the signal and the receptive field as the filter. The

frequency of firing can be seen as the dot product between the incoming light and the

filter.

71

5.3 CNNs in biomedical engineering

In recent years, the machine learning community has witnessed an explosion in the use of

convolutional neural networks (CNNs). Researchers have achieved unprecedented success

using CNNs, most notably in computer vision in areas such as object recognition (e.g.

[56]), image segmentation (e.g. [36]) and face recognition (e.g. [92]). The key to the

success of CNNs has been end-to-end training, i.e. the integration of feature extraction

and machine learning into a single algorithm using the ‘raw’ data as input (pixels, in the

case of computer vision).

CNNs are trained to learn features specific to the machine learning task at hand. This

is achieved by learning features which must necessarily improve the performance in the

metric of interest (e.g. the misclassification rate) in a single step. In other words, no

feature is learned (or used) unless it improves the performance in the learning task. This

is the main advantage of CNNs over the common two-step pipeline of signal processing

for feature extraction and machine learning using the features from the first step.

The content of the images used in computer vision research has mainly comprised

natural scenes and photos of objects or people. The reason is that this type of images

are relevant to applications with large commercial applicability, such as web search, self-

driving cars, social networking and security systems. Nevertheless, the advances in CNNs

for computer vision have been rapidly transferred into the biomedical field in applications

that are also based on two-dimensional images (including sequences of images in time),

most notably medical imaging (e.g. [19]). CNNs proved to be a very powerful generic

algorithm that can be adapted for any type of image with relatively few modifications in

the overall architecture of the neural network.

Image-based applications constitute a large part of biomedical applications, partic-

ularly with the widespread adoption of modern imaging technologies such as functional

magnetic resonance imaging (fMRI). Nevertheless, an equally large part of biomedical

applications is based on one-dimensional biosignals. The most common biosignals are

72

the electroencephalogram (EEG), the magnetoencephalogram (MEG), the electrocardio-

gram (ECG), the electromyogram (EMG), the electrooculogram (EOG), the galvanic skin

response (GSR), the respiration rate, and actigraphy using accelerometers.

The analysis of biosignals has applications in the diagnosis and monitoring of a diverse

number of diseases, such as epilepsy, sleep disorders, heart problems, psychiatric disorders,

and neurodegenerative diseases. Applying state-of-the-art machine learning techniques

to these areas has tremendous potential for automating the diagnosis and monitoring

of many diseases that are very expensive and inefficient to diagnose and monitor using

existing technology.

CNNs are one of the most promising state-of-the-art machine learning algorithms for

biomedical engineering. Furthermore, CNNs are directly applicable to one-dimensional

biosignals and produce interpretable results. However, the overwhelming majority of pro-

gramming libraries, reports and papers take an almost exclusively image-based perspec-

tive. This has created the false impression that CNNs are suitable only for image-based

machine learning applications, and slowed down their adoption by the entire biomedical

engineering community. The slow adoption of CNNs for one-dimensional signals is all the

more surprising given that the first industrial application of CNNs was not in computer

vision but in automatic speech recognition [42] (speech signals are also one-dimensional).

Another reason for the slow adoption of CNNs for biosignal-based applications is that

images are by their nature more intuitively perceived and understood. When a CNN

learns a filter for an image-based application, the filter is also an image, which can be

visualised and provide intuition about the effect it has, in its raw, pixel-level form without

further analysis. In one-dimensional signals, on the other hand, this is not the case, and

signal processing techniques must be used to interpret the learned filters. However, the

machine learning and signal processing communities do not necessarily overlap in terms

of the methods that they employ.

Despite the above, there has recently been a small but growing interest in using CNNs

for biosignal-related problems [82, 17, 55, 103], including a 3rd place in a very competitive

73

machine learning competition on the Kaggle platform [53] with EEG signals.

5.4 The minimal CNN

In general, a CNN is a neural network that can make use of the local structure in homo-

geneous and continuous data. In this section, we will describe the minimal CNN which

is an extension to the minimal neural network. As LeCun, Bengio and Hinton say [59]

‘there are four key ideas behind CNNs that take advantage of the properties of natural

signals: local connections, shared weights, pooling and the use of many layers’. In this

section, we will introduce the first two key ideas.

In Figure 5.1 we show the minimal CNN. It is a neural network with a single hidden

layer, which contains a single unit. As we will show, the units in the hidden layer

perform convolution (it is denoted by the ∗ symbol). This is why hidden layers of this

type are called convolutional. The difference between a unit of a hidden layer of a regular

neural network and a unit of a convolutional layer is that the unit of the convolutional

layer outputs more than one activation. This is the reason that in Figure 5.1 we chose to

represent the activations of the convolutional layer as a separate layer. This representation

will prove helpful when we extend our discussion to larger CNNs. The output layer is a

logistic regression layer.

In the example of Figure 5.1, there are 5 elements in the input vector, plus a bias

element. In Figure 5.1 we break down the computation that happens in the minimal

CNN into steps from left to right, to illustrate local connections and weight sharing, the

first two key ideas behind CNNs according to [59].

The connections between the input units and the unit of the convolutional layer are

local, in the sense that at each step of the computation there are connections from only

a subset of the input units to the convolutional unit. Importantly, the weights from the

input units to the convolutional unit are shared. Although there are 5 units of input

(excluding the bias unit) there are only 3 weights that are shared across the three steps

74

Figure 5.1: The minimal CNN. We show the three parts of the computation that
occurs in the minimal CNN from left to right. The first layer is the input, the second
layer is a convolutional layer, the third layer is the result of the convolution, and the

output layer is logistic regression.

of the computation. The first weight always corresponds to the first unit in the local

triplet of units, the second weight to the second unit, and the third weight to the third

unit.

Let us break down the three parts of the computation into three equations (omitting

the bias unit for clarity):

a1 = f(w3x1 + w2x2 + w1x3) (5.1)

a2 = f(w3x2 + w2x3 + w1x4) (5.2)

a3 = f(w3x3 + w2x4 + w1x5) (5.3)

where at is the activation of the output unit for the local input starting at time t.

The entire computation in Equations 5.1-5.3 is essentially a sliding dot product. As

we saw in Chapter 3, a sliding dot product (with a flipped filter) is a convolution. The

definition of convolution (Equation 3.6) requires that the kernel be flipped. Let us define

the vector of weights as flipped, i.e. w = (w3, w2, w1), so that the last weight of the

neural network is the first element of w, and so on. Following the notation of Chapter

3, the number M of elements in vector x (the signal) is equal to 5, and the number N of

elements in vector w (the filter) is equal to 3. Therefore, the size of the valid convolution

is 5− 3 + 1 = 3. We can then write Equations 5.1-5.3 using the definition of convolution

75

in Equation 3.6 as:

at = f
(

(x ∗w)t
)

= f

(2
∑

i=0

xt+1w3−i

)

for 1 ≤ t ≤ 3. (5.4)

The activations of the convolutional layer then give us new input, which we can denote

as a vector a = (a1, a2, a3), whose order is meaningful in the same way that the order in the

elements of the input was meaningful. Therefore, if input vector x is a one-dimensional

signal, then the activations of the convolutional layer also form a one-dimensional signal.

This is an important observation for constructing deep CNNs, which we will describe

later. In the minimal CNN, the activations of the convolutional layer are then used as

the input of the output layer for classification.

From a signal processing perspective, the vector w of weights from the input to the

convolutional layer is a filter. Similarly to the vector a of activations, the order of the

elements of the weight vector w is meaningful.

Finally, we should note that the length of the filters depends on the specific applica-

tion.

5.5 Pooling

The third key characteristic of CNNs according to [59] is pooling. The motivation for

pooling is the following. In the example of the minimal CNN in Figure 5.1 the input

layer had size M = 5 and the number of local connections to the convolutional layer

(or, equivalently, the size of the filter) was N = 3. The number of activations (or,

equivalently, the size of the result of the convolution between the filter and the input)

was M − N + 1 = 3. These numbers were used for illustration reasons only, as they

are not representative of real-world applications. In real world applications it is common

for the input to be a 10 second long signal sampled, for instance, at 256 Hz. In this

case the size of the input would be M = 2560. Let us assume a filter with length of 1

second, so that N = 256. In this case the size of the result of the convolution would

76

be M − N + 1 = 2305. In this case the output of the convolutional layer is almost as

large as the input. Moreover, in real-world CNNs there are a lot more than one units

in a convolutional layer, so that, if there were 50 units in the convolutional layer the

total number of activations would be 2305× 50 = 115250. Clearly, using a convolutional

layer explodes the size of the feature space, so that the problem of having a very large

input is worsened. The considerations with that are not only computational. Using the

entire output of the convolutional layers would make the neural network learn extremely

fine-grained variations in the filtering of the input. Ideally, we would like the network to

exhibit some translation invariance to small local shifts of the input in time or space. As

Goodfellow et al. state, ‘[i]nvariance to local translation can be a very useful property if

we care more about whether some feature is present than exactly where it is’ [39, Ch. 9,

p. 342]. Similarly, as LeCun, Bengio and Hinton state, ‘the role of the pooling layer is

to merge semantically similar features into one’ [59]. Location invariance can therefore

both prevent overfitting, and reduce the amount of data and computation time that is

needed to train a CNN.

Pooling is a technique that addresses the above considerations. Pooling works by

combining (‘pooling’) nearby activations (outputs of a convolutional layer) by substituting

multiple activations in a neighbourhood with a summary statistic. Pooling can be also

interpreted as a simple denoising operation. In CNN practice the two most commonly

used pooling procedures are mean pooling and max pooling. In mean pooling we take

the mean of nearby activations, and in max pooling the maximum. We can see that for

small translations of the output those pooling functions are expected to produce similar

or potentially identical summary statistics. There are two parameters that need to be

set for pooling: the pooling region size and the pooling step. The pooling region size

is the number of activations that will be pooled, and the pooling step defines whether

there will be overlapping pooling regions or not. The pooling region size must be larger

than one, and up to the length of the activations vector. For the pooling step we have: 1

≤ pooling step ≤ pooling region size. When the pooling step is equal to the size of the

77

pooling region, there are no overlapping regions. When the pooling step is equal to 1, we

have maximum overlap.

Continuing with our previous example, if we choose a pooling region of size 5 and a

pooling step of size 5, we will have 461 non-overlapping pooling regions (this is the size

of the result of convolution divided by the size of the pooling region, i.e. 2305÷5 = 461).

This reduces the size of the activations vector by 5 times. In theory, it is possible to

increase the pooling region size to a very large number (even as large as the length of

the activations vector), however, this is not always desirable, as useful information for

the problem at hand might be lost. Effectively, if the pooling region size is very large,

we pool over the whole result of the convolution, and, therefore, we lose time-specific

information, e.g. at which points the activation which corresponds to a particular filter

was large. For many applications this information is useful.

5.6 Deep CNNs

Deep CNNs are CNNs with multiple convolutional layers. The key observation for con-

structing deep CNNs is that the output of a single convolutional layer (either before or

after pooling) is itself a signal, which is continuous and homogeneous, as its input is (if

the input did not have these characteristics we would not have been able to use a convo-

lutional layer in the first place). Therefore, we can add a second convolutional layer that

takes the activations of the first convolutional layer as its input.

An important observation is that the first convolutional layer outputs as many ac-

tivation vectors as its hidden units. So if there are 3 units in a convolutional layer its

output will be 3 activation vectors. In that case, the input to the second convolutional

layer will be 3 different signals. If the second convolutional layer has 2 units, we will

have 6 activation vectors as the output, one for each signal-unit combination. This is

important, because as we add convolutional layers with pooling the size of each activation

vector gets smaller, but the number of activation vectors gets larger (unless there is only

78

a single unit in the convolutional layer, in which case it stays the same; but this is a very

unlikely case).

In a deep neural network, there is usually one or more “regular” hidden layers between

the last convolutional layer and the output layer. Regular hidden layers are also called

fully connected layers in the literature. Deep learning pioneer Yann LeCun views fully

connected layers as just a special case of convolutional layers [58]. Effectively, fully

connected layers are just convolutional layers in which the input has the same size as the

filters, or, as LeCun puts it, each unit does a 1× 1 convolution.

We will now continue with an example of a deep CNN. We will omit the bias units

to keep the figure and exposition uncluttered. In Figure 5.2 we show this deep CNN.

It has an input layer, two convolutional layers, each followed by a pooling layer, one

fully connected hidden layer, and an output layer. In the figure, we highlighted a single

instance of the operation that each layer performs. In particular, for a convolutional layer

we highlight a single dot product of a single unit.

The input layer of the CNN has 15 units, i.e. the input is a signal with 15 timepoints.

The first convolutional layer, C1, has 3 units, i.e. there are 3 different filters in it. The

size of each filter is 4 timepoints, indicated with a rectangle on the input layer. We show

only the weights from the first 4 units of the input to each unit in C1, i.e. the first

step of the convolution operation. Each unit in C1 outputs a new signal (the result of

convolution) with 15− 4 + 1 = 12 timepoints, shown as 12 units in the figure.

Each output signal of the C1 is fed into the first pooling layer, P1, with pooling region

size of 2. To keep the figure uncluttered we set the pooling step to also be 2, so that there

are no overlapping pooling regions. After pooling these signals of length 12 are reduced

to a length of 6. There are 3 of these pooled signals, as there are 3 filters in the C1. The

output signals of a convolutional layer are also called feature maps in the neural network

literature.

It is worth pausing here to consider the differences in the number of parameters and

connections between a convolutional layer and a fully connected layer. The number of

79

Figure 5.2: A deep CNN with 7 layers: an input layer, two convolutional layers (C1
and C2), two pooling layers (P1 and P2), one fully connected layer (F1) and an output
layer. The elements in bold in the figure highlight a single instance of the operation

that each layer performs. Convolutional units are denoted with the ∗ symbol.

80

parameters in a convolutional layer is calculated as: number of inputs × (filter size + 1) ×

number of filters per input, if we add 1 for the bias element. For layer C1 in Figure 5.2 we

have a single input (a single signal, not a single unit) and 3 filters of size of 4. This means

there are number of inputs × (filter size + 1) × number of filters = 1× (4 + 1)× 3 = 15

unique parameters. Remember that the weights to a single convolutional unit are shared

between the units of the input, therefore there are only as many weights per filter as the

size of the filter, and not the size of the input signal as would be the case for a fully

connected layer.

The number of connections in a convolutional layer is given by: number of inputs ×

((size of convolution result × filter size) + 1) × number of filters per input. This means

that there are 1× ((12×4)+1)×3 = 147 connections in layer C1. If layer C1 were a fully

connected layer we would have (15+1)×3 = 45 unique parameters, and the same number

of connections. In general, the number of parameters is smaller in a convolutional layer

as opposed to a fully connected layer, but the total number of connections is larger in a

convolutional layer.

Let us now continue with the second convolutional layer, C2, in the CNN of Figure

5.2. The pooled signals from the first pooling layer, P1, become the input to C2. In our

example, C2 has 2 units (filters) per P1 feature. Commonly in the literature the ‘per

P1 feature’ part is omitted, which can create confusion. This is the reason we state it

explicitly. This is the most common way for constructing convolutional layers beyond the

first, as usually, but not necessarily, the first convolutional layer’s input is a single signal.

It is important to note that, in our example, each feature from layer P1 is independently

fed into each unit of layer C2. There are examples of CNN architectures in which features

from a previous convolutional/pooling layer are combined in the next layer (e.g. [60]).

The filters in C2 have a size of 3. Given that the input from P1 has a size of 6, the

output of each filter in C2 is a signal of length 4. The second pooling layer, P2, has a

pooling region of 4, exactly as the length of its input, so that the output is of each P2

unit has length 1. After layer P2, we have a fully connected layer, F1 with 4 units, and,

81

finally, an output layer.

5.7 Forward propagation and backpropagation in CNNs

In the previous sections we described how forward propagation works in CNNs. Let us

now give all the equations of forward propagation. Consider the CNN in Figure 5.3.

The main difference between a fully connected neural network and a CNN is in the

weight sharing of the convolutional layers. To deal with weight sharing with clarity, in

our exposition we follow the following conventions. The index i of the input is a relative,

and not an absolute one. It is relative to the start of the interval that is considered each

time as the filter slides on the input. In this sense, it is the index of the filter’s element,

since the filter remains the same as it slides through the input. The absolute index of

the input is given by combining the number j of times the filter has slid through the

input with the index i. The index j is the index of the element of the output of the

convolutional layer. As we show in Figure 5.3 the absolute index of the input is given by:

(j − 1) + i.

To keep the notation uncluttered, we omitted the index of the convolutional unit in

layer C1. We should note, though, that any convolutional operation in the equations that

follow refers to a single unit (filter) in the convolutional layer. Assuming a max pooling

function for the pooling layer P1, the forward propagation equations are:

z
(C1)
j =

|C1|−1
∑

i=0

w
(C1)
|C1|−i xj+i (5.5)

a
(C1)
j = f(z

(C1)
j) (5.6)

a
(P1)
k = max(a

(C1)
j for j ∈ pooling region) (5.7)

z
(F1)
l =

∑

k∈P1

w
(F1)
kl a

(P1)
k (5.8)

a
(F1)
l = f(z

(F1)
l) (5.9)

z(out)m =
∑

l∈F1

w
(out)
lm a

(F1)
l (5.10)

82

Figure 5.3: CNN forward propagation

a(out)m = g(z(out)m) (5.11)

Equations 5.5 and 5.6 correspond to the convolutional layer C1. Notice that contrary

to the case of a fully connected layer (see Equation 4.11 earlier), the sum over i in Equation

5.5 is not over the units of the input, but over the elements of the filter. Notice also,

that, as we noted earlier, the indexing of the input is therefore given as a function of the

unit of the convolutional layer output. This naturally leads to convolution. Effectively,

if we apply Equation 5.5 starting at j = 1 and ending at j = (|in| − |C1| + 1) we have

performed a valid convolution. This formulation will prove illustrative in our discussion

83

of backpropagation.

Equation 5.7 corresponds to the pooling layer P1. We denoted the result of the pooling

operation as activations. The pooling function can, of course, take any other form, but

the most common functions are max pooling (as in Equation 5.7) and mean pooling.

Finally, as in the fully connected case, Equations 5.8 and 5.9 correspond to the fully

connected layer F1, and Equations 5.10 and 5.11 correspond to the output layer.

Figure 5.4: CNN backpropagation

We now turn to backpropagation, as shown in Figure 5.4. The first steps of the

84

backpropagation will be the same as in the fully connected neural network. The two

differences will be in the pooling and the convolutional layers.

The backpropagation equations are:

∂J(W)

∂a
(out)
m

= 1{y = m} − a(out)m (5.12)

∂J(W)

∂z
(out)
m

=
∂J(W)

∂a
(out)
m

∂a
(out)
m

∂z
(out)
m

=
∂J(W)

∂a
(out)
m

g′(z(out)m) (5.13)

∂J(W)

∂w
(out)
lm

=
∂J(W)

∂z
(out)
m

∂z
(out)
m

∂w
(out)
lm

=
∂J(W)

∂z
(out)
m

a
(F1)
l (5.14)

∂J(W)

∂a
(F1)
l

=
∑

m∈out

(

∂J(W)

∂z
(out)
m

∂z
(out)
m

∂a
(F1)
l

)

=
∑

m∈out

(

∂J(W)

∂z
(out)
m

w
(out)
lm

)

(5.15)

∂J(W)

∂z
(F1)
l

=
∂J(W)

∂a
(F1)
l

∂a
(F1)
l

∂z
(F1)
l

=
∂J(W)

∂a
(F1)
l

f ′(z
(F1)
l) (5.16)

∂J(W)

∂w
(2)
kl

=
∂J(W)

∂z
(F1)
l

∂z
(F1)
l

∂w
(F1)
kl

=
∂J(W)

∂z
(F1)
l

a
(P1)
k (5.17)

∂J(W)

∂a
(P1)
k

=
∑

l∈F1

(

∂J(W)

∂z
(F1)
l

∂z
(F1)
l

∂a
(P1)
k

)

=
∑

l∈F1

(

∂J(W)

∂z
(F1)
l

w
(F1)
kl

)

(5.18)

∂J(W)

∂a
(C1)
j

=
∑

k∈pool

(

∂J(W)

∂a
(P1)
k

∂a
(P1)
k

∂a
(C1)
j

)

=
∑

k∈pool

(

∂J(W)

∂a
(P1)
k

1{a(P1)
k = a

(C1)
j }

)

(5.19)

∂J(W)

∂z
(C1)
j

=
∂J(W)

∂a
(C1)
j

∂a
(C1)
j

∂z
(C1)
j

=
∂J(W)

∂a
(C1)
j

f ′(z
(C1)
j) (5.20)

∂J(W)

∂w
(C1)
|C1|−i

=
∑

j∈|C1|

(

∂J(W)

∂z
(C1)
j

∂z
(C1)
j

∂w
(C1)
|C1|−i

)

=
∑

j∈|C1|

(

∂J(W)

∂z
(C1)
j

xj+i

)

(5.21)

The equations that are different from the fully connected case are Equation 5.19,

which includes the derivative of the pooling function, and Equation 5.21, which includes

the derivative with respect to the shared weights of the convolutional unit. In this example

we used the max pooling function (see Equation 5.7), whose derivative is the indicator

function in Equation 5.19 (i.e. it is equal to one only for the argument that is the

maximum). Equation 5.21 is the derivative of the cost function with respect to the

shared weights. We used the indexing from forward propagation in Equation 5.5 where

the filter is flipped.

85

Chapter 6

Automated sleep scoring using

time-frequency analysis and stacked

sparse autoencoders

In this chapter we present the machine learning methodology that we developed for

automatic sleep stage scoring using a single channel of EEG [94]. Our time-frequency

analysis-based feature extraction is fine-tuned to capture sleep stage-specific signal fea-

tures as described in the American Academy of Sleep Medicine (AASM) manual that the

human experts follow. We used ensemble learning with an ensemble of stacked sparse

autoencoders for classifying the sleep stages. We used class-balanced random sampling

across sleep stages for each model in the ensemble to avoid skewed performance in favour

of the most represented sleep stages, and addressed the problem of misclassification er-

rors due to class imbalance while significantly improving worst-stage classification. Our

method has both high overall accuracy (78%, range 75–80%), and high mean F1-score

(84%, range 82–86%) and mean accuracy across individual sleep stages (86%, range 84–

88%) over all subjects. The performance of our method appears to be uncorrelated with

the sleep efficiency and percentage of transitional epochs in each recording.

86

6.1 Methodology

There are two main parts in our methodology. We will first describe the feature extraction

methods that we used, and then we will give the details of the machine learning methods.

6.1.1 Feature extraction methodology

For feature extraction we performed time-frequency analysis using complex Morlet wavelets,

which we described in detail in Chapter 3. Figure 6.1 shows a plot of signals from the

Physionet dataset (see Section 2.8). In the figure, one 30-second signal at 100 Hz (3,000

timepoints) per sleep stage is shown.

For time-frequency analysis using complex Morlet wavelets there are two sets of pa-

rameters that need to be chosen, the peak frequencies and the number of wavelet cycles

per frequency. The number of wavelet cycles defines its width and controls the trade-off

between temporal and frequency precision. Specifically, increasing the number of cycles

increases the frequency precision but decreases the temporal precision, while decreas-

ing the number of cycles increases the temporal precision but decreases the frequency

precision.

In our study we selected the peak frequencies and the number of cycles based on the

sleep scoring criteria in Table 2.2, taking into account the transition rules in Table 2.3.

The wavelets that we used attempt to capture seven main types of activity: slow waves,

K-complexes, mixed delta/theta activity, alpha activity, sleep spindles, beta activity, and

gamma activity. To capture slow waves, which are characteristic of stage N3, we used

three wavelets with peak frequencies, at 0.7, 1, and 1.5 Hz. To capture K-complexes for

stage N2, we used two wavelets with peak frequencies at 2 and 3.2 Hz. Mixed delta/theta

activity is prevalent in multiple stages (N1, R, and W), and we used four wavelets at 3,

4, 5, and 6 Hz to capture it. Alpha activity is one of the defining characteristics of stages

N1 and W, and we used three wavelets at 8, 10, and 12 Hz to capture it. Sleep spindles

occur mostly in stage N2, but also in some stage N3 epochs, and we used wavelets at 12,

87

Figure 6.1: A plot of signals from the Physionet dataset. There is one 30-second
signal at 100 Hz (3,000 timepoints) per sleep stage.

88

13, 14, and 15 Hz to capture them. Beta activity is associated with arousals, as a scoring

criterion based on stage transitions for N1 (see first and third row in Table 2.3), but

also stage W. We capture beta activity with wavelets at 16, 18, and 20 Hz. Finally, we

capture gamma activity with a single wavelet at 40 Hz. Gamma activity is not included

in the sleep scoring manual, but there is evidence in the literature that features from

modalities other than EEG, such as eye movements [101], stage R sleep [52] and EMG

activity [38, 97], can manifest themselves in the gamma activity of EEG. Regarding the

width of the wavelets, when we were looking for patterns of activity localised in time, such

as sleep spindles, we used a small number of cycles (3) for the wavelets, as this localises

the detected activity in time, for a frequency precision trade-off. Conversely, when we

were looking for sustained activity across the epoch, most notably alpha activity, we

used a high number of cycles (10) for the wavelets. In the cases for which no guidelines

existed or the guidelines were not specific, such as gamma activity, we used 5 cycles for

the wavelets. In Table 6.1 we summarise the parameters chosen.

After extracting the frequency-band power for each peak frequency given in Table 6.1,

the features that we computed for each epoch were the power of the frequency-band power

signal, the power of the time-domain signal, the Pearson correlation coefficient between

each pair of frequency-band power signals and the autocorrelation in the time-domain

signal for 50 time lags (i.e. up to 0.5 seconds). Intuitively, the power of the frequency-

band power signal measures the strength of the activity at a specific frequency band over

the epoch. The power of the time-domain signal is a measure of the oscillation of the

signal and the overall amplitude that the signal exhibits across the epoch. The Pearson

correlation coefficient between frequency-band power signals aims at capturing correlation

between activity at different frequency bands over the epoch. This is useful for epochs

in which multiple sleep scoring features appear at the same time. The autocorrelation of

the time-domain signal aims at capturing dependencies in the values of the EEG signal

at one point in time with previous values. Additionally, we used a sliding window to

extract the power of the frequency-band power and the power of the time-domain signal

89

Table 6.1: Peak frequencies and number of wavelet cycles per frequency for
time-frequency analysis using complex Morlet wavelets.

Target Target Frequency Peak Number of

Frequency Sleep or Time Frequency Wavelet

Band Stages Precision (Hz) Cycles

slow (0.5-2 Hz) N3 Time 0.7 3

slow (0.5-2 Hz) N3 Time 1 3

slow (0.5-2 Hz) N3 Time 1.5 3

K-complex (1.6-4 Hz) [40] N2 Time 2 3

K-complex (1.6-4 Hz) [40] N2 Time 3.2 3

delta/theta (2-7 Hz) N1,R,W Intermediate 3 5

delta/theta (2-7 Hz) N1,R,W Intermediate 4 5

delta/theta (2-7 Hz) N1,R,W Intermediate 5 5

delta/theta (2-7 Hz) N1,R,W Intermediate 6 5

alpha (8-13 Hz) N1,W Frequency 8 10

alpha (8-13 Hz) N1,W Frequency 10 10

alpha (8-13 Hz) N1,W Frequency 12 10

spindle (12-15 Hz) N2,N3 Time 12 3

spindle (12-15 Hz) N2,N3 Time 13 3

spindle (12-15 Hz) N2,N3 Time 14 3

spindle (12-15 Hz) N2,N3 Time 15 3

beta (15-30 Hz) N1 (arousal) Time 16 3

beta (15-30 Hz) N1 (arousal) Time 18 3

beta (15-30 Hz) W Intermediate 20 5

gamma (30-100 Hz) * N1,N2,N3,R,W Intermediate 40 5

* There is evidence in the literature that features from modalities other than EEG, such as eye

movements [101], stage R sleep [52] and EMG activity [38, 97], can manifest themselves in the

gamma activity of EEG.

at different intervals within each epoch. Specifically, we used a sliding window of duration

of 5 seconds and step of 2.5 seconds, which resulted in 11 power of frequency-band power

features per frequency band per epoch and 11 power of the time-domain signal features

90

Table 6.2: Features extracted from the single-channel EEG signal.

Feature Number Purpose Transform

Power of frequency-band

power over the entire epoch

20 Capture the overall presence of the partic-

ular frequency band in the signal

log(x)

Power of frequency-band

power using a sliding window

220 Capture the presence of the particular fre-

quency band in the signal across time

log(x)

Time-domain signal

power over the entire epoch

1 Capture the overall amplitude characteris-

tics of the signal

log(x)

Time-domain signal

power using a sliding window

11 Capture the amplitude characteristics of

the signal over time

log(x)

Frequency-band

power-power correlation

210 Capture the relationships between the dif-

ferent frequency bands over time

None

Time-domain signal

autocorrelation

50 Capture long-term dependencies in the sig-

nal

x2

ALL 512

per epoch. With this sliding window we attempted to capture relationships that are

time-specific in particular parts of the epoch, rather than across the whole epoch. This is

important, as many sleep scoring patterns, such as sleep spindles and K-complexes, are

transient, and are better captured by localising them in time. All the extracted features

are summarised in Table 6.2. We mapped all the features in the [0,1] interval, and centred

their distribution using transformations (see Table 6.2). We then normalised the features

from each trial of each subject.

The AASM manual [49] includes a number of rules that recommend taking into ac-

count neighbouring epochs for the scoring of each current epoch under certain circum-

stances. We identified 12 rules in total concerning the transition between certain sleep

stage pairs that refer to 7 distinct transition patterns, as shown in Table 2.3. These

rules apply to three sleep stage pairs, N1-N2, N1-R and N2-R. The transition patterns

include up to two preceding or succeeding neighbouring epochs. Trying to capture the

effect of these transition rules in an automatic sleep scoring algorithm by simply including

91

transition probabilities between sleep stages is not a suitable approach. The reason is

that the algorithm could overfit to hypnogram-level patterns from the subjects we used

for training, especially when the training data do not include data from different sleep

pathologies.

We incorporated transition information directly as features for our machine learn-

ing algorithm. Specifically, for the classification of each epoch, apart from the features

corresponding to itself, we included the features from the preceding two and succeeding

two epochs. We addressed the possibility of overfitting which exists in this case in our

experimental design (Section 6.2). In the literature, Liang et al. [62] used 11 a priori

hypnogram ‘smoothing rules’ in order to capture transition information. These rules are

applied on the scored epochs after automatic sleep scoring has taken place, effectively

changing the classification of each epoch given the sleep stage of its neighbours. Unfor-

tunately, the authors described only 2 of the rules in their paper, and, notably, did not

discuss the order in which the rules are applied to the estimated hypnogram.

6.1.2 Machine learning methodology

For the classification of the epochs into sleep stages we used a stacked sparse autoen-

coders model (see Section 4.10). The optimisation method we used was L-BFGS, as

recommended in [72]. The hyperparameters of a sparse autoencoder-based model are:

(1) a regularisation weight λ which is used to decrease the magnitude of the parameters

and prevent overfitting (see Section 4.9), (2) a sparsity weight β which controls the rela-

tive importance of the sparsity penalty term (see Section 4.10), (3) a sparsity parameter

ρ which sets the desired level of sparsity (see Section 4.10), and (4) the number of units n

in the hidden layer of the autoencoder. The only hyperparameter for the optimisation is

the total number of iterations r. Our stacked sparse autoencoders model has two hidden

layers. Our final choice of hyperparameters was λ = 10−5, β = 2.0, ρ = 0.2, n = 20, and

r = 60. We used autoencoders with the sigmoid activation function. In the next section,

we give the details of how the hyperparameters were chosen.

92

The classes (sleep stages) in our dataset, as in any PSG dataset, were not balanced, i.e.

there were a lot more epochs for some stages (particularly N2) than others (particularly W

and N1). In such a situation, if all the data is used as is, it is highly likely that a classifier

will exhibit skewed performance favouring the most represented classes, unless the least

represented classes are very distinct from the other classes. In order to resolve the issues

stemming from imbalanced classes we decided to employ class-balanced random sampling

with an ensemble of classifiers, each one being trained on a different sample of the data.

Our final model consisted of an ensemble of 20 independent stacked sparse autoencoders

(SSAEs) with the same hyperparameters. Each of the 20 SSAEs was trained using a

sample of the data in which the number of epochs per stage per recording was equal to

the number of epochs of the least represented stage (N1). The classification of the epochs

in the testing recordings was done by taking the mean of the class probabilities that each

of the 20 SSAEs outputs, and then selecting the class with the highest probability.

We used our own Matlab implementation for time-frequency analysis and stacked

autoencoders, and the Matlab implementation by Mark Schmidt for L-BFGS (http:

//www.cs.ubc.ca/~schmidtm/Software/minFunc.html).

In terms of the computational burden of our method, on a machine with a processor

with 4 cores at 2.8 GHz, 16 GB of RAM and an SSD hard disk, a full run of cross-

validation takes approximately 2 hours, or 2 hours ÷ (20 folds × 20 models per fold) =

0.005 hours or 18 seconds per single SSAE model.

6.2 Evaluation

To evaluate the generalisability of our method, we obtained our results using 20-fold

cross-validation. Specifically, in each fold we used the recordings of a single subject for

testing and all other recordings for training. We used each subject’s recordings only once

for testing, thus obtaining a one-to-one correspondence of cross-validation folds and test

subjects. We chose per-subject cross-validation as we also performed comparisons across

93

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

individual recordings. With this experimental design, we were able to assess both the

overall performance of our method and the performance across recordings with a single

set of experimental results.

To choose the hyperparameters we used the training data at each fold of the cross-

validation, further splitting it into one training and one validation set for choosing the

hyperparameters. This protocol is similar to the double (or nested) cross-validation ap-

proach [41, pp. 245–7] [8]. In nested cross-validation a second (or inner) cross-validation

is performed using only the training data at each fold with the objective of optimising the

hyperparameters based on the performance of different models having a different choice of

hyperparameters. The hyperparameters that produced the model with the highest inner

cross-validation performance are chosen. Then a model is built using all of the training

data and is tested in the outer cross-validation validation set, that was not seen during

hyperparameter optimisation. In our case, it would be very expensive computationally to

run a full nested cross-validation, so a single training and validation split within each fold

(instead of a full inner cross-validation) was a statistically valid alternative. Concretely,

in our work we used a 15-4 training-validation split for hyperparameter optimisation with

the 19 subjects that form the training set of each fold.

For choosing the candidate values of hyperparameters grid search is common practice

in the deep learning literature [8]. Grid search is the process of presetting possible val-

ues for each of the hyperparameters and considering every possible combination of those

hyperparameters. However, the combinatorial space to explore all the possible combina-

tions of hyperparameters is very large. This not only creates considerable computational

burden for hyperparameter choice, but also could lead to overfitting to the validation set

[8],especially in settings similar to our work in which the dataset is not very large. To

address these issues we decided to choose the same hyperparameters across all layers, and

adopt a greedy process for adding layers to the neural network. Starting with a single-

layer neural network we proceeded with adding additional layers only if the addition of

a new layer improved performance.

94

Another consideration in hyperparameter optimisation is that the possible values per

hyperparameter that would be worth considering are effectively unknown at the start of

training. Doing a grid search across values that may be completely inappropriate would

increase the computational burden even more. To address this issue we explored potential

values of the hyperparameters across broader ranges only for a couple of folds initially.

Once we narrowed down the range of the two or three best values for each hyperparameter

using that exploratory approach we proceeded with using all the folds. For example, in

the exploratory stage we considered sizes of up to 400 units for the hidden layer of the

neural network. After the exploratory stage the effective range was narrowed down to

between 20 and 40 units. We should note that we did not evaluate all possible values

in the effective hyperparameter range. For example, achieving higher performance with

21 units versus 20 units, although in theory possible would expose us to the possibility

of overfitting. Finally, given similar performance with hyperparameters that affect the

complexity of the model, we chose the values of these hyperparameters that result in

lower model complexity. For example, given a neural network with 3 hidden layers and a

network with 2 hidden layers with the same performance, the latter was chosen over the

former.

Once the hyperparameters at each fold were chosen in the inner loop, for cross-

validation for each hyperparameter we chose the values that are more common across

all folds, and assigned those values to all the folds. Necessarily, these values were not the

optimal ones across all folds, but this was done to be able to assess the performance of a

single model rather than potentially different models (due to hyperparameter variations)

across folds. Regarding the sensitivity of our model to the choice of hyperparameters,

we observed that adding a third layer or increasing the number of units of each layer

from 20 to 40 had a slightly negative effect to performance. Increasing λ from 10−5 to

10−4, increasing β from 2.0 to 1.5, or decreasing ρ from 0.2 to 0.1 decreases performance

slightly as well. We should note that it is difficult to isolate the effect of individual hy-

perparameters, as the value of one of them affects the optimal value for another. For

95

example, there is a close relationship between the number of nodes in each hidden layer

and the regularisation weight λ. Specifically, a network with a larger number of nodes

may demand a higher regularisation weight.

We report the evaluation metrics using their average across all recordings. Specifi-

cally, we report their mean value across all 5 sleep stages and their value for the most

misclassified sleep stage, which gives information about the robustness of the method

across sleep stages. We tested our method with both available EEG electrodes (Fpz-Cz

and Pz-Oz) in the Physionet dataset. We report the scoring performance using the best

electrode, which was Fpz-Cz.

We calculated 95% confidence intervals for each of the performance metrics by boot-

strapping using 1000 bootstrap samples across the confusion matrices of the 39 recordings.

For each bootstrap sample we sampled the recording indexes (from 1 to 39) with replace-

ment and then added up the confusion matrices of the selected recordings. We then

calculated each evaluation metric for each bootstrap sample. We report the mean value

of each metric across the bootstrap samples, and the values that define the range of the

95% confidence interval per metric, i.e. the value of the metric in the 26th and 975th

position of the ordered bootstrap sample metric values.

We also tested our algorithm using 5-fold cross-validation with non-independent train-

ing and testing sets by mixing the subjects’ epochs as the authors in [34] did. This was

done to show the improvement in the results that such a flawed practice can result into,

and appropriately compare our method to [34]. We do not consider this performance

indicative of the quality of our method, or any method targeted in EEG sleep scoring, as

it is not practical in the real world. These results are separated from the others in Table

7.3.

To further evaluate the generalisability of our method, we performed two tests on

our results to assess the correlation between scoring performance and (1) a measure of

the sleep quality of each recording, and (2) the percentage of transitional epochs in each

recording. Robust scoring performance across sleep quality and temporal sleep variability,

96

can be seen as further indicators of the generalisability of an automatic sleep stage scoring

algorithm. The reason is that low sleep quality and high sleep stage variability across the

hypnogram are prevalent in sleep pathologies (see, for example, [74]).

We measured sleep quality with a widely-used index, called sleep efficiency. Sleep

efficiency is defined as the percentage of the total time in bed that a subject was asleep

[88, p. 226]. Our data contain a ‘lights out’ indicator, which signifies the start of the time

in bed. We identified the sleep onset as the first non-W epoch that occurred after lights

were out. We identified the end of sleep as the last non-W epoch after sleep onset, as our

dataset does not contain a ‘lights on’ indicator. The number of epochs between the start

of time in bed and the end of sleep was the total time in bed, within which we counted the

non-W epochs; this was the total time asleep. We defined transitional epochs as those

whose preceding or succeeding epochs were of a different sleep stage than them. We

computed their percentage with respect to the total time in bed. In our experiments we

computed the R2 and regression coefficient p-value between sleep efficiency and scoring

performance, and between percentage of transitional epochs and scoring performance.

The metrics we computed were precision, sensitivity, F1-score, per-stage accuracy, and

overall accuracy.

Finally, we computed the scoring performance of our algorithm without and with

features from neighbouring epochs. If we observed improvement in sleep stage pairs

which are not included in the transition rules (i.e. any pair other than N1-N2, N1-R and

N2-R, see Table 2.3), we would conclude that the algorithm learned spurious patterns

that are an artifact of our training data. Additionally, we should observe at least some

small improvement and certainly no decrease in the classification performance between

pairs N1-N2, N1-R and N2-R. In this case, even without having data from different sleep

pathologies we can evaluate whether the epoch-to-epoch or hypnogram-level patterns that

our algorithm learned were akin to the generic guidelines or overfitting to the training

data.

97

Table 6.3: Confusion matrix from cross-validation using the Fpz-Cz electrode.

N1 N2 N3 R W

(algorithm) (algorithm) (algorithm) (algorithm) (algorithm)

N1 (expert) 1654 (60%) 262 (10%) 8 (0%) 366 (13%) 472 (17%)

N2 (expert) 1270 (7%) 13696 (78%) 1231 (7%) 760 (4%) 621 (4%)

N3 (expert) 7 (0%) 469 (8%) 4966 (89%) 6 (0%) 143 (3%)

R (expert) 899 (12%) 340 (4%) 0 (0%) 6164 (80%) 308 (4%)

W (expert) 441 (13%) 34 (1%) 23 (1%) 138 (4%) 2744 (81%)

This confusion matrix is the sum of the confusion matrices from each fold. The numbers in bold

are numbers of epochs. The numbers in parentheses are the percentage of epochs that belong to the

class classified by the expert (rows) that were classified by our algorithm as belonging to the class

indicated by the columns.

6.3 Results

As we show in the the normalised confusion matrix in Table 7.2, the most correctly

classified sleep stage was N3, with around 90% of stage N3 epochs correctly classified.

Stages N2, R and W follow, with around 80% of epochs correctly classified for each stage.

The most misclassified stage was N1 with 60% of stage N1 epochs correctly classified.

Most misclassifications occurred between the pairs N1-W and N1-R (about 15% and 13%

respectively), followed by pairs N1-N2 and N2-N3 (about 8%), and N2-R and R-W (about

4%). The remaining pairs had either misclassification rates smaller than 4% (N2-W and

N3-W) or almost no misclassifications at all (N1-N3 and N3-R). We also observe that the

percentage of false negatives with respect to each stage (non-diagonal elements in each

row) per pair of stages was approximately balanced between the stages in the pair (the

only conspicuous exception is the pair N1-W, and, to a lesser extent, the pair N2-W).

Effectively the upper and lower triangle of the confusion matrix are close to being mirror

images of each other. This is a strong indication that the misclassification errors due to

class imbalance have been mitigated.

As we show in Table 7.3, our method has both high overall accuracy (78%, range 75–

98

80%), and high mean F1-score (84%, range 82–86%) and mean accuracy across individual

sleep stages (86%, range 84–88%) over all subjects. From the scoring performance metrics

results in Table 7.3 we observe that our method either outperformed or had approximately

equal performance with the methods in the literature in all metrics apart from worst-

stage precision (the non-independent testing results at the bottom row are not taken into

account). In many cases, even the lower end of the 95% confidence interval (the top

number in parentheses) was higher than the corresponding metric for the other methods.

Table 7.3 also summarises the improvement of our method over the state of the art,

i.e. the best of all the methods in the literature in that particular metric (negative

numbers indicate worse performance than the state of the art). Overall, our method

exhibits improved performance over the state of the art in automated sleep scoring using

single-channel EEG across the five scoring performance metrics.

In Table 6.5 we show the results of the algorithm without and with information from

neighbouring epochs. We observe that there is no mutual improvement in any other

stages apart from the targeted pairs N1-N2, N1-R and N2-R.

We also assessed the independence of the scoring performance (for F1-score and overall

accuracy) of our method across recordings relative to sleep efficiency and the percentage

of transitional epochs per recording (Table 7.4). The p-values of the regression coefficients

are all above 0.15, which means that we fail to reject the null hypothesis of zero R2, which

is already negligible (lower than 0.1) in all cases. For clarity we present the data for these

tests graphically for the F1-score results in Figures 6.2 and 6.3. Our dataset contained 10

recordings with sleep efficiency below 90% (in the range 60-89%), which is the threshold

recommended in [88, p. 7] for young adults. The percentage of transitional epochs ranged

from 10-30% across recordings.

Finally, in Figure 6.4 we present an original manually scored hypnogram and its

corresponding estimated sleep hypnogram using our algorithm for a single PSG for which

the overall F1-score was approximately equal to the mean F1-score across the entire

dataset.

99

Table 6.4: Comparison between our method and the literature across the five scoring
performance metrics (precision, sensitivity, F1-score, per-stage accuracy, and overall

accuracy).

Scoring performance metrics

Precision Sensitivity F1-score Accuracy

Study Mean Worst Mean Worst Mean Worst Mean Worst Overall

Independent training and testing

[62] 93 89 77 29 82 43 86 63 77

[62] 90 82 73 19 77 31 83 57 73

[11] 92 88 74 36 81 51 84 66 74

(92) (86) (75) (55) (82) (68) (84) (74) (75)

current 93 88 78 60 84 71 86 76 78

(94) (90) (80) (65) (86) (75) (88) (78) (80)

0 -1 +1 +24 +2 +20 0 +10 +1

Non-independent training and testing

[34] 93 88 77 53 84 68 86 75 77

current 95 91 82 65 88 76 89 79 82

+2 +3 +5 +8 +4 +8 +3 +4 +5

For the binary metrics, we report the mean performance (over all five sleep stages) as well as

the worst performance (in the most misclassified sleep stage, always stage N1). We present the

results for our method using the Fpz-Cz electrode with cross-validation using both independent

and non-independent training and testing. The numbers in parentheses are the bootstrap 95%

confidence interval bounds for the mean performance across subjects. The signed numbers in italics

indicate the improvement (positive) or deterioration (negative) in performance over the second best

(improvement) or best (deterioration) method in the literature.

6.4 Discussion

Given the high disagreement across epochs between human experts [89] a 1–2% improve-

ment in mean scoring performance may not be considered significant. We think that there

are two characteristics that render our method better than the state of the art. First,

100

Table 6.5: Normalised confusion matrices from 20-fold cross-validation using the
Fpz-Cz electrode without and with neighbouring epochs. All values are percentages.
Pairs of stages with mutual improvement are in bold (N1-N2, N1-R and N2-R).

Algorithm

Without neighbouring epochs With neighbouring epochs

N1 N2 N3 R W N1 N2 N3 R W

N1 (expert) 53 11 0 17 18 60 9 0 13 17

N2 (expert) 8 77 7 5 4 7 78 7 4 4

N3 (expert) 0 8 89 0 3 0 8 89 0 3

R (expert) 18 5 0 73 5 12 4 0 80 4

W (expert) 13 1 1 4 82 13 1 1 4 81

Table 6.6: Correlation between sleep efficiency and percentage of transitional epochs,
and scoring performance (F1-score and overall accuracy).

Recording parameters

Sleep efficiency Percentage of transitional epochs

Metric R2 p-value R2 p-value

F1-score 0.02 0.42 0.04 0.20

Overall accuracy 0.02 0.46 0.05 0.17

we significantly decreased the gap between the mean performance over all sleep stages

and the most misclassified stage performance (stage N1) compared to the state of the

art with about 20% improvement in the F1-score and 10% improvement in accuracy over

the state of the art (with independent testing). Second, we mitigated the adverse effects

of class imbalance to sleep stage scoring. This is an indication that our method could

be generalised to data with varying proportions across sleep stages, and is not markedly

affected by these proportions, as other methods in the literature seem to be by inspecting

their normalised confusion matrices. After addressing class imbalance, the majority of

the remaining misclassification errors is likely due to either differences in EEG patterns

that our feature extraction methodology cannot sufficiently capture, difficulty in captur-

101

Sleep efficiency (%)

60 65 70 75 80 85 90 95

F
1
-s

c
o
re

 (
%

)

30

40

50

60

70

80

90

100

Figure 6.2: F1-score as a function of sleep efficiency.

ing EOG and EMG-related that are important in distinguishing between certain sleep

stage pairs features through the single channel of EEG, or inherent similarities between

sleep stages in epochs that even experts would disagree with one another about.

The most misclassified pair of sleep stages using our method was N1-W; about 15%

false negatives for each stage were accounted for by the other. We think that the root

cause of the problem is the similarity in the characteristic EEG frequency patterns of

sleep stages N1 and W, as described in the AASM sleep scoring manual [49]. Specifically,

relatively low voltage mixed 2–7 Hz and alpha (8–13 Hz) activity are described as criteria

for both stages. The second most misclassified pair of sleep stages was N1-R, for which

the characteristic EEG frequency patterns are similar as well. There are 4 transition

rules which pertain to the N1-R pair in the AASM manual, which have proven useful, as

we showed in Table 6.5. However, some of these rules rely heavily on EOG and EMG,

so it was difficult to exploit their full potential. The next most misclassified pairs of

sleep stages were N1-N2 and N2-N3 (about 8%). The classification between stages N1

and N2 depends to a great extent on transition patterns (Table 2.3) that partly rely

on the detection of arousals (and, in particular, on K-complexes associated or not with

102

Transitional epochs (%)

10 15 20 25 30

F
1
-s

c
o
re

 (
%

)

30

40

50

60

70

80

90

100

Figure 6.3: F1-score as a function of transitional epochs.

arousals), body movements and slow eye movements, which can be difficult to capture

using a single channel of EEG. The misclassification between stages N2 and N3 could be

partly attributed to the potential persistence of sleep spindles in stage N3 [49, p. 27].

Of the two electrodes in the dataset, we achieved better results using the signal from

electrode Fpz-Cz. We hypothesised that this was due to fact that the Fpz-Cz position can

better capture most of the frequency band activity that is important for sleep staging.

Specifically, delta activity [32], K-complexes [40] and lower frequency sleep spindles [51]

are predominantly frontal phenomena, and alpha activity, although it is predominantly an

occipital phenomenon, can manifest itself in frontal derivations [32]. Theta activity [32]

and higher frequency sleep spindles [51] are mostly parietal phenomena. However, theta

activity is present in multiple sleep stages, so even if it were captured more effectively

from the Pz-Oz position it might not have been very beneficial by itself.

Although we recognise that our dataset does not contain a very large number of record-

ings of bad sleep quality, we found no statistically significant correlation between sleep

efficiency and mean scoring performance. Similarly, there was no statistically significant

correlation between the percentage of transitional epochs (which are by definition more

103

Epoch (120 epochs = 1 hour)

0 120 240 360 480 600 720 840 960 1080

S
le

e
p

 s
ta

g
e

N3

N2

N1

R

W

Subject 2 - night 2 original manually scored hypnogram

Epoch (120 epochs = 1 hour)

0 120 240 360 480 600 720 840 960 1080

S
le

e
p

 s
ta

g
e

N3

N2

N1

R

W

Subject 2 - night 2 estimated hypnogram

Figure 6.4: The original manually scored hypnogram (top) and the estimated
hypnogram using our algorithm (bottom) for the second night of subject number 2.

ambiguous) and mean sleep scoring performance. These statistical test results indicate

that our method could be robust across a number of potentially adverse factors.

Mean interrater agreement between human sleep scorers across subjects and stages can

vary significantly. For example, in [89] the consensus agreement among three experts was

between 60-80%. It would therefore be desirable that the difference in the performance of

an automated scoring algorithm across scorers is not significant (i.e. that the algorithm

does not overfit to a specific expert’s scoring style). Each recording in our dataset was

scored by one of six different experts. In total there are 27 recordings scored by a single

expert, and 12 recordings scored by all other five experts combined. The number of

recordings per expert was not sufficiently large to perform a formal statistical test to

assess the significance of differences in scoring performance across experts. Both the

mean F1-score for the recordings scored by the single expert and the mean F1-score for

the recordings scored by any of the other experts were between 83–84%. Both values are

close to each other and the overall F1-score.

For different pathologies that are related with sleep disorders, there are different sleep

stages that are relatively more important for distinguishing them from normal sleep. For

instance, to distinguish normal sleep from sleep in patients with depression stages R

and N3 are relatively more important than other stages (see for example [83]). Common

104

measures of sleep quality, include sleep efficiency, wake after sleep onset and sleep latency

[88, p. 226], for all of which detection of stage W is essential. Different drugs are

associated with effects in all non-R sleep stages N1, N2 and N3 [88, p. 9]. Excessive

daytime sleepiness and sudden-onset sleep (sudden W to N2 transition) are present in

Parkinson’s disease [43], and detection of stages N1 and N2 are particularly important for

those. These examples indicate the broad range of sleep architecture aspects that need

to be targeted across different pathologies. Therefore, the accurate scoring of the entire

sleep architecture would be beneficial for a wide range of biomedical applications.

Our method can account for case-specific relative importance of sleep stages in a

straightforward way. Our classification algorithm outputs class probabilities. Since in

this chapter we placed the same weight to each sleep stage, we classified each epoch to

the stage that had the highest class probability. If we wanted to place different weight to

each class, we could multiply each stage’s probability with a stage-specific weight before

choosing the stage with the highest class probability (of course, these weights should be

the same for each classified epoch). This would incorporate the relative importance that

a researcher places on each sleep stage given the specific sleep pathology that they are

trying to identify.

To the best of our knowledge our method has the best performance in the literature

when classification is done across all five sleep stages simultaneously using a single channel

of EEG. This is different from doing fewer than five one-vs-all classification tasks, as in

the latter case, if the eventual overall objective is simultaneous 5-class classification, the

performance is likely overestimated. There are examples in the literature that achieve

higher performance in a single or two one-vs-all classification tasks, especially for the most

easily distinguishable stages N3 and W. However, this is not the same as achieving high

performance in a 5-class classification problem, because the errors in the remaining classes

are not taken into account. Therefore, since our method achieved very high performance

for stages N3 and W, while simultaneously achieving good performance in the remaining

stages, it is preferable to a method that achieves high performance in a stage W versus

105

N3-only classification task.

106

Chapter 7

Automated sleep scoring using

convolutional neural networks

In this chapter we present another approach for automatic sleep stage scoring using

single-channel EEG [95]. We used CNNs to learn task-specific filters for classification

without using prior domain knowledge, as we did in Chapter 6. We used class-balanced

random sampling within the stochastic gradient descent (SGD) optimization of the CNN

to avoid skewed performance in favour of the most represented sleep stages. We achieved

high mean F1-score (79%, range 81–83%), mean accuracy across individual sleep stages

(80%, range 82–84%) and overall accuracy (74%, range 71–76%) over all subjects. By

analyzing and visualizing the filters that our CNN learns, we show that for the task of

sleep stage scoring the learned filters qualitatively correspond to the sleep scoring criteria

in the American Academy of Sleep Medicine (AASM) manual that human experts follow.

Our results are comparable to state-of-the-art methods with hand-engineered features,

and our method’s performance is balanced across classes. We show that without using

prior domain knowledge a CNN can automatically learn the distinguishing characteristics

among different sleep stages.

107

7.1 Convolutional neural network architecture

In our CNN architecture we are using the raw EEG signal without preprocessing as the

input. Using raw input (usually with some preprocessing) in CNN architectures is the

norm in applications of deep learning in computer vision. In classification problems with

one-dimensional (1D) signals CNNs can also be applied to a precomputed spectrogram or

other time-frequency decomposition of the signal, so that the input to the CNN is a two-

dimensional (2D) stack of frequency-specific activity over time. Characteristic examples

of this approach can be found in recent work in signal processing for speech and acoustics

[86, 28, 45, 102]. When the spectrogram is used as input it can be treated as a 2D image.

Recently, there has been also growing interest in applying CNNs to raw 1D signals. Again,

there are characteristic examples from speech and acoustics in [28, 77, 90, 78, 44].

Our CNN architecture, shown in Figure 7.1, comprises two pairs of convolutional and

pooling layers (C1-P1 and C2-P2), two fully connected layers (F1 and F2), and a softmax

layer. Between layer P1 and layer C2, we include a ‘stacking layer’, S1. As shown in

Table 7.1, layer C1 contains 20 filters, so that the output of layer C1 is 20 filtered versions

of the original input signal. These filtered signals are then subsampled in layer P1. The

stacking layer rearranges the output of the layer P1, so that instead of 20 distinct signals

the input to the next convolutional layer C2 is a 2D stack of filtered and subsampled

signals. As shown in Figure 7.1 and Table 7.1, the filters in layer C2 are 2D filters. The

height of the layer C2 filters is 20, same as the height of the stack. The purpose of these

2D filters is to capture relationships across the filtered signals produced by filtering the

original signal in layer C1, across a specific time window.

With this CNN architecture we attempt to combine a CNN architecture using raw

signals [66, 28, 77, 90, 78, 44] with the idea of using a 2D stack of frequency-specific

activity over time [68, 86, 28, 45, 102]. In a standard CNN architecture layer C2 would

have the same structure as layer C1, with a number of 1D filters applied to each of

layer P1 outputs. The most common way to combine information across the layer P2

108

C1:

Convolutional

layer with 20 1D

filters of length 200

P1:

Max-pooling

layer with pooling

region size 20

Input:

1D signal

of length 15000

at 100 Hz

Output:

5-class

softmax

F1:

Fully-connected

layer with 500 units

F2:

Fully-connected

layer with 500 units

C2:

Convolutional

layer with 400

filters of size

(20, 30)

P2:

Max-pooling

layer with pooling

region size 10

S1:

Stacking

layer converting

20 1D signals

into a single

2D signal stack

20x

400x

Figure 7.1: CNN architecture

outputs is by adding up the filtered signals of layer C2 across layer P2 outputs by filter

index [61]. While this has an effect similar to the stacking layer, we think that explicitly

stacking the outputs of layer P2 makes clear the correspondence between CNN methods

and hand-engineered feature methodologies.

The cost function for the training of our CNN architecture was the softmax with l2

regularization. We applied the rectified linear unit (ReLU) nonlinearity after convolution

and before pooling. The hyperparameters of a CNN are: the number and types of layers,

the size of the filters for convolution and the convolution stride for each convolutional

layer, the pooling region size and the pooling stride for each pooling layer, and the number

of units for each fully connected layer. We summarise the selected hyperparameters for

our CNN architecture in Table 7.1.

In order to resolve the issues stemming from imbalanced classes, in Chapter 6 we

employed class-balanced random sampling with an ensemble of 20 classifiers, each one

being trained on a different balanced sample of the data. This is not an efficient way for

class-balancing with CNNs, as training even a single CNN is very time-consuming. The

strategy that we followed in this chapter was different. At each epoch of SGD we used a

different class-balanced batch for the optimization.

As shown in Table 2.3 the scoring of a particular epoch can depend on the character-

istics of the preceding or succeeding epochs, for the sleep stage pairs N1-N2, N1-R, and

109

Table 7.1: The CNN architecture that we used in this chapter. It has two pairs of
convolution and pooling layers, one stacking layer between the two pairs, two fully

connected layers, and one softmax layer for classification.

Layer Layer Type # Units Unit

Type

Size Stride Output

Size

Input (1, 1, 15000)

C1 convolutional 20 ReLU (1, 200) (1, 1) (20, 1, 14801)

P1 max-pooling (1, 20) (1, 10) (20, 1, 1479)

S1 stacking (1, 20, 1479)

C2 convolutional 400 ReLU (20, 30) (1, 1) (400, 1, 1450)

P2 max-pooling (1, 10) (1, 2) (400, 1, 721)

F1 fully connected 500 ReLU 500

F2 fully connected 500 ReLU 500

Output softmax 5 logistic 5

N2-R. Therefore, we chose the input data to our CNN to be the signal of the current

epoch to be classified together with the signals of the preceding two and succeeding two

epochs, as a single, continuous signal, starting from the earliest epoch, with the current

epoch in the middle. At the sampling rate of 100 Hz this gives an input size of 15,000

timepoints.

We implemented the CNN architecture using the Python libraries Lasagne (https:

//github.com/Lasagne/Lasagne) and Theano (https://github.com/Theano/Theano).

In terms of the computational burden of our method, on a machine with a processor

with 4 cores at 2.8 GHz, 16 GB of RAM and an SSD hard disk, each fold of the cross-

validation takes approximately 5 hours to run, and therefore a full run of cross-validation

takes approximately 100 hours or 4 days for all 20 folds.

7.2 Evaluation

To evaluate the generalizability of the algorithms, we obtained our results using 20-fold

cross-validation as in Chapter 6. Specifically, in each fold we use the recordings of a

110

https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne
https://github.com/Theano/Theano

single subject for testing and the recordings of the remaining 19 subjects for training and

validation. For each fold we used the recordings from 4 randomly selected subjects as

validation data and the recordings from the remaining 15 subjects for training. The clas-

sification performance in the validation data was used for choosing the hyperparameters

and as a stopping criterion for training to avoid overfitting to the training data.

The metrics we computed were precision, sensitivity, F1-score, per-stage accuracy,

and overall accuracy. We report the evaluation metrics across all folds. Specifically, we

report their mean value across all 5 sleep stages and their value for the most misclassified

sleep stage, which provides information about the robustness of the method across sleep

stages. We tested our method with the Fpz-Cz electrode, with which we had achieved

better performance in Chapter 6.

We calculated 95% confidence intervals for each of the performance metrics by boot-

strapping using 1000 bootstrap samples across the confusion matrices of the 39 recordings.

To further evaluate the generalisability of our method, we performed two tests on our

results to assess the correlation between scoring performance and (1) a measure of the

sleep quality of each recording, and (2) the percentage of transitional epochs in each

recording. We computed the R2 and the regression coefficient p-value between sleep

efficiency and scoring performance, and between percentage of transitional epochs and

scoring performance.

We compared our CNN results with our previous work from Chapter 6, as well as

a CNN architecture that uses the Morlet wavelets from Chapter 6 to produce a time-

frequency stack that is fed to the CNN from the second convolutional layer C2 onwards.

7.3 CNN filter analysis and visualisation

Apart from performance evaluation an additional type of evaluation is required when

using CNNs, in our view. As the filters in CNNs are automatically learned from the

training data, we need to evaluate whether the filters learned in different folds (i.e. using

111

different training data) are similar across folds. We analyzed and compared the learned

filters from the first convolutional layer of the CNN from each of the 20 different folds. For

all of the architectures layer C1 has 20 filters. We extracted the frequency content of the

filters by computing the power at different frequency bands using the Fourier transform.

We then fed the testing data for that fold to the CNN. We extracted the features

produced by each filter per training example for the middle segment of the signal (the

current epoch). Each feature is a signal which represents the presence of the filter over

time. We computed the power of the feature signal for each testing example, and then

took the mean power across all testing examples of each true (not predicted) class. Some

filters have naturally lower power, because they correspond to patterns localized in time

and not in continuous activity as shown in the scoring criteria in Table 2.2.

We observed that certain sleep stages produce higher filter activations across all filters

in general. To account for those differences, we normalized (to unit length) the power

first by sleep stage across filters, and then by filter across sleep stages. Similar filters

learned in each fold are generally not at the same index. For easier visual inspection of

the results we ordered the filters by the sleep stage for which they have the greatest mean

activation (Figures 7.6, 7.7, 7.8 and 7.9).

Finally, we qualitatively compared the learned filters with the guidelines in the AASM

sleep scoring manual. To do so we also compared the filters and activation patterns per

filter per sleep stage with the frequency content and activation patterns of the hand-

engineered Morlet wavelets we used in Chapter 6.

7.4 Results

7.4.1 Sleep stage scoring performance

As we show in the normalized confusion matrix in Table 7.2, the most correctly classified

sleep stage was N3 with around 90% of stage N3 epochs correctly classified. Stages R

and N2 follow with around 75% of epochs correctly classified for each stage. Stage W has

112

around 70% of epochs correctly classified. The most misclassified sleep stage was N1 with

60% of stage N1 epochs correctly classified. Most misclassifications occurred between the

pairs N1-W and N1-R (about 15%), followed by pairs N1-N2, N2-R and N2-N3 (about

8%), and R-W and N2-W (about 5%). The remaining pairs, N1-N3, N3-R and N3-W

have misclassification rates close to zero.

The percentage of false negatives with respect to each stage (non-diagonal elements in

each row) per pair of stages was approximately balanced between the stages in the pair.

An exception is the pair N1-W, which appears slightly skewed (3% difference) in favor

of stage N1. Effectively the upper and lower triangle of the confusion matrix are close

to being mirror images of each other. Similarly to Chapter 6, this is a strong indication

that the misclassification errors due to class imbalance have been mitigated.

As we show in Table 7.3, our method has high mean F1-score (79%, range 81–83%),

mean accuracy across individual sleep stages (80%, range 82–84%) and overall accuracy

(74%, range 71–76%) over all subjects. From the scoring performance metrics results in

Table 7.3 we observe that our method has slightly worse performance than our previous

work from Chapter 6 [94]. We should note though that the 95% confidence intervals

overlap for the majority of the metrics (worst-stage precision, mean and worst-stage

sensitivity, mean and worst-stage F1-score, and worst-stage and overall accuracy), and

are otherwise nearly overlapping for the remaining metrics (mean precision and mean

accuracy).

We also assessed the independence of the scoring performance (for F1-score and overall

accuracy) of our method across recordings relative to sleep efficiency and the percentage

of transitional epochs per recording (Table 7.4). The p-values of the regression coefficients

are all above 0.25. The R2 is already negligible (lower than 0.05) in all cases. For clarity

we present the data for these tests graphically for the F1-score results in Figures 7.2

and 7.3. Our dataset contained 10 recordings with sleep efficiency below 90% (in the

range 60-89%), which is the threshold recommended in [88, p. 7] for young adults. The

percentage of transitional epochs ranged from 10-30% across recordings.

113

Table 7.2: Confusion matrix from cross-validation using the Fpz-Cz electrode.

N1 N2 N3 R W

(algorithm) (algorithm) (algorithm) (algorithm) (algorithm)

N1 (expert) 1657 (60%) 259 (9%) 9 (0%) 427 (15%) 410 (15%)

N2 (expert) 1534 (9%) 12858 (73%) 1263 (7%) 1257 (7%) 666 (4%)

N3 (expert) 9 (0%) 399 (7%) 5097 (91%) 1 (0%) 85 (2%)

R (expert) 1019 (13%) 643 (8%) 3 (0%) 5686 (74%) 360 (5%)

W (expert) 605 (18%) 171 (5%) 47 (1%) 175 (5%) 2382 (70%)

This confusion matrix is the sum of the confusion matrices from each fold. The numbers in bold

are numbers of epochs. The numbers in parentheses are the percentage of epochs that belong to the

class classified by the expert (rows) that were classified by our algorithm as belonging to the class

indicated by the columns.

Finally, in Figure 7.4 we present an original manually scored hypnogram and its

corresponding estimated sleep hypnogram using our algorithm for a single PSG for which

the overall F1-score was approximately equal to the mean F1-score across the entire

dataset.

7.4.2 CNN filter analysis and visualisation

We computed the frequency content and mean activation per sleep stage for the hand-

engineered Morlet wavelet filters in Chapter 6 [94] as a reference. This visualisation is

shown in Figure 7.5. In Figures 7.6, 7.7, 7.8 and 7.9 we show the filter visualisation for all

20 folds of the cross-validation. This allows us to observe patterns of similarity between

the filters learned using different subsets of subjects for training.

Our general observation is that the filters learned by the CNNs at different folds

exhibit certain high-level similarities which are consistent across folds. We observed

that filters with highest power in frequencies 1-1.5 Hz usually combined with 12.5-14 Hz

are associated with highest activation in stage N3 epochs. Filters with highest power

in frequencies 13-14.5 Hz usually combined with 2-4 Hz, are associated with highest

114

Table 7.3: Comparison between our CNN method [95] and our state-of-the-art results
with hand-engineered features (Chapter 6, [94]) on the same dataset across the five
scoring performance metrics (precision, sensitivity, F1-score, per-stage accuracy, and

overall accuracy).

Scoring performance metrics

Precision Sensitivity F1-score Accuracy

Study Mean Worst Mean Worst Mean Worst Mean Worst Overall

(92) (86) (75) (55) (82) (68) (84) (74) (75)

Ch. 6 [94] 93 88 78 60 84 71 86 76 78

(94) (90) (80) (65) (86) (75) (88) (78) (80)

CNN with (90) (82) (71) (48) (79) (61) (80) (67) (71)

Morlet 91 85 73 52 81 64 81 69 73

wavelets (92) (87) (75) (56) (83) (68) (83) (72) (75)

(90) (84) (71) (53) (79) (66) (80) (70) (71)

CNN [95] 91 86 74 60 81 70 82 73 74

(92) (88) (76) (66) (83) (75) (84) (76) (76)

For the binary metrics, we report the mean performance (over all five sleep stages) as well as the

worst performance (in the most misclassified sleep stage, always stage N1). We present the results

for our method using the Fpz-Cz electrode with 20-fold cross-validation. The numbers in parentheses

are the bootstrap 95% confidence interval bounds for the mean performance across subjects. The

numbers in bold are the mean metrics values from bootstrap.

Table 7.4: R2 between sleep efficiency and percentage of transitional epochs,
and scoring performance (F1-score and overall accuracy).

Recording parameters

Sleep efficiency Percentage of transitional epochs

Metric R2 p-value R2 p-value

F1-score 0.04 0.25 0.01 0.50

Overall accuracy 0.03 0.30 0.01 0.55

115

60 65 70 75 80 85 90 95
Sleep efficiency (%)

40

50

60

70

80

90

100

F1
-s

co
re

 (%
)

Figure 7.2: F1-score as a function of sleep efficiency.

activation in stage N2 epochs. High power below 1 Hz filters are associated with highest

activation in stage W epochs. Filters with highest power in frequencies 2-5 Hz mostly

combined with 14 Hz are associated with highest activation in stage R epochs. It is worth

mentioning that the 2-5/14 Hz filters associated with stage R do not contain frequencies

from 20-50 Hz. Stage N1 is commonly associated in the majority of folds with filters

combining frequencies of 7 Hz and 9 Hz (but not 8 Hz), and always contain frequencies

from 20-50 Hz. A common characteristic of all the CNN filters across folds is the absence

of filters with frequencies from 10.5-12 Hz and from 15-17 Hz.

7.5 Discussion

In Table 7.3 we compare the performance of our method with hand-engineered features

and stacked sparse autoencoders from Chapter 6 [94] (SAE model), our CNN model,

and an ‘intermediate’ model which is using the hand-engineered Morlet wavelets of [94]

(shown in Figure 7.5) as the first fixed (i.e. untrainable) layer of the CNN (M-CNN

model) shown in Figure 7.1. We should note that the architecture used for the M-CNN

116

15 20 25 30
Transitional epochs (%)

40

50

60

70

80

90

100

F1
-s

co
re

 (%
)

Figure 7.3: F1-score as a function of transitional epochs.

model was not optimized for the fixed filters, but is exactly the same as the CNN model,

to allow us to assess the effect that fixing the filters in the first layer of our CNN model

has.

The overall picture that arises from inspecting Table 7.3 is that in terms of per-

formance the SAE model outperforms the CNN model, which in turn outperforms the

M-CNN model. We believe that the reason for that is that the CNN model would require

a lot more data to achieve performance improvements over the SAE model. Moreover, the

SAE model is an ensemble of 20 models, whereas the CNN model is a single model. As

the required training time of a single CNN model is significantly longer than the training

time of a single SAE model (more than 20 times longer) it was not possible to train an

ensemble of CNN models, which could improve the performance. We believe that the

reason the M-CNN model performs worse than the CNN model is that, by its nature,

the M-CNN model works with predefined features for the input, and, consequently, does

not optimise the first layer with respect to the classification problem, therefore not fully

exploiting the capabilities of a CNN architecture.

Worst-stage performance over all metrics is much closer between the SAE and the

117

0 120 240 360 480 600 720

Epoch (120 epochs = 1 hour)

N3

N2

N1

R

W

Sl
ee

p
st

ag
e

Subject 1 - night 1 original manually scored hypnogram

0 120 240 360 480 600 720

Epoch (120 epochs = 1 hour)

N3

N2

N1

R

W

Sl
ee

p
st

ag
e

Subject 1 - night 1 estimated hypnogram

Figure 7.4: The original manually scored hypnogram (top) and the estimated
hypnogram

using our algorithm (bottom) for the first night of subject 1.

CNN model compared to mean performance, in which the SAE model is 3-4% better.

Mean performance is almost identical between the CNN and the M-CNN model. However,

for the M-CNN model worst-stage performance is much lower than either the SAE or the

CNN model. However, we observe that the 95% confidence intervals across subjects

overlap across the three models, across almost all of the metrics (the two exceptions are

mean and worst-stage accuracy between the SAE and the M-CNN model). This indicates

0 5 10 15 20 25 30 35 40 45

Frequency (Hz)

Fi
lte

rs

Power at different frequencies per filter

0.0

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Sleep stages

Fi
lte

rs

Mean activation per filter
per sleep stage

0.32

0.40

0.48

0.56

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

Figure 7.5: Filter visualisation for the hand-engineered filters from [94].

118

that the differences in performance across subjects between the SAE and the CNN model

are not statistically significant.

From the results in Table 7.3 we observe two broad points. The first is that hand-

engineering of features based on the AASM manual (SAE model) has better performance

than automatic filter learning (CNN model), but the difference based on the dataset we

used does not appear to be statistically significant. Using a larger dataset could help

clarify the differences in performance between the two models. In general, we expect

that a larger dataset would be beneficial for the performance of the CNN model, as CNN

models can be difficult to train effectively with smaller datasets. The second point from

Table 7.3 is that using a fixed set of filters for the first CNN layer (M-CNN model) achieves

worse performance than an end-to-end CNN (CNN model). However, the differences

between the two models do not appear to be statistically significant.

Similarly to our previous work [94] the CNN model exhibits balanced sleep scoring

performance across sleep stages. The majority of misclassification errors is likely due es-

pecially to EOG and EMG-related patterns that are important in distinguishing between

certain sleep stage pairs (see Tables 2.2 and 2.3), which are difficult to capture through

the single channel of EEG. We experimented with a number of filters larger than 20,

but our results did not improve, and, in some cases, deteriorated. This corroborates our

hypothesis that the remaining misclassification errors are due to difficulty in capturing

patterns from other modalities of the PSG.

Although we recognize that our dataset does not contain a very large number of

recordings of bad sleep quality, we found no statistically significant correlation between

sleep efficiency and mean scoring performance (see Table 7.4 and Figure 7.2). Similarly,

there was no statistically significant correlation between the percentage of transitional

epochs (which are by definition more ambiguous) and mean sleep scoring performance

(see Table 7.4 and Figure 7.3).

Turning to the filters that are learned by the CNN model, we observe that, in general,

the first layer filters that our CNN architecture learns are consistent with the AASM

119

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

Power at different frequencies per filter

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

Mean activation per filter
per sleep stage

0.2

0.3

0.4

0.5

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

0.3

0.4

0.5

0.6

0.7

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8
Po

w
er

 (n
or

m
al

iz
ed

)

W R N1 N2 N3

Fi
lte

rs

0.3

0.4

0.5

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

0.15

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Frequency (Hz)

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Sleep stages

Fi
lte

rs

0.15

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

Figure 7.6: Filter visualisation for folds 1 to 5.

120

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

Power at different frequencies per filter

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

Mean activation per filter
per sleep stage

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

0.2

0.4

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8
Po

w
er

 (n
or

m
al

iz
ed

)

W R N1 N2 N3

Fi
lte

rs

0.2

0.3

0.4

0.5

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

0.3

0.4

0.5

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Frequency (Hz)

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Sleep stages

Fi
lte

rs

0.3

0.4

0.5

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

Figure 7.7: Filter visualisation for folds 6 to 10.

121

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

Power at different frequencies per filter

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

Mean activation per filter
per sleep stage

0.2

0.4

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

0.15

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8
Po

w
er

 (n
or

m
al

iz
ed

)

W R N1 N2 N3

Fi
lte

rs

0.3

0.4

0.5

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

0.2

0.4

0.6

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Frequency (Hz)

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Sleep stages

Fi
lte

rs

0.15

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

Figure 7.8: Filter visualisation for folds 11 to 15.

122

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

Power at different frequencies per filter

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

Mean activation per filter
per sleep stage

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

0.15

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8
Po

w
er

 (n
or

m
al

iz
ed

)

W R N1 N2 N3

Fi
lte

rs

0.36

0.42

0.48

0.54

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Fi
lte

rs

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

0 5 10 15 20 25 30 35 40 45

Frequency (Hz)

Fi
lte

rs

0.2

0.4

0.6

0.8

Po
w

er
 (n

or
m

al
iz

ed
)

W R N1 N2 N3

Sleep stages

Fi
lte

rs

0.30

0.45

0.60

M
ea

n
ac

tiv
at

io
n

(n
or

m
al

iz
ed

)

Figure 7.9: Filter visualisation for folds 16 to 20.

123

sleep scoring manual’s guidelines (see Figures 7.6, 7.7, 7.8 and 7.9). The first instance of

consistency with the AASM sleep scoring manual are the 1-1.5 Hz and 1-1.5/12.5-14 Hz

filters associated with stage N3 epochs. As shown in Table 2.2 stage N3 is associated with

activity <2 Hz. Interestingly, activity in 12.5-14 Hz is associated with sleep spindles, a

characteristic pattern of stage N2, that can however potentially persist to stage N3 [49,

p. 27], and whose interplay with slow wave activity has been associated with memory

processing [69]. These filters exhibit little to no activation for stage N2. Therefore, it

appears that the CNN learns that there are certain stage N3 epochs in which sleep spindles

persist. The second instance of consistency with the AASM manual is the 13-14.5 Hz and

13-14.5/2-4 Hz filters associated with stage N2 epochs. Clearly, the 13-14.5 Hz filters are

learned to capture sleep spindles, and the 13-14.5/2-4 Hz filters add K complexes (2-4

Hz activity). Interestingly, K complexes are known to be commonly followed by sleep

spindles. In response to that, the CNN does not learn separate 2-4 Hz filters, but only

filters that combine the detection of K complexes with the detection of subsequent sleep

spindles. We think that this particular specialization of 1-1.5/12.5-14 Hz (stage N3) and

13-14.5/2-4 Hz (stage N2) filters is an indication of the power of CNNs. Incorporating

such patterns into a hand-engineered features approach would demand both extensive

prior knowledge as well as time-consuming filter design, while with a CNN these patterns

are learned directly from the data.

The CNN also learns filters that are consistent across folds for stage R epochs. But

while 2-5 Hz activity is clearly described in the AASM manual, these filters consistently

exhibit two other characteristics: activity around 14 Hz, and absence of activity in high

frequencies (20-50 Hz). It is instructive to examine these characteristics in conjunction

with the filters for stage N1 epochs, since stages N1 and R are frequently confused with one

another, as shown in the confusion matrix of Table 7.2. Stage N1 is the most misclassified

class, which can be also seen by the fact that filters for stage N1 are the least consistent

across folds. Moreover, filters that exhibit high activation for stage N1 epochs exhibit

high activation for other sleep stages as well. However, there is one stage N1 filter which

124

appears in more than half of the folds. It has two spikes of activity around 7 Hz and

around 9 Hz, and always exhibits activity in high frequencies (20-50 Hz). As noted in

Table 6.2, there is evidence in the literature that features from modalities other than

EEG, such as eye movements [101], and EMG activity [38, 97] can manifest themselves

in the high frequencies of EEG. As shown in Tables 2.2 and 2.3, eye movements and

chin EMG tone are features that can differentiate stages N1 and R. We hypothesized

that the differences between the stage R and stage N1 filters in the 20-50 Hz frequency

range are related to those scoring rules. As in the case of the stage N2 and stage N3

filters described above, extensive prior knowledge and manual tweaking of filters would

be required to design those filters for stages N1 and R, while with a CNN these patterns

are learned directly from the data.

Finally, there are another two general characteristics in the filters that are consistent

across all folds. The first is that there are almost no filters with activity in 10.5-12

Hz. One reason that we believe this is the case is that this is the frequency region in

which alpha (8-13 Hz) activity and sleep spindles (12-15 Hz) overlap, which would not be

beneficial for distinguishing stages N1 and W from stage N2 (see Table 2.2). The second

general characteristic is the absence of 15-17 Hz activity in any of the filters.

A CNN can therefore achieve performance in automatic sleep stage scoring comparable

to our state-of-the-art hand-engineered feature approach [94] described in Chapter 6 of

this thesis, without utilizing any prior knowledge from the AASM manual [49] that human

experts follow, using a single channel of EEG (Fpz-Cz). We analyzed and visualized the

filters learned by the CNN, and discovered that the CNN learns filters that closely capture

the AASM manual’s guidelines in terms of their frequency characteristics per sleep stage.

Our work shows that end-to-end training in CNNs is not only effective in terms of sleep

stage scoring performance, but the CNN model’s filters are interpretable in the context

of the sleep scoring rules, and are consistent across folds in cross-validation.

125

Chapter 8

Conclusion

In this thesis we presented and compared two methods for automated sleep stage scoring

using single channel EEG, based on deep learning. We achieved state-of-the-art results

with the first method, which utilises time-frequency analysis for feature extraction that

closely follows the scoring manual that experts follow. We achieved comparable results

with the second method, in which we proposed a CNN architecture for automatically

learning the filters relevant to the sleep scoring problem without utilising prior knowledge

on how those filters should look like.

Outside of automated sleep stage scoring, our work can have applications in other

biosignal-based (e.g. EEG and ECG) classification problems. In particular, our analysis

and visualisation of the learned filters can prove useful in novel applications for which very

little domain knowledge is available. For those applications, analysing and visualising the

learned CNN filters can assist in advancing the understanding of the neurophysiological

characteristics of a particular condition. Using our methodology CNNs can be turned

from an automation tool into a scientific tool.

8.1 Discussion

In terms of the computational burden, the two methods we proposed for sleep scoring

are significantly different. On a machine with a processor with 4 cores at 2.8 GHz, 16

126

GB of RAM and an SSD hard disk, a full run of cross-validation for the stacked sparse

autoencoders (SAE) model takes approximately 2 hours, including ensemble learning

with 20 models per fold (see Section 6.1). The CNN model took approximately 4 days

for a full run of cross-validation (see Section 7.1), which is 48 times longer, only with a

single model per fold. On the other hand, at test or estimation time (when the trained

model is used) the difference is negligible. Moreover, the speed at estimation time is

not a crucial requirement for a sleep scoring system as it is not a real-time system. The

immense difference in computational time during training makes it harder to experiment

with different hyperparameter settings in the case of the CNN model, and using an

ensemble becomes impractical. Considering the impact of ensemble learning in both the

unbalanced classes problem and the overall performance of the SAE model, being able to

create an ensemble of CNN models could significantly boost performance, and even make

the CNN model outperform the SAE model.

A widely used method for EEG signal analysis in the literature is independent com-

ponent analysis (ICA) (for single channel ICA see [50] and [24]; for ICA in EEG analysis

see [75] and [20, pp. 87–9]; for a general treatment of ICA see [41, pp. 560–5] and

[39, Ch. 13]). ICA is an unsupervised learning method that aims to separate a signal

into independent signals (or sources) that when scaled and added together reproduce the

original signal. As has been shown in [24], individual sources can be separated by ICA

when those sources are spectrally disjoint, i.e. when their frequency activity does not

overlap. In EEG analysis, ICA is commonly used for eye and muscle artifact detection

and removal. In sleep scoring, ICA could be used as an alternative or complementary

feature engineering method by extracting the amount of activity across the different in-

dependent components over time. It is not clear if the criterion of independence, and by

extension, the spectral disjointness requirement, would be useful for feature extraction

tailored to sleep scoring, as sleep stages frequently exhibit overlapping frequency activity.

When departing from a direct application of the sleep scoring rules for feature extraction,

an end-to-end learning solution that takes into account the sleep stages, such as the CNN

127

architecture we proposed in Chapter 7, may be more suitable. ICA would be particularly

useful though in detecting artifacts from eye movement, muscle tone, or even cardiac

pulse [75]. In Chapter 6 we used gamma activity as a proxy for such artifacts. However,

using ICA those artifacts could be captured with more precision.

In this thesis we focused on a single-channel EEG implementation for automated

sleep scoring. It is, however, possible to extend the methodologies presented in Chapters

6 and 7 to form the basis for a multi-sensor implementation, for example, for using

the algorithms in a sleep clinic setting, in which the aim is to automate sleep scoring

without the constraint of using minimal hardware. Doing that could potentially improve

the performance of the sleep scoring algorithms, by enabling us to better capture theta

activity and higher frequency sleep spindles, which are mostly parietal phenomena [32, 51],

and alpha activity, which is predominantly an occipital phenomenon [49]. The Pz-Oz

electrode, which is available in the Physionet dataset, is a suitable candidate for that

extension. Such a multi-sensor extension would be more straightforward with the SAE

model in Chapter 6. Extending the CNN model in Chapter 7 would require multiple

adjustments. The main question that would need to be investigated would be at which

layer and how to combine the signals from the two or more electrodes. A simple approach

would be to have two or more separate sets of convolutional layers for each signal, and then

combine the filtered signals at the fully connected layers. However, we hypothesise that

it would be beneficial to combine the filtered signals at least at the second convolutional

layer, where activity from different frequency bands across electrodes can be combined.

Overall, the incorporation of multiple electrodes would result in a network of larger size,

with a larger number of parameters to optimise, and, therefore, longer training times.

8.2 Future work

Given that the data that we used contained healthy subjects, we tried to ensure that

our algorithms and their evaluation would be robust under different sleep pathologies.

128

However, large-scale evaluation of our algorithms on datasets with subjects suffering from

multiple sleep pathologies is needed. We could then test whether algorithms trained using

data from healthy subjects can generalise well to subjects with disorders, and whether

disorder-specific algorithms would outperform algorithms trained on a mixture of subjects

(healthy and non-healthy). Ideally, we would need datasets for which multiple sleep

scorers have scored each single epoch. This way we will be able to quantify the effects of

inter-rater variability on our results.

In a real-world sleep monitoring system robustness under displacements of the sensors

is also important. In home settings, it is very likely that EEG sensors may be misplaced,

or be displaced during the night. The dataset that we used did not contain EEG sensors

at adjacent locations, so it was not possible to assess the robustness under displacements.

If, for example, a dataset contained electrodes at locations Fz, F3, F4, Fp1 and Fp2, in

addition to Fpz, it would be possible to train our algorithm using the Fpz electrode and

test with a ‘contaminated’ dataset in which a proportion or all of the signals are replaced

by one of the Fz, F3, F4, Fp1 or Fp2 electrodes. To the best of our knowledge, no such

study has been done in the literature.

Sleep stage scoring is a significant but by no means the only part of a sleep monitoring

system. A real-world sleep monitoring system must account for other aspects of sleep.

One example would be movement-related sleep disorders, for which actigraphy could be

combined with EEG sensors to get a better understanding of the disorders. We also

think that small additions to an EEG-based wearable sleep monitoring system could

have significant impact on its practical usefulness. For example, knowing when the lights

are out and when they were turned on is a fundamental piece of information that is

necessary to record. Adding a simple light sensor to an EEG device could easily provide

this information.

We believe that as we move from healthy subjects to sleep pathologies deep learning,

and convolutional neural networks in particular, will become even more useful, especially

for building disorder-specific models and understanding the particular aspects of sleep

129

disorders. Such work could lead into the discovery of sleep-related biomarkers for dis-

orders. Moreover, CNNs would be very useful for incorporating modalities other than

EEG, such as ECG, for which there is little domain knowledge.

We hope that our work might open up the road for using deep learning in biosignal-

based applications without viewing neural networks as ‘black boxes’, and leveraging their

powerful capabilities for scientific research by analysing and visualising what they learn.

130

Bibliography

[1] Ambroise, C. and McLachlan, G. J. 2002. Selection bias in gene extraction on the

basis of microarray gene-expression data. Proceedings of The National Academy of

Sciences, 99(10), pp. 6562–6566.

[2] American Academy of Sleep Medicine. 2014. The International Classification of Sleep

Disorders, Third Edition (ICSD-3). Darien, IL: American Academy of Sleep Medicine.

[3] American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental

Disorders, Fifth Edition (DSM-5). Washington, D.C.: American Psychiatric Associ-

ation.

[4] Aserinsky, E. and Kleitman, N. 1953. Regularly occurring periods of eye motility, and

concomitant phenomena, during sleep. Science, 118(3062), pp. 273–274.

[5] Aserinsky, E. and Kleitman, N. 1955. Two types of unipolar motility occurring in

sleep. Journal of Applied Physiology, 8(1), pp. 1–10.

[6] Benca, R. M., Obermeyer, W. H., Thisted, R. A. and Gillin, J. C. 1992. Sleep and

psychiatric disorders: a meta-analysis. Archives of General Psychiatry, 49(8), pp.

651–668.

[7] Bengio, Y. 2009. Learning deep architectures for AI. Foundations and Trends in Ma-

chine Learning, 2(1), pp. 1–127.

[8] Bengio, Y. 2012. Practical recommendations for gradient-based training of deep archi-

131

tectures. In: Orr, G. B., and Mller, K.R. eds. Neural Networks: Tricks of the Trade.

Berlin: Springer, pp. 437–478.

[9] Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. 2007. Greedy layer-wise train-

ing of deep networks. In: Schölkopf, B., Platt, J. C. and Hoffman, T. eds. Advances in

Neural Information Processing Systems (NIPS) 19, Vancouver, 4–9 December, 2006.

Cambridge, MA: MIT Press, pp. 153–160.

[10] Berger, H. 1929. Über das elektrenkephalogramm des menschen. European Archives

of Psychiatry and Clinical Neurosciences, 87(1), pp. 527–570.

[11] Berthomier, C., Drouot, X., Herman-Stoca, M., Berthomier, P., Prado, J., Bokar-

Thire, D., Benoit, O., Mattout, J. and d’Ortho, M. P. 2007. Automatic analysis of

single-channel sleep EEG: validation in healthy individuals. Sleep, 30(11), pp. 1587–

1595.

[12] Blake, H., Gerard, R. and Kleitman N. 1939. Factors including brain potentials

during sleep. Journal of Neurophysiology, 2, pp. 48–60.

[13] Blake, H., and Gerard, R. W. 1937. Brain potentials during sleep. American Journal

of Physiology, 119, pp. 692–703.

[14] Buysse, D. J., Ancoli-lsrael, S., Edinger, J. D., Lichstein, K. L. and Morin, C. M.

2006. Recommendations for a standard research assessment of insomnia. Sleep, 29(9),

pp. 1155–1173.

[15] Casson, A. J., Yates, D. C., Duncan, J. S. and Rodriguez-Villegas, E. Wearable

electroencephalography. 2010. IEEE Engineering in Medicine and Biology Magazine,

29(3), pp. 44–56.

[16] Caton, R. 1875. The electric currents of the brain. British Medical Journal, 2, p.

278.

132

[17] Cecotti, H., Eckstein, M. P. and Giesbrecht, B. 2014. Single-trial classification of

event-related potentials in rapid serial visual presentation tasks using supervised spa-

tial filtering. IEEE Transactions on Neural Networks and Learning Systems, 25(11),

pp. 2030–2042.

[18] Cho, S. P., Lee, J., Park, H. D. and Lee, K. J. 2006. Detection of arousals in patients

with respiratory sleep disorders using a single channel EEG. In: Proceedings of the

27th Annual International Conference of the Engineering in Medicine and Biology

Society, Shanghai, 17–18 January, 2006. Washington, D.C.: IEEE, pp. 2733–2735.

[19] Ciresan, D., Giusti, A., Gambardella, L. M., and Schmidhuber, J. 2012. Deep neural

networks segment neuronal membranes in electron microscopy images. In: Pereira, F.,

Burges, C. J. C., Bottou, L. and Weinberger, K. Q. Advances in Neural Information

Processing Systems (NIPS) 25, Lake Tahoe, NV, 3–6 December, 2012. Red Hook, NY:

Curran Associates, Inc., pp. 2843–2851.

[20] Cohen, M. X. 2014. Analyzing Neural Time Series Data: Theory and Practice. Cam-

bridge, MA: MIT Press.

[21] Collura, T. F. 1993. History of electroencephalographic instruments and techniques.

Journal of Clinical Neurophysiology, 10(4), pp. 476–504.

[22] Costa, M., Goldberger, A. L. and Peng, C. K. 2002. Multiscale entropy analysis of

complex physiologic time series. Physical Review Letters, 89(6), 068102.

[23] DankerHopfe, H., Anderer, P., Zeitlhofer, J., Boeck, M., Dorn, H., Gruber, G.,

Heller, E., Loretz, E., Moser, D., Parapatics, S. and Saletu, B. 2009. Interrater reli-

ability for sleep scoring according to the Rechtschaffen & Kales and the new AASM

standard. Journal of Sleep Research, 18(1), pp. 74–84.

[24] Davies, M. E. and James, C. J. 2007. Source separation using single channel ICA.

Signal Processing, 87(8), pp. 1819–1832.

133

[25] Davis, H., Davis, P., Loomis, A. L., Harvey, E. N. and Hobart, B. 1938. Human brain

potentials during the onset of sleep. Journal of Neurophysiology, 1(1), pp. 24–38.

[26] Decker, M. J., Eyal, S., Shinar, Z., Fuxman, Y., Cahan, C., Reeves, W. C. and

Baharav A. 2010. Validation of ECG-derived sleep architecture and ventilation in

sleep apnea and chronic fatigue syndrome. Sleep and Breathing, 14(3), pp. 233–239.

[27] Dement, W. and Kleitman, N. 1957. Cyclic variations in EEG during sleep and their

relation to eye movements, body motility, and dreaming. Electroencephalography and

Clinical Neurophysiology, 9(4), pp. 673–690.

[28] Dieleman, S. and Schrauwen, B. 2014. End-to-end learning for music audio. In: Pro-

ceedings of the 39th IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Florence, 4–9 May, 2014. Washington, D.C.: IEEE, pp. 6964–

6968.

[29] Edinger, J. D., Fins, A. I., Sullivan Jr, R. J., Marsh, G. R., Dailey, D. S., Hope, T.

V., Young, M., Shaw, E., Carlson, D. and Vasilas, D. 1997. Sleep in the laboratory and

sleep at home: comparisons of older insomniacs and normal sleepers. Sleep, 20(12),

pp. 119–1126.

[30] Edinger, J. D. and Morin, C. M. 2012. Sleep disorders classification and diagnosis. In:

Morin, C. M. and Espie C. A. eds. The Oxford Handbook of Sleep and Sleep Disorders.

Oxford: Oxford University Press, pp. 361–382.

[31] Felleman, D. J. and Van Essen, D. C. 1991. Distributed hierarchical processing in

the primate cerebral cortex. Cerebral Cortex, 1(1), pp. 1–47.

[32] Finelli, L. A., Borbély, A. A. and Achermann, P. 2001. Functional topography of

the human nonREM sleep electroencephalogram. European Journal of Neuroscience,

13(12), pp. 2282–2290.

134

[33] Fonseca, C., Cunha, J. S., Martins, R. E., Ferreira, V. M., De Sa, J. M., Barbosa, M.

A. and da Silva, A. M. 2007. A novel dry active electrode for EEG recording. IEEE

Transactions in Biomedical Engineering, 54(1), pp. 162–165.

[34] Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H. and Dickhaus, H. 2012. Au-

tomated sleep stage identification system based on timefrequency analysis of a sin-

gle EEG channel and random forest classifier. Computer Methods and Programs in

Biomedicine, 108(1), pp. 10–19.

[35] Gadoth, N., Kesler, A., Vainstein, G., Peled, R. and Lavie, P. 2001. Clinical and

polysomnographic characteristics of 34 patients with KleineLevin syndrome. Journal

of Sleep Research, 10(4), pp. 337–341.

[36] Girshick, R., Donahue, J., Darrell, T. and Malik, J. 2014. Rich feature hierarchies

for accurate object detection and semantic segmentation. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH,

24–27 June, 2014. Washington, D.C.: IEEE , pp. 580–587.

[37] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,

R. G., Mietus, J. E., Moody, G. B., Peng, C. K. and Stanley, H. E. 2000. PhysioBank,

PhysioToolkit, and PhysioNet: Components of a new research resource for complex

physiologic signals. Circulation, 101(23), pp. 215–220.

[38] Goncharova, I. I., McFarland, D. J., Vaughan, T. M. and Wolpaw, J. R. 2003. EMG

contamination of EEG: Spectral and topographical characteristics. Clinical Neuro-

physiology, 114(9), pp. 1580–1593.

[39] Goodfellow, I., Bengio, Y. and Courville, A. 2016. Deep Learning. Book in prepa-

ration for MIT Press. Draft available at: http://www.deeplearningbook.org/ [Ac-

cessed: 19 January 2016].

[40] Happe, S., Anderer, P., Gruber, G., Klösch, G., Saletu, B. and Zeitlhofer, J. 2002.

135

http://www.deeplearningbook.org/

Scalp topography of the spontaneous K-complex and of delta-waves in human sleep.

Brain Topography, 15(1), pp. 43–49.

[41] Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. New York, NY: Springer.

[42] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath T. N. and Kingsbury, B. 2012. Deep neural net-

works for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6), pp. 82–97.

[43] Hobson, D. E., Lang, A. E., Martin, W. W., Razmy, A., Rivest, J. and Fleming,

J., 2002. Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease:

A survey by the Canadian Movement Disorders Group. The Journal of the American

Medical Association, 287(4), pp. 455–463.

[44] Hoshen, Y., Weiss, R. J. and Wilson, K. W. 2015. Speech acoustic modeling from raw

multichannel waveforms. In: Proceedings of the 40th IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, 19–24 April, 2015.

Washington, D.C.: IEEE, pp. 4624–4628.

[45] Huang, J.T., Li, J. and Gong, Y., 2015. An analysis of convolutional neural networks

for speech recognition. In: Proceedings of the 40th IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, 19–24 April, 2015.

Washington, D.C.: IEEE, pp. 4989–4993.

[46] Hubel, D. H., and Wiesel, T. N. 1959. Receptive fields of single neurones in the cat’s

striate cortex. The Journal of Physiology, 148(3), pp. 574–591.

[47] Hubel, D. H., and Wiesel, T. N. 1962. Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1),

106.

136

[48] Hyndman, R.J. and Athanasopoulos, G. 2014. Forecasting: Principles and Practice.

OTexts.

[49] Iber, C., Ancoli-Israel, S., Chesson, A. and Quan, S. F. 2007 The AASM Manual

for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical

Specifications. Westchester, IL: American Academy of Sleep Medicine.

[50] James, C. J. and Lowe, D. 2001. Single channel analysis of electromagnetic brain

signals through ICA in a dynamical systems framework. In: Proceedings of the 23rd

International Conference of the Engineering in Medicine and Biology Society, Istan-

bul, 25–28 October, 2001. Washington, D.C.: IEEE, pp. 1974–1977.

[51] Jobert, M., Poiseau, E., Jähnig, P., Schulz, H. and Kubicki, S. 1992. Topographical

analysis of sleep spindle activity. Neuropsychobiology. 26(4), pp. 210–217.

[52] Jones, B. E. 2005. From waking to sleeping: Neuronal and chemical substrates.

Trends in Pharmacological Sciences, 26(11), pp. 578–586.

[53] Kaggle Team. 2015. Grasp-and-Lift EEG Detection Winners’ Interview: 3rd

place, Team HEDJ [Online]. Available at: http://blog.kaggle.com/2015/10/05/

grasp-and-lift-eeg-detection-winners-interview-3rd-place-team-hedj/

[Accessed: 14 June 2016].

[54] Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A. and Oberyé, J.J. 2000.

Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity

of the EEG. IEEE Transactions on Biomededical Engineering, 47(9), pp. 1185–1194.

[55] Kiranyaz, S., Ince, T. and Gabbouj, M. 2015. Real-Time Patient-Specific ECG Clas-

sification by 1D Convolutional Neural Networks, IEEE Transactions on Biomedical

Engineering, 63(3), pp. 664–675.

[56] Krizhevsky, A., Sutskever, I. and Hinton, G. 2012. ImageNet classification with deep

convolutional neural networks. In: Pereira, F., Burges, C. J. C., Bottou, L. and

137

http://blog.kaggle.com/2015/10/05/grasp-and-lift-eeg-detection-winners-interview-3rd-place-team-hedj/
http://blog.kaggle.com/2015/10/05/grasp-and-lift-eeg-detection-winners-interview-3rd-place-team-hedj/

Weinberger, K. Q. Advances in Neural Information Processing Systems (NIPS) 25,

Lake Tahoe, NV, 3–6 December, 2012. Red Hook, NY: Curran Associates, Inc., pp.

1090–1098.

[57] Kushida, C. A., Littner, M. R., Morgenthaler, T., Alessi, C. A., Bailey, D., Cole-

man Jr, J., Friedman, L., Hirshkowitz, M., Kapen, S., Kramer, M. and Lee-Chiong,

T. 2005. Practice parameters for the indications for polysomnography and related

procedures: an update for 2005. Sleep, 28(4), pp. 499–521.

[58] LeCun, Y. 2015. In Convolutional Nets, there is no such thing as “fully connected

layers” [Facebook]. Available at: https://www.facebook.com/yann.lecun/posts/

10152820758292143 [Accessed 16 June 2016].

[59] LeCun, Y., Bengio, Y. and Hinton, G. 2015. Deep learning. Nature, 521(7553), pp.

436–444.

[60] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. 1998. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), pp. 2278–2324.

[61] Li, F.-F., Karpathy, A. and Johnson, J. 2016. CS231n: Convolutional Neural Net-

works for Visual Recognition Course Notes [Online]. Available at: http://vision.

stanford.edu/teaching/cs231n/ [Accessed: 14 June 2016].

[62] Liang, S. F., Kuo, C. E., Hu, Y. H., Pan, Y. H. and Wang, Y. H. 2012. Automatic

stage scoring of single-channel sleep EEG by using multiscale entropy and autore-

gressive models. IEEE Transactions on Instrumentation and Measurement, 61(6), pp.

1649–1657.

[63] Lin, B. C. T., Ko, L. W., Chiou, J. C., Duann, J. R., Huang, R. S., Liang, S. F.,

Chiu, T. W. and Jung, T. P. 2008. Noninvasive neural prostheses using mobile and

wireless EEG. Proceedings of the IEEE, 96(7), pp. 1167–1183.

138

https://www.facebook.com/yann.lecun/posts/10152820758292143
https://www.facebook.com/yann.lecun/posts/10152820758292143
http://vision.stanford.edu/teaching/cs231n/
http://vision.stanford.edu/teaching/cs231n/

[64] Lockley, S. W., and Foster, R. G. 2012. Sleep: A Very Short Introduction. Oxford:

Oxford University Press.

[65] Loomis, A. L., Harvey, E. N. and Hobart, G. A. 1937. Cerebral states during sleep,

as studied by human brain potentials. Journal of Experimental Psychology, 21(2), pp.

127–144.

[66] Martinez, H. P., Bengio, Y. and Yannarakis, G. N. 2013. Learning deep physiological

models of affect. IEEE Computational Intelligence Magazine, 8(2), pp. 20–33.

[67] Matthews, R., McDonald, N. J., Hervieux, P., Turner, P. J. and Steindorf, M. A.

2007. A wearable physiological sensor suite for unobtrusive monitoring of physiolog-

ical and cognitive state. In: Proceedings of the 29th International Conference of the

Engineering in Medicine and Biology Society, Lyon, 23–26 August, 2007. Washington,

D.C.: IEEE, pp. 5276–5281.

[68] Mirowski, P., Madhavan, D., LeCun, Y. and Kuzniecky, R. 2009. Classification of

patterns of EEG synchronization for seizure prediction. Clinical Neurophysiology, 120,

pp. 1927–1940.

[69] Mölle, M. and Bergmann, T. O. 2011. Fast and slow spindles during the sleep slow os-

cillation: disparate coalescence and engagement in memory processing. Sleep, 34(10),

pp. 1411–1421.

[70] Mourtazaev, M. S., Kemp, B., Zwinderman, A. H. and Kamphuisen, H. A. C. 1995.

Age and gender affect different characteristics of slow waves in the sleep EEG. Sleep,

18(7), pp. 557–564.

[71] Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., Suen, C., Coates, A., Maas, A., Hannun, A.,

Huval, B., Wang, T. and Tandon, S. 2015. Deep Learning Tutorial [Online]. Available

at: http://deeplearning.stanford.edu/tutorial/ [Accessed: 14 June 2016].

139

http://deeplearning.stanford.edu/tutorial/

[72] Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q. V. and Ng, A. Y. 2011.

On optimization methods for deep learning. In: Getoor, L. and Scheffer, T. eds. Pro-

ceedings of the 28th International Conference on Machine Learning (ICML), Bellvue,

WA, 28 June–2 July, 2011. New York, NY: ACM, pp. 265–272.

[73] National Sleep Foundation. 2016. Sleep Studies [Online]. Available at: https://

sleepfoundation.org/sleep-topics/sleep-studies [Accessed 16 June 2016].

[74] Norman, R. G., Pal, I. Stewart, C., Walsleben, J. A. and Rapoport, R. M. 2000.

Interobserver agreement among sleep scorers from different centers in a large dataset.

Sleep, 23(7), pp. 901–908.

[75] Onton, J. and Makeig, S. 2006. Information-based modeling of event-related brain

dynamics. Progress in Brain Research, 159, pp. 99–120.

[76] O’Reilly, C., Gosselin, N., Carrier, J. and Nielsen, T. 2014. Montreal Archive of

Sleep Studies: An openaccess resource for instrument benchmarking and exploratory

research. Journal of Sleep Research, 23(6), pp. 628–635.

[77] Palaz, D., Collobert, R. and Doss, M. M. 2013. Estimating phoneme class condi-

tional probabilities from raw speech signal using convolutional neural networks. arXiv

preprint arXiv:1304.1018.

[78] Palaz, D., Magimai-Doss, M. and Collobert, R. 2015. Convolutional neural networks-

based continuous speech recognition using raw speech signal. In: Proceedings of

the 40th IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Brisbane, 19–24 April, 2015. Washington, DC: IEEE, pp. 4295–4299.

[79] PhysioNet. 2002. The Sleep-EDF database [Expanded]. Available at: http://www.

physionet.org/physiobank/database/sleep-edfx/ [Accessed 16 June 2016].

[80] PhysioNet. 2002. The Sleep-EDF database. Available at: http://www.physionet.

org/physiobank/database/sleep-edfx/ [Accessed 16 June 2016].

140

https://sleepfoundation.org/sleep-topics/sleep-studies
https://sleepfoundation.org/sleep-topics/sleep-studies
http://www.physionet.org/physiobank/database/sleep-edfx/
http://www.physionet.org/physiobank/database/sleep-edfx/
http://www.physionet.org/physiobank/database/sleep-edfx/
http://www.physionet.org/physiobank/database/sleep-edfx/

[81] Rechtschaffen, A. and A. Kales. 1968. A Manual of Standardized Terminology, Tech-

niques and Scoring System for Sleep Stages of Human Subjects. Washington, DC:

Public Health Service, U.S. Government Printing Office.

[82] Ren, Y. andWu, Y. 2014. Convolutional deep belief networks for feature extraction of

EEG signal. In: Proceedings of the International Joint Conference on Neural Networks

(IJCNN). Beijing, 6–11 July, 2014. Washington, DC: IEEE, pp. 2850–2853.

[83] Riemann, D., Berger, M. and Voderholzer, U. 2001 Sleep and depression–results from

psychobiological studies: An overview. Biological Psychology, 57(1), pp. 67–103.

[84] Rosenblatt, F. 1957. The Perceptron – A Perceiving and Recognizing Automaton.

Tech. Rep. 85-460-1, Cornell Aeronautical Laboratory.

[85] Ruffini, G., Dunne, S., Fuentemilla, L., Grau, C., Farres, E., Marco-Pallares, J.,

Watts, P. C. P. and Silva, S. R. P. 2008. First human trials of a dry electrophysiology

sensor using a carbon nanotube array interface. Sensors and Actuators A: Physical,

144(2), pp. 275–279.

[86] Sainath, T. N., Mohamed, A. R., Kingsbury, B. and Ramabhadran, B. 2013. Deep

convolutional neural networks for LVCSR. In: Proceedings of the 38th IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,

26–31 May, 2013. Washington, DC: IEEE, pp. 8614–8618.

[87] Silber, M. H., Ancoli-Israel, S., Bonnet, M. H., Chokroverty, S., Grigg-Damberger,

M. M., Hirshkowitz, M., Kapen, S., Keenan, S. A., Kryger, M. H., Penzel, T. and

Pressman, M. R. 2007. The visual scoring of sleep in adults. Journal of Clinical Sleep

Medicine, 3(2), pp. 121–131.

[88] Spriggs, W. H. 2014. Essentials of Polysomnography: A Training Guide and Refer-

ence for Sleep Technicians. 2nd ed. Burlington, MA: Jones & Bartlett Learning.

141

[89] Stepnowsky, C., Levendowski, D., Popovic, D., Ayappa, I. and Rapoport, D. M. 2013.

Scoring accuracy of automated sleep staging from a bipolar electroocular recording

compared to manual scoring by multiple raters. Sleep Medicine, 14(11), pp. 1199–1207.

[90] Swietojanski, P., Ghoshal, A. and Renals, S. 2014. Convolutional neural networks

for distant speech recognition. Signal Processing Letters, 21(9), pp. 1120–1124.

[91] Taheri, B. A., Knight, R. T. and Smith, R. L. 1994. A dry electrode for EEG

recording. Electroencephalography and Clinical Neurophysiology, 90(5), pp. 376–383.

[92] Taigman, Y., Yang, M., Ranzato, M. A. and Wolf, L. 2014. Deepface: Closing the

gap to human-level performance in face verification. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH,

24–27 June, 2014. Washington, DC: IEEE, pp. 1701–1708.

[93] Thase, M. E., Simons, A. D. and Reynolds, C. F. 1996. Abnormal electroencephalo-

graphic sleep profiles in major depression: association with response to cognitive

behavior therapy. Archives of General Psychiatry, 53(2), pp. 99–108.

[94] Tsinalis, O., Matthews, P. M. and Guo, Y. 2016. Automatic sleep stage scoring

using time-frequency analysis and stacked sparse autoencoders. Annals of Biomedical

Engineering, 44(5), pp. 1587–1597.

[95] Tsinalis, O., Matthews, P. M., Guo, Y. and Zafeiriou, S. 2016. Automatic sleep stage

scoring with single-channel EEG using convolutional neural networks. arXiv preprint

arXiv:1610.01683.

[96] Weisstein, E. W. 2016. Convolution Theorem [MathWorld–A Wolfram Web Re-

source]. Available at: http://mathworld.wolfram.com/ConvolutionTheorem.html

[Accessed 16 June 2016].

[97] Whitham, E. M., Lewis, T., Pope, K. J., Fitzgibbon, S. P., Clark, C. R., Loveless, S.,

DeLosAngeles, D., Wallace, A. K., Broberg, M. and Willoughby, J. O. 2008. Think-

142

http://mathworld.wolfram.com/ConvolutionTheorem.html

ing activates EMG in scalp electrical recordings.Clinical Neurophysiology, 119(5), pp.

1166–1175.

[98] Wilson, S. and Nutt, D. 2013. Sleep Disorders. 2nd ed. Oxford: Oxford University

Press.

[99] World Health Organisation. 2010. International Classification of Diseases, Tenth

Revision (ICD-10). Geneva: World Health Organization.

[100] Wulff, K., Gatti, S., Wettstein, J .G. and Foster, R. G. 2010. Sleep and circa-

dian rhythm disruption in psychiatric and neurodegenerative disease. Nature Reviews

Neuroscience, 11(8), pp. 589–599.

[101] Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I. and Deouell, L. Y. 2008.

Transient induced gamma-band response in EEG as a manifestation of miniature

saccades. Neuron, 58(3), pp. 429–441.

[102] Zhang, H., McLoughlin, I. and Song, Y. 2015. Robust sound event recognition

using convolutional neural networks. In: Proceedings of the 40th IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, 19–24

April, 2015. Washington, DC: IEEE, pp. 559–563.

[103] Zhu, X., Zheng, W. L., Lu, B.L., Chen, X., Chen, S. and Wang, C. 2014. EOG-

based drowsiness detection using convolutional neural networks. In: Proceedings of

the International Joint Conference on Neural Networks (IJCNN). Beijing, 6–11 July,

2014. Washington, DC: IEEE, pp. 128–134.

143

	Declaration of originality
	Copyright declaration
	Abstract
	Acknowledgements
	Introduction
	Contributions
	Publications
	Thesis structure

	Sleep and sleep stage scoring
	Sleep
	A brief history of sleep science
	Polysomnography and sleep staging
	Sleep disorders and their diagnosis
	Wearable electroencephalography
	Sleep scoring metrics
	Automated sleep scoring literature review
	Data: The PhysioNet dataset

	Signal processing background
	The dot product
	Convolution
	Time-frequency analysis

	Deep neural networks
	Machine learning background
	Supervised learning
	Unsupervised learning
	Cross-validation
	Overfitting

	Logistic regression
	Softmax regression
	Single-layer neural networks
	Deep neural networks
	Prediction in deep neural networks: Forward propagation
	Learning in deep neural networks: Stochastic gradient descent
	Partial derivatives in deep neural networks: Backpropagation
	Regularisation
	Stacked sparse autoencoders

	Convolutional neural networks
	Principles of feature engineering for classification
	The motivation for CNNs
	CNNs in biomedical engineering
	The minimal CNN
	Pooling
	Deep CNNs
	Forward propagation and backpropagation in CNNs

	Automated sleep scoring using time-frequency analysis and stacked sparse autoencoders
	Methodology
	Feature extraction methodology
	Machine learning methodology

	Evaluation
	Results
	Discussion

	Automated sleep scoring using convolutional neural networks
	Convolutional neural network architecture
	Evaluation
	CNN filter analysis and visualisation
	Results
	Sleep stage scoring performance
	CNN filter analysis and visualisation

	Discussion

	Conclusion
	Discussion
	Future work

	Bibliography

