226 research outputs found

    Mining protein loops using a structural alphabet and statistical exceptionality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied.</p> <p>Results</p> <p>We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 Å). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such word. We complement our analysis with the detection of statistically over-represented patterns of structural letters as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential specificity, suggesting structural or functional constraints.</p> <p>Conclusions</p> <p>We developed a method to systematically decompose and study protein loops using recurrent structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops. This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop analysis. Detailed results are available at <url>http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/ACCLoop/</url>.</p

    SA-Mot: a web server for the identification of motifs of interest extracted from protein loops

    Get PDF
    The detection of functional motifs is an important step for the determination of protein functions. We present here a new web server SA-Mot (Structural Alphabet Motif) for the extraction and location of structural motifs of interest from protein loops. Contrary to other methods, SA-Mot does not focus only on functional motifs, but it extracts recurrent and conserved structural motifs involved in structural redundancy of loops. SA-Mot uses the structural word notion to extract all structural motifs from uni-dimensional sequences corresponding to loop structures. Then, SA-Mot provides a description of these structural motifs using statistics computed in the loop data set and in SCOP superfamily, sequence and structural parameters. SA-Mot results correspond to an interactive table listing all structural motifs extracted from a target structure and their associated descriptors. Using this information, the users can easily locate loop regions that are important for the protein folding and function. The SA-Mot web server is available at http://sa-mot.mti.univ-paris-diderot.fr

    Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking

    Get PDF
    Rapid progress of theoretical methods and computer calculation resources has turned in silico methods into a conceivable tool to predict the 3D structure of macromolecular assemblages, starting from the structure of their separate elements. Still, some classes of complexes represent a real challenge for macromolecular docking methods. In these complexes, protein parts like loops or domains undergo large amplitude deformations upon association, thus remodeling the surface accessible to the partner protein or DNA. We discuss the problems linked with managing such rearrangements in docking methods and we review strategies that are presently being explored, as well as their limitations and success

    Exact distribution of a pattern in a set of random sequences generated by a Markov source: applications to biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In bioinformatics it is common to search for a pattern of interest in a potentially large set of rather short sequences (upstream gene regions, proteins, exons, etc.). Although many methodological approaches allow practitioners to compute the distribution of a pattern count in a random sequence generated by a Markov source, no specific developments have taken into account the counting of occurrences in a set of independent sequences. We aim to address this problem by deriving efficient approaches and algorithms to perform these computations both for low and high complexity patterns in the framework of homogeneous or heterogeneous Markov models.</p> <p>Results</p> <p>The latest advances in the field allowed us to use a technique of optimal Markov chain embedding based on deterministic finite automata to introduce three innovative algorithms. Algorithm 1 is the only one able to deal with heterogeneous models. It also permits to avoid any product of convolution of the pattern distribution in individual sequences. When working with homogeneous models, Algorithm 2 yields a dramatic reduction in the complexity by taking advantage of previous computations to obtain moment generating functions efficiently. In the particular case of low or moderate complexity patterns, Algorithm 3 exploits power computation and binary decomposition to further reduce the time complexity to a logarithmic scale. All these algorithms and their relative interest in comparison with existing ones were then tested and discussed on a toy-example and three biological data sets: structural patterns in protein loop structures, PROSITE signatures in a bacterial proteome, and transcription factors in upstream gene regions. On these data sets, we also compared our exact approaches to the tempting approximation that consists in concatenating the sequences in the data set into a single sequence.</p> <p>Conclusions</p> <p>Our algorithms prove to be effective and able to handle real data sets with multiple sequences, as well as biological patterns of interest, even when the latter display a high complexity (PROSITE signatures for example). In addition, these exact algorithms allow us to avoid the edge effect observed under the single sequence approximation, which leads to erroneous results, especially when the marginal distribution of the model displays a slow convergence toward the stationary distribution. We end up with a discussion on our method and on its potential improvements.</p

    Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function.</p> <p>Results</p> <p>Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM.</p> <p>Conclusions</p> <p>Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.</p

    Asp295 Stabilizes the Active-Site Loop Structure of Pyruvate Dehydrogenase, Facilitating Phosphorylation of Ser292 by Pyruvate Dehydrogenase-Kinase

    Get PDF
    We have developed an in vitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thalianaα2β2-heterotetrameric pyruvate dehydrogenase (E1) plus A. thaliana E1-kinase (AtPDK). Upon addition of MgATP, Ser292, which is located within the active-site loop structure of E1α, is phosphorylated. In addition to Ser292, Asp295 and Gly297 are highly conserved in the E1α active-site loop sequences. Mutation of Asp295 to Ala, Asn, or Leu greatly reduced phosphorylation of Ser292, while mutation of Gly297 had relatively little effect. Quantitative two-hybrid analysis was used to show that mutation of Asp295 did not substantially affect binding of AtPDK to E1α. When using pyruvate as a variable substrate, the Asp295 mutant proteins had modest changes in kcat, Km, and kcat/Km values. Therefore, we propose that Asp295 plays an important role in stabilizing the active-site loop structure, facilitating transfer of the γ-phosphate from ATP to the Ser residue at regulatory site one of E1α

    Structural architecture of the human long non-coding RNA, steroid receptor RNA activator

    Get PDF
    While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product. We perform similar experiments on alternatively spliced SRA isoforms to assess their structural features

    Protein Structural Modularity and Robustness Are Associated with Evolvability

    Get PDF
    Theory suggests that biological modularity and robustness allow for maintenance of fitness under mutational change, and when this change is adaptive, for evolvability. Empirical demonstrations that these traits promote evolvability in nature remain scant however. This is in part because modularity, robustness, and evolvability are difficult to define and measure in real biological systems. Here, we address whether structural modularity and/or robustness confer evolvability at the level of proteins by looking for associations between indices of protein structural modularity, structural robustness, and evolvability. We propose a novel index for protein structural modularity: the number of regular secondary structure elements (helices and strands) divided by the number of residues in the structure. We index protein evolvability as the proportion of sites with evidence of being under positive selection multiplied by the average rate of adaptive evolution at these sites, and we measure this as an average over a phylogeny of 25 mammalian species. We use contact density as an index of protein designability, and thus, structural robustness. We find that protein evolvability is positively associated with structural modularity as well as structural robustness and that the effect of structural modularity on evolvability is independent of the structural robustness index. We interpret these associations to be the result of reduced constraints on amino acid substitutions in highly modular and robust protein structures, which results in faster adaptation through natural selection

    Análise de distribuições de distâncias entre palavras genómicas

    Get PDF
    The investigation of DNA has been one of the most developed areas of research in this and in the last century. However, there is a long way to go to fully understand the DNA code. With the increasing of DNA sequenced data, mathematical methods play an important role in addressing the need for e cient quantitative techniques for the detection of regions of interest and overall characteristics in these sequences. A feature of interest in the study of genomic words is their spatial distribution along a DNA sequence, which can be characterized by the distances between words. Counting such distances provides discrete distributions that may be analyzed from a statistical point of view. In this work we explore the distances between genomic words as a mathematical descriptor of DNA sequences. The main goal is to design, develop and apply statistical methods specially designed for their distributions, in order to capture information about the primary and secondary structure of DNA. The characterization of empirical inter-word distance distributions involves the problem of the exponential increasing of the number of distributions as the word length increases, leading to the need of data reduction. Moreover, if the data can be validly clustered, the class labels may provide a meaningful description of similarities and di erences between sets of distributions. Therefore, we explore the inter-word distance distributions potential to obtain a word clustering, able to highlight similar patterns of word distributions as well as summarized characteristics of each set of distributions. With the aim of performing comparative studies between genomic sequences and de ning species signatures, we deduce exact distributions of inter-word distances under random scenarios. Based on these theoretical distributions, we de ne genomic signatures of species able to discriminate between species and to capture their evolutionary relation. We presume that the study of distributions similarities and the clustering procedure allow identifying words whose distance distribution strongly di ers from a reference distribution or from the global behaviour of the majority of the words. One of the key topics of our research focuses on the establishment of procedures that capture distance distributions with atypical behaviours, herein referred to as atypical distributions. In the genomic context, words with an atypical distance distribution may be related with some biological function (motifs). We expect that our results may be used to provide some sort of classi cation of sequences, identifying evolutionary patterns and allowing for the prediction of functional properties, thereby contributing to the advancement of knowledge about DNA sequences.A investigação do ADN é uma das áreas mais desenvolvidas neste e no último século. O crescente aumento do número de genomas sequenciados tem exigido técnicas quantitativas mais e cientes para a identi cação de características gerais e especí cas das sequências genómicas, os métodos matemáticos desempenham um papel importante na resposta a essa necessidade. Uma característica com particular interesse no estudo de palavras genómicas é a sua distribuição espacial ao longo de sequências de ADN, podendo esta ser caracterizada pelas distâncias entre palavras. A contagem dessas distâncias fornece distribuições discretas passíveis de análise estatística. Neste trabalho, exploramos as distâncias entre palavras como um descritor matemático das sequências de ADN, tendo como objetivo delinear e desenvolver procedimentos estatísticos especialmente concebidos para o estudo das suas distribuições. A caracterização das distribuições de distâncias empíricas entre palavras genómicas envolve o problema do crescimento exponencial do número de distribuições com o aumento do comprimento da palavra, gerando a necessidade de redução dos dados. Além disso, se os dados puderem ser validamente agrupados em classes então os representantes de classe fornecem informação relevante sobre semelhanças e diferenças entre cada grupo de distribuições. Assim, exploramos o potencial das distribuições de distâncias na obtenção de um agrupamento de palavras, que agrupe padrões de distâncias semelhantes e que coloque em evidência as características de cada grupo. Com vista ao estudo comparativo de sequências genómicas e à de nição de assinaturas de espécies, focamo-nos no desenvolvimento de modelos teóricos que descrevam distribuições de distâncias entre palavras em cenários aleatórios. Esses modelos são utilizados na de nição de assinaturas genómicas, capazes de discriminar entre espécies e de recuperar relações evolutivas entre estas. Presumimos que o estudo de semelhanças e a análise de agrupamento das distribuições permite identi car palavras cuja distribuição se afasta fortemente de uma distribuição de referência ou do comportamento global das maioria das palavras. Um dos principais tópicos de investigação foca-se na deteção de distribuições com comportamentos anormais, aqui referidas como distribuições atípicas. No contexto genómico, palavras com distribuições de distâncias atípicas poderão estar relacionadas com alguma função biológica (motivos). Esperamos que os resultados obtidos possam ser utilizados para fornecer algum tipo de classi cação de sequências, identi cando padrões evolutivos e permitindo a previsão das propriedades funcionais, representando assim um passo adicional na criação de conhecimento sobre sequências de ADN.Programa Doutoral em Matemátic

    High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity

    Get PDF
    Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity
    corecore