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palavras-chave Distâncias entre palavras genómicas, Distribuições de distâncias,
Dissimilaridade, Classi�cação, Deteção de entidades atípicas,
Reconhecimento de padrões

resumo A investigação do ADN é uma das áreas mais desenvolvidas neste e no
último século. O crescente aumento do número de genomas sequenciados
tem exigido técnicas quantitativas mais e�cientes para a identi�cação de
características gerais e especí�cas das sequências genómicas, os métodos
matemáticos desempenham um papel importante na resposta a essa
necessidade.

Uma característica com particular interesse no estudo de palavras genómicas
é a sua distribuição espacial ao longo de sequências de ADN, podendo
esta ser caracterizada pelas distâncias entre palavras. A contagem dessas
distâncias fornece distribuições discretas passíveis de análise estatística.
Neste trabalho, exploramos as distâncias entre palavras como um descritor
matemático das sequências de ADN, tendo como objetivo delinear e
desenvolver procedimentos estatísticos especialmente concebidos para o
estudo das suas distribuições.
A caracterização das distribuições de distâncias empíricas entre palavras
genómicas envolve o problema do crescimento exponencial do número
de distribuições com o aumento do comprimento da palavra, gerando a
necessidade de redução dos dados. Além disso, se os dados puderem
ser validamente agrupados em classes então os representantes de classe
fornecem informação relevante sobre semelhanças e diferenças entre cada
grupo de distribuições. Assim, exploramos o potencial das distribuições de
distâncias na obtenção de um agrupamento de palavras, que agrupe padrões
de distâncias semelhantes e que coloque em evidência as características de
cada grupo. Com vista ao estudo comparativo de sequências genómicas e
à de�nição de assinaturas de espécies, focamo-nos no desenvolvimento de
modelos teóricos que descrevam distribuições de distâncias entre palavras em
cenários aleatórios. Esses modelos são utilizados na de�nição de assinaturas
genómicas, capazes de discriminar entre espécies e de recuperar relações
evolutivas entre estas. Presumimos que o estudo de semelhanças e a
análise de agrupamento das distribuições permite identi�car palavras cuja
distribuição se afasta fortemente de uma distribuição de referência ou do
comportamento global das maioria das palavras. Um dos principais tópicos
de investigação foca-se na deteção de distribuições com comportamentos
anormais, aqui referidas como distribuições atípicas.

No contexto genómico, palavras com distribuições de distâncias atípicas
poderão estar relacionadas com alguma função biológica (motivos).
Esperamos que os resultados obtidos possam ser utilizados para fornecer
algum tipo de classi�cação de sequências, identi�cando padrões evolutivos e
permitindo a previsão das propriedades funcionais, representando assim um
passo adicional na criação de conhecimento sobre sequências de ADN.





keywords Genomic word distances, Distance distributions, Dissimilarity, Clustering,
Outlier detection, Pattern recognition

abstract The investigation of DNA has been one of the most developed areas of
research in this and in the last century. However, there is a long way to go
to fully understand the DNA code. With the increasing of DNA sequenced
data, mathematical methods play an important role in addressing the need
for e�cient quantitative techniques for the detection of regions of interest
and overall characteristics in these sequences.

A feature of interest in the study of genomic words is their spatial distribution
along a DNA sequence, which can be characterized by the distances between
words. Counting such distances provides discrete distributions that may
be analyzed from a statistical point of view. In this work we explore the
distances between genomic words as a mathematical descriptor of DNA
sequences. The main goal is to design, develop and apply statistical methods
specially designed for their distributions, in order to capture information
about the primary and secondary structure of DNA.

The characterization of empirical inter-word distance distributions involves
the problem of the exponential increasing of the number of distributions
as the word length increases, leading to the need of data reduction.
Moreover, if the data can be validly clustered, the class labels may provide
a meaningful description of similarities and di�erences between sets of
distributions. Therefore, we explore the inter-word distance distributions
potential to obtain a word clustering, able to highlight similar patterns
of word distributions as well as summarized characteristics of each set of
distributions.
With the aim of performing comparative studies between genomic sequences
and de�ning species signatures, we deduce exact distributions of inter-word
distances under random scenarios. Based on these theoretical distributions,
we de�ne genomic signatures of species able to discriminate between species
and to capture their evolutionary relation. We presume that the study of
distributions similarities and the clustering procedure allow identifying words
whose distance distribution strongly di�ers from a reference distribution or
from the global behaviour of the majority of the words. One of the key topics
of our research focuses on the establishment of procedures that capture
distance distributions with atypical behaviours, herein referred to as atypical
distributions.

In the genomic context, words with an atypical distance distribution may
be related with some biological function (motifs). We expect that our
results may be used to provide some sort of classi�cation of sequences,
identifying evolutionary patterns and allowing for the prediction of functional
properties, thereby contributing to the advancement of knowledge about
DNA sequences.
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Chapter 1

Introduction

The investigation on DNA has been one of the most explored areas of research in the last

century. Since its �rst description, over 60 years ago, to the �rst complete sequence of the

human genome, much has been discovered, but there is still a long way to go to fully

understand DNA.

The Human Genome Project achieved a milestone with the record of the complete sequence

of the three trillion nucleotides that make up the human genome and the identi�cation of

individual genes within this sequence, in April 2003 [103]. However, genome sequencing is

not an end in itself. A major challenge is yet to be achieved: to understand what the genome

contains and how it works.

Mathematical methods and computer science play an important role in the development

of e�cient quantitative techniques, for the overall characterization of DNA sequences and

for the extraction of relevant information contained in it. Understanding how the genome

functions is a di�erent endeavor. It implies to locate genes and to determine their function,

which may be a very hard endeavor. While in the past the attention has been directed at

the expression of single genes, now the question has become more general and relates to the

expression of sets of genes, due to their interactions.

The large quantities of data produced by DNA sequencing have required the development

of new methods for sequence analysis. The description and classi�cation of sequences is

heavily dependent on mathematical and statistical models. This thesis is in line with the

study of genome composition, applying and proposing new statistical methodologies with this

objective.

1.1 Motivation

There are two complementary approaches to the study of nucleotide sequences: structural and

functional. The former starts with traditional statistical analyses of the sequences, detection

of their non-randomness, search for patterns with unusual occurrence or unusual structure.

After the features are found the question of what might be their functions has to be addressed.

3



4 1.Introduction

The functional approach, by contrast, starts from the other end and asks what would be a

characteristic sequence structure to serve a given biological function [195]. It is important to

realize, however, that while every biological function is realized via some particular sequence

structure, a sequence peculiarity might not necessarily be involved in anything of biological

importance.

In both cases, the interpretation of results requires biological knowledge. Sequences with

peculiar features may be a good reason for a deep study from a biological point of view. For

instance, early analysis of sequences revealed a striking repetition of some dinucleotides every

three steps or multiples thereof. This observation remained a peculiarity until the discovery

of the so-called frameshift mutations (mutations produced by insertion or deletion of one base

during DNA synthesis) [195].

This thesis is in line with the structural study of nucleotide sequences, from a

mathematical point of view. Our goal is to develop new methods able to detect unusual

characteristics or overall characteristics of interest of the nucleotide sequences. After

features are found, biologists and experts in the area could question for �what might be their

functions?�. Nevertheless, our motivation comes from the detection of sequences or features

that could potentially be related to some functional element, e.g. cruciform structures (see

Chapter 7).

The statistical analysis of DNA symbolic sequences may require the conversion into

numerical format. Obviously, the choice of the numerical transformation of a DNA sequence

a�ects how the mathematical properties are revealed and the capability of highlighting the

biological properties of the sequence.

One of the mappings'schemes which has been of interest in the last decade is the inter-

word distance distribution [5; 6; 29]. The inter-word distance is de�ned as the di�erence

between the positions of the �rst symbol of consecutive occurrences of a word, considering

that the sequence is read through a sliding window (of length equal to the word length).

Procedures based on inter-word distances have already been found useful to study genomic

sequences [5; 6; 29]. We propose to explore the distribution of inter-word distance distributions

as a mathematical descriptor of DNA sequences.

1.2 Main objectives

The main goal of our project is to develop statistical methods for genomic data, able to

capture essential information about the primary or secondary structure of DNA, using, mainly,

distance distributions as input data.

After an exploratory study of the distance distributions, we will focus on the detection of

unusual features. Indeed, one of the key topics of our research is the establishment of

procedures that capture atypical distributions. To achieve this goal we will develop methods
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for the comparative study of genomic sequences, which involves obviously exploring the

advantages and disadvantages of distinct dissimilarity measures.

The identi�cation and characterization of overall features of distance distributions, for

di�erent word lengths, is also one of our objectives. This topic of study is a�ected by an

additional problem: the possible huge number of distributions to analyse (there are 4k words

of length k). The exponential increasing of the word's number as word length increases,

creates the need for organizing distributions into clusters and for dealing with a class label

distribution. In a word-by-word analysis, we explore the distance distributions potential to

obtain a classi�cation of the words in groups. If the data can validly be clustered, then the

class labels may provide a meaningful description of similarities and di�erences in the data.

Still within the scope of clustering analysis, we intend to explore the distance distributions

potential to obtain genomic signatures of species.

Some authors argue the contribution of selective evolution of genomes may be highlighted

by the subtraction of the random background (independent nucleotide placement assumption)

from the counting result [62]. Following this view, we will explore discrepancies between real

sequences and the random background to construct species signatures. By con�rming that

those signatures are able, not only to discriminate between species, but also to capture some

of the evolutionary relation between species, a link is created between distance distribution

features and their potential biological interest.

Motivated by the symmetry phenomenon (in a single strand of DNA, su�ciently long, the

number of occurrences of a word is similar to that of its reversed complement) observed in

several organisms, including the human genome, we question ourselves whether a somehow

similar phenomenon is observable in word's distribution patterns. So, we survey similarities

between (the distance distribution of) words that are reversed complements and between (the

distance distribution of) words that have similar composition.

In a more functional approach, we investigate distance distributions between pairs of

reversed complementary words (in contrast to the same word). In particular, we address the

problem of discovering pairs of reversed complementary words both occurring at distances

that are over-represented and with �clusters� of over-represented distances. The reasoning

behind is related with the occurrence of cruciform structures in DNA (four-armed structures

that can be formed at sites containing reversed complementary words), instead of the classical

double helix structure.

Throughout this research work three major statistical concepts/methods are covered,

discussed and applied, namely, similarity measures, outlier detection and cluster analysis.

New methodologies are proposed, by recycling existing concepts or entailing new concepts

(such as the peak dissimilarity measure), with the purpose of applying them in the study of

distance distributions. We expect that our methods and results can be used to provide some

sort of knowledge about DNA sequences. Nevertheless, the domain of application of the
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proposed methods should not be restricted to the study of genomic word distance

distributions.

1.3 Thesis organization

This thesis contains ten chapters, and is organized into three parts - Part I, comprising

Chapters 1-3, being mainly concerned with the introductory background; Part II,

incorporating Chapters 4-9, brings together the main scienti�c papers developed through

this journey; and Part III, consisting of Chapters 10 and 11, being primarily concerned with

the critical discussion of the scienti�c work developed.

Chapter 1 is an introductory chapter that aims to be succinct. It presents, in a very

general way, the questions that motivated this research study and the general objectives that

we set ourselves to achieve.

Chapter 2 is primarily concerned with background knowledge. Some useful biological

concepts are introduced, facilitating the biological contextualization of this research work and

its discussion. A brief review is made on the usual statistical techniques applied in the study

of genomic sequences, drawing special attention to the mathematical background on word

frequencies (methods that study under- or over- representation of words) and their distribution

patterns (study of waiting times). Several mapping schemes, to convert DNA sequences into

numerical sequences, are summarily described, including the �inter-word distances� mapping

that leads to the inter-word distance distributions, a main concept on this work.

Chapter 3 details the motivation behind each of the topics under study, pointing the state

of the art, and revealing the initial questions that guided this research.

Chapters 4 � 9 present six selected research papers, resulting from the work developed

during this research project. Of these, four were published in scienti�c reviews indexed in

Scopus (Articles I, II, IV and V). Article III was published in a conference proceedings.

Article VI is, to date, submitted to a refereed journal that covers the interface between the

statistical and computing sciences.

Chapter 10 is mainly concerned with a critical analysis of the research work presented in

the previous chapters. Results are discussed and links between the six papers are highlighted.

As a concluding chapter, it points some open questions that remain to answer and some others

that emerge from the developed work. Future perspectives of research are suggested herein

and Chapter 11 concludes.

The scienti�c communications and publications arising from this research study are

enumerated in an Appendix.



Chapter 2

Background: genomic information and

its analysis

The �rst section of this chapter introduces some basic concepts from biology, intending to

make a biological contextualization of the dissertation. Starting from a general description of

the cell structure and its subcellular components related to the storage and synthesis of DNA,

some main functions of DNA and RNA are explained. The usual double-helix structure of

DNA is described, and other unusual DNA structures are referred to. The concept of genome

arises naturally, unraveling DNA organization into chromosomes and how they are folded to

�t inside the cell. Looking deeper into chromosomes, the relation between gene and coding

region is made, as well as the distinction between intron and exon. Then, by increasing some

orders of magnitude, complete genomes, their sizes and the so-called reference genome are

addressed. A remark on the history of DNA discovery and its structure ends the section.

Admittedly, understanding these biological concepts falls outside the scope of this thesis

in applied mathematics. Nevertheless, the reading of the �rst section likely facilitates the

understanding of the motivation behind the proposed procedures and the discussion of their

potentialities.

The second section focuses on methods for DNA sequence analysis. Mapping schemes

commonly used to convert DNA symbolic sequences into numerical format are described,

including the inter-word distance. It is followed with a brief description of some statistical

methods commonly employed in the analysis of genomic sequences, and the insights they

can provide about function (gene expression), structure (folding) and evolutionary patterns

(phylogenetic relatedness) of DNA sequences.

This thesis emphasizes the development of new methods able to extract genomic

information from the distribution of distances between pairs of words (see Chapters 5�9)

and, to a lesser extent, from the word frequencies (see Chapter 4). Thus, background

knowledge about expected word frequencies and expected distributions of distances in

random sequences are of great interest. The third section draws attention to models on

7
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expected word frequencies and waiting times between words in random texts.

Section 4 presents the inter-word distance distribution, a core concept in this research.

2.1 Biological concepts

The genetic information of all living organisms is stored in their DNA - the molecule that

contains the instructions an organism needs to develop, live and reproduce. These instructions

are found inside every cell, and are passed down from progenitors to their descendants.

DNA is the abbreviation for deoxyribonucleic acid. In a very simpli�ed way, it can be

described as a long sequence of letters � the nucleotides adenine (A), cytosine (C), guanine (G)

and thymine (T) � where words can be identi�ed. With only four letters, the genomic book �

the genome � encodes a myriad of information necessary to create a speci�c organism with all

its particularities. The same four letters, ordered in di�erent ways, give rise to the impressive

variability between and within species existing on our planet. The size of these genomic books

ranges from 144 thousands of base pairs1 in some bacteria [131], to an astonishing 1.5× 1011

base pairs, in the rare �ower Paris japonica [144]. However, the size of those books does not

correlate with the complexity of the organism [47]. For example, Paris japonica has a genome

50 times bigger than that of humans. The human genome has only 3.2 billion of base pairs.

This section introduces some basic concepts from the cell to the genome, focusing on the

DNA molecule, its discovery, structure and function.

2.1.1 From cell to DNA

All living organisms share a common set of characteristics, such as being constituted by cells,

need energy to survive, respond to environmental stimuli, reproduce and evolve. According

to their number of cells, they can be classi�ed as unicellular or multicellular. All species of

animals and land plants are multicellular organisms, while some fungi and some algae are

unicellular. In addition, the structure of the cells also divides living organisms in eukaryotic

and prokaryotic.

Prokaryotic cells are cells with a relatively simple structure, having no cell nucleus nor

any, meaning that the genetic material DNA is not bound within a nucleus. The prokaryotic

organisms comprise two domains of the three domains of life, namely, Archaea and Bacteria.

Most of them are unicellular but a few are multicellular, like some cyanobacteria.

By contrast, eukaryotic organisms have more complex cells, in which the genetic material

is organized into a membrane-bound nucleus. There is a wide range of eukaryotic organisms

(domain Eukarya), including all animals, plants and fungi, as well as most algae. Eukaryotes

may be either multicellular or unicellular.

1Just for now, consider that a base pair is a letter in the genomic text. Later, this concept will become

clear.
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Viruses are conceptually separated from the remain biological entities (the three domains

of life), because they cannot live or reproduce without a host organism. Without cells of other

organisms, viruses are not be able to multiply. Therefore, some biologists do not consider

viruses as living things. While not inside an infected cell or in the process of infecting a cell,

viruses exist in the form of independent particles, that contain genetic material made from

either DNA or RNA.

Eukaryotic cell A typical eukaryotic cell contains a nucleus, ribosomes and several

organelles individualized by cell membranes, called organelles, in which speci�c activities

take place. The nucleus is surrounded by a nuclear envelope which separates it from the

cytoplasm, a watery jelly-like liquid where many reactions of the cell take place. The

ribosome is a complex molecular machine, where proteins are made using information from

the nucleus and raw materials from the cytoplasm. One example of organelle is

mitochondrion, which produces cellular energy through the process of cellular respiration.

Mitochondria are found in nearly all eukaryotic cells. A diagram of a typical eukaryotic cell

with some of its subcellular components, is depicted in Figure 2.1.

Image adapted from: Wikimedia Commons

Figure 2.1: Simpli�ed structure of a typical animal cell revealing some of its subcellular
components.

The instructions for the eukaryotic cell functioning and its genetic material are stored

in nucleic acids. Two types of nucleic acids occur in cells, playing complementary roles.

Deoxyribonucleic acid (DNA) acts as a carrier of genetic information, while ribonucleic acid

(RNA) molecules play an important role in protein synthesis.

Most of DNA molecules of eukaryotic organisms are stored in the cell nucleus (in contrast

with prokaryotic organism whose DNA �oats freely around the cell). In addition, DNA is also

found in some organelles: in mitochondria, present in all plant and animals cells, as well as in

chloroplasts, present in plant cells. Both nuclear and organellar genomes constantly interact.

The complex interplay between these two types of DNA, environment, and lifestyle is most
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likely involved in phenomena such as ageing and longevity [82; 193].

RNA molecules are found inside and outside the cell nucleus, according to their function.

The three main types of RNA are messenger RNA (mRNA), ribosomal RNA (rRNA) and

transfer RNA (tRNA): rRNA molecules are part of the structure of the ribosome, while the

other two types of RNA are used to create new proteins.

The synthesis of proteins is preceded by the copy of information contained in DNA through

the process of transcription. Transcription begins when an enzyme (the RNA polymerase

enzyme) attaches to the DNA strand and starts assembling a new chain of nucleotides to

produce a complementary RNA strand. In some cases, the newly created molecule is itself a

�nished product (tRNA, rRNA or other non-coding RNA), and it serves an important function

within the cell. The major end product of transcription is mRNA, which carries information

that is translated into proteins by ribosomes, as depicted in Figure 2.2.

Image adapted from: National Human Genome Research institute

Figure 2.2: Processes of transcription and translation of the genetic information. RNA
is the link between nuclear DNA and protein synthesis. The �nal product, protein, is a
linked chain of amino acids.

Summarizing, all the biological information that gives rise to an individual, with all its

characteristics and speci�cities, is embedded in its DNA. The pathways that bind DNA to its

expression, through protein synthesis, are mediated by RNA.

2.1.2 DNA

The components of DNA From a chemical point of view, DNA is a macromolecule

composed of small units called nucleotides. Each nucleotide is formed by a sugar

(deoxyribose), a phosphate group and a nitrogenous base. DNA nucleotides assemble in

chains linked by covalent bonds, formed between the sugar of one nucleotide and the

phosphate group of the next. In turn, bases are attached to the sugar units, as shown in

Figure 2.3. The alternating sequence of sugar-phosphate group is referred to as backbone

structure.
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The four nitrogenous bases found in DNA are adenine (A), cytosine (C), guanine (G) and

thymine (T). They are classi�ed according to their structure into purines and pyrimidines:

adenine and guanine are purines, since they have a structure with two rings; cytosine and

thymine are pyrimidines, as they have a single ring structure. The whole polynucleotide

sequence is referred to as DNA chain or DNA strand.

Image adapted from: Encyclopædia Britannica, Inc.

Figure 2.3: DNA strand and its block units, the nucleotides. Each nucleotide is
composed of three distinctive sub-units: a sugar molecule, a nitrogenous base and one
phosphate group. The alternating sequence of sugar-phosphate group is referred to as
backbone structure.

It is worth noting that, the four nitrogenous bases found in DNA are not the same as

those found in RNA molecules. In RNA molecules, the thymine base is substituted by the

uracil (U) base. Thus, RNA sequences encloses A's, C's, G's and U's.

DNA structure The currently accepted structure of DNA molecule is the one described

by James Watson and Francis Crick, in an article published in 1953 in the scienti�c journal

Nature [206]. They described the structure of the DNA molecule as being constituted by two

helical chains coiled around the same axis, where each small component of these chains, the

nucleotides, would be made of a sugar, a phosphate group and one nitrogenous base. Bases

are located near the center of the helix, while sugar and phosphate groups are in the outside

of the helix, forming a backbone resistant to cleavage (see Figure 2.4).

The two strands of DNA are held together by hydrogen bonds that join a purine to a

pyrimidine, but only speci�c pairs of bases can bond together: adenine always pairs with

thymine (A�T), and guanine always pairs with cytosine (G�C). Since each linked pair

consists of a two ring base and a one ring base, the size of each pair is almost identical. The

arrangement of two nucleotides binding together on opposite complementary DNA is called
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a base pair, often abbreviated bp. Due to the nitrogenous bases complementarity, A�T and

C�G, the nucleotide sequence of a strand fully determines the nucleotide sequence of the

other strand.

Image adapted from: Encyclopædia Britannica, Inc.

Figure 2.4: DNA double helical structure. Nucleotides from opposite strands pair
according to their nitrogenous bases: A�T and G�C.

The double-helix structure physically protects the important atoms of the bases from

chemical modi�cations [177]. The bases, located near the center of the helix, are attached

to the strands by strong bonds (phosphodiester bonds), whereas the base-pairing interactions

involve weak bonds (hydrogen bonds). The two types of base pairs form di�erent numbers

of hydrogen bonds. In general, A�T are linked by two hydrogen bonds and G�C are linked

with three hydrogen bonds. For this reason, DNA with high GC-content (the percentage of

nitrogenous bases that are either G or C) is more stable than DNA with low GC-content.

In processes involving DNA replication or transcription, such as cell duplication or protein

syntheses, it is necessary to provide access to the genetic information protected in the center

of the double helix. In these situations, the weak hydrogen bonds between base pairs are

broken and each strand may serve as a model for the creation of new DNA or RNA molecules

complementary to the original.

Coding and non-coding regions Similar to the way that the order of alphabet letters is

used to form words, the order of nucleotides form genes which, in the language of the cell,

dictate how to make proteins or other molecules. Usually, genes are long stretches of DNA

that code for a molecule that has a function.

The view of gene as a blueprint for a protein, stated as �one gene, one protein�, is very

reductive. With the development of genomics it became evident that some genes do not specify



2.Background: genomic information and its analysis 13

proteins; rather, the end-products are functional molecules, such as rRNA and tRNA [85]. In

early 70's, scientists coined the term �junk DNA� to describe sections of genome that do not

code for proteins (which means, about 98% of the human genome!), but the term has fallen

out of favor. It is now clear that at least some of it is associated with the function of cells,

particularly to the control of gene expression.

In multicellular organisms, like plants and mammals, the coding regions of most genes are

not continuous. Rather, genes are split into several coding regions, called exons, in between

non-coding regions called introns. Exons carry the code for the production of proteins, they

are called protein-coding regions. Introns correspond to those stretches of DNA that are

transcribed (into mRNA), but spliced out before the translation into protein (see Figure 2.5).

Although they are removed before a protein is made, it appears that introns inclose regulatory

elements [129; 149].

The parts of the genome that lie between genes, intergenic regions, are also considered as

noncoding DNA. Most large genomes are �lled with intergenic regions and the bulk of it is

made up of repeated sequences [41].

Image adapted from: National Human Genome Research Institute

Figure 2.5: Gene, introns and exons. Representation of a gene composed by three
coding regions (exons) and two non-coding regions (introns), which are spliced out
before translation.

The amount of non-coding DNA varies greatly among species. Often, only a small

percentage of the genome is responsible for coding proteins, but a rising percentage of it is

being shown to have regulatory functions. Because of the number of new discoveries

resulting from genome research over the last few years, it is a mistake pointing out that any

part of the genome should be unimportant simply because we do not currently know what

its function might be. The expression �junk DNA� should be totally removed from the

lexicon.
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The genetic code A typical protein is made up of several hundred amino acids, linked

together in chains. These molecules do most of the work in cells and are required for the

structure, function, and regulation of the body's tissues and organs. For instance, ferritin

protein has the function of transport and storage of some molecules; immunoglobulin G act

as an antibody; and keratin is a structural material making up hair and nails.

The Central Dogma of molecular biology is an explanation of the �ow of genetic

information between DNA, RNA and proteins [56; 57]. In particular, the direction in which

information from genes �ows to the formation of proteins can be performed by the two-step

process, transcription and translation, previously mentioned: DNA → RNA → protein (see

Figures 2.2 and 2.5). Messenger RNA, whose sequence originates from DNA, is decoded to

produce a speci�c amino acid chain. This chain later folds into an active protein and

performs its functions in the cell.

In the translation process, mRNA molecules are read in sequences of three nucleotides,

called codons. Each nucleotide triplet codes for a single amino acid, e.g. the codon GUA is

translated into the amino acid valine. There are 64 di�erent codons (43 = 64) and only 20

distinct amino acids are used in the construction of proteins. Consequently, more than one

codon can be used to specify a particular amino acid. For example, codons GUC, GUG and

GUU all specify the same amino acid. This is why the genetic code is said to be degenerated.

The set of rules that de�ne how the nucleotide triplets are translated into amino acids

is called the genetic code (Figure 2.6). This code is con�gured in a very sophisticated way,

minimizing the e�ect of some copying errors. For instance, any error in the third base of

GUU, GUC, GUA, GUG will still result in the correct amino acid valine. Similarly, errors

in codons specifying other amino acids will often (but no always) still result in the correct

amino acid being used. Moreover, even if an error results in an incorrect amino acid being

selected, the one selected will often have similar physico-chemical properties and is likely to

be a good substitute. For example, the codon GUG, which speci�es the amino acid valine,

is hydrophobic. An error resulting in its second letter changing it to C leads to codon GCG

which speci�es alanine, and an error resulting in changing the �rst letter of valine into C leads

to codon CUG which speci�es leucine. Both alanine and leucine are also hydrophobic amino

acids.

Translation starts with a chain-initiation codon or start codon, which also allows coding an

amino acid (the most common start codon is AUG). Often this �rst amino acid will be removed

in later processing of the protein. There are also stop codons, which signal that the translation

should stop. Depending on where the reading starts, the same mRNA molecule can be read

in multiple ways. For example, if the base sequence is CCAUGCAAUGGAAUGUUGGC,

reading could start from the �rst AUG and there will be �ve codons more. If reading starts at

the second AUG, the string will have three other codons, and so on, as depicted in Figure 2.7.

Mutations that disrupt the reading frame sequence by insertions or deletions of a non-multiple
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Image credits: Wikimedia Commons

Figure 2.6: Representation of the genetic code. In this mapping scheme between codons
and amino acids, the codons should be read from the innermost to the outermost ring.
Stop codons do not code amino acids.

of three nucleotide bases usually result in a completely di�erent translation from the original,

and likely cause a stop codon to be read, which truncates the protein.

…CC AUG CAA UGG AAU GUU GGC … Met +  Gln +  Trp +  Asn +  Val + Gly + … 

mRNA sequence 

… CCAUGCAAUGGA AUG UUG GC… 

… AUGCA AUG GAA UGU UGG C… Met + Glu + Cys + Trp + … 

Met + Leu + … 

… C C A U G C A A U G G A A U G U U G G C … 

… G G T A C G T T A C C T T A C A A C C G …   DNA sequence 

read 1: 

read 2: 

read 3: 

Amino acid chain: 

or 

or 

Figure 2.7: Reading frames. Illustration of three readings of the same mRNA sequence,
and corresponding amino acid chains. Start codon sets the reading frame.

By choosing which amino acids are placed in which positions along the chain, di�erent

proteins can be made, each having very di�erent functions. In that sense, the sequence of

DNA nucleotides is like a language, where di�erent combinations of letters have di�erent

meanings. Nevertheless, as depicted in Figure 2.7, a very peculiar feature distinguishes DNA

language from natural languages: the same sequence of letters can be translated into distinct

messages!

Primary, Secondary and High-order structures Under the current knowledge, it is

accepted that the DNA molecule carries more information than the linear combination of its
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nucleotides. For instance, the three-dimensional structure that DNA assumes at each moment,

which is not the same throughout the whole molecule, a�ects its replication and transcription.

The speci�c order of the four nucleotides in a DNA molecule is referred to as its primary

structure. When a DNA strand forms a duplex by pairing with a complementary single strand

it adopts another level of organization.

Structurally, DNA is a �exible molecule, and this �exibility is well pronounced in its

polymorphic nature. The secondary structure of DNA molecules refers to the interactions

between base pairs, close to each other, within a single or more DNA strands [27]. Such

interactions are commonly represented by a structure graph, which puts in evidence the

nucleotide sequence in each strand, and the base pairs interactions (see Figure 2.8). Tertiary

structure refers to the �nal form the molecule takes, once the di�erent secondary structures

have all folded into a three dimensional structure, which involves steric relationship of bases.

Secondary and tertiary structures are stabilized by a number of factors like hydrogen bonding,

ionic interactions, etc.

Most DNA duplexes are generally considered to adopt the classical conformation

described by Watson and Crick, known as B-DNA. Apart from this double helical structure,

they can also adopt unusual structures like cruciforms, triplexes, quadruplexes, junctions,

etc. [106]. Such structures are obtained in the presence of particular nucleotide sequences or

through interactions with various proteins. For instance, a cruciform structure only arises

from a combination of supercoiling and inverted repeats. An inverted repeat is a sequence of

nucleotides followed downstream by its reverse complement. Cruciforms are formed when

interstrand base pairing, in duplex DNA, with inverted repeats convert to intrastrand base

pairing. A schematic representation of base pairs interactions in a cruciform structure

formation and its tridimensional shape, is shown in Figure 2.8.

Investigation points that the DNA shape plays a crucial role in gene regulation, genome

organization and integrity. Some unusual DNA conformations are hypothesized, or even

known, to have functional roles in living organisms [34; 106; 110; 166; 213]. The formation of

such unusual structures strongly depends on the DNA nucleotides sequence, also referred to

as structural sequence motifs [95].

DNA discovery This introductory description of the �molecule of life� could not end

without mentioning the credits for DNA discovery and for its structure's discovery.

The history of DNA discovery dates back more than 150 years ago. The now called DNA

was �rst identi�ed inside the nuclei of human white blood cells, in 1869, by Friedrich Miescher,

calling it �nuclein�. In 1866, Gregor Mendel described the actions of invisible factors (now

called genes) in predictably of traits of an organism, based on his investigation of inheritance

patterns in pea plants. However, Mendel's breakthroughs were not recognized until more than

three decades later. Early in the 20th century, Phoebus Levene was the �rst to characterize
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Image adapted from: Microbiology and Molecular Biology Reviews, 2010 [32]
and Proc. World Congress of the International Union of Physiological Sciences, 2013 [130]

Figure 2.8: Unusual DNA structure. Schematic representation of a cruciform structure
formation, from a combination of supercoiling and inverted repeats. Cruciform base
pairs interactions (left) and three-dimensional shape (right).

the di�erent forms of nucleic acids, DNA and RNA, and to discover the order of the three

major components of a single nucleotide (phosphate-sugar-base). In 1950, Erwin Charga�

ascertained that almost all DNA maintains a certain proportion between nucleotides. In

particular, the amount of adenine is similar to the amount of thymine, and the amount of

guanine is similar to that of cytosine. This conclusion is now known as Charga�'s parity rule.

In 1952, the X-ray di�raction images produced by Rosalind Franklin suggested that DNA was

a double helix [153]. Right after, in 1953, Watson and Crick brought together the scienti�c

foundation provided by these pioneers to assemble their groundbreaking conclusion about the

structure of the DNA molecule: a 3D double helix. For a nice review about the history of

genetics and DNA discovery see [115; 153; 205].

2.1.3 Genomes

What is a genome? The genome is often described as the entire hereditary information

of a living organism. It is encoded in each cell of the organism, through DNA molecules, and

provides the basic code that tells each cell how to grow, function, and reproduce. The genome

includes both the genes and the non-coding sequences of the DNA.

Most eukaryotic cells are endowed with di�erent types of DNA, namely, nuclear DNA

and mitochondrial DNA (plus chloroplast DNA, in plants). For this reason, mitochondria are

said to have their own genome, often referred to as the �mitochondrial genome�. In relation

to eukaryotic organisms, the phrase �genome� is commonly used to refer only to the nuclear

genome, whereas the remaining genomes are designated by their speci�c name. Genomes

are organized into discrete structures, tightly packaged in a complex series of coils and loops,
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called chromosomes. The chromosomes vary widely between di�erent organisms, and di�erent

types of chromosomes may be found within the same cell. Eukaryotic cells have several linear

chromosomes and they are larger than that of prokaryotic cells. In contrast, the genetic

material in prokaryotic cells typically exists in the form of a small circular chromosome.

Genome organization in eukaryotes In addition to nucleus chromosomes, eukaryotic

organisms may also carry extra genetic elements such as mitochondrial chromosomes. Being

located in di�erent regions of the cell, nucleus genome and mitochondrial genome have di�erent

structural and functional properties.

Nucleus chromosomes are often observed and depicted as X-shaped structures, during the

process of cell division. They present multiple levels of packaging that are only possible due to

the existence of special proteins termed histones. DNA packaging is crucial, because it allows

that large amounts of DNA are able to �t nicely in a cell that is many times smaller. The

packaging process can be described, in a very simpli�ed way, as: DNA wraps around histones,

which form loops of DNA called nucleosomes; these nucleosomes coil and stack together to

form �bers, called chromatin; and chromatin, in turn, forms larger loops and coils to form

chromosomes (Figure 2.9). As a result, chromatin can be packaged into a much smaller volume

than DNA alone [21].

Image adapted from: National Human Genome Research Institute

Figure 2.9: Organization of DNA in an eukaryotic cell. Most DNA is found inside
the nucleus of a cell, where, together with histone proteins, it forms the chromosomes.

The mitochondrial DNA (mtDNA) is only a small portion of the total DNA of a

eukaryotic cell, and its description falls outside the scope of this work. However, it is

noteworthy presenting some characteristics in which they di�er most: mtDNA has usually a
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circular structure, whereas nuclear DNA has a linear open-ended structure; in most species

mtDNA is solely inherited from the mother; this extranuclear DNA is prone to mutations

which are not inherited, due to the lack of error checking capability that nuclear DNA has,

thereafter mtDNA molecules can di�er from one another within a single cell.

Apart from the e�cient wrapping and protection that chromosomes structure provide to

DNA, they are also highly dynamic, allowing the cell access to the genetic information stored

in the center of the double helix.

Genome sizes A complete genome sequence lists the order of every DNA base that make

up all the chromosomes of a organism, forming very long sequences of A's, C's, G's and T's.

The genome size of an organism is usually expressed in terms of the number of base pairs in

one copy of each chromossome.

Genome sizes are well known to vary enormously among species, and are poorly correlated

with the organism complexity. On average, genome sizes are signi�cantly larger in eukaryotic

than in prokaryotic organisms. Among the eukaryotes, fungi have relatively small genome

sizes when compared to those of animals and plants. Some examples of genome sizes are

highlighted in Figure 2.10.

Image from: BioNumbers database (http://www.bionumbers.hms.harvard.edu)

Figure 2.10: Genome sizes. The range of genome sizes runs from 0.14 Mbp for bacterium
Carsonella ruddii, to 150 Gbp for plant Paris japonica.

Sequencing genomes The development of new technologies has made genome sequencing

dramatically cheaper and easier, and therefore the number of complete genome sequences is
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growing rapidly. Within a species, the vast majority of the genomic sequences are identical

between individuals, but sequencing multiple individuals is necessary to understand the

genetic diversity of a species. Comparative analysis of genomes provides an unprecedented

opportunity to investigate what makes a given species unique.

One of the major challenges in sequencing eukaryotic chromosomes is their size, making

it impossible to obtain an uninterrupted chromosome sequence end-to-end, using current

technology. To overcome this problem, researchers �cut� several cloned chromosomes into

small segments that can be read at once. Then, the DNA reads are aligned by matching

the overlapping parts. The reconstruction of chromosome sequences can be compared to

the assembly of a large puzzle, whose overlapping fragments give clues about their joining;

nonetheless, to arrive at the correct solution of the puzzle is a hard task. Figure 2.11 provides

a snapshot of a commonly assembly process schematized by Commins and others [55].

Source: Commins et al. (2009) Biological procedures online 11(1), 52.

Figure 2.11: Assembly process. A series of di�erent cuts is used to generate
overlapping DNA fragments. The sequence reads are assembled into a series of
overlapping fragments, to generate the complete sequence of a chromosome.

Due to uncertainties in the position identi�cation of read sequences, genome assembly may

be punctuated by gaps. Those regions are annotated with an �N� instead of the normal bases

(A, C , G or T), meaning that any possible base could be found on that region. The insertion

of N's allows obtaining a continuous record for an incompletely assembled chromosome, while

also clearly shows the failure to assemble speci�c regions. Figure 2.12 shows a small portion

of a DNA sequence with both recognized and unspeci�ed segments, from human chromosome

17.

Genomes are now being sequenced at such a rapid rate that it is becoming routine. With

the advent of new techniques in DNA analysis, scientists are able to look at the chromosome
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Figure 2.12: Fragment of a DNA sequence with a gap - human chromosome 17 from
the GRCh37.p13 assembly.

in much greater detail. There are several repositories that collect genome sequences, others

annotate and analyze them, and provide public access to that information. The most well

known nucleotide sequence database is GenBank, maintained by the National Center for

Biotechnology Information, USA. The other two main databases are the European Nucleotide

Archive, from the European Bioinformatics Institute, and the DNA Data Bank of Japan, from

the National Institute of Genetics.

Human Genome Human genetic material stored in the cellular nucleus is organized into

23 pairs of chromosomes that vary widely in size and shape. The set of chromosomes is formed

by 22 pairs of autosomes and a 23rd pair called allosome.

Autosomes are labeled with numbers from 1 to 22, roughly in decreasing order of their

sizes. In each pair of chromosomes, one inherited from the mother and one from the father,

the chromosomes are homologous, i.e. they are similar in length and gene's position. The

23rd pair of chromosomes are two sex-determining chromosomes, X and Y. Usually, females

carry two X chromosomes (XX), whereas males have one X and one Y chromosome (XY).

The X chromosome is signi�cantly longer than the Y chromosome.

Each chromosome is a very long molecule. The shortest human chromosome has around

50 000 000 nucleotides in length and the longest 260 000 000 nucleotides (human mitochondrial

DNA has a modest number of 16 000 base pairs).

Most human cells contain paired chromosomes (diploid cells). By contrast, germ line cells,

which go on to produce egg or sperm cells, are called haploid because they contain half the

chromosomes of diploid cells, i.e. only 23 unpaired chromosomes.
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The human (haploid) genome contains approximately 3.2× 109 base pairs. This generous

number refers to the total amount of base pairs con�ned in a single set of chromosomes.

However, most of human cells are diploid. They contain around 6 billion base pairs, each

one 0.34 nanometers long, that makes a total of approximately 2 meters of DNA if stretched

end-to-end; yet the nucleus of a human cell is only about 6 micrometres in diameter [18].

DNA packaging inside nucleus is an awesome process, allowing these enormously long DNA

strands to �t perfectly into a cell.

Reference human genome In February 2001, rough drafts of the human genome sequence

were published simultaneously by two independent groups in separated scienti�c papers. This

landmark was handled by the Human Genome Project, a group of publicly funded researchers,

and by the Celera Genomics, private company, using di�erent approaches and independent

data sets [102; 199]. In 2003, exactly 50 years after the description of the double helix, the

�nal sequencing of the human genome was announced by the Human Genome Project [103].

The project aimed to assembly a representative example of the nucleotide sequences in an

human genome.

Mapping the reference human genome involved sequencing a small number of di�erent

donors, and then assembling these together to get a consensus built for each chromosome.

Therefore, the reference genome, commonly called assembly or build, provides a good

approximation of the DNA of any single individual, but does not represent any one

individually.

Since the completion of the �rst human genome reference, successive builds have been

released. To distinguish between them, builds of each species are released with an identi�er

name, and subsequent assemblies maintain the identi�er name increasing the code number.

For instance, the latest build of the human reference genome is o�cially named GRCh38,

which replaced GRCh37. The identi�er name of the human reference genome comes from

Genome Research Consortium human build 38, also termed as hg38.

Updating human reference genome The landmark sequencing of the human

genome [103] surprised many with the small number of protein-coding genes that sequence

annotators could identify. It revealed that humans have only 20,000�25,000 protein-coding

genes. That estimate has continued to fall. Humans actually seem to have as few as 19,000

such genes, which correspond to a mere 1% of the genome size [66].

So, what is the rest of our DNA doing? The key to human complexity lies in how these

genes are regulated by the remaining 99% of DNA. A natural follow-up research to the

sequencing of the human genome was to identify all functional elements in the DNA,

especially of those 99% which had non-protein-coding functions.

The ENCODE (Encyclopedia of DNA Elements) project, launched in 2003, has looked
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deeper into this non-protein-coding DNA than ever before, leading to the evidence that at

least 80 percent of the genome is biologically active, with much DNA regulating nearby genes.

Some recent studies have indicated that a majority of DNA regions associated with a particular

phenotypic trait, including ones that contribute to human diseases, lie outside protein-coding

regions [108; 172]. Many of the noncoding sequences are repeated elements; for example,

nearly half of the human genome is covered by repeats [194]. Although some repeats appear

to be nonfunctional, others have played a part in human evolution [40].

Another landmark project was launched in 2008 with the objective of establishing a most

detailed catalog of human genetic variation: 1000 Genomes Project. By reconstructing the

sequence of 2,504 genomes (1,092 in its �rst phase) from di�erent populations around the

world, it described human genetic variation and pointed out its implications for common

diseases studies [1; 2].

Since the completion of the Human Genome Project, describing �linear� genome

sequences, the human reference genome has continued to be updated and re�ned by the

Genome Reference Consortium [83]. When genome sequencing initially started it was

thought that the predominant form of variation was single nucleotide that occur at speci�c

positions � single nucleotide polymorphisms (or SNP). However, subsequent research, such

as the 1000 Genomes Project, showed that large-scale structural variations are more

prevalent than originally thought [2; 54; 104].

Recognizing that some highly polymorphic regions of the genome were insu�ciently

represented in a single reference sequence, led to the need for a reference that includes

common variation. To better represent human diversity, a new graph-like assembly model

was introduced starting with GRCh37 (released in Feb. 2009), which includes three regions

(called loci) with several alternate sequences. The most recent assembly, GRCh38 (released

in Dec. 2013), has a total of 178 loci. We might picture these builds as a primary assembly,

anchored with alternative sequences in regions with complex structural variation [53].

The evolution of the assembly models, with the interaction of several scienti�c �elds, allows

improving our understanding of genomic architecture and its impacts in human development

and disease [54].

2.2 Analysis of genomic sequences

The goal of completely sequencing the human genome sparked a race in the development of

more e�cient sequencing techniques (in accuracy and speed). Improved sequencing techniques

coupled with a continued decline in cost, led to increased throughput of genomic sequenced

data in the last �fteen years. It has motivated and fostered the development of new techniques

for rapid viewing and analysis of the data.

Because DNA sequences contain a large and complex amount of information, the purpose
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of holistically understanding its working requires skills from many diverse �elds. Some of

the disciplines that emerged, and have grown, in the last years are: genome annotation,

which marks biological features in a DNA sequence; comparative genomics, that establish

relationships between genes in otherwise unrelated organisms; and structural bioinformatics,

that predicts the three-dimensional structure of biological macromolecules from the genetic

sequence; just to name a few.

To handle the large quantities of data and probe the complex dynamics observed in

genomic data, computers have become indispensable. Bioinformatics is an interdisciplinary

science that combines biology and computational sciences, in order to conceptualize biology

in terms of the physical-chemistry structures of macromolecules (such as proteins, RNA and

DNA). Apart from dealing with aspects of data management (storage and retrieval), it

applies computational techniques to analyze, and interpret the information in those

biomolecules [122]. Such computational techniques are derived from computer science,

information science, applied mathematics and statistics.

Statistics being the bulk science of this thesis, and genomic sequences the data around

which the proposed methods are developed, this section is dedicated to DNA mappings and

statistical techniques commonly used in the analysis of genomic sequences.

2.2.1 Numerical mapping of DNA

To overcome restrictions imposed on genomic sequences analysis due to their symbolic

nature, several mapping schemes are found in the literature. Most of them convert DNA

sequences onto numerical or vector sequences. However, there is a wide variety of DNA

mappings, ranging from conventional integer sequences to graphical representations, as well

as digital signal processing approaches, just to name a few. Some of the mappings used in

DNA processing do not have a simple numerical interpretation and others do not have

biological motivation. Obviously, the choice of the numerical transformation of a DNA

sequence a�ects how the mathematical properties are revealed, and the capability of

highlighting the biological properties of the sequence.

The mapping of DNA sequences into numerical sequences is done by assigning a numeral

to each of the four nucleotides that compose the DNA sequence. The basic idea behind

numerical characterization is that speci�c gene sequences are generally unique and, therefore,

possess a characteristic signature in its composition and in the nucleotides distribution that

compose it. The analysis of these numerical sequences, when proper transformations are used,

often sheds light on the properties of the original symbolic sequences.

For mathematical purposes, any DNA sequence may be thought of as a sequence of integers

in the set {1,2,3,4}. A transformation of this kind was used by Tsonis and Tsonis [196] in

an attempt to clarify di�erences between coding and non coding sequences. The researchers

applied Fourier analysis over transformed coding (using A = 1, G = 2, C = 3, T = 4) coding,
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non-coding and random sequences, con�rming that DNA coding sequences exhibits a three-

base periodicity. The conversion of symbolic sequences into numerical sequences is, clearly, not

unique. Typically, mappings have a biological interpretation, and should preserve the speci�c

structure of the DNA sequence under study. For instance, the complex number mapping

suggested by Anastassiou [20] re�ects the complementary nature of A�T and C�G pairs, as

A = 1 + i, T = 1− i, C = −1 + i and G = −1− i, where i denotes the the imaginary number.

Via this assignment, the palindromes yield conjugate symmetric numerical sequences that

have interesting mathematical properties. Both representations transform the DNA sequence

into a single numerical sequence.

One of the most popular DNA numerical mapping is the Voss representation [203]. In this

mapping scheme four indicator sequences are considered to describe the presence or absence

of a speci�c nucleotide, with 1 indicating the presence of a nucleotide and 0 its absence.

So, a single DNA sequence is transformed into four binary sequences (see Table 2.1). This

representation has been widely used in many signal processing based methods, for �nding

hidden periodicity in DNA sequences.

Also, graphical methods has been proposed to visually map DNA sequences, using

biophysical and biochemical properties of DNA molecules. Correlations, clustering of

repeats, palindromes and GC�skews can be spotted using those visualization approaches.

For instance, a one dimensional DNA walk, in which a step is taken upwards if the

nucleotide is pyrimidine (C or T) or downwards if it is purine (A or G), was used to study

long-range correlations [145]. This simple plot summarizes the relative occurrences of purine

and pyrimidine nucleotides along a DNA sequence. Variations of purine/pyrimidine and

variations in strong/weak bonds are also visualized in the Z-curve [211], a three-dimensional

representation of genomic sequences. The tetrahedron mapping, in which the four

nucleotides are assigned to the four corners of a regular tetrahedron, was used to study DNA

periodicity [176]. The main application of tetrahedron representation is obtaining

spectrograms of DNA sequences, that can be used to locate repeating DNA sections. Five

distinct numerical representations of the short DNA sequence X = AACTGT are presented

on Table 2.1 .

Another kind of DNA maps are statistical properties based, like the distance between

nucleotides which provides a DNA numerical methodology to explore the correlation structure

of DNA. The inter-nucleotide distances, introduced by Nair and Mahalakshmi [136], converts

any DNA sequence into a unique integer sequence with the same length, where each base

symbol is replaced by the distance to the next occurrence of the same symbol. In case such

a symbol is not found then the in sequence value of that base is the length of the remaining

sequence. The same authors also proposed the binucleotide distance representation, in which

every base is replaced by the distance to the next occurrence of its complementary base [135].

Several other mapping schemes have been proposed and, as expected, no representation
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Table 2.1: Some numerical representations of a short DNA sequence.

Name Numeric representation of X = AACTGT Reference

Integer S = (1, 1, 3, 4, 2, 4) [196]

Complex S = (1 + i, 1 + i,−1 + i, 1− i,−1− i, 1− i) [20]

Voss SA = (1, 1, 0, 0, 0, 0) [203]

SC = (0, 0, 1, 0, 0, 0)

SG = (0, 0, 0, 0, 1, 0)

ST = (0, 0, 0, 1, 0, 1)

DNA walk S = (−1,−1, 1, 1,−1, 1) [145]

Z-curve A tridimensional curve linking points given by [211]

SX = (1, 2, 1, 0, 1, 0)

SY = (1, 2, 3, 2, 1, 0)

SZ = (1, 2, 1, 2, 1, 2)

inter-nucleotide distance S = (1, 4, 3, 2, 1, 0) [136]

binucleotide distance S = (3, 2, 2, 3, 3, 1, 1, 0) [135]

can be considered as the �gold standard�. The literature on this topic is vast. For a review of

some of existing encoding schemes for genomic data representation, see e.g. references [7; 17;

23; 113; 168; 209].

The nucleotide sequence databases, as GenBank, made DNA sequences available in

symbolic format. Prior to applying the statistical analysis techniques, mapping of DNA

alphabet into numerical sequences is necessary using approaches, as those described above.

Some statistical techniques widely used in a DNA analysis are referred to in the next

subsection.

2.2.2 DNA as a statistical universe

In common language (not statistical) the word �universe� can be used with a �gurative

purpose. In such case, it is interesting to regard DNA as an �universe� given the enormous

number of studies developed around it, and of methodologies proposed for its analysis.

In statistics, the universe (or population) represents the entire group of units which is

the focus of the study. The universe is called �nite or countable if it is possible to count its

individuals, and is called in�nite if it is not possible to count the units comprised therein. A

statistical population can also be a conceptualized as hypothetical in�nite population

conceived as a generalization from experiences [123]. From this point of view, the set of �all�

DNA sequences is an in�nite statistical universe. The use of powerful statistical methods,

provided by computer science algorithms, improve the likelihood of understanding the

quaternary code printed in DNA sequences, and allows for the biological interpretation of

the collected data.

Statistical analysis of DNA sequences is a prime procedure, immediately after the

obtention of the structured assembly of the sequencing. The following are examples of

common initial analysis: characterization of nucleotide frequencies, of chemical families
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(purines and pyrimidines), of codons, or of speci�c patterns of biological interest (motifs);

analysis of the distribution of nucleotides or words of interest [147]; characterization of

correlations [31; 105; 119] and periodicities [80]; the GC�content, i.e. the percentage of

nucleotides that are either guanine or cytosine [93; 142] and statistical modeling [154];

statistical di�erentiation between coding and non-coding regions [112]. Many applications

resort to statistical methodologies combined with other methodologies of applied

mathematics, such as Information Theory (mutual information, entropy), stochastic

processes (Markov chains), or spectral analysis (Fourier transform), among others.

The works of Afreixo [3] and Deusdado [61] are excellent references, in Portuguese

language, for an overview of the large number of mathematical methodologies that have

been commonly applied in DNA sequence analysis. Some of them are referred below.

Linguistic analysis Quantitative linguistic analysis for DNA sequences has been studied

since the early days of biological sequencing. The goal is to obtain an indication of the relative

frequency or magnitude of a linguistic form [158]. Considering that DNA sequences represent

texts of a largely unknown language, and de�ning words (oligonucleotides) as strings with

strong internal correlations, Brendel and others [39] concluded that linguistic analysis has

power to identify words with biological meaning in nucleotide sequences. In literary texts,

keywords are more correlated and clustered than common words. Some genome elements

behave similarly, forming clusters. This is the case of genes and CpG islands, which are

shown to be clustered through the genome [43; 64; 93].

An early systematic analysis of statistical properties of coding and noncoding DNA

sequences has been performed by Mantegna and others [124], by adapting two approaches

developed for the analysis of natural languages, the Zipf's law, and that of symbolic

sequences, the Shannon entropy. In a recent paper [133], the level of importance of words in

DNA sequences is de�ned using the q-entropy, a key concept of nonextensive statistical

mechanics.

The statistical models of language analysis estimate the probabilistic distribution of the

components (words or symbols) that integrate a sequence of a given language. Nowadays they

are used by all of us when we type an SMS message in the mobile phone taking advantage of

the suggestions provided by the software to �nish the words of the message [61].

In spite of the fact that several studies point to analogies between DNA and verbal

languages, it is postulated that the language of DNA is not comparable to natural human

languages [114; 197]. For instance, the same sequence of letters can be translated into

distinct messages, depending on the reading frame (see Figure 2.7). Thus, DNA is a peculiar

�language� whose intrinsic properties are progressively captured by research.
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Word frequencies The study of word frequencies is one of the topics covered in

(quantitative) linguistic analysis. In 1932, George Zipf made an empirical observation on

some statistical regularities of human writings [214]. Zipf's distribution describes a number

of phenomena that are distributed in a very skewed way. It not only approximates word

frequencies in texts, but also letter frequencies, city sizes, income ranks, and many other

rank versus frequency graphs [186]. In fact, Zipf suggested that this law translates a natural

phenomenon of the human behavior, from the individual and social point of view, which he

named the Principle of Least E�ort [215].

In the particular case of languages or long texts, Zipf's law states that the frequency of

any word is inversely proportional to (an exponential form of) its rank: fr ∝ 1/rα, where

fr is the frequency of the r-ranked word and α is a positive parameter. Regression analysis

is applied to discover exactly the coe�cient alpha for a particular language. In the case of

α = 1, the rule states that the most frequent word occurs twice as often as the second most

frequent work, three times as often as the subsequent word, and so on until the least frequent

word. There is an obviously relation between Zipf's principle and the Shannon entropy: for

a �nite number of words, a uniform distribution over word frequencies (α = 0) leads to the

largest entropy; the more skewed the word frequencies (higher values of α), the lower the

entropy.

In spite of the fact that Zipf's model had become the most prominent statement of

statistical linguistic, researchers have suggested that this model is unsatisfactory to describe

the frequency of words distribution in a text.

Two early works that studied statistical features of words in DNA sequences suggested,

on the basis of Zipf rank frequency data, that noncoding DNA sequence regions are more like

natural languages than coding regions [124; 125]. These statements were highly contested

by some researchers. For instance, Niyogi and Berwick [139] point that an empirical �t

to Zipf's law cannot be used as a criterion for similarity to natural languages; Konopka and

Martindale [109] argue that a reasonable conclusion would be that both coding and noncoding

regions �t Zipf's law rather poorly.

Several studies supported the idea that other distributions describe better the frequency

of DNA words than Zipf's law. For instance, Borodovsky and McIninch [36] have suggested

a logarithmic function to model the rank frequency of codons (words with 3 symbols) in

coding DNA sequences; Martindale and Konopka [127] advocated that oligonucleotide rank

frequencies in both protein-coding and non-coding regions from several genomes follow a Yule

distribution.

The number of word occurrences in a random text has been intensively studied, which

consequently brings new approaches to the study of genomic words frequency. Some studies

carried out in the context of probability theory are referred in to Section 2.3.

DNA word frequencies are simple, yet e�ective, statistical tools to capture information
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about structural patterns. The DNA sequences are not homogeneous and their heterogeneity

is re�ected at various levels, such as the GC�content, the CpG islands, the asymmetry of

A-T. Statistics of the counts of such elements are usually involved in the prediction of genes

or coding regions and, within these, in distinguishing exons from introns. Word frequency

analysis has potential to reveal biologically signi�cant features in DNA sequences, such as

detecting the structural signature of a genome, as well as identifying phylogenetic relationships

among di�erent species [48].

Statistical analysis of the (ordered) symbols that make up a gene or a genome can also

be used to construct probabilistic models of prediction. A classical gene-�nding tool,

GeneMark [35], incorporates concepts and algorithms from computational statistics, such as

stochastic modeling of sequences using Markov models and Bayesian statistics.

Correlation studies The existence of periodicity in nucleotide sequences is recurrent in

natural DNA, especially in eukaryotic genomes. The characterization of correlation structures

in DNA sequences has been the subject of many studies. The correlations range in size, from

codons, with 3 bp, that encodes the amino acids comprised in proteins, to long correlations, of

about 106 bp, that occur in non-coding regions [97; 99]. Di�erent techniques including mutual

information functions [90; 111], autocorrelation functions [60; 98], power spectra [120; 208] or

Zipf analysis [124; 179] are used for the statistical analysis of correlations in DNA sequences.

The general result that emerges from these studies is that DNA statistics is characterised

by short-range and long range correlations which are linked to the functional role of the

sequences. Speci�cally, while coding sequences seem to be almost uncorrelated, noncoding

sequences show long-range power-law correlations typical of scale invariant systems.

Sequence comparisons In the �eld of molecular biology, many consensus sequences are

known. The comparison of sequences and the measurement of recurrent patterns are

fundamental for phylogenetic inference, biological information compression, sequence

segmentation, or motif discovery. Thus, it is important to have tools that allow �nding

occurrences of known patterns in new sequences.

Methodologies used in sequence comparison are oriented to two main cases: searching for

exact patterns and searching for approximate patterns. The latter intends to identify segments

of the biological sequences that present imperfect copies in other regions of the genome or in

di�erent genomes. There are several degenerations that are acceptable in molecular biology,

since motifs may show some sequence variation without loss of function. Therefore, the search

for approximate patterns is of extreme relevance in the functional analysis of sequences.

Tradicional methods for computing the similarity scores between sequences consist of

applying sequence alignment methods. A sequence alignment is a way of organizing primary

structures of DNA (or RNA or protein) to identify portions of successive nucleotide that
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are common in a pair of sequences or more than two sequences. The former is known as

pairwise sequence alignment and the latter as multiple sequence alignment. Some uses of

alignments are: detecting relationships between sequences; pinpointing conserved regions;

de�ning functional motifs; prediction of protein structure; evolutionary biology, both within

and between population comparisons.

Aligned sequences of nucleotides are typically represented as rows within a matrix. Gaps

are inserted between the �residues� so that identical or similar characters are aligned in

successive columns. There are two basic aspects to consider in this approach: the alignment

itself and the scoring used to produce it. Several types of scores may be de�ned for a

pattern. Deterministic scores look for either sequence-match or non-match, while

probabilistic models give a probability between 0 and 1, and it is necessary to set some

threshold on what should be considered a match or to include these matching probabilities

in the score of the pattern. Scoring functions are sometimes based on statistical

signi�cance [38]. Comprehensive reviews on alignment methods may be found

in [30; 49; 65; 204].

An alternative to the alignment methods are alignment-free methods that can be divided

into two main categories: methods based in word frequency (numerical similarity), and

those that do not require resolving the sequence with �xed word-length segments (graphical

similarity) [202]. The word frequency analysis, correlation analysis, and study of

GC�content, referred to above, belong to the former category.

The �rst group of alignment-free methods includes procedures based on metrics de�ned

in coordinate space of word-count vectors, i.e. L-dimensional vectors de�ned by the L =

4k counts of each word of length k (called L-tuples) [202]. These methods quantify the

dissimilarity between sequences by measuring the dissimilarity between the corresponding

L-tuples. Some of the measures applied between the count vectors are Euclidean distance,

correlations, Kullback�Leibler discrepancy, or the angle between them. An early method

that does not rely on frequency vectors, and that was shown to be an e�ective alternative

to alignment methods, is based on the distance between transition matrices, after sequences

have been modeled as Markov chains.

On the contrary, the second category corresponds to techniques that do not involve

counting segments of �xed length, being scale-independent. They include the use of

Kolmogorov complexity theory and chaos game representation [202].

Alignment-free sequence analysis have been shown to be an e�ective alternative to

alignment methods, and a growing number of successful applications have been reported on

functional annotation and phylogenetic studies.

Identifying patterns There are two fundamentally di�erent tasks related to identifying

new patterns in biological sequences. One is called pattern matching and the other is called
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pattern discovery.

Pattern matching involves �nding occurrences of a known pattern. Many consensus

sequences (a common sequence shared among a family of similar proteins) are known in

biology and it is important to have tools to �nd occurrences of known patterns in new

sequences. This topic is closely related with �Sequence comparisons� previously discussed.

In pattern discovery, the task is to identify a new pattern in a set of several sequences.

Identi�cation of signi�cant patterns and classi�cation of sequences are two main issues

addressed by pattern discovery. The former consists in discovering patterns that are unlikely

to occur by chance and would therefore probably have functional or structural signi�cance,

and the latter consists in identifying motifs that characterize members of some sequence

family and distinguish them from non-members [38]. After the motif characteristics of a

family is found, it could be used as a classi�er for new sequences. Pattern discovery and

multiple sequence alignment are closely related tasks.

The detection of patterns in genomic data is commonly performed using methods of

supervised and unsupervised learning (e.g. neural networks and support vector machines),

clustering (e.g. self-organizing maps and k-means) and association rule mining (e.g. distance

based association rules), among others. In a review article, Sandve and Drablos [171] survey

more than 100 published algorithms for motif discovery.

2.3 Random counts and waiting times

The number of word occurrences in a random text has been intensively studied, with many

concurrent approaches. From the statistical point of view, studying the distribution of the

random count of a pattern may be a di�cult task. Problems connected with waiting times and

intersite distances between patterns are also very popular in the classical theory of probability.

They can be formulated with no need of di�cult notions or technical terms. However, their

solutions are far from being trivial. Useful reviews of di�erent approaches on random word

occurrences can be found in [121; 140; 159; 161; 165], and reviews on waiting times can be

found in [26; 79; 89].

Some of the solutions that have been suggested are reported below.

2.3.1 Word frequency

The comparison between frequencies observed in real sequences and in random sequences

allows evaluating the exceptionality of a given word. Finding over- or under-represented

words in biological sequences, to discover �relevant� words, is a common task in genomics

(see e.g. [126]). A fundamental question that naturally arises is how to de�ne the expected

frequency of occurrence of the word in a random scenario. Almost one century ago, Yule [210]

conjectured that the correct distribution for word frequencies would be a compound Poisson
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model, but not propose any mathematical distribution law. Fifty years latter, Sichel [175] did

has introduced families of compound Poisson distribution functions to �t word frequencies.

This question is addressed in several studies, where various types of patterns, and various

assumptions on the counting overlaps, are considered. Among a wide range of possible models,

a popular choice consists in considering homogeneous Markov models of �xed order. This

choice is motivated both by the fact that the statistical properties of such models are well

known, and that it is a very natural way to take into account the sequence bias in letters or

words [141].

Let S = X1X2 . . . Xn be a sequence of letters taken from the alphabet {A,C,G, T} with
the four letters corresponding to the four bases of DNA, and w be a word in S, i.e. a

subsequence of S. The sequence may be generated either according to the Bernoulli model

or the Markov model. In the case of the Bernoulli model, every symbol Xi in the sequence

is generated independently of the other symbols, i.e. the symbols are generated randomly by

a memoryless source. Rather, in a Markov model the probability of each symbol occurrence

depends on the previous symbols. The expected frequency of a word, N(w), in case of i.i.d.

variables Xi, has been widely considered in the literature. In case of rare words, i.e. if the

expectation of N(w) is bounded when n increases, the number of non-overlapping occurrences

of a word approximates the Poisson distribution (see e.g. [51; 75]). This result was extended to

the more general case in which the sequence S is generated by a Markov chain, showing that

the occurrences of rare words can be approximated by a compound Poisson variable [173].

In particular, it reduces to a Poisson variable if the word w cannot overlap itself. Several

asymptotic approximations are reported in the literature, the most popular of which are

Gaussian approximations [146; 155] and Poisson approximations [86; 88; 160].

Exact methods are based on a wide range of techniques like Markov chain embeeding,

generating functions, combinatorial methods, or exponential families [22; 46; 76; 180; 183].

Guibas and Odlyzko [92] were the �rst to de�ne a generating function to determine the exact

probability that S contains at least one occurrence of w. Such functions were able to deal with

the presence of substitutions, insertions, and deletions, if the characters of S are generated

independently.

2.3.2 Distance between words

The statistics of separations between consecutive words is a very useful tool to isolate

relevant terms from generic ones. In general, the former will tend to cluster themselves, as a

consequence of their high speci�city (attraction or repulsion), while the latter ones will have

a tendency to be evenly distributed across the whole text [147].

Repeats, distances between consecutive patterns and waiting times, are closely related

topics. The law distribution of waiting times between successive occurrences has been

studied by Li [118] and Gerber and Li [84] in the independence case, using martingale
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methods. Blom and Thorburn [33] also study the problem in the independence case, making

connections with Markov renewal theory. The combinatorial methods of Guibas and

Odlyzko [92] are particularly e�ective, having been extended by Chrysaphinou and

Papastavridis [50] by considering sequences generated by a markovian process.

There are numerous treatments of the pattern matching problem by probabilistic

techniques. For instance, Robin and Daudin [162; 163] and Stefanov [182] provided the

exact distribution of the distance between occurrences in Markov chains. There also exist

Poisson processes or compound Poisson processes (for overlapping occurrences) which are

more e�cient than exact approaches in providing the signi�cance of inter-word distance (see

for instance [164]).

One of the most general techniques in waiting times studies is the Markov chain embedding

method introduced by Fu [74], which has been further developed by Fu and Koutras [73],

Antzoulakos [22], Fu [77] and Chang [78]. In this approach, the process of reaching a pattern

is modelled by a Markov chain, whose states record the progress towards achieving it (with

actually reaching the pattern being an absorbing state). The approaches of Stefanov and

Pakes [180] and Stefanov [181] also use Markov chain embedding, though their method di�ers

from Fu's by introducing the exponential family methodology. In Glaz and others [87] and

Pozdnyakov [151] one can �nd an application of the gambling team method to the investigation

of occurrences of patterns in Markov chains.

The statistical and probabilistic properties of words in sequences were systematized and

reviewed in [159], with emphasis on the deduction of exact distributions and the evaluation

of its asymptotic approximations.

2.4 The inter-word distance distribution

The global inter-nucleotide distance mapping, proposed by Nair and Mahalakshmi [136],

converts any DNA sequence into a numerical sequence, where each number represents the

distance of a symbol to the next occurrence of the same symbol.

Recognizing the potential of inter-nucleotide distances, but realizing that they do not

explore the individual behavior of each nucleotide, Afreixo and others [5] have proposed a

new methodology based on this mapping transformation. They split the global distance

sequence into four inter-nucleotide distance sequences, introducing a new approach to explore

DNA correlation structures that simultaneously allows exploring the individual behavior of

each nucleotide. The inter-nucleotide distance mapping was then extended to the case of

oligonucleotides [29], obtaining the inter-word distances.

Inter-word distance sequence The inter-word (inter-w) distance sequence, dw, is the

sequence of di�erences between the positions of the �rst symbols of two consecutive
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occurrences of that word. For instance, in the short DNA segment

s = AAACGTCGATCCGTGCGCG

the inter-CG distance sequence is dCG = (3, 5, 4, 2). Note that the concept makes sense only

if the number of occurrences of w is at least two. When discussing distance sequences, this

will be tacitly assumed.

For a given word w, the inter-word distance sequence, dw, transforms the nucleotide

sequence into a numerical sequence with length equal to the number of occurrences of w

minus one. The set of all inter-w distance sequences, for all possible words w of a given �xed

length, provides a reversible numerical representation of the original DNA sequence.

Inter-word distance distribution For some practical purposes, distance sequences seem

somewhat redundant. In many cases, we care for how often a certain value occurs in the

sequence, but not for the speci�c positions that the value occupies in it. This leads to the

inter-word distance distribution.

To exemplify how this distribution translates di�erent behaviors of a word, let's consider

a word w and a sequence where it occurs eleven times. The length of the inter-w distance

sequence will be ten. If the word occurrences are evenly distributed (say, every 9 nucleotides),

the inter-w sequence will consist of the integer 9 repeated ten times:

dw = (9, 9, 9, 9, 9, 9, 9, 9, 9, 9).

The plot of dw will of course have only one peak. However, if the distances between the

occurrences of w are randomly but uniformly distributed, one could have inter-w distance

sequences such as

dw = (7, 6, 6, 7, 8, 9, 8, 9, 7, 8)

which tend to have �atter plots. Finally, a situation where w appears in small clusters

separated by a relatively large distance could yield distance sequences such as

dw = (9, 9, 9, 50, 9, 9, 9, 50, 9, 9)

which has multiple peaks. It is easy to produce many other distance sequences and interpret

them in terms of their empirical distributions. Despite being more concise than the original

sequence, this distribution yields valuable insights about the original sequence and can

moreover be used to compare sequences.

Distance distributions are related with the linear distribution of words along the genomic

sequence, and are therefore related with its primary structure. Under the current knowledge

about DNA structure, it is acceptable to hypothesize that some features of the distance
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distributions might be related to the secondary structure of DNA.

2.4.1 Initial exploratory analysis

Every researcher who is confronted with the observation of a large amount of data is familiar

with the oppressive need to synthesize or condense the results. Hence the importance of

applying statistical methods, to express relevant information contained in large amounts of

data. This assertion was already mentioned by Fisher in 1925 in its hugely in�uential text [69].

Some decades latter, Tuckey published a book describing a set of new statistical techniques

for �exible probing of data, which he coined as Exploratory Data Analysis [198].

Some exploratory data analysis techniques can be traced back to earlier authors, for

example, to Francis Galton who emphasized order statistics and quantiles [81]; however,

there is no doubt that it was Tukey who greatly developed and promoted the use of

exploratory data analysis. Today, almost all data analyses are performed with the help of

computers, and one of the most common uses of any statistical package is data exploration.

Exploratory data analysis, or EDA for short, employs a variety of techniques:

non-graphical methods, that generally involve calculation of summary statistics; graphical

data visualization methods, such as boxplots, histograms, scatter plots, and residual plots;

dimensionality reduction methods, such as principal component analysis and cluster

analysis; and also self-organised maps, just to mention a few. A common goal of all these

EDA methods is to �nd insights that were not evident or are worth investigating.

An initial exploratory analysis of inter-word distance (iwD for short) distributions

computed from the reference human genome, reveals some global features that are herein

described.

A large variation exists between the maximum iwD of words of equal length. For instance,

the maximum distance observed between consecutive TGG's words is around 5 thousands,

while the maximum distance observed between consecutive GGC's is around 37 thousands.

Overall, as the word length increases, the larger are the maximum iwD values. Since the

maximum iwD value corresponds to the largest domain value of the distribution, longer tails

are expected as the word length increases. Figure 2.13 displays plots of f
w

D
for three selected

words, namely, w = AT , w = ATC and w = ATCG.
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Figure 2.13: Plots of inter-word distance distributions (k < 5). The maximum distance
displayed correspond to the 99th percentile of the corresponding distribution.
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The iwD observations have extremely skewed distributions, with short distances being

much more frequent than longer distances. In the case of longer words, however, it may

occur that speci�c longer distances have higher frequency of occurrence far exceeding that of

neighboring distances. In those cases we refer to those distances/frequencies as a peak. Indeed,

while iwD distributions associated with words of length k < 4 have frequencies not too far

from a decreasing curve, those of longer words display a most pronounced spiked behaviour

(see �gure 2.14).
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Figure 2.14: Plots of inter-word distance distributions (k = 5). A pronounced
spiked behaviour is observed in some distributions. The maximum distance displayed
corresponds to the 99th percentile, except for w = CAACG and w = CGATC (whose
corresponding distances are around 40000).

The distributions of distances between words, together with the word frequencies, are the

object of study of this thesis. The next Chapter describes the research questions put forward

for this research study.



Chapter 3

Research pathways and questions

DNA word analysis topics include, but are not limited to, the testing of second Charga�'s

parity rule and its extensions, the detection and prediction of patterns, motifs, regulatory

elements, functional and structural elements. The investigation of such topics is carried out

through a variety of methods, such as pattern recognition and alignment-free methods, as

mention in Section 2.2.

The identi�cation of words with an abnormal distribution pattern throughout the genome

may facilitate the deciphering of the DNA code, as pointed out by Trifonov [195]. For instance,

the discovery of the striking repetition of some dinucleotides with a period of about 10.5

nucleotides, remained a peculiarity until its meaning became clear. Later, the prevalence of

that structure was associated and ascribed to the formation of nucleosomes, a DNA packaging

structure in the chromatin (see Section 2.1). Procedures based on inter-word distances have

already been found useful to study genomic sequences, e.g. to distinguish between coding and

non-coding regions [29], to detect CpG islands [6] and to distinguishing between species [5].

These studies have also showed that the information contained in the distance distributions

of the genomes of di�erent organisms can be traced back to evolutionary patterns.

In view of the above, we consider that exploring the inter genomic word distance

distributions, as a mathematical descriptor of DNA sequences, is a relevant topic of study.

Our motivation is to uncover pattern (ir)regularities in the DNA, regarding the linear

distribution of words along the sequence. Our strategy will be based on the comparison of

distributions.

After an exploratory study we will focus on the development of models that are able to

adjust the distribution of distances, providing a tool for comparative study of genomic

sequences (word-by-word or globally). In a word-by-word analysis, we will explore the

distance distributions potential to obtain a classi�cation of the words in groups. For this

purpose, we will explore the advantages and disadvantages of using di�erent measures of

dissimilarity. Based on inter-word distances, we also intend to construct a method that

should allow obtaining genomic signatures, which have the capacity to discriminate between

37



38 3.Research pathways and questions

species and to highlight their evolutionary relation. One of the key topics of our research is

the establishment of procedures that capture atypical distributions.

Summing up, throughout this thesis three major topics will be discussed: evaluation of

dissimilarities, identi�cation of outliers and classi�cation. These topics, clearly interrelated,

will be developed in the context of probability distributions, having as application problem the

distributions of distances between genomic words. Existing methodologies will be explored

and new procedures will be proposed.

3.1 Outlier detection

3.1.1 State of the art

A highly explored topic in genomic word analysis is the identi�cation of words that show

an �important� deviation between the observed frequency and the frequency predicted by a

�xed model. Such words are usually called contrast words, meaningful words, anomalous

words or exceptional words [173]. To refer to them as atypical or outlier words is equally

appropriated. A standard approach to detect such outlier genomic words relies on the study

of their frequencies.

There is no rigid mathematical de�nition of what constitutes an outlier. Roughly speaking,

an outlier is an observation that appears apart from the bulk of the observations or from the

expected value predicted by a model. Assessing the outlyingness of an observation depends

both on the feature that is under study and on the dissimilarity measure applied in such

study. Obviously, an observation pointed as outlier in relation to a feature, may exhibit a

perfectly usual behavior as relates another characteristic.

The identi�cation of outliers is an important aspect of any statistical analysis of data, see,

for instance, Barnett and Lewis [28] for a general review on the topic. Outlier detection is a

primary step in many scienti�c research studies, due to the strong impact that they may have

on the results. In other cases, however, outliers are sought not for the purpose of eliminating

them, but for obtaining critical information. And this is, in general, the motivation behind

the outlier detection in the context of genomic words.

In DNA word analysis, outliers themselves may have some interesting biological

properties [39], and it may be useful to detect outlying sequences [148]. Many relevant

studies show that these words are of interest, due to their possible link with positive or

negative selection pressures during evolution [42; 116].

A particular feature of interest, in the study of genomic words, is their spatial distribution

along a DNA sequence. The distribution pattern of a word may be characterized by the inter-

word distances. The search for outlying words in genomic data by inter-word distances and

by word frequency are obviously related. However, a plain distinction between the two kinds

of exceptionality exists. The next paragraph puts in evidence distinctions that are worth
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highlighting.

Over-represented words are generally related to repetitive elements, which may or not have

some known biological function. The disposition of repetitive elements, found in genomes,

consists either in tandem repeats (arrays of copies which lie adjacent to each other) or in

repeats dispersed throughout the genome. This latter case is related with words that are over-

represented, but not necessarily at the same distance from each other. Thus, their distance

distributions may not point to any strong irregularity. Conversely, a word with a perfectly

ordinary overall frequency, may display a preference to repeat itself at an exact distance. This

behavior may not be detected by word frequency procedures alone. Indeed, two words with

the same frequency may exhibit very distinct patterns of distribution. Consequently, word

frequency and distance between words must be considered distinct issues, deserving separated

research.

If the concept of multivariate outlier is not strict, the concept of outlier distribution (as

a curve) could be even more �exible. The development of methods for the detection of

outlying curves is challenging and has been a hot topic under study, in the last ten years,

e.g. [24; 68; 100; 101; 167; 185]. It is intricate and nontrivial. Distributions may display

outlyingness over a small part of their domain, or be outlying on a substantial part of their

domain. Moreover, when dealing with a set of distributions, an outlying distribution may

either lie outside the range of the vast majority of the data, or may be within the range of the

rest of the data but having a very di�erent behaviour. Thus, the detection of atypical word

distributions is a challenging task.

3.1.2 Our questions

To explore the word-distances distribution as a mathematical descriptor of DNA sequences,

and motivated by the detection of words with an atypical distribution along the genome, we

address the following issues:

(Q1) Outlying distances Do some words reveal a preference for occurring at a given

distance from each other? If yes, what words and what distances are those?

Words that present such preference are not necessarily over-represented words. We focus

on the problem of identifying words that show a preference for occurring at a exact distance

(single distance), or around a distance (cluster of distances) from each other. To evaluate the

exceptionality of the frequency of a given distance it is necessary to have a reference value to

compare it with. Two fundamental questions that arise are then the de�nition of a background

model and that of a threshold value to assess the di�erence between the observed frequency

and its predicted value.

As a remark, note that the occurrence of favored distances is related with distance

distributions which display outlyingness over a small part of their domain.
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(Q2) Reference distributions: Which model to use to set the expected frequency of

inter-word distances?

Random backgrounds could be used as references to distinguish distances that are found

�much more� frequently than expected merely by chance. From the perspective of molecular

evolution, DNA sequences re�ect both the results of random mutation and of selective

evolution. It has been proposed that the subtraction of the random background from the

simple counting result highlights the contribution of selective evolution [157]. Hence, a

subsequent question concerns the de�nition of such reference distribution (e.g. Bernoulli and

Markov models).

Another possible approach is to consider a set of distributions (for example, those related

with all words of the same length) and de�ne a kind of �mean distribution� that re�ects the

global behaviour of the data set. In this case, the distance frequency of a word is compared

with the mean frequency (of that distance) of all words of the same size.

(Q3) Outlying distributions: Which criteria should be used to �ag a distance distribution

of a given word as exceptional?

To address the problem of identifying genomic words with not only one atypical frequency,

but an atypical distribution, a concept of outlying distribution is needed. Should distance

distributions with only a spiked frequency be considered outlying? Or should it be mandatory

to have an abnormal behaviour on a substantial part of its domain? In either case, such

identi�cation requires a reference distribution to compare with. Words with an outlying

distribution could be called exceptional words.

Since there is a large quantity of genomic words (for each word length k there are 4k

distinct words), a statistical procedure to identify exceptional words automatically is of utmost

importance.

(Q4) Potentialities of identifying exceptional words: Could exceptional words be

informative enough to distinguish between species? Could they point out unusual-structural

conformations of DNA?

The distance between a real genomic sequence and a random sequence constrained to the

Charga�'s �rst parity rule, may re�ect natural evolution of the species. Indeed, Afreixo and

others [5] used the inter-nucleotide distance to build dendrograms, which could be interpreted

as phylogenetic trees, and concluded that they are in accordance with the expected similarities

between species. Motivated by this result, we wonder to which extent the exceptional words

could characterise species. Therefore, the de�nition of species signatures based on exceptional

word pro�les will be explored.

The distance distributions capture inherent features of the primary structure of the DNA.

We question ourselves if they would have potential to capture features also related to the

secondary structure of DNA, in particular unusual-structural conformations of DNA. Thus, we

will explore features of distance distributions that might be related with cruciform structures.
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The over-representation of a certain distance between a pair of reversed complementary words

means a preference for such distance, which, in turn, may point to an increased likelihood of

cruciform occurrence at the corresponding locations. Thus, the identi�cation of exceptional

words, regarding the distance distribution between reversed complements, will be addressed.

3.2 Similarities: Exploration of Symmetries

3.2.1 State of the art

Charga�'s �rst parity rule states that in a portion of double stranded DNA the amount of

di�erent types of nucleotides follows a speci�c ratio, namely, the number of adenines is exactly

equal to the number of thymines, just as the number of cytosines equals that of guanines, that

is, %A = %T and %C = %G. This phenomenon is fully explained by the Watson and Crick

double helix model. Interestingly, the relationship between A's and T's and between C's and

G's remains almost unchanged in each of the DNA single strands, in a long enough strand.

Traces of strand symmetry were �rst discovered by Charga� and colleagues [170]. Therefore,

strand symmetry is often referred to as Charga�'s second parity rule, in the literature.

Some studies focusing on bacteria and eukaryotic genomes have con�rmed this

symmetry, not only between complementary nucleotides, but also between short

oligonucleotides, meaning e.g. that AGC trinucleotide1 tends to be as frequent as its

reversed complement GCT along a DNA strand [19; 25; 70; 152; 156]. The marked similarity

of the frequencies of any oligonucleotide to those of the corresponding reversed complement,

within a single strand, is the so-called strand symmetry phenomenon.

Strand symmetry is strongly supported by di-, tri- or higher order oligonucleotides, for

su�ciently long genomic sequences. However, it may drop sharply with the increasing of

oligonucleotide length; and the smaller the genomic sequence the more likely it may disrupt

the rules at some degree [138]. The literature contains several examples where those rules

are broken, such as some mitochondrial DNA and also many viruses [132; 138; 207]. The

existence of local violations of the Charga�'s second parity rule is also well-known, meaning

that genomes may be locally less compliant with the parity rule than the average genome,

e.g. there exists an excess of G over C and T over A on the coding strand within most genes.

Despite the ubiquity of the strand parity, there is no consensual explanation for the

occurrence of this phenomenon. Several theories have emerged evidencing two types of

models: the conservation of DNA patterns and the evolution of DNA. In this second model,

parity is attributed to mechanisms such as stem-loops [71], duplication followed by

inversion [25], invertions and inverted transpositions [19], and statistical mechanics

equilibrium [94].

The characterization of the symmetry phenomenon has been object of study of several

researchers. Powdel and others [150] locally analyzed the frequency of oligonucleotides along
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a single strand of DNA, and concluded that the di�erences between the frequency of reverse

complementary words are not statistically signi�cant. Afreixo and others [4] study the single

strand symmetry in the human genome by means of an overall frequency framework; they

found evidence that the strand symmetry is statistical signi�cant for words of length up to

six nucleotides. Further analysis of their results, suggested that, although strand symmetry

partially ceases for longer words, it would persist for words of length up to nine in the human

genome [212]. Shporer and others [174] empirically observed that the value k up to which

the single parity rule holds true in a sequence of length n, is about 0.7 ln(n) (for the human

genome, this value is ten). These authors also showed that the strand symmetry only holds

for reversed complement words pairs and not for complementary words or any random word

pair.

In several real sequences, the similarity between the frequency of each word and that of

the corresponding reversed complement is larger than the similarity with the frequency of any

other word [9; 174]. If a random generator is constrained to respect the strand symmetry

phenomenon, then not only reversed complements will have the same prevalence. Rather,

every word comprising the same total number of A's or T's, e.g. AAGC and GTAG, will

also be equally prevalent. So, it would be interesting to analyse the similarity between the

frequency of words with the same composition, in terms of A+T , in real genomes. The set of

all words with the same length that satisfy such condition is called an equivalent composition

group (ECG).

The symmetry between words with equivalent composition was study by Afreixo and

others [8]. It was observed that the human genome presents a kind of exceptional symmetry

phenomenon, i.e. genomic words frequency is generally more similar to the frequency of its

reversed complement than to the frequencies of other words in the same ECG. This trend was

not observed in some words with longer lengths (≥ 5).

The existence of words whose frequency is more similar to the frequency of its reversed

complement than to the frequencies of any other word in the same ECG, is conceptualized

as an exceptional symmetry phenomenon. Further results about this phenomenon in other

species and the potentiality of measures of exceptional symmetry measures to compare the

evolutionary relation between species were published in [9; 10; 11; 12].

3.2.2 Our questions

To characterize the similarity between the distance distribution of pairs of words of the same

length and, in particular between words that are reversed complements, we address the

following issues:

(Q5) Exceptional word symmetry: How to measure the contribution of each word to

the global strand symmetry e�ect?
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The literature contains several measures to evaluate the symmetry phenomenon in

nucleotide sequences. To the best of our knowledge only global measures were addressed.

However, the analysis of exceptional symmetry by word was not studied in detail. We intend

to de�ne a measure to evaluate the e�ect of symmetry phenomenon in a word (and in its

reversed complement) that takes into account the average frequency deviation between any

two words in the same ECG.

(Q6) Distributions similarity: How to assess distributions similarity?

To assess the similarity between two distance distributions, homogeneity and e�ect size

measures could be applied. A simple way to explore the degree of dissimilarity between all

pairs of distributions is to use a dissimilarity matrix and apply an hierarchical clustering

method. Indeed, the �rst levels of clustering will be formed by the most similar word pairs.

This involves two implicit questions: what dissimilarity measure and what linkage criterion to

use? Two earlier dissimilarity measures are the Euclidean distance and the Kullback-Leibler

divergence. Are they adequate measures for the detection of discrepancies between words?

(Q7) Word symmetry, in distributions: How similar is the distance distribution of a

word and that of its reversed complement?

Due to the close relationship between the frequency of words that are reversed

complements (strand symmetry phenomenon), we are particulary interested in studying

(dis)similarities among the distribution pattern of such words. In random sequences,

generated under an independent symbol model where complementary nucleotides have equal

occurrence probabilities, it is expected that reversed complements have similar inter-word

distance distributions. Is that still true in real sequences? If �not� or �not always�, another

question emerges: if a word has an atypical distance distribution, would its reversed

complement have an atypical distribution as well? This is one of the linking topics between

the detection of outliers and the study of word symmetries in distance distributions.

To evaluate the similarity between de distribution patterns of reversed complementary

words, a measure of dissimilarity is needed, which leads us to the previous question.

(Q8) Exceptional word symmetry, in distributions: Is there homogeneity between

distance distributions of words in the same ECG?

In random sequences, generated under an independent symbol model where

complementary nucleotides have equal occurrence probabilities, it is expected that reversed

complements have similar distance distributions, and the same is expected between the

distance distribution of words belonging to the same ECG, if restricted to distances greater

than the word length (due to word-structural dependencies). However, the prevalence of

exceptional strand symmetry phenomena in several real genomic sequences, including the

human genome, leads us to suspect that the answer will be �no�. Then, a natural follow-up

question arises: is the distribution pattern of a word more similar to that of its reversed
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complement, than to that of any other word in the same ECG? Moreover, are distance

distributions of words in the same ECG more similar to each other than to those in other

ECG?

Again, a measure of dissimilarity is needed, which conducts the research back again to

question Q6.

3.3 Clustering: genomic words

3.3.1 State of the art

Cluster analysis is of considerable interest and importance in the �eld of bioinformatics, either

by clustering proteins or by clustering genes (expression pro�les). A related task, which

has been fuelled by the challenge of interpreting genome sequences, is to use the resulting

information for sequence classi�cation [96].

Historically, protein families have been identi�ed based on multiple alignment. In this

case, input data is composed by nucleotide sequences and the task is to �nd the most concise

pattern which is present in all or most sequences. Most of the clustering approaches adopt a

similarity value based on sequence alignment scores.

Clustering is the process of grouping similar entities together. The goal of this

unsupervised machine learning technique is to �nd similarities in the data point and group

similar data points together. The clustering of genes is used to identify groups of genes with

similar patterns of expression, aiming at answering questions about how gene expression is

a�ected by various diseases and which genes are responsible for speci�c diseases [107]. Gene

expression data is usually represented by a matrix with rows representing genes, columns

representing samples (e.g. various tissues, developmental stages and treatments), and each

cell containing a number characterizing the expression level of the particular gene in the

particular sample [37].

In clustering, no prede�ned reference vectors are used. On the other hand, in supervised

classi�cation, vectors are classi�ed with respect to known reference vectors. Since the a priori

knowledge on the gene expression data is reduced, unsupervised methods have been favored.

The hierarchical and k-mean clustering algorithms as well as self-organizing maps have all

been used for clustering expression pro�les [37].

In biological sequences classi�cation it is usual to look for patterns (exact or

approximations) in the di�erent sequences, taking into account the location of these

patterns. Indeed, most of the clustering approaches referred above adopt a similarity score

based on sequence alignments. Reviews on protein clustering and classi�cation are found

in [37; 96].

In spite of the fact that many successful algorithms deal with similarity scores based on

sequence alignments, other approaches have been proposed to overcome some disadvantages.
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For instance, the main drawback of clustering proteins by algorithms that require a

similarity matrix is related with the functional nature of proteins. Proteins rarely act alone.

Instead, they must interact with other biomolecular units to execute their function. A

natural basis for organizing protein data is to group together proteins with similar

protein-protein interactions [184], but there is no straightforward de�nition for measuring

the similarity between protein-protein interactions. Recently, many research works focused

on the problem of clustering protein by means of interaction networks.

To compare sequences based on the frequency of occurrence of a given pattern and the way

it spreads along the sequence, without considering the speci�c positions of such pattern, the

information contained in the distribution of distances of this pattern could be used. Patterns

in distance distributions form an interesting research topic due to their link with structural

features of DNA, such as CpG islands.

A di�erent task is to explore how di�erent patterns are spread along the same sequence.

Patterns that exhibit more similar distributions could be related to a same biological element,

and patterns that exhibit very dissimilar distributions from to the majority of the patterns

could be related with some exceptional features.

3.3.2 Our questions

Words of the same size do not behave in the same way, as concerns their distribution along

genome sequences. It is likely that distinct patterns coexist in a set composed of distance

distributions of all words of the same length, and that such heterogeneity increases as the word

length increases. However, it is also likely that the set encloses subsets of similar distributions.

The exponential increasing of the word's number as word length increases, creates the

need for organizing the distributions into clusters. The organization of distance distributions

in validly clusters ful�lls two purposes: to reduce the size of the data, maintaining its

representativeness, and to uncover groups of words with similar distribution patterns. The

identi�cation of such clusters may provide useful applications in DNA sequence

characterization, such as sequence classi�cation and function prediction.

Cluster analysis �ts the purpose of �nding groups of similar observations (segmentation),

and of reducing the dimension of the dataset. To obtain a segmentation of distance

distribution datasets, we address the following issues:

(Q9) Relevant features: What features are relevant for clustering distance distributions?

Clustering methods could be able to organize distance distributions according to relevant

features of the data. An initial exploratory analysis of distance distributions datasets is

necessary to highlight some of such characteristics. To select properly the features on which

clustering is to be performed, encoding as much information as possible is a crucial step of

any clustering method.



46 3.Research pathways and questions

We will be primarily interested in identifying relevant features in sets of distributions of

words of length greater than two. Such sets have an interesting number of distributions to

cluster, for instance, there are 43 = 64 words of length three, 44 = 256 words of length four,

45 = 1024 words of length �ve, and so on.

Some statistical characteristics will be analysed, such as the mean distance or its mode,

the quartiles of the distribution and skewness. Hypothesizing that the mode could be a feature

of interest, lead us to the exploration of a related feature: the presence of spiked peaks of

frequencies (i.e. baseline changes or regions of high frequencies with sharp falls on either

side). The potential of spiked peaks for outlier detection will be explored, due to its relation

with the over-representation of distances, as outlined in section (3.1). Are spiked peaks

also useful for clustering distributions? Another possible approach is based on comparisons

between empirical distributions and corresponding reference distributions. For instance, the

parameter estimates of a distribution �tted to the empirical one could be used as features of

interest, if such parametric model exists.

After properly selecting the features on which clustering is to be performed, it is necessary

to understand how to encode as much information as possible concerning the features of

interest.

The clustering process may result in di�erent partitionings of a data set, depending on the

speci�c criterion used for clustering. According to this perspective, the encoding of features of

interest to be taken into account for the clustering method is intrinsically related to the choice

of the proximity measure, the clustering criterion, and the clustering algorithm itself. These

topics cannot be assessed autonomously and independently. Therefore, a follow-up question

closely related to the one we have just presented, is: How to perform clustering based on the

selected features?

We will address the development of clustering procedures to group genomic words with

similar distance distribution behaviour.

(Q10) Clustering validation: How to assess how well a clustering method performs, and

the validity of the results?

An important issue of the clustering process is to assess the validity of the clustering

results. Several methods for the quantitative evaluation of the clustering results, known as

cluster validity methods, are found in the literature. However, it is important to remark that

these methods only give an indication of the quality of the resulting partitioning. Internal

validation measures rely on information in the data only, that is, the characteristics of the

clusters themselves, such as compactness and separation. A slightly di�erent approach is to

assess the suitability of the clustering algorithm by testing how sensitive it is to perturbations

in the input data.

On the other hand, when a new algorithm is designed, how to demonstrate the e�ectiveness

of the clustering procedure? Simulation studies are often used to assess how well a clustering
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method performs. Again, a subsequent question arises when trying to answer the previous

question: how to generate proper synthetic data to perform this simulation study?

3.4 Disclosing the research pathways

During the development of this research project, as a barometer, we submited the work

developed at the di�erent stages to the appreciation of the scienti�c community.

Oral and poster communications were made in several scienti�c meetings. At the same

time, manuscripts were submitted and published in indexed international journals or in

proceedings of international conferences, as listed in the Appendix.

The questions reported in Sections 3.1 to 3.3 are dealt with in the selected six articles that

comprise the second part of the thesis.

Article I mainly concerns the DNA exceptional symmetry phenomenon. A new measure is

proposed, to evaluate the di�erence between the number of occurrences of a word and that of

its reversed complement. The word symmetry e�ect is evaluated in several species, by means

of this new measure, and clusters of related species are formed. In this study, question Q5 is

addressed.

Article II delves into the �symmetry phenomenon�, by comparing the distance distribution

of words that are reversed complements, and words with the same (A+ T ) content, for word

lengths up to �ve. For each word length, distance distributions are used to build hierarchical

clusters of words. The homogeneity between distance distributions is evaluated for speci�c

sets of words: reversed complementary word pairs, and words with equivalent composition

(in the same ECG). The existence of reversed complementary word pairs with very similar

distance distributions, even when both distributions are irregular and contain strong peaks,

is reported. An ECG weighted distribution is de�ned, and its performance as a pro�le for

distance distributions of words in such ECG is evaluated. Most of the article deals with

questions Q6, Q7 and Q8.

Article III is primarily focused on the identi�cation of outlying distributions and their

use as a potential species pro�le. To emphasize the contribution of genomes' selective

evolution, occurrences that are likely to occur by chance are usually subtracted from the

counting results. Based on this biologic perspective, criteria to identify exceptional words

are introduced, grounding on local and global mis�ts between the observed and the expected

distance distributions. To compute the expected frequency of each distance, under a

nucleotide independence model, an algorithm is proposed. Then, and regarding the human

genome, word-rankings are obtained by sorting words according to the global mis�t of the

corresponding distribution. Also, exceptional words are identi�ed in the complete genome of

30 species. Dichotomic vectors of exceptional words (from length 1 to 5) are used as a
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genomic signature of species. In turn, genomic signatures are used to build dendrograms,

and perform evolutionary comparisons. Questions Q1, Q2, Q3, Q4 and Q6 are addressed in

this article.

Article IV concerns the identi�cation of symmetric word pairs whose pattern of distances

between them presents unlikely over-favoured distances. Non-standard DNA conformations,

such as cruciform structures are formed at sites that contain reversed complementary words.

For this reason, their study naturally leads to the study of the symmetry properties of the

sequences. In this research, distances of nearest reversed complements (DNRC) distributions

are explored. In order to assess whether or not there is an overall trend towards

over-representation of short distances in the human genome, an overall DNRC is taken into

account (for each word length). The Global DNRC distribution, a weighted sum of the

DNRC distributions of all symmetric word pairs with words of length k, is compared with

the corresponding distribution expected under a k-order markovian dependency, and a

residual analysis is performed. Procedures to identify symmetric word pairs with uncommon

empirical DNRC distribution and with clusters of over-represented short distances are

developed, and applied over words of length up to seven in the human genome. Results are

shown for words of lengths 6 and 7. These novel procedures for genomic word detection,

have potential to uncover words with unexpected features in the DNRC distribution, which

could not be detected by word frequency procedures alone. The issues investigated in this

article are related with questions Q2, Q3 and Q4.

Article V explores di�erences between the distance distribution of a given word and that

of its reversed complement (such words de�ne a symmetric word pair) combined with

di�erences in their frequency. In a previous study (Article II) it was reported that the

distance distribution nearest to the distance distribution of a given word is most often that

of its reversed complement (of length k ≤ 5). Furthermore, that similarity could be

surprisingly high in spite of the presence of irregular patterns or some strong peaks.

Conjecturing that symmetric word pairs with di�erent patterns could point to evolutionary

features, it is interesting to study the di�erences between distance distributions of symmetric

word pairs. Thus, a new dissimilarity measure [188], termed peak dissimilarity, was

proposed. In the present study, the peak dissimilarity is used to identify words of lengths 5,

6 and 7 with highly distinct distributions, in the human genome, and compared to two

well-known measures (Euclidean distance and the symmetrized Kullback-Leibler divergence).

By combining low and high values of peak dissimilarity and frequency discrepancy, several

behaviors could result and some of them could be of interest. For instance, symmetric pairs

that preserve strand symmetry (similar frequency) but have dissimilar distance

distributions; and symmetric pairs with dissimilar frequencies and similar distance

distributions, could be of interest. Thus, the association between peak dissimilarity values

and frequency discrepancy is analyzed. This article contemplates questions Q3, Q6 and Q7.
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Article VI describes a clustering procedure designed to seek clusters of genomic words in

human DNA by studying their distance distributions. From the extensive treatment carried

out during this research project, it became clear that distance distributions display two central

characteristics: the decreasing trend and the propensity to present strong peaks of frequencies.

The former is associated with behaviours like faster decays with shorter tails, or smoother

decays with longer tails. The latter, compresses several behaviours according to the number of

peaks, their intensity (stronger or weaker) and their spread (isolated, clustered, dispersed, . . . ).

Indeed, our previous studies reported a particularly spiked nature of the distance distributions.

In the present article, a procedure for decomposing the distance distribution of a word into the

sum of a baseline distribution and a peak function is proposed. The baseline, a parametric

Gamma distribution, is �tted to the empirical distributions using an outlier-robust �tting

technique. The peak function, a peak structure on top of that baseline, is characterized

by assessing the extremity of the observed frequencies. The proposed clustering procedure

�rst decomposes each distribution into a baseline and a peak distribution. Then, the set of

baselines and the set of peak functions are processed by principal component analysis, in

order to create uncorrelated variables. Finally a k-means algorithm is applied to identify the

clusters. Moreover, the user has the choice whether to use only the baseline information, only

the peak information, or both. The performance of this approach is evaluated by a simulation

study. It is also applied to the data set of all genomic trinucleotides in human DNA, as well

as the set of all pentanucleotides (k = 3 and k = 5). The article pinpoints questions Q2, Q6,

Q9 and Q10.
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Abstract Single-strand DNA symmetry is pointed as a

universal law observed in the genomes from all living

organisms. It is a somewhat broadly defined concept, which

has been refined into some more specific measurable

effects. Here we discuss the exceptional symmetry effect.

Exceptional symmetry is the symmetry effect beyond that

expected in independence contexts, and it can be measured

for each word, for each equivalent composition group, or

globally, combining the effects of all possible words of a

given length. Global exceptional symmetry was found in

several species, but there are genomic words with no

exceptional symmetry effect, whereas others show a very

high exceptional symmetry effect. In this work, we discuss

a measure to evaluate the exceptional symmetry effect by

symmetric word pair, and compare it with others. We

present a detailed study of the exceptional symmetry by

symmetric pairs and take the CG content into account. We

also introduce and discuss the exceptional symmetry pro-

file for the DNA of each organism, and we perform a

multiple comparison for 31 genomes: 7 viruses; 5 archaea;

5 bacteria; 14 eukaryotes.

Keywords Single-strand symmetry � Exceptional
symmetry �Multiple organism comparison � Genomic word

analysis

1 Introduction

Erwin Chargaff was a biochemist that discovered a set of

intriguing rules about the composition of DNA from the

analysis of bacterial genomes [1]. The first rule states that

the total percentage of complementary nucleotides (A-T

and C-G) in double-stranded DNA must be equal. Of

course, this is now known to result from the double helix

structure of DNA [2]. The second rule sates that the per-

centage of complementary nucleotides is also identical in

each strand [3–5], [6, chap. 4].

A natural extension of Chargaff’s second parity rule is

that, in each DNA strand, the number of occurrences of a

given word (oligonucleotide or k-mer) should match that of

its reversed complement [6]. The extension to the second

parity rule is also known as the single-strand symmetry

phenomenon. This symmetry phenomenon refers to the

distributions of symmetric pairs, i.e., the distribution of

occurrences of all words and the distribution of occur-

rences of the corresponding reversed complements.

Presently, there is not a generally accepted justification

for the need of single-strand parity in DNA sequences, and

there is no consensual explanation for the occurrence of the

single-strand phenomenon. There are some attempts to

explain the phenomenon, which could be classified in two
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groups: the conserved patterns model [7–9], and the evo-

lutive models. Evolutive models can further be classified

according to several underlying hypothesis, for example:

the stem-loops hypothesis [10]; the duplication followed by

inversion hypothesis [11]; the inversions and inverted

transpositions hypothesis [12, 13]; the non-uniform sub-

stitutions hypothesis [14]; and the statistical mechanics

equilibrium hypothesis [15].

To characterize the symmetry phenomenon, Powdel and

others [16] analyzed the frequency distributions of

oligonucleotides in localized windows along a single strand

of DNA. They found that the differences between the fre-

quency distributions of reverse complementary oligonu-

cleotides are not statistically significant. Afreixo et al. [17]

noted that the frequency of an oligonucleotide is more

similar to the frequency of its reversed complement than to

the frequencies of other words of equivalent composition

(equal-length oligonucleotides with equal CG content).

They called this phenomenon exceptional symmetry,

defined measures to evaluate it, and identified several word

groups with strong exceptional symmetry in the human

genome. More recently, a different measure was introduced

to overcome a disadvantage of the previous measure of

exceptional symmetry by word [18]. This measure evalu-

ates the difference between the number of occurrences of a

word and its reversed complement and relates it with the

dissimilarities of the number of occurrences in the corre-

sponding equivalent composition group.

Here, we introduce an improved exceptional symmetry

measure and use it to obtain the word symmetry effects in

31 complete genomes stratified by equivalent composition

group for word lengths up to 14. Results confirm that

measures of word exceptional symmetry can be used to

form clusters of related species. Also, we identify words

that show high symmetry effect across the 31 species, and

across the 9 animal species studied.

2 Materials

The genomes analyzed here are available from the website

of the National Center for Biotechnology Information

(NCBI; ftp://ftp.ncbi.nih.gov/genomes/). The complete list

of species is indicated in Table 1. We selected genomes of

species representative of the major taxonomic groups

across the tree of life. These include vertebrates, inverte-

brates, protozoans, fungi, plants, bacteria (gram-positive

and gram-negative), archaea and viruses (both double-

stranded and single-stranded DNA and RNA viruses).

All non-sequenced or ambiguous nucleotides (mostly

N symbols in the sequence file) were discarded from the

analysis. For genomes composed by several chromosomes,

the chromosomes were processed as separate sequences.

All genome sequences used under this study were pro-

cessed to obtain the word counts, considering overlap

between successive words. We obtained the word counts

for word lengths from 1 to 14 nucleotides.

3 Methods

In a previous work [17], we called equivalent composition

group (ECG) to a set of words with length k that contain a

given number m of nucleotides a or t [17]. For example, for

k ¼ 2 there are three ECGs:

G0 ¼fcc; cg; gc; ggg;
G1 ¼fac; ag; ca; ct; ga; gt; tc; tgg;
G2 ¼faa; at; ta; ttg:

The words division created by ECGs is also called a binary

partition [19]. Consider the binary classification of

nucleotides in two types, T1 ¼ fa; tg and T2 ¼ fc; gg, and
let Gk

m (or simply, Gm) be the ECG with words of length k

where each word has m symbols of type T1 and k � m

symbols of type T2, with m 2 f0; 1; :::; kg. Taking into

account the combinatorial results (permutations with rep-

etition of indistinguishable objects), it can be concluded

that Gm has Nm distinct words,

Nm ¼ 2k � k!

m!ðk � mÞ! :

Note that, for k-mers there are k þ 1 ECGs with a total of

4k words.

For even values of k, some words are equal to their

reversed complement. We denote these as self symmetric

words (SSW). We also define a symmetric word pair as the

set composed by one word w and the corresponding

reversed complement word w0, with ðw0Þ0 ¼ w (for exam-

ple, cca and tgg make a symmetric word pair).

We proposed in a previous work [17] one exceptional

genomic word symmetry measure evaluated for ECGs and

globally. Here, we highlight the exceptional genomic

symmetry evaluated for each word, discussing the poten-

tialities of the T measure (symmetric word pair effect,

Eq. 1), an improvement of the S measure recently proposed

in [18].

Let nw be the total number of occurrences of word w in

the sequence, and nm be the total number of occurrences of

words in the ECG Gm, which contains words composed by

m nucleotides a or t. The symmetric word pair effect, for

w 2 Gm ¼ fw1;w2;w3; :::;wNm
g, was given by,

TðwÞ ¼ Tðw0Þ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNm

i¼1

PNm

j¼1
ðnwi�nwj Þ

2

N2
m�Nm

r

þ 1

jnw � nw0 j þ 1
:

ð1Þ
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Table 1 List of species whose

genomes are analyzed in this

work

Species name Abbreviation Usable genome size Taxonomic group

Abalone shriveling AbaS 34952 dsDNA viruses,

syndrome-associated virus no RNA stage

Acanthocystis turfacea AcaT 288046 dsDNA viruses,

Chlorella virus no RNA stage

Acheta domesticus AchD 5234 ssDNA viruses

densovirus

Acholeplasma phage AcPL 11965 dsDNA viruses,

L2 no RNA stage

Acholeplasma phage AcPM 4491 ssDNA viruses

MV-L1

Zika virus ZikV 10794 ssRNA viruses

Southern tomato SouT 3437 dsRNA viruses

virus

Aeropyrum camini AerC 1595994 Archaea

SY1

Aeropyrum pernix AerP 1669696 Archaea

K1

Caldisphaera lagunensis CalL 1546846 Archaea

DSM 15908

Candidatus Korarchaeum CanK 1590757 Archaea

cryptofilum OPF8

Escherichia coli EscC 4686135 Bacteria

K12 substr DH10B

Helicobacter pylori HelP 1548238 Bacteria

Nanoarchaeum equitans NanE 490885 Archaea

Kin4-M

Streptococcus mutans StMG 2027088 Bacteria

GS5

Streptococcus mutans StML 2015626 Bacteria

LJ23

Streptococcus pneumoniae StPn 2240043 Bacteria

670 6B

Plasmodium falciparum PlaF 22853268 Protozoan

Candida albicans CanA 949626 Fungi

Saccharomyces cerevisiae SacC 12157105 Fungi

Arabidopsis thaliana AraT 118960141 Plants

Vitis vinifera VitV 416169194 Plants

Caenorhabditis elegans CaeE 100272607 Nematodes

Apis mellifera Apis 198904823 Insects

Drosophila melanogaster DroM 137057575 Insects

Danio rerio DRer 1295489541 Fish

Macaca mulatta MacM 2646263223 Primates

Pan troglodytes PanT 2756176116 Primates

Homo sapiens HSap 2858658094 Primates

Mus musculus MusM 2647521431 Rodents

Rattus norvegicus RatN 2442682943 Rodents

Species are identified by name and abbreviations used herein. Usable genome size (excluding Ns) and

taxonomic group are provided. Downloaded in March 2016 from ftp://ftp.ncbi.nih.gov/genomes/
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The T(w) measure may also be expressed as the difference

between two terms. The first term assesses the average

frequency deviation between any two words in Gm,

whereas the second term accounts for the deviation

between the frequency of w and that of its reversed com-

plement. Exceptional symmetry, therefore, is revealed by

positive values of T.

T differs from the previously defined S measure by a

simple correction introduced to avoid indeterminations.

Their values are approximately equal for sufficiently large

word counts.

3.1 Control Experiments

Small, positive values of T may be obtained for word pairs

that are not exceptionally symmetric. In order to establish a

magnitude reference for T, we generate random sequences

of independent and identically distributed nucleotides,

under the assumption of the validity of the second parity

rule, that is, by constraining the generator to produce

complementary nucleotides with equal probabilities. Under

these conditions, all words in each ECG have the same

probabilities, hence no exceptional symmetry (see details

Table 2 Percentage of words

(of length k) with exceptional

symmetry effect (T [ 0),

measured in the genomes of 31

species and in the random

control sequence (sym)

k (%) 2 3 4 5 6 7 8 9 10 11 12 13 14

AbaS 100 97 99 98 91 – – – – – – – –

AcaT 100 100 100 99 98 94 - – – – – – –

AchD 63 75 81 77 – – – – – – – – –

AcPL 63 69 78 78 – – – – – – – – –

AcPM 50 66 70 – – – – – – – – – –

ZikV 63 78 83 83 – – – – – – – – –

SouT 63 63 71 – – – – – – – – – –

AerC 100 100 100 100 100 100 99 97 – – – – –

AerP 100 100 100 100 100 100 99 97 – – – – –

CalL 100 100 100 100 100 100 98 95 – – – – –

CanK 100 100 100 100 100 100 100 98 – – – – –

EscC 100 100 100 100 100 100 100 95 – – – – –

HelP 100 100 100 100 100 100 100 98 – – – – –

NanE 100 100 100 100 100 99 95 – – – – – –

StMG 100 100 100 100 100 100 99 94 – – – – –

StML 100 100 100 100 100 100 99 94 – – – – –

StPn 100 100 100 100 100 100 99 94 – – – – –

PlaF 100 100 100 100 100 100 100 99 99 98 – – –

CanA 100 100 100 100 100 100 93 – – – – – –

SacC 100 100 100 100 100 100 100 99 95 – – – –

AraT 100 100 100 100 100 100 100 100 100 99 98 – –

VitV 100 100 100 100 100 100 100 100 100 100 100 100 –

CaeE 100 100 100 100 100 100 100 100 100 100 100 – –

Apis 100 100 100 100 100 100 100 100 100 100 100 – –

DroM 100 100 100 100 100 100 100 100 100 100 100 – –

DRer 100 100 100 100 99 99 98 98 97 97 95 98 –

MacM 100 100 100 100 100 100 100 100 100 100 100 100 100

PanT 100 100 100 100 100 100 100 100 100 100 100 100 100

HSap 100 100 100 100 100 100 100 100 100 100 100 100 100

MusM 100 100 100 100 100 100 100 100 100 100 100 100 100

RatN 100 100 100 100 100 100 100 100 100 100 100 100 100

sym 63 72 75 73 70 69 69 68 68 68 68 69 68

The maximum word length under study is given by max k 2 1; 2; 3; :::f g : n � 0:25k [ 5
� �

, with n the

genome size
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in [20]). The label sym is used to denote these random

sequences in the remainder of the document.

3.2 Word Analysis Procedure

A word is declared as exceptionally symmetrical when its T

value surpasses the critical value, which is defined as the

95th percentile of the T values obtained from the control

experiments. To complement this analysis, we compute the

percentage of words with T � 0 for each word length.

To identify groups of genomes with similar exceptional

symmetry profiles (T(w) values), we use a hierarchical

clustering procedure, using the UPGMA aggregation cri-

terion with Euclidean distance. A similar clustering pro-

cedure is used to identify words with similar exceptional

symmetry profiles across species.

4 Results and Discussion

For the set of 31 genomes, the word counts were obtained

for all word lengths between 1 and 14 nucleotides, and the

symmetric word pair effect was obtained for each genomic

word. However, for given genome, we only consider the

genomic words with lengths k (k 2 f1; :::; kmaxg), with
kmax ¼ max k 2 1; 2; 3; :::f g : n � 0:25k [ 5

� �

and n the genome size. This threshold motivation is the

count representability and the protection of the T measure

to the sensitivity of rare counts occurrences.

Obviously, for k ¼ 1, each ECG contains only one

symmetric word pair, and so TðwÞ ¼ 0, for all nucleotides.

Almost all words in eukaryote genomes show significant

exceptional symmetry effect (above the critical values

obtained in the control experiments). Table 2 shows the

percentage of words with T [ 0 for each species and word

length of this study. A high percentage of words in viruses

show no exceptional symmetry. This result agrees with a

previous work [20], which used a different measure and

procedure.

Table 2 includes the sym row corresponding to one

control scenario (sequence with length equal to the length

of the human genome). This may be used as a reference of

non-exceptional symmetry results.

4.1 Human Genome

A word analysis in the context of exceptional symmetry for

the human genome was carried out.

Figure 1 shows boxplots of the T values for k ¼ 5 in the

human genome and in the corresponding random realiza-

tion sym. The boxplot for the human genome shows high

and significant symmetric word pair effects. The most

exceptionally symmetric word pairs, corresponding to the

right outliers, detected in the human T boxplot are: (gcgta,

tacgc), (accgg, ccggt), (gccac, gtggc), (gccca, tgggc),

(cggga, tcccg).

Figure 2 shows the T values in each ECG for k ¼ 5 in

the human genome. We observe that as the CG content

varies (decreases along the x-axis), the T median values

have a non-monotonous behavior. The ECG G1 has the

highest T median value. In general, for the word lengths

under study and for the human genome, the T median in

ECG G0 is lower than in G1, and the T median for Gk is

higher than for Gk�1. For the control scenario, on the other

hand, we observed that the T median values remained

essentially constant across all ECGs.

Fig. 1 Boxplots for T values in the human genome and in a random

control sequence realization (sym) for word length 5

Fig. 2 Boxplots for T values in each ECG for word length 5, in the

human genome
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Table 3 presents, for the word lengths under study, the

twelve words with the six highest and the six lowest

T(w) values. Some of these extreme words could have

some biological interest, e.g., regulatory elements, func-

tional elements, motifs.

Based on the results of the effect size measure, we may

conclude that the human genome presents exceptional

symmetry. The human genome shows exceptional sym-

metry for the thirteen different word lengths (k ¼ 2; :::; 14)

used in this study.

Although the existence of global exceptional symmetry

in the human genome was verified, there are distinct pro-

files for each chromosome. Consequently, the exceptional

symmetry profile may be used as a signature of each

chromosome. Preliminary results also suggest that excep-

tional symmetry profiles are distinct between species,

which will be presented in the next section.

It may be also concluded that in the human genome

there are ECGs that are more exceptionally symmetric than

others. And a large percentage of the genomic words pre-

sent some exceptional symmetry. However, for longer

word lengths (k� 5), there are some words without any

exceptional symmetry. With this analysis, it was identified

that words rich in CG content behave differently from

words rich in AT content, in terms of exceptional

symmetry.

Fig. 3 Dendrogram obtained from the T values for all species under

study, word length 4

Fig. 4 Heatmap with biclustering organization of the T values for words of length 3 and for all species under study

Table 4 Word pairs with exceptional symmetry effect above the

third quartile, which are most common across species, and most

common across animal species

k Word % of species Word % of animals

2 ca 42 cc 67

3 acg 58 ccg 78

4 cgac 52 aacg 67

cgga agcg

cgac

cgcc

tccg

5 attcg 61 aacgg 78

cgatc

gcgcc

6 acgcgt 74 acggat 89

ccgtac

gacgta

7 tacgtaa 74 cgtacga 100

Each pair is represented by a single word of the pair
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4.2 Species Comparison

Figure 3 shows the dendrogram obtained with the hierar-

chical clustering procedure, for k ¼ 4. Four distinct groups

can be observed in Figure 3: mammalian (on the left);

viruses (on the right); a group including the plants and the

other animals (except Danio rerio); and a group with the

unicellular species, plus Danio rerio. For other word

lengths, the resulting dendrograms essentially maintain the

same structure (the dendrogram for k ¼ 3 is also included

in Figure 4).

Figure 4 shows the heatmap with biclustering organi-

zation for trinucleotides. Species are shown on the hori-

zontal axis, and words are shown on the vertical axis. The

symmetric word pair effect is stronger on the left side of

the heatmap, corresponding to multicellular organisms, and

weaker on the right side. The word clustering highlights the

group formed by two symmetric word pairs: (ccg, cgg),

(gcg, cgc).

We identified the word pairs with high exceptional

symmetry (T above the third quartile) in every species

under study. From these, we selected the pairs that are

highly symmetric across the most species under study, and

those that are highly symmetric across the most animal

species under study. The results are shown in Table 4. No

word pair is considered highly symmetric across all the

species under study. However, TðcgtacgaÞ ¼ TðtcgtacgÞ is
above the third quartile in all the animal species under

study. The strongest symmetric word pair effect is

observed in words composed by CpG dinucleotides.

The results presented in Table 4 are restricted to word

lengths between 2 and 7 because for longer word lengths

the number of most common symmetric word pair above

the third quartile is high. The strongest symmetric word

pair effect is observed in words composed by CpG

dinucleotides.

5 Conclusions

We evaluated the exceptional symmetry effect in several

species, with particular emphasis in the human genome.

The word exceptional symmetry values contain informa-

tion specific to the species and seem to contain information

about the species evolution. Taking into account the spe-

cies in this study, the primates and rodents species have the

highest exceptional symmetry values and form a subgroup

distinct from all the other species under study. Globally,

the eukaryote group showed the highest word exceptional

symmetry values, while viruses showed the lowest values.

We reinforce that some viruses show a behavior opposite to

the exceptional symmetry (T\0) in almost all words under

study.

Exceptional symmetry effect was found in a high per-

centage of words in all cellular organisms under study.

Therefore, we conjecture that exceptional symmetry results

from some universal law imposed on cellular organisms.

Still, the exceptional symmetry profiles are species

specific.
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The Symmetry of Oligonucleotide Distance Distributions in the 
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Abstract: The inter-oligonucleotide distance is defined as the distance to the next occurrence of the same 
oligonucleotide. In this work, using the inter-oligonucleotide distance concept, we develop new methods to 
evaluate the lack of homogeneity in symmetric word pairs (pairs of reversed complement oligonucleotides), 
in equivalent composition groups. We apply the developed methods to the human genome and we conclude 
that a strong similarity exists between the distance distributions of symmetric oligonucleotides. We also 
conclude that exceptional distance symmetry is present in several equivalent composition groups, that is, 
there is a strong lack of homogeneity in the group and a strong homogeneity in the included symmetric 
word pairs. This suggests a stronger parity rule than Chargaff’s: in the human genome, symmetric 
oligonucleotides have equivalent occurrence frequency and, additionally, they present similar distance 
distributions. 

1 INTRODUCTION 

Chargaff’s first parity rule states that, in any 
sequence of double-stranded DNA molecules, the 
total number of complementary nucleotides is 
exactly equal (%A=%T and %C=%G).  Clearly, this 
is an inevitable consequence of the complementarity 
of opposing nucleotides in the two strands of the 
DNA molecule.  Chargaff’s second parity rule states 
that %A≅%T and %C≅%G in a single strand of 
DNA (Forsdyke and Mortimer, 2000). The 
extensions to second parity rule state that, in each 
DNA strand, the proportion of an oligonucleotide (a 
subsequence of adjacent nucleotides) should be 
similar to that of its reversed complement (the 
oligonucleotide obtained reversing its letters and 
interchanging complementary nucleotides).  Unlike 
the first rule, there is no single accepted reason that 
justifies this single strand symmetry.  However, the 
relative ubiquity of this phenomenon suggests a 
relationship with genomic evolution (Forsdyke 
2010, ch. 4). 

Several works discuss the prevalence of 
Chargaff’s second parity rules for several 
oligonucleotide lengths, and in different organisms 

(Afreixo et al., 2013b; Albrecht-Buehler, 2006; 
Baisnée, Hampson and Baldi, 2002). However, the 
universality of Chargaff's second parity rule has 
been questioned for organellar DNA and some viral 
genomes (Mitchell and Bridge, 2006). Powdel and 
others (2009) studied the symmetry phenomenon 
from an interesting new perspective, by defining and 
analysing the frequency distributions of the local 
abundance of mono/oligonucleotides along a single 
strand of DNA. They found that the frequency 
distributions of reverse complementary 
mono/oligonucleotides tend to be statistically 
similar. Afreixo et al. (2014) introduced a new 
symmetry measure, which emphasizes that the 
frequency of an oligonucleotide is more similar to 
the frequency of its reversed complement than to the 
frequencies of other equivalent composition 
oligonucleotides. 

 The inter-nucleotide distances introduced by 
Nair and Mahalakshmi (2005) convert any DNA 
sequence into a unique numerical sequence, where 
each number represents the distance of a symbol to 
the next occurrence of the same symbol. Afreixo et 
al (2009) explored the global inter-nucleotide 
representation and proposed the extraction of four 
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sequences, one for each nucleotide, to represent the 
inter-nucleotide distances. This methodology allows 
to perform comparative analysis between the 
behaviour of the four nucleotides. Bastos et al 
(2011) proposed an inter-dinucleotide distance 
distribution and compared the distance distributions 
of all dinucleotides in the human genome. Moreover, 
evolutionary patterns have been recognized from 
information contained in the distance distributions of 
the genomes of different organisms (Afreixo et al., 
2009).  

In this work we explore the symmetry of 
distance distributions by comparing each inter-
oligonucleotide distance distribution to the distance 
distribution of its reversed complement, using 
homogeneity discrepancy measures. We also 
characterize the discrepancy in equivalent 
composition groups (ECGs), and compare ECGs 
results for different oligonucleotide lengths. 

We focus our study in the human genome as an 
example of a typical genome exhibiting single strand 
symmetry.  

2 MATERIALS AND METHODS 

2.1 Materials 

We analyse the whole human genome, reference 
assembly build 37.3, available from the website of 
the National Center for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/), discarding all 
ambiguous or non-sequenced nucleotides from the 
analysis, that is, all non-ACGT symbols.  

In our data processing, the chromosomes of the 
human genome were processed as separate 
sequences, words were counted with overlap and 
non-ACGT symbols were considered as sequence 
separators. 

2.2 Methods 

Let ࣛ be the alphabet formed by the four 
nucleotides ሼA, C, G, Tሽ and let ݏ ൌ ,ଵݏ ,ଶݏ … ,  ே be aݏ
symbolic sequence defined in ࣛ. A genomic word, 
or oligonucleotide, ݓ, is a sequence of length ݇. 

Assuming that the sequence is read through a 
sliding window of length ݇, we can define the inter-
oligonucleotide (inter-ݓ) distance sequence, ݀௪, as 
the sequence of differences between the positions of 
the first symbol of consecutive occurrences of that 
oligonucleotide. For instance, in the DNA segment 
ݏ ൌ AAACGTCGATCCGTGCGCG, the inter-CG 
distance sequence is  

݀஼ீ ൌ ሺ3,5,4,2ሻ. 

The inter-ݓ distance distribution (or word 
distance distribution), denoted as ௪݂, gives the 
relative frequency of each inter-ݓ distance. For each 
݇, there are 4௞ distance distributions. 

The reversed complement of a genomic word is 
a sequence obtained by reversing the order of the 
letters in the word, interchanging A and T and 
interchanging C and G. For instance, the reversed 
complement of ACTGG is CCAGT. A symmetric 
word pair is defined as the set composed by one 
word, ݓ, and the corresponding reversed 
complement word, ݓ′, with ݓᇱᇱ ൌ  ,Afreixo) ݓ
Garcia and Rodrigues, 2013a; Afreixo et al., 2014). 

In this work we compare the inter-ݓ distance 
distribution, ௪݂, of symmetric word pairs. To the set 
formed by the distance distributions of symmetric 
word pairs we will call complementary distributions.  

An equivalent composition group (ECG), of 
words with length ݇, is a set composed by all the 
words with the same total number of As or Ts. For 
instance, the four dinucleotides AA, AT, TA and TT 
form an ECG. For words of length ݇ there are ݇ ൅ 1 
equivalent composition groups and the group formed 
by words comprising ݉ As or Ts is denoted as ܩ௠, 
with 0 ൑ ݉ ൑ ݇. The number of words of length ݇ 
in ܩ௠ is given by 

௠ܩ# ൌ ቀ݇
݉
ቁ2௞ 

Every symmetric word pair is a subset of an 
ECG, which contains several distinct symmetric 
word pairs (Afreixo, Bastos and Rodrigues, 2014). 

We will call equivalent composition distributions 
to the distance distributions of words in the same 
ECG. 

Under the second parity rule, and under a 
scenario of nucleotide independence, it is expected 
that reversed complements have similar frequency 
and similar inter-distance distribution (homogeneous 
distributions), but so do all words in the same ECG. 
The similarity between the frequencies of 
occurrence of reversed complements and of other 
equivalent composition words is described by 
Afreixo et al. (2014).  

We assess homogeneity in symmetric word pairs 
and in ECGs, using the distance distributions of 
words of length up to five, in the complete human 
genome. 

Using empirical data from the contingency table, 
whose columns are filled with the absolute 
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frequency of inter-ݓ distances of a set, ࣭, of words, 
we find the expected frequency of each distance for 
each word (dividing the product of the row total and 
the column total by the total sum). The chi-squared 
statistic is defined as 

࣭ܺ
ଶ ൌ෍

൫݊௜௝ െ ݁௜௝൯
ଶ

݁௜௝௜,௝

	, 

where ݊௜௝ is the observed frequency count in word ݅ 
for distance ݆, and ݁௜௝ is the corresponding expected 
frequency, in the homogeneity context. 

2.2.1 Symmetric Word Pair Measures 

To evaluate the dissimilarity between the inter-
words distributions of symmetric word pairs (ݓ and 
-we use an effect size measure based on a chi (′ݓ
square statistic to measure the discrepancy between 
the distance distributions of reversed complement 
words: the phi coefficient given by 

߮௪,௪ᇱ ൌ ඨ
ܺሼ௪,୵ᇲሽ
ଶ

ܰ௪ ൅ ܰ௪ᇱ	, 

where ܰ௪ and ܰ௪ᇱ are the number of occurrences of 
 in the sequence, respectively. Equal ′ݓ and ݓ
distributions will result in ߮௪,௪ᇱ ≅ 0 and an increase 
in dissimilarity will be reflected in an increased 
߮௪,௪ᇱ. 

For interpreting the phi coefficient, we consider 
a value above 0.10 as a descriptor for small effect 
size, above 0.30 for medium effect size, above 0.50 
for large effect size (Cohen, 1988), above 0.60 for 
strong effect size and above 0.80 for a very strong 
effect size (Rea and Parker, 1992). 

We define the weighted distribution of the 
complementary distributions (ݓ,w’), denoted as 
௪݂,௪ᇱ, the following distribution 

௪݂,௪ᇱ ൌ
௪݂ ൈ ܰ௪൅ ௪݂ᇱ ൈ ܰ௪ᇱ

ܰ௪ ൅ ܰ௪ᇱ 		

and the distance corresponding to the 99th percentile 
of the weighted distribution of the symmetric pair is 
denoted as ݀଴.ଽଽ

௪,௪ᇱ. 

2.2.2 ECG Measures  

We define an ECG distribution profile as the 
weighted distribution of the equivalent composition 
distributions. The ܩ௠ distribution, denoted as ݂ீ ೘, is 
given by 

݂ீ ೘ ൌ෍ ௪݂ ൈ ܰ௪

݊ீ௠௪∈ீ೘
	,	

where ݊ீ௠ is the total number of occurrences of 
words that belong to ܩ௠, in the sequence. The 99th 
percentile of this weighted distribution is denoted as 
݀଴.ଽଽ
ீ೘  

Since different ECGs may contain distinct 
numbers of elements, to evaluate the dissimilarity 
between the inter-word distance distributions of each 
ECG we use the Cramér’s V coefficient given by 

ܸீ ೘ ൌ
߮ீ೘

ඥ#ܩ௠ െ 1
	,	

which takes into account the degrees of freedom of 
the chi-square distribution (under the homogeneity 
hypothesis) to normalise the phi coefficient, 

߮ீ೘ ൌ ඨ
ܺீ೘
ଶ

	݊ீ௠
.	

3 RESULTS AND DISCUSSION 

With the increase of the oligonucleotide length, we 
observe a large variation in basic descriptive 
statistics of the distance distributions. For example, 
for ݇ ൌ 5, the maximum recorded distance of the 
distributions ranges from 27,800 to 1,355,000, 
approximately. Unsurprisingly, the distributions that 
reach the greatest maximum distance contain larger 
percentages of distances with null frequencies. 
Figure 1 displays box plots (organized by word 
length) of the maximum recorded distance of each 
distribution, ݀௠௔௫௪ , and the 99th percentile of each 
distribution, ݀଴.ଽଽ

௪ . Figure 2 displays a box plot of the 
percentage of distances, from 99th percentile to 
maximum recorded distance, with null frequencies, 
of each distribution.  

The differences in the length of distance 
distribution, the amount of longer distances with null 
frequencies, and the sensitivity of the chi-square 
statistic to low frequencies that occur for longer 
distances, lead us to define a cutoff that ensures an 
adequate representation of the distributions, without 
introducing the long tails of low density. To 
incorporate the contribution of the tail in our 
calculations, we also group all the remaining 
distances in one extra residual class.  

Thus, we compute ࣭ܺ
ଶ and ܸ࣭ , making a cutoff in 

the 99th percentile of the weighted distribution of ࣭, 
where ࣭ is one of the following sets: ሺݓ,ݓ′ሻ, ECG, 
and ࣥ. We use the weighted average of the 
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distributions of the elements in ࣭ because that leads 
to a low mean squared error unbiased estimate of the 
cutoff point under the null hypothesis assumption 
(homogeneity in ࣭). 

Since the structure of words with overlap (words 
with a suffix that matches with one proper prefix of 
the word) prevents some short distances from 
occurring, we also expected a large variability, in the 
first ݇ distances, between distributions of the same 
ECG.  Therefore, we also explore the similarity 
between the equivalent composition distributions, 
excluding the first ݇ distances of the empirical 
distributions in the calculations of ܺீ೘

ଶ  and ܸீ ೘. 

3.1 Inter-word Distance Analysis for 
Symmetric Pairs 

For each word length (from 1 to 5), we use the inter-
 distance distributions to build dendrograms that ݓ
show hierarchical clusters. The inter-word distance 
distributions in the same cluster are more similar to 
each other than to those in other groups.  

We use the complete linkage clustering and the 
average linkage clustering to build the dendrograms, 
and compute the similarity matrix with the Euclidian 
distance. We performed several cluster analysis 
varying the dimension of the similarity matrix.  

 

 

Figure 1: Box plots of the: maximum recorded distance of 
each distribution, ݀௠௔௫௪ (top); the 99th percentile of each 
distribution, ݀଴.ଽଽ

௪ (bottom). Organized by word length. 

 
Figure 2: Box plot of the percentage of distances, from 
99th percentile to maximum recorded distance, with null 
frequencies.  

To compute the cluster analysis of all the 
distance distributions, of words of the same length, 
we had to define a cut point in the distributions. We 
use the maximum 99th percentile of the ECG 
distributions and consider a residual class containing 
the remaining distances. 

Since some distances from 1 to ݇ may be absent 
due to the structure of the words, we also perform 
the cluster analysis removing the first ݇ distances 
and normalizing the distributions.  

In all the obtained dendrograms, we observe that 
the first similarity levels are formed by 
complementary distributions. This indicates that 
inter-word distance distributions of symmetric word 
pairs are the most similar, over all the words of the 
same length. Figure 3 shows one dendrogram of 
distance distributions of trinucleotides using 
distances from 1 to the maximum of the 99th 
percentile of the ECG distributions and a residual 
class. 

These results motivated us to compare and 
evaluate the similarity between the inter-word 
distance distributions of symmetric word pairs. 
Thus, we compute the phi coefficient, ߮௪,௪ᇱ and sort 
the symmetric pairs according to that value. 

In general, we obtained very low values of phi. 
Table 1 presents the maximum recorded phi for each 
word length. We found that, for 1 ൑ ݇ ൑ 4, all the 
symmetric pairs have low values of ߮௪,௪ᇱ, meaning 
similarity between the complementary distributions. 
However, for ݇ ൌ 5, we detected 16 symmetric pairs 
with medium effect size (0.3 ൑ ߮௪,௪ᇲ ൏ 0.5), 2 
symmetric pairs with large effect size (0.5 ൑
߮௪,௪ᇲ ൏ 0.6) and 1 pair with strong effect size 
(0.6 ൑ ߮௪,௪ᇲ ൏ 0.8). All of these distance 
distributions belong to oligonucleotides comprising 
one or more CGs. 

Another result that stands out for ݇ ൒ 3, is that 
the distributions that reach the highest values of phi 
coefficient are always distributions of CG-rich 
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words (i.e., oligonucleotides comprising one or more 
CG).  On the other hand, the distributions that reach 
the lowest values of phi coefficient are distributions 
of words rich in Ts or As. Table 2 displays the 
symmetric word pairs whose distance distributions 
have the 6 highest and the 6 lowest ߮௪,௪ᇱ, organized 
by word length. 

Table 1: Maximum and 90th percentile of phi coefficient. 

݇ 1 2 3 4 5 

max൫߮௪,௪ᇲ൯ 0.001 0.001 0.016 0.094 0.662 

90th percentile 
of ߮௪,௪ᇲ 0.001 0.001 0.008 0.055 0.019 

Table 2: Symmetric word pairs with the 6 highest and the 
6 lowest effect size.  

߮௪,௪ᇱ 
Word length 

1 2 3 4 5 

max1 A/T AC/GT CGC/GCG CGAC/GTCG CGACG/GTCG 

max2  AA/TT CGA/TCG CGTA/TACG ACGCG/CGCGT

max3  CA/TG CCG/CGG ACCG/CGGT CGCGA/TCGCG

max4   ACG/CGT GCGA/TCGC CGCCG/CGGCG

max5   GAC/GTC CGTC/GACG CGTAC/GTACG

max6   GCC/GGC CGCA/TGCG CCGCG/CGCGG

…      

min6   CAG/CTG AATA/TATT AAATT/AATTT

min5   TAA/TTA GAAA/TTTC AGAAA/TTTCT

min4   AGA/TCT TAAA/TTTA AAATA/TATTT

min3  CC/GG TCA/TGA AGAA/TTCT TAAAA/TTTTA

min2  GA/TC AAA/TTT AAAT/ATTT AAAAT/ATTTT

min1 C/G AG/CT AAT/ATT AAAA/TTTT AAAAA/TTTTT

The similarity between the complementary 
distributions is clearly observable in histograms. An 
extraordinary observation that comes out of this 
study is the conservation of the similarity in the 
unexpected spikes of the symmetric distributions, for  

 

Figure 3: Dendrogram using Euclidean distance and 
complete linkage clustering for inter-word distance 
distributions of trinucleotides. 

the generality of the symmetric pairs. Figure 4 
displays three word distance distributions of 
symmetric pairs (the first 150 distances). The 
similarity between the distributions of symmetric 
pairs is remarkable even when the distributions are 
so irregular as those of GCTA/TAGC or 
ATCAC/GTGAT. All of these cases present 
negligible effect sizes. 

 

 

 

Figure 4: Inter-word distance distributions of the first 150 
distances for symmetric pairs, in log-scale: AAAA vs 
TTTT), ߮୅୅୅୅,୘୘୘୘ ≅ 0.003(top); GCTA vs TAGC, 
߮ீ஼்஺/்஺ீ஼ ≅ 0.011(middle); ATCAC vs GTGAT, 
߮୅୘େ୅େ,ୋ୘ୋ୅୘ ≅ 0.03(bottom). 

3.2 Inter-word Distance Analysis for 
ECG 

To find the ECG groups with stronger exceptional 
symmetry, we compute the Cramér’s V values 
obtained for each group of equivalent composition 
distributions. 

As already mentioned, to compute ܸீ ೘, we set a 
distance cut point and create a residual class with the 
remaining distances. The ܸீ ೘ is calculated for 

distances from 1 to ݀଴.ଽଽ
ீ೘ . Since the word structure of 

some words prevents some distances from 1 to ݇ 
from occurring, because of the word overlap, we 
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also explore the similarity between the equivalent 
composition distributions, excluding the first ݇ 
distances of the empirical distributions.  

For nucleotides, ݇ ൌ 1, we conclude that there is 
no significant dissimilarity between the distance 
distributions in each ECG. In fact, those equivalent 
composition distributions get effect size values 
much less than 0.1.  

Considering all distances up to the cut point and 
a residual class, we observe that, for ݇ ൐ 1, the 
minimum effect size is associated to ܩ௞ିଵ. 
Moreover, ܩ௞ tends to reach one of the highest effect 
sizes (see Table 3a). 

With the removal of the first ݇ distances, and 
due to the non-existence of some distances in a few 
distributions in the same ECG, we expect a decrease 
in the effect sizes. In fact, for ݇ ൐ 1, this decrease 
occurs and the existence of homogeneity in ܩ௞ିଵ 
holds true. Moreover, the most homogeneous ECG 
is ܩ௞, that is, the group of words comprising only As 
and Ts.  

The lack of exceptional symmetry in ܩ௞, with 
the removal of the first distances, may be related to 
the extraordinary spikes that poly-A and poly-T 
distributions reach at distance one (see Figure 4, 
top). For ݇ ൒ 4, some groups present strong ߮ீ 
 

Table 3: Cramér’s V effect size of each ECG, organized 
by word length. (a) distances from 1 to ݀଴.ଽଽ

ீ೘ , with a 

residual class. (b) distances from k+1 to ݀଴.ଽଽ
ீ೘ , with a 

residual class. 

(a) 

ECG 
Word length 

1 2 3 4 5 

 ଴ 0,0003 0,31 0,23 0,17 0,14ܩ

 ଵ 0,0003 0,31 0,23 0,17 0,14ܩ

 ଶ -- 0,29 0,07 0,07 0,05ܩ

 ଷ -- -- 0,24 0,04 0,04ܩ

 ସ -- -- -- 0,20 0,02ܩ

 ହ -- -- -- -- 0.16ܩ

(b)  

ECG 
Word length 

1 2 3 4 5 

 ଴ 0,0004 0,24 0,17 0,12 0,10ܩ

 ଵ 0,0007 0,06 0,12 0,08 0,06ܩ

 ଶ -- 0,06 0,04 0,06 0,04ܩ

 ଷ -- -- 0,05 0,03 0,03ܩ

 ସ -- -- -- 0,05 0,03ܩ

 ହ -- -- -- -- 0,05ܩ

effect sizes (which can be computed from the ܸீ  
values in Table 3b). 

In general, ECG discrepancies (Table 3a) are 
higher than symmetric pair discrepancies (Table 2), 
suggesting the existence of an exceptional symmetry 
of distance distributions. 

Figure 5 displays the equivalent composition 
distributions of trinucleotides in ܩ଴ and in ܩଷ. In ܩ଴ 
the irregularity of the distributions is clearly visible 
in the first 100 distances. Furthermore, for distances 
higher than 500, we also observe a huge divergence 
between two groups of distributions. The 
combination of these behaviours results in a 
dissimilarity between the distance distributions 
related to this ECG. In Figure 5 (bottom) we observe 
that the distributions have a more homogeneous 
behaviour, which results in a smaller Cramér’s V 
effect size (Table 3). 

 
 

 

Figure 5: Inter-word distance distribution of trinucleotides 
in ܩ଴, ݀଴.ଽଽ

ீబ ൌ 1526(top); Inter-word distance distribution 

of trinucelotides in ܩଷ, 	݀଴.ଽଽ
ீయ ൌ 280(bottom).  

To evaluate the variability inside each ECG we 
use the standard deviation of the Euclidean distance 
between the word distribution and its ECG profile. 
The Euclidian distance was computed considering 
distances from ݇ ൅ 1 to ݀଴.ଽଽ

௪  and a residual class. 
We conclude that, in general, ܩ଴ is the ECG with 
one of the highest variations (Table 4). The only 
exception is verified for ݇ ൌ 3, in which ܩ଴ presents 
the lowest dispersion. We also observe that ܩଵ 
reaches one of the highest variations. 

We extend our study to the evaluation of the 
ECG weighted distribution as a profile of the inter-
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word distance distributions. For each word ݓ, we 
want to analyse if the most similar ECG distribution, 
in relation to ௪݂, is the ܩ௪ distribution. 

Let ܩ௪ denote the ECG of the word ݓ and ̅ܩ௪ 
denote any of the other ECGs. To assess the 
similarity between the word distribution, ௪݂, and 
each of the ECG weighted distributions, we compute 
the Euclidean distance between ௪݂ and ݂ீ

೔
, for 

݅ ൌ 0,… , ݇, considering word distances from ݇ ൅ 1 
to ݀଴.ଽଽ

௪  and a residual class. Then, we sort the 
Euclidean distances and extract the ECG distribution 
most similar to ௪݂. 

We found that the lowest Euclidean distance is 
not always associated to the ܩ௪ distribution, 
meaning that the most similar ECG weighted 
distribution in relation to ௪݂ is not always ܩ௪. For 
example, only 38% of tetranucleotides have distance 
distributions closer to ܩ௪ distribution than to any of 
the other ECGs, and all the distance distributions of 
tetranucleotides in ܩଵ are closer to some ̅ܩଵ 
distribution than to the ܩଵ distribution. Table 5 
summarize the percentage of distance distributions, 

௪݂, that are closest to ܩ௪ distribution (than to ̅ܩ௪), 
over all ݇-mer distributions. It also presents this 
percentage, over all the equivalent composition 
distributions. 

These results may give evidence that, even 
inside an ECG group, the words could not follow the 
same profile, which is agreement with the 
exceptional distance symmetry of some ECG. As an 
example, recall the distance distributions of 
trinucleotides inside ܩ଴ (Figure 5, top), which 
suggest the existence of two distinct distribution 
profiles. These results are in agreement with 
previously related exceptional distance symmetry of 
some ECG, and with the hierarchical clustering 
performed in subsection 3.1, where distributions of 
words in the same ECG were not grouped in the 
same cluster. 

To assess similarities between the ECG weighted 
distributions (the ECG profiles), we build 
dendrograms for each word length. We used the 
complete linkage clustering and the average linkage 
clustering to build the dendrograms, and we 
computed the similarity matrix with the Euclidian 
distance. To perform the hierarchical clustering we 
set a cutoff in all the distributions and create a 
residual class. To ensure an adequate representation 
of all the ECG we define the distance cut point at the 
maximum of the 99th percentile of the ECG profiles, 
that is, ݉ܽݔ൛݀଴.ଽଽ

ீ೔ : ݅ ൌ 0,… , ݇ൟ. 
We observe that, for ݇ ൑ 4, the ܩ௞ and the ܩ଴ 

profile distributions are grouped in the same cluster. 

Moreover, for ݇ ൐ 2, the ܩ௞ିଵ and the ܩଵ profile 
distributions are also grouped in the same cluster. 
Figure 6 display some of the obtained dendrograms. 

Table 4: Standard deviation of the Euclidean distance 
between the word distance distribution and its ECG 
distribution.  
       

ECG ݇ ൌ 1 ݇ ൌ 2 ݇ ൌ 3	 ݇ ൌ 4	 ݇ ൌ 5

 ଴ 3.70E-08 0.029 0.004 0.017 0,017ܩ

 ଵ 1.25E-07 0.011 0.017 0.010 0,023ܩ

 ଶ 0.001 0.006 0.010 0,014ܩ

 ଷ 0.006 0.007 0,012ܩ

 ସ 0.008 0,010ܩ

 ହ 0,008ܩ

Table 5: Percentage of words of length ݇, %k, whose 
distance distribution is closest to the ܩ௪distribution than to 
a ̅ܩ௪distribution. Percentage of words in each ECG, 
%G_i, whose distance distribution is closest to 
  .௪ܩ̅ ௪distribution than toܩ

݇ 1 2 3 4 5 

% ݇ 100 88 63 38 29 

 ଴ 100 100 50 69 65ܩ %

 ଵ 100 75 42 0 3ܩ %

 ଶ  100 75 43 8ܩ %

 ଷ   100 50 42ܩ %

 ସ    88 53ܩ %

 ହ     75ܩ %

4 CONCLUSIONS 

In this work, we contribute with a new method to 
evaluate one refinement of Chargaff’s second parity 
rules: symmetry of word distance distributions. For 
each word length, we propose measures of 
symmetry in symmetric word pairs based on the 
comparison of the inter word distance distributions. 
We also compare the homogeneity of symmetric 
words with the homogeneity inside an ECG. In 
general, we conclude that the lack of homogeneity 
between symmetric words is negligible. In some 
ECGs the discrepancy in word distance distributions 
is negligible but in other ECGs it is very strong. 
These results led us to identify the exceptional 
words in the context of the symmetry of distance 
distributions: mostly CG-rich words.  
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(a) (b) 

(c) (d) 

Figure 6: Dendrogram using Euclidean distance and 
complete linkage clustering for ECG weighted 
distributions, distances from 1 to the maximum of the 99th 
percentile of the ECG distributions and a residual class. 

(a) ݇ ൌ 2 ; (b) ݇ ൌ 3; (c) ݇ ൌ 4; (b) ݇ ൌ 5. 
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Abstract. In this study we explore the potentialities of the inter-word distances to detect
exceptional genomic words (oligonucleotides) in several species, using whole-genome analysis.
We confront the empirical results obtained from the complete genomes with the corresponding
results obtained from the random background. We develop a procedure, based on some statistical
properties of the global distance distributions in DNA sequences, to discriminate words with
exceptional inter-word distance distribution and to identify distances with exceptional frequency
of occurrence. We identify the statistically exceptional words in whole-genomes, i.e., words
with unexpected inter-word distance distributions, and we suggest species signatures based on
exceptional word profiles.

Keywords. inter-oligonucleotide distances, DNA sequence, exceptional genomic word, stochas-
tic model, goodness of fit.

1 Introduction

Several authors tried to identify exceptional words using different statistical criteria. A standard
approach to detect exceptional words relies on their frequency. For example, based on genomic
word frequencies and on comparisons between those frequencies and the random background
(e.g. [10, 15, 16]).

The distance between two successive occurrences of a pattern in strings has been thoroughly
studied and theoretical results have been deduced, in particular the generating functions of the
waiting times to return to a specific pattern (e.g., [14, 18]). The probability mass function of
the waiting times to return for the first time to a specific genomic word, or inter-word distance
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2 Exceptional genomic words

distribution, can be obtained by the Markov chain embedding technique, first developed by Fu
(see, for example, [6]).

There are some interesting and counter-intuitive relations between frequency and distance
distributions. Thus, the two perspectives are worth of separate investigation.

The inter-nucleotide distance (i.e., the distance between successive occurrences of the same
nucleotide) has been previously explored to compare the complete genomes of several organ-
isms; this comparison was based on genome distance distributions explored by [2]. The inter-
nucleotide distance was also explored in the context of genome annotation by [11]. In [3], the
inter-dinucleotide distance distribution was proposed and a comparison between all dinucleotide
distributions in the human genome was performed. Note that in [3] overlapping dinucleotides
were excluded from analysis, so that the expected distance distribution under an independent
nucleotide model is a geometric distribution. Based on an inter-CpG distance, a CpG-island
detection algorithm was proposed by [8], where a geometric distribution was used as a reference
for comparison.

In this paper, we describe a procedure to highlight exceptional words that is based on
inter-word distance distributions, rather than word frequencies. The subtraction of the random
background from the counting result (under an independent nucleotide placement assumption)
has been suggested as a way of emphasizing the contribution of selective evolution ([12, 5]).
Based on this biologic perspective, we take a nucleotide independent model as the departing
point and evaluate the discrepancy between real sequences and random background.

2 Materials and methods

Materials

In this study, we used the complete DNA sequences of 30 species, listed in Table 1, downloaded
from the website of the National Center for Biotechnology Information (http://www.ncbi.nlm.
nih.gov/genomes). For each species, we processed the available assembled chromosomes as sep-
arate sequences. In each sequence, we studied every word formed by k consecutive unambiguous
nucleotides, with 1 < k ≤ 5. The analysis included words partially overlapping preceding or
succeeding words. All ambiguous or unsequenced nucleotides, i.e., all non-ACGT symbols, are
considered word delimiters.

Methods

Inter-word distance

Consider the alphabet formed by the four nucleotides A = {A,C,G, T}, and let s be a symbolic
sequence of length N defined in A. For each nucleotide x ∈ A, consider a numerical sequence, dx

(or simply d), that represents the inter-nucleotide distances between each occurrence of symbol
x and the previous occurrence of the same symbol, i.e., the differences between the positions
occupied by successive occurrences of symbol x. As an example, we show the four inter-nucleotide
distance sequences for s = AAACGTCGATCCGTG:

dA = (1, 1, 6), dC = (3, 4, 1), dG = (3, 5, 2), dT = (4, 4).

A genomic word, or oligonucleotide (w), is a sequence of length k defined in A. We can
extend the notion of inter-nucleotide distance to the case of oligonucleotides. Assuming that the
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Table 1: List of DNA builds used for each species

Species Biological Abbr.
taxonomy

Homo sapiens (human) animalia H.sapiens
Macaca mulatta (Rhesus macaque) animalia M.mulatta
Pan troglodytes (chimpanzee) animalia P.troglodytes
Mus musculus (mouse) animalia M.musculus
Rattus norvegicus (brown rat) animalia R.norvegicus
Eqqus caballus (horse) animalia E.caballus
Cannis lupus familiaris (dog) animalia C.lupus
Bos taurus (cow) animalia B.taurus
Monodelphis domesticus (opossum) animalia M.domesticus
Ornithorhynchus anatinus (platypus) animalia O.anatinus
Danio rerio (zebrafish) animalia D.rerio
Apis mellifera (honey bee) animalia A.mellifera
Arabidopsis thaliana (thale cress) plantae A.thaliana
Vitis vinifera (grape vine) plantae V.vinifera
Saccharomyces cerevisiae str fungi S.cerevisiae
Schizosaccharomyces pombe fungi C.pombe
Escherichia coli bacteria E.coli
Helicobacter pylori bacteria H.pylori
Streptococcus pneumoniae bacteria S.pneumoniae
Streptococcus mutans LJ23 bacteria S.mutansLJ
Streptococcus mutans GS bacteria S.mutansGS
Aeropyrum pernix str.K1 archaea A.pernix
Nanoarchaeum equitans archaea N.equitans
Candidatus korarchaeum archaea C.korarchaeum
Caldisphaera lagunensis archaea C.lagunensis
Aeropyrum camini archaea A.camini
NC001341 virus virus vir.001341 virus
NC001447 virus virus vir.001447 virus
NC004290 virus virus vir.004290 virus
NC011646 virus virus vir.011646 virus

sequence is read through a sliding window of length k, we can define the inter-oligonucleotide
(inter-w) distance sequence dw as the differences between the positions of the first symbol of
consecutive occurrences of that oligonucleotide. For example, the inter-CG distance sequence
for the short DNA segment above is dCG = (3, 5).

Reference distribution under a nucleotide independence model

Let w = x1x2x3 . . . xk ∈ Ak be a generic oligonucleotide and D be the random variable that rep-
resents the inter-oligonucleotide distance, from a sequence whose nucleotides are independently
generated.

The reference distribution of inter-w distances can be deduced using a state diagram, which
represents the progress made towards identifying w as each symbol is read from the sequence.
The state diagram has k + 1 states. The first k states, S0, S1, . . . , Sk−1, represent intermediate
points in the process and state Sk is the final, absorbing state. In the diagram, being in state Si

means that the last i symbols read from the sequence match a prefix of w. As each new symbol
is read, a transition occurs from Si to a new state Sj , until the final, or absorbing, state Sk is
reached, meaning that a new occurrence of w has just been identified in the sequence.

We define the distance to the next occurrence of w, starting from an initial state SI (I < k),
as the number of steps (transitions) it takes to walk through the diagram from SI until the final
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state Sk is reached. The initial state is given by the longest word overlap of w, different from w.
To illustrate this procedure, we present the state diagram for inter-ACG distances in Figure 1.

In this specific case, the probability of transition between two non-absorbing states, Si to Sj , is
given by element mij (0 ≤ i, j ≤ 2) of the the transition matrix

MACG =




1− pA pA 0
1− pA − pC pA pC
1− pA − pG pA 0


 .

where px denotes the nucleotide probability (x ∈ A). Distance one between two occurrences
of ACG is only possible from state S2. Thus, the probabilities of distance one, from each
non-absorbing state are

P (D = 1) =




P (D = 1|S0)
P (D = 1|S1)
P (D = 1|S2)


 =




0
0
pG


 .

For higher distances, d > 1, the probabilities can be found by combining the transition proba-
bilities for the first step with the probabilities for distance d− 1, which leads to the recurrence
relation 


P (D = d|S0)
P (D = d|S1)
P (D = d|S2)


 = MACG ×




P (D = d− 1|S0)
P (D = d− 1|S1)
P (D = d− 1|S2)




where MACG is the transition matrix of non-absorbing states. Since ACG has only null word
overlap besides itself, we must consider S0 as the initial state. Therefore, under an independent
symbol model, the reference probability distribution of inter-ACG distances is given by

f(d) = P (D = d|S0).

Figure 1: State diagram associated to inter-ACG distances (initial state S0).

For the generic word w, the reference distance distribution under the independent nucleotide
model is given by f(d) = P (D = d|SI), with




P (D = d|S0)
...

P (D = d|Sk−1)


 = Md−1 ×




P (D = 1|S0)
...

P (D = 1|Sk−1)


 ,

and
P (D = 1) =

[
0 . . . 0 pxk

]T
.

COMPSTAT 2016 Proceedings

6.Article III 79



Ana Tavares et al. 5

where pxk
is the occurrence probability of nucleotide xk and M is the transition matrix of

non-absorbing states.

Our approach to obtain the exact distribution of inter-word distances is a special case of
Fu’s procedure based on finite Markov chain embedding [6, 7]. To find the transition matrix
for a given word requires “a deep understanding of the structure of the specified pattern” [6].
Next, we propose a general expression to compute the transition matrix of non-absorbing states
M = [mij ], with i, j = 0, . . . , k − 1, based on the concept of word overlap.

Let us denote by L(w1, w2) the length of the longest overlap (a suffix of w1 that matches
with a prefix of w2) between words w1 and w2. Being in Si means we have just read symbols
that match wi. The next symbol x, appended to wi, determines the next state. A transition
from Si to Sj with j > 0 is only possible if L(wixj , w) = j, so its probability is

for j > 0, mij =

{
pxj , L(wixj , w) = j
0 , otherwise

.

And the probability of a transition from Si to S0 (j = 0) is given by the complementary
probability

mi0 =

{
1− pxi+1 −

∑i
s=1mis , i ≥ 1

1− pxi+1 , i = 0
.

The reference distribution under independent nucleotide structure, that we just described,
can easily be computed for any whole-genome and for any genomic word, using only four input
parameters: the nucleotide frequencies in the sequence.

Measures

To evaluate the goodness of fit between the inter-oligonucleotide distance distribution and the
corresponding reference distribution we used the chi-square statistic and the phi coefficient. We
also used an effect size measure, Cohen’s d, to identify the existence of exceptional distances
inside the distribution of a single word.

Due to the sensitivity of these measures to low frequencies that occur for longer distances,
we made a cutoff at the 99th percentile of the empirical distribution, d0.99. Then, we grouped
all distances larger than d0.99 in one residual class, d̃ = d0.99 + 1.

The empirical distance distribution is given by

qi =
ni

N ′
, for i = 1, . . . , d0.99

and the remaining frequency, q
d̃
, where ni is the number of occurrences of distance i and N ′ is

the total number of inter-w distances. In order to match the size of the reference distribution
to the empirical distribution we also made a cutoff in the reference distribution, at d0.99.

To extract the exceptional words of each species, we compare the empirical distribution to
the corresponding reference distribution under the nucleotide independence (model I). A word
is considered exceptional if the empirical inter-word distance and the reference distribution are
distinct in a statistically precise way. There are two cases to consider: either the two distributions
show a global misfit or there is at least one distance value that deviates significantly from the
reference distribution. In the first case, the empirical distribution shows a global misfit to the
random background; in the second case, the misfit is more noticeable for specific distances.
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To test the goodness of the fit between the empirical and the reference distributions, for each
oligonucleotide w, we can use a chi-square statistic, denoted by X2

w,

X2
w =

d∑

i=1

(ni − fi ·N ′)2
fi ·N ′

.

To obtain an effect size measure to evaluate the lack of goodness of fit, we use the phi coefficient,
denoted by ϕw,

ϕw =

√
X2

w

N ′
.

A perfect fit between the distributions corresponds to ϕw = 0. We consider a value above 0.10
as a descriptor for small effect size, above 0.30 for medium effect size, above 0.50 for large effect
size ([4]), above 0.60 for strong effect size and above 0.80 for a very strong effect size ([13])

For each inter-w distance distribution we are interested in identifying and evaluating the
existence of exceptional distances, i.e., distances that occur with a frequency much higher than
the expected value. In order to obtain a standard score able to compare how exceptional a
distance is over all oligonucleotides of the same length, we use Cohen’s d given by

CDi =
qi − fi√
fi(1− fi)

.

For reporting and interpreting Cohen’s d, we considered a value above 0.20 as a descriptor
for small effect size, above 0.50 for medium effect size and above 0.80 for large effect size ([4]).
We established those acceptance thresholds as the levels above which the distance is considered
exceptional or very exceptional, respectively.

To identify the most exceptional distance inside a distribution, if there is one, we use Cohen’s
d effect size. After computing Cohen’s d for all distances up to the 99th percentile, we identify
the distance d for which the maximum Cohen’s d is attained and consider it the candidate to
the most exceptional distance of the distribution, i.e., Cd = max{CDi : i = 1, . . . , d0.99}.

The expected values for distances less than or equal to k (the word length) can be null for
certain words. For example, the distances between the word AAA in the text AAAAAAA · · ·
can never be 2 or 3. Such zero distances were not considered in the computation of the mentioned
measures.

3 Results and discussion

Exceptional distance distributions in human genome

We are interested in exceptional distributions, i.e., empirical distributions that either show a
significant global misfit to the reference distribution or that exhibit frequencies much higher than
expected for specific distances. For all words, we observe the existence of statistical significant
differences between empirical and reference distributions (p-value < 0.001).

In order to evaluate the lack of fit phenomenon over all words of the same length, we computed
the phi coefficient, ϕw, and sorted the word distance distributions according to the value of ϕw.
We observe that CG-rich words (i.e., words comprising one or more CG) and words with long
word overlap lead to the poorest goodness of fit, in relation to the reference model (see Table 2).
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This means that these word distributions have a global misfit or a few distances with exceptional
misfit to the reference distribution, in a whole-genome analysis. Let us note that the top-two
dinucleotides correspond to well known local motifs (recurrent CG pairs in CpG islands and the
TATA binding boxes on transcription start sites). Other high-scoring words may be related to
biological motifs.

Conversely, we observe that words with no overlap and without CGs attained the lowest
divergences.

Table 2: Phi coefficient between empirical and reference distributions, in the Homo Sapiens
genome. The maximum and minimum ϕw, the words distributions which present the ten largest
and the ten smallest values of ϕw, organized by word length (k).

k 1 2 3 4 5

max(ϕw) 0.191 1.72e+05 3.11e+05 3.84e+12 8.84e+19
min(ϕw) 0.136 0.209 0.116 0.101 0.127

highest ϕw C CG CGA CGCG ACGCG
2nd highest G TA TCG CGAC CGCGT
3rd highest - CC CGC GTCG CGTCG
4th highest - GG GCG ATCG CGACG
5th highest - GC ACG TACG CGCGA
6th highest - AT CGT CGTA TCGCG
7th highest - AC CCG TCGA CGGCG
8th highest - GT CGG TTCG CGCCG
9th highest - - ATA CGAA CGATA
10th highest - - TAT TCGT TATCG

...
10th lowest - - TGT ACTT CTCTA
9th lowest - - ACA AAGT TAGAG
8th lowest - AA CAA GACA TCAGT
7th lowest - TT TTG TGTC TGACT
6th lowest - AG ACT ATCT AGTCA
5th lowest - CT AGT AGAT ACTGA
4th lowest - TC TCA ATGC AAGCT
3rd lowest - GA TGA GCAT AGCTT
2nd lowest T CA ATG GCTT AGAGT
lowest ϕw A TG CAT AAGC ACTCT

It is known that the human genome has low CG content ([9]). For inter-oligonucleotide
distances, the information about CG content (k = 2) or CG-rich word (k > 2) contents in the
sequence is not included in model I. Under this assumption, CG-rich words reach higher phi
coefficients and, as a consequence, these words will be identified as exceptional words.

Using Cohen’s d, we explored the existence of exceptional distances inside a single distribu-
tion, i.e., specific distances with an occurrence probability much higher than expected. Con-
sider, for example, the unexpected spike at distance 24 in the inter-TGCA distance distribution,
C24 = 0.616 (Figure 2).

Note that a high Cohen’s d could result from a generalized misfit between the empirical and
the reference distribution, rather than from a genuine exceptionality of that distance. Thus,
we suggest a practical decision based on the goodness of fit between empirical and reference
distance distributions: for one empirical distance distribution that presents moderate to strong
discrepancy (0.2 < ϕw < 0.8) we use 0.5 as the cut point on Cohen’s d to identify exceptional
distances. For the human genome, only eleven inter-word distributions have been identified as
comprising exceptional distances. We do not observe the presence of exceptional distances in
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Figure 2: Empirical distance distribution vs reference distribution: w =TGCA, ϕw = 0.694,
C24 = 0.616.

distance distributions for word lengths less than 4 (see Table 3). Figure 3 shows two inter-word
distance distributions that comprise an exceptional distance, by our criteria. This procedure
detects exceptional words based on their atypical distance distribution along the sequence and
not on their frequency of occurrence.

Table 3: Number of distance distributions with moderate or strong lack of fit (0.2 < ϕw < 0.8)
that present an exceptional distance, organized by strength of effect size and word length.

Strength of Cohen’s d maximum
word length

2 3 4 5

medium effect size (0.5 ≤ Cd < 0.8) 0 0 1 10
large effect size (Cd ≥ 0.8) 0 0 0 0
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Figure 3: Empirical distance distribution vs reference distribution: w =TCACT, ϕw = 0.633,
C43 = 0.533 (left); w =ATCCC, ϕw = 0.791, C135 = 0.577 (right).

This procedure may lead to the identification of new motifs. For example, a word with a
perfectly ordinary overall frequency of occurrence may exhibit an abnormal “preference” for
occurring at a distance d from the previous occurrence and a slightly decreased preference for
occurring at other distances.
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Analysis of multiple organisms

Taking into account the empirical distance behaviour and the random background (model I),
we introduce exceptionality word criteria and define dichotomic vectors, that may be used as a
genomic signature of species.

Consider the following exceptionality word criteria:

• Misfit criterion: the word shows a very strong dissimilarity effect between distributions,
ϕw > 0.8, highlighting the contribution of selective evolution [12];

• Peak criterion: the word has a small or medium dissimilarity effect between distributions
and presents a peak with medium or large effect size, 0.2 < ϕw < 0.8 ∧ Cd > 0.5 .

Consider, for each specie, a dichotomic vector that marks as nonzero the words identified as
exceptional accordingly to one of the criteria. These vectors allows to build dendrograms, which
could then be interpreted as phylogenetic trees.

We performed a hierarchical analysis of the 30 species listed in Table 1, considering each one
of the exceptionality criteria. The dendrograms were build using the average linkage method.
The similarity matrix was computed using the Euclidean distance. In the case of the misfit
criterion, the dendrogram displays a first branching between eukaryotes and non-eukaryotes
(Figure 4a). Inside the eukaryote cluster, we observe that some related species are grouped in
the same branch. For instance, primates (H.sapiens, P.troglodytes and M.mulatta), the rodentia
(M.musculus and R.norvegicus) and the fungi (S.cerevisiae and C.pombe). In the second branch
it is observed that, in general, bacteria and archaeotas are closer to each other and separated from
the virus. We also notice that the bacteria S.mutansLJ, S.mutansSG and S.pneumoniae are in
the same cluster. We emphasize that only the animal organisms reveal distance distributions that
verify the peak criterion. Restricting the analysis to animal organisms, we obtain a dendrogram
which reveals the group of primates and the group of rodentia (Figure 4b).

Thus, the binary vector of exceptional words defined by the misfit criterion may be used
as a genomic signature in all the studied species, while the peak criterion can only be used as
genomic signature in animal species.

We also constructed dendrograms for the 10 mammal species, using both criteria separately.
The obtained dendrograms present some similarities (the split distance between dendrograms
is 0.43). We observe that primates are clustered together, as well as the rodentia (Figure 5).
These dendrograms support several evolutionary relationships between species. For example,
the split distance between our dendrograms and those presented in [17], based in alignment and
non-alignment algorithms, is around 50%, which is lower than in random scenarios (see [1]).

4 Conclusions and future research

In this work we studied the inter-word distances in the complete genomes of up to 30 species,
for word length k varying between 1 and 5.

We intended to detect exceptional words by comparing the empirical distribution of the
inter-word distances with the theoretical one under independent nucleotide model, taking the
word overlap structure into account. We evaluated the discrepancy between real sequences
and the random background, as a way of emphasizing the contribution of selective evolution.
The comparison of the empirical distance frequencies with those that would be observed if the
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Figure 4: Dendrogram of the 30 organisms, with binary vector of exceptional words defined by
all words of length 2 to 5 by misfit criterion (left); and of the animals by peak criterion (rigth).
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Figure 5: Heat map of mammal species vs exceptional words. Binary vectors of exceptional
words defined by misfit criterion (left) and by peak criterion (rigth), considering only vectors
with variation.

random background model were valid, allowed us to highlight distinct distance distributions for
classes of genomic words.

We introduced a statistical procedure to automatically identify genomic words whose distance
distributions show a significant discrepancy from the random background. Our procedure allows
to detect some words with a very high lack of fit. These were, in general, words with CG-rich
content (as expected). Moreover, we found words with a moderate to strong lack of fit and an
unexpected strong spike. Only less than 1 percent of the words of length 4 and 5 show this kind
of exceptional distance distribution.
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We believe that this procedure, which detects statistically exceptional distributions, may
lead to the identification of new motifs. For example, a word with a perfectly ordinary overall
frequency of occurrence may exhibit an abnormal “preference” for occurring at a distance d from
the previous occurrence and a slightly decreased preference for occurring at other distances.

We also found that the differences mimic, to a certain extent, the evolutionary relation-
ships between the species, which were used to construct dendrograms and perform evolutionary
comparisons. In the mammalian organisms, we found matching word dissimilarity values.

In future we intend to extend our procedure to longer words, and evaluate if the method allow
to point out known patterns with biological significance. Furthermore, since whole genome are
highly heterogeneous, we also expect to perform analysis for detection of regions with exceptional
inter-nucleotide distances.
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DNA word analysis based on 
the distribution of the distances 
between symmetric words
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We address the problem of discovering pairs of symmetric genomic words (i.e., words and the 
corresponding reversed complements) occurring at distances that are overrepresented. For this 
purpose, we developed new procedures to identify symmetric word pairs with uncommon empirical 
distance distribution and with clusters of overrepresented short distances. We speculate that patterns 
of overrepresentation of short distances between symmetric word pairs may allow the occurrence of 
non-standard DNA conformations, such as hairpin/cruciform structures. We focused on the human 
genome, and analysed both the complete genome as well as a version with known repetitive sequences 
masked out. We reported several well-defined features in the distributions of distances, which can be 
classified into three different profiles, showing enrichment in distinct distance ranges. We analysed in 
greater detail certain pairs of symmetric words of length seven, found by our procedure, characterised 
by the surprising fact that they occur at single distances more frequently than expected.

The similarity between the frequency of complementary nucleotides in a single strand of DNA is known as 
Chargaff ’s second parity rule1. An extension to this parity rule suggests that, for each DNA strand, the proportion 
of an oligonucleotide (a sequence of adjacent nucleotides, also referred to as a genomic word) should be similar to 
that of its reversed complement, a property that has been studied both for prokaryotes and eukaryotes2, 3.

The origin of single strand symmetry is a topic of great interest, because it can contribute to the study of the 
origin and evolution of genomes. Currently, there is no single accepted justification for the intra-strand symme-
try, although several hypotheses about its origin have been proposed4. It has been suggested that the occurrence of 
secondary DNA structures, such as stem-loops and cruciforms, is associated with the DNA symmetry phenom-
enon. Cruciforms are structures with four arms that can be formed at sites containing reversed complementary 
words. They are relevant in biological processes, including those of replication and transcription, recombination 
and translocation5. Because these structures are associated with genome instability, the determination of their 
occurrence in the human genome and the identification of the corresponding sequence motifs is of paramount 
importance, both in the context of disease development and evolutionary events6, 7.

Here, we address the distance distribution of symmetric word pairs and investigate the different distance 
profiles in the human genome. In particular, we develop a procedure to identify genomic words with patterns of 
overrepresented short distances (<1000 bp). Overrepresented distances are those that have observed frequency 
higher than the expected frequency predicted by an adequate model, in a statistically significant way. We sug-
gest that patterns of overrepresentation of short distances between reversed complements may be related to the 
occurrence of cruciform structures, and we evaluate this hypothesis in the human genome. We study the distance 
distribution between reversed complements, in order to provide knowledge about the words that are strong can-
didates to the formation of cruciform structures in human DNA. Procedures based on inter-word distances have 
already been found useful to study genomic sequences, e.g., to detect CpG islands8 and to compare species9. The 
study addressed in this paper shows yet another use of inter-word distances and distance distributions, which 
may lead to a deeper understanding of intra-strand symmetry and its connection with secondary DNA structures.
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Materials and Methods
Materials.  We used the complete DNA sequences of the human genome, downloaded from the website of 
the National Center for Biotechnology Information (NCBI). We processed the available assembled chromosomes 
(GRCh38.p2) as separate sequences. All ambiguous or unsequenced nucleotides, i.e., all non-ACGT symbols, 
were considered sequence delimiters.

We also used pre-masked sequences10 available from the UCSC Genome Browser (http://genome.ucsc.edu)  
downloads page. These files contain the same GRCh38 assembly sequences, but with repeats reported by 
RepeatMasker11 and Tandem Repeats Finder12 masked by Ns.

To address the problem of possible assembly artefacts, we also used the whole-genome shotgun assembly 
(WGSA, to which we refer as “Celera”) of the human genome generated at Celera in December 200113, and the 
May 2007 HuRef genome of J. Craig Venter, sequenced with capillary-based whole-genome shotgun technolo-
gies using the Applied Biosystems 3730xl DNA analyser, and de novo assembled with the Celera Assembler14, to 
which we refer as “HuRef ”.

Distance between symmetric word pairs.  Consider the alphabet  = A C G T{ , , , } and let w be a sym-
bolic sequence (word) defined in k, where k is the length of w. In this work, the pair composed by one word, w, 
and the corresponding reversed complement word, w′, is called a symmetric word pair. For example, (AC, GT) is 
a symmetric word pair.

We are interested in finding the distance between a given w and w′, with no w or w′ between them. As an 
example, consider w = AC and the sequence ACTACTCCGTACTATAGTCGT . In this example, there are three 
occurrences of the word AC (underlined), but only the 2nd and the 3rd occurrences are considered for the calcu-
lation of distances to their nearest reversed complements (overlined), since between the 1st and the 2nd occur-
rences of w there are no occurrences of w′. Distances are measured between the start positions of the words, so a 
distance d between reversed complements of length k implies that the words are separated by (d − k) intervening 
nucleotides. In this example, d = 5 for the first (AC, GT) pair and d = 6 for the second.

Distances d < k may only occur if a suffix of w matches a prefix of w′. On the other hand, d = k is impossible 
for words such as CGCG. To avoid this dependence on the specific composition of w, distances d ≤ k are not 
considered for analysis.

The distribution of the distances of nearest reversed complements (DNRC) is denoted as fw,w′. Note that fw,w′ may 
be different from fw′,w.

For a fixed word length, k, we are also interested in the overall DNRC distribution across all the symmetric 
word pairs. We define the global DNRC distribution, fk, as a weighted sum of the DNRC distributions of all sym-
metric word pairs with words of length k,

∑= >
′∈

′
′f d

n
n

f d d k( ) ( ), ,
(1)k

w w

w w
w w

,

,
,

k

where nw,w′ is the number of observations of nearest pairs of symmetric words (w, w′) of length k, and n is the total 
number of such distances. Only the analysed distances (d > k) are counted in n and nw,w′.

For generating the symmetric words, we used a simple algorithm that, for each position in the DNA sequence, 
i, and associated word of size k, w, searches for the first occurrence of w′. If w is found before w′, the algorithm 
skips to the next position i. For practical reasons, a maximum searching distance is specified by the user, allowing 
the program to maintain in memory a table with all possible words w and the corresponding number of occur-
rences at each distance.

In order to study the behaviour of the empirical global DNRC distributions of the human genome, fk, we car-
ried out comparisons with the DNRC distributions obtained from nucleotide sequences generated by a k-order 
Markov process (random background). The expected global DNRC distribution under k-order Markov depend-
ence, fk

e, can be deduced using the transition probabilities and a state diagram that represents the progress made 
towards identifying w or w′ as each symbol is read from the sequence. The algorithm used to find this exact dis-
tribution15 is a special case of Fu’s procedure based on finite Markov chain embedding16.

Parameter assumptions.  The stem and loop lengths of hairpin/cruciform structures seem to vary over a wide 
range. According to different authors, the stem length varies between 6 and 100 nucleotides, while loop lengths 
may range from 0 to 2000 nucleotides6, 17, 18.

Since this study intends to characterise the short distances between symmetric words, but avoiding the direct 
word dependencies, a range of distances from (k + 1) to 1000 was considered for computing all the DNRC dis-
tributions. Taking into account computational limitations and the possible stem length of cruciform structures, 
the histograms of the DNRC were computed for all symmetric word pairs of lengths up to seven, for all human 
chromosomes. For each of these sequences, a global DNRC distribution, comprising all symmetric word pairs of 
the same length, was also determined.

Chromosome homogeneity.  To assess the homogeneity of the global DNRC distribution, for a fixed k, among all 
chromosomes of the genome, we used the phi coefficient,

ϕ
χ

=
n

,
(2)k

k
2

where n is the total number of DNRC counts, as defined in (1), and χk
2 is the Pearson’s chi-squared statistic,
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where Ow,j is the observed frequency count of distances from w to w′ in chromosome j, and Ew,j is the expected 
frequency count under homogeneity, with ∈w k and ∈ …j X Y{1, , 22, , }.

The assumption of homogeneity of the distance distributions of the chromosomes allows us to discuss the 
statistical properties of the complete genome based on a sequence with all chromosomes concatenated.

Residual analysis.  From the perspective of molecular evolution, DNA sequences may reflect both the results 
of random mutation and of selective evolution. In order to highlight the contribution of selective evolution, one 
should subtract the random background from the simple counting result19, 20. To this purpose, the global DNRC 
distributions expected under the k-order Markov dependence, fk

e, were obtained and the goodness-of-fit was 
evaluated by the ϕ measure (ϕ = 0 reveals a perfect fit between the distributions). To explore the differences 
between the empirical and the expected distributions, a residual analysis was carried out through the calculation 
of standardised residuals for a given distance d, are given by
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is the standard deviation of a binomial distribution. These standardised residuals are used to highlight the contri-
bution of the selective evolution on the relative position of the symmetric word pairs.

We recall that, under k-order Markov dependence assumption, each standardised residual has an asymptotic 
standard normal distribution21.

The focus of this study is mainly in the short distances between symmetric word pairs, thus we fixed a maximal 
distance to 1000. The global Type I error was fixed to α = 5% and, for each distance comparison test, it was correct 
to 0.05 (1000 − k). So, absolute residuals greater than four are considered to be significant residuals.

Short distances between reversed complements may be related with the occurrence of cruciform structures, 
with maximum loop length of twenty nucleotides6. To identify a thresholding distance which may discriminate 
the overrepresented short distances from the underrepresented, we assumed that short distances up to the thresh-
old are overrepresented and the others are underrepresented (this assumption makes sense under the hypothesis 
of enrichment of words able to form cruciform structures).

We determined the thresholding distance, d, as the distance that maximises the sum of the number of signifi-
cant positive residues less than d and the number of significant negative residues greater than d. We defined a 
discriminator function as a sum of indicator functions (for example, =� 1,SP i( )  if r(d) > 4)
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where = >SP d d r d( ) { ( ) 4} and = < −SN d d r d( ) { ( ) 4} and r is defined in Equation 4. The value d that max-
imises the discriminator function, R, was considered as the thresholding distance.

Results and Discussion
The global DNRC distribution was determined for each of the 24 human chromosomes and each word length 

= …  k( 1, , 7). These distributions have heavy tails, strongly affecting the chi-square statistic. To avoid this prob-
lem, for each k, a cutoff distance was defined as the 99th percentile of the DNRCs observed in the complete 
genome (all chromosomes). Distances larger than this cutoff were lumped together into a residual class, in each 
distribution. Naturally, the DNRCs and hence the cutoff distances were found to increase with word length in the 
human genome, as would be expected even in a sequence of randomly generated nucleotides.

We measured the degree of homogeneity (ϕ effect sizes measure) between the human chromosomes, for the 
global DNRC distributions. According to the obtained ϕ values (ϕ < 0.04), we conclude that the homogeneity 
effect is weak. Thus, we consider that there is homogeneity between the global DNRC distributions of the several 
chromosomes. This chromosome homogeneity in the global DNRC distributions points to a general feature of the 
complete human genome, which may be due to genomic architecture constrains.

Global DNRC distributions for the complete genome.  The discrepancies between the global DNRC 
distribution in the human genome and in the k-order Markov process were measured by ϕ effect size measure. 
Although the misfit effect is not strong, it is nevertheless non-negligible. The ϕ values are always greater than 0.05 
and the p-values smaller than 0.05.

Figure 1 shows the global DNRC distributions of the human genome and the global DNRC distributions of 
the k-order Markov random sequence, for k = 6 and k = 7. The misfit between the human distance distributions 
and the corresponding k-order Markov process is clear. Analysing the residuals between the empirical distri-
bution and the distribution of this random background, we observe a tendency of overrepresentation of short 
distances in the human genome, for all analysed values of k.

Figure 2 presents the results of the residual discriminator function (the R profile), for the global DNRC distri-
bution of the complete human genome (between the observed and the corresponding k-order Markov process), 
for k = 6 (left) and k = 7 (right). The discriminator functions increase for <



d 260, showing an evident favouring 
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of short distances, and decrease for >∼d 350. Both functions reach their maximum at distance 262. In fact, the 
human genome seems to favour the occurrence of shorter distances.

Islands of favoured distances.  In this analysis, we computed all 4k DNRC distributions, fw,w′. The plots of 
all the empirical DNRC distributions, for k = 6 and k = 7, are available in the Supplementary Material. Comparing 
each DNRC distribution with the global DNRC distribution, fk, it is possible to identify words which surpass the 
global behaviour observed for short distances (see, for example, Fig. 3).

We fixed [k + 1, dM] as the interval of interest, where dM is the distance where R reaches the maximum value in 
the global distance distribution. We detected a subset of symmetric word pairs having DNRC distributions with 
an enrichment of distances in the interval of interest, when compared to the global DNRC distribution. Those 
distributions display a non-negligible misfit in relation to fk, for distances in [k + 1, dM]. However, not all words 
are significantly enriched (see the Supplementary Material).

Although some words may be visually identified as having enrichment of short distances, it is not always pos-
sible to perform meaningful statistical analysis, due to the small number of occurrences of the DNRC. Moreover, 
the runs of significant positive residuals (r > 4) are related with the ranges of overrepresented short distances.

Figure 1.  Empirical and expected global DNRC distributions, for the complete human genome, for k = 6 (left) 
and k = 7 (right). The expected distributions were obtained under the k-order Markov dependence assumption.

Figure 2.  Residual discriminator function (R) for global DNRC distributions, relatively to the complete human 
genome, for k = 6 (left) and k = 7 (right). Both reach their maximum at distance 262.

Figure 3.  DNRC distribution, fw,w′, and global DNRC distribution, fk=7, for complete human genome. 
Overrepresentation of short distances in different ranges: w = ATATATG (left), w = GGCTCAC (right).
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The following procedure was developed to identify the DNRC distributions containing islands of favoured 
short distances, for a given k:

•	 We exclude the symmetric word pairs with occurrence frequency lower that 0.0001;
•	 We exclude the pairs (w, w′) such that fw,w′(d) = 0 for more than 5% of the distances d in [k + 1, 1000];
•	 The misfit between fw,w′ and fk is evaluated by the phi coefficient. The symmetric word pairs with ϕ > 0.80 are 

considered to have a very strong effect size22. Symmetric pairs with phi coefficient below 0.8 are removed;
•	 For distances up to dM, the lengths of the longest run of significant positive residuals are considered. Symmet-

ric word pairs with the longest positive run less than 25 are removed.

The four successive filters of the procedure above reduce the initial set of words to 17, for k = 6, and to 48, for 
k = 7. Note that other thresholds could have been used in the procedure, which would result in the selection of 
different subsets of words (see the Supplementary Material).

In order to classify the shape of the DNRC distribution of each symmetric word pair, a residual discriminator 
function R was obtained for each word pair, based on adjusted Pearson residuals, ra, computed from the contin-
gency table of all words of length k and distances between (k + 1) and 1000, instead of the standardised residuals 
(eq. 4). The adjusted Pearson’s residuals are given by
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where n is the total number of DNRC counts for a given word length k, as defined in (1).
The symmetric word pairs were classified in three different types, according to the R graphical profile:
T1 - A profile showing a marked initial increase, reaching its maximum, and stabilising or decreasing after it; 

see, for example, Fig. 4 (left);
T2 - A profile showing an initial decrease, comprising smooth or strong inverted peaks; see, for example, Fig. 4 

(right).
T3 - Other profiles, not matching previous criteria.
The pairs of type T1 are characterised by high residual discriminator values (max(R) > 50), and their DNRC 

distributions show an enrichment for short distances (d < 100). See, for example, Fig. 3, left. Pairs of type T2 also 
have high residual discriminator values, but their DNRC distributions show an overrepresentation for distances 
d > 100, with localised bell-shaped peaks. See, for example, Fig. 3, right. All pairs of type T3 have irregular low-R 
profiles (max(R) ≤ 50).

Table 1 presents the subset of symmetric word pairs obtained by our procedure, for k = 7. The table also con-
tains the maximum DNRC frequency and the corresponding distance, the max(R) values, the distribution type, 
and the distance peak location class. It was observed that type T1 is the largest group and is formed by TA-rich 
words. Most DNRC distributions of this type reach their maxima for d < 100 (C1). Curiously, it was reported that, 
in E. coli, cruciform formation is enhanced by TA-rich sequences and may correlate with transcriptionally-active 
promoters23, 24. Also, the cruciform-binding protein PARP-1 (Poly(ADP-ribose) polymerase-1), which is involved 
in DNA recombination and repair, was shown to interact with promoter-localised cruciforms25, and promoters 
are frequently enriched with TA elements26. Thus, the overrepresentation of short distances of TA-rich symmet-
ric word pairs, detected by the procedure that we propose, may point to the occurrence of hairpin/cruciform 
structures.

The proposed procedure also identifies the T2 group. DNRC distributions in this group have localised 
bell-shaped peaks for d > 100, forming marked islands of favoured distances. The occurrence of peaks in the short 
distance region of the DNRC distribution could signal the formation of hairpin/cruciform structures. However, 
DNRC distribution peaks for d > 100 could be associated to other structural or functional DNA functions.

Single over-favoured distance.  Apart from the words that have clear islands of favoured distances, in the 
complete list of words of length six and seven (see Supplementary Material) several words can be observed with a 

Figure 4.  R profile for residuals between fw,w′ and fk=7, for the complete human genome. Different types of 
patterns: type T1 for w = TATATAC (left), and type T2 for w = TCACGCC (right).
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single distance very highlighted, due to its high frequency. In order to perform an automatic selection of this kind 
of words, we defined the procedure:

•	 We start with the complete set of symmetric words of a fixed length k;
•	 We exclude the symmetric word pairs with occurrence frequency lower that 0.0001;
•	 We exclude the pairs (w, w′) such that fw,w′(d) = 0 for more than 5% of the distances d in [k + 1, 1000];
•	 The remaining words are sorted by the maximum frequency, max(fw,w′), of the distances under analysis 

= + …d k 1, , 1000);

w max(fw,w′) arg max(fw,w′) max(R) Type Class

ATATATA 0.04 9 932 T1 C1

GTGTATA 0.05 9 57 T1 C1

TATATAT 0.03 10 881 T1 C1

TATATAC 0.03 15 552 T1 C1

GTATATA 0.05 9 76 T1 C1

ATATATG 0.02 15 453 T1 C1

TATATGT 0.02 13 301 T1 C1

TATATAA 0.03 13 566 T1 C1

ATATACA 0.03 13 248 T1 C1

TGTGTAT 0.03 9 60 T1 C1

TTATATA 0.03 9 83 T1 C1

TATATTA 0.04 11 109 T1 C1

TATACAC 0.02 294 62 T1 C4

TATAATA 0.04 9 96 T1 C1

CATATAT 0.03 9 68 T1 C1

TGTATAT 0.03 9 118 T1 C1

TATACAT 0.03 9 92 T1 C1

AATATAT 0.02 9 109 T1 C1

ATATAAT 0.03 11 134 T1 C1

ATATTAT 0.04 9 90 T1 C1

ATTTTAT 0.03 107 271 T1 C2

ATACATA 0.03 9 77 T1 C1

TATGTAT 0.02 9 87 T1 C1

TATGTGT 0.02 15 56 T1 C1

ATATGTA 0.02 11 114 T1 C1

ATGTATA 0.02 15 71 T1 C1

ATATATT 0.02 13 486 T1 C1

ACATATA 0.02 11 71 T1 C1

TATTATA 0.02 9 63 T1 C1

TACATAT 0.02 13 75 T1 C1

ATACACA 0.01 15 59 T1 C1

TAATATA 0.02 13 73 T1 C1

TCACGCC 0.33 179 738 T2 C3

GTTCAAG 0.27 122 913 T2 C3

GGCTCAC 0.18 210 935 T2 C4

TGGCTCA 0.14 213 911 T2 C4

TTGAGAC 0.14 199 857 T2 C3

CAGTGGC 0.12 230 820 T2 C4

GCAGTGG 0.10 232 700 T2 C4

TTTGAGA 0.12 201 776 T2 C3

GTGCAGT 0.08 236 347 T2 C4

ATCATGG 0.04 148 116 T2 C3

ATCTCAT 0.04 121 54 T2 C3

CCTGGGC 0.03 115 91 T2 C3

Table 1.  Words of length seven with DNRC overrepresentation of short distances, identified by our procedure, 
with indication of DNRC distribution maximum and its argument value, discriminator R function maximum, 
group type (T1 and T2) and class of peak distance. Distance peak classes: C1 (d < 100), C2 (d ≈ 100), C3 
(100 < d < 200) and C4 (d > 200).
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The first words obtained by these criteria identify words with a single over-favoured distance. To the purpose 
of classifying the words with relation to single favoured distance, we defined three subsets: peak in distances 
d ≤ 30, peak in distances 30 < d ≤ 200 and peak in distances d > 200. Table 2 shows the first five words obtained by 
the previous procedure, for each peak interval type. Taking into account the expected decrease of the distribution, 
the peak in distances d > 200 is an obvious unexpected behaviour. It is noteworthy that for some words a single 
distance accounts for about 70% of occurrences in a total of (1000 − k) distances.

Figure 5 presents the DNRC distribution of CATTAGG (first word in Table 2). This symmetric word pair 
shows a single over-favoured distance d = 14 ( ≈ .′f (14) 0 8w w, ). In a y-axis zoom (right), a local island of favoured 
distances is observed. However, in general, these frequencies do not surpass the global distance distribution 
behaviour. Figure 6 shows another example of a symmetric word pair with a single over-favoured distance at 
d = 133.

In the absence of obvious biological motivation for the occurrence of these single over-favoured distances, 
we conducted further analyses for some word pairs that have these features. To address the possibility that the 
reported behaviour may result from a sequencing procedure artefact, we studied the pair (CCACAAT, ATTGTGG) 
in detail. Using three independently sequenced and assembled genomes (Celera, HuRef, GRCh38.p2), we com-
puted the distance distributions and found a similar peak in each (see Table 3, displaying the frequencies around 
distance 133), ruling out the hypothesis that the observed distance peaks are sequencing or assembly artefacts.

We further analysed the sequences comprised between CCACAAT and ATTGTGG. Taking into account 
the sequence direction, the distance 133 was only enriched for CCACAAT to ATTGTGG (15599 occurrences) 
but not for ATTGTGG to CCACAAT (11 occurrences, which is in the expected range). The sequence logo (not 
shown) for the 15599 sequences of the GRCh38.p2 human genome, obtained using WebLogo 3.427, shows a 
significant degree of conservation, suggesting that these sequences may be part of repetitive DNA segments. 
Using the genomic coordinates for the CCACAAT words which are at distance 133 from ATTGTGG words, we 
searched the RepeatMasker annotations available from the UCSC Table Browser. From the 15599 occurrences, 
15586 locate within Long INterspersed Elements (LINEs), specifically from the L1 retrotransposon family. L1 are 

Peak type w max(fw,w′) arg max(fw,w′)

d ≤ 30

CATTAGG 0.78 14

TGCAGTG 0.77 21

CATGTCC 0.71 14

TCAACTC 0.71 10

TTCAACT 0.66 12

30 < d ≤ 200

TAGCTGG 0.67 31

GTTGAAC 0.60 157

TGTTCTC 0.46 31

CCACAAT 0.45 133

GAGTTGA 0.43 161

d > 200

CCATGCT 0.28 251

TCCCCAT 0.25 292

GAATTCT 0.22 339

TGAATGG 0.22 344

ATGGGAT 0.21 490

Table 2.  Words with highest fw,w′ maximum, with indication of maximising distance, for word length 7, 
organised by peak type: d ≤ 30, 30 < d ≤ 200 and d > 200.

Figure 5.  DNRC distribution fw,w′ for w = CATTAGG, and global DNRC distribution, fk=7, for the complete 
human genome. Very strong enrichment for distance 14: fw,w′(14) = 0.778 (left). The right plot is a zoom of y axis.
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active transposable elements that also mobilise non-autonomous elements, such as Alu sequences, thus shaping 
the genome landscape and variation, with implications in evolution and disease28, 29.

Masked Sequences.  To reduce bias from known repetitive sequences in the original genome assembly, we also 
analysed a pre-masked version of the genome (as reported by RepeatMasker and Tandem Repeats Finder). 
Masked sequences exclude major known classes of repeats30, such as long and short interspersed nuclear elements 
(LINEs and SINEs), long terminal repeat elements (LTRs), Satellite repeats or Simple repeats (micro-satellites).

As expected, masking eliminates distance peaks in several DNRC distributions. For instance, the DNRC dis-
tribution of w = CCACAAT (Fig. 6) loses the strong peak observed for the complete genome, because the enrich-
ment of distance 133 is due to LINEs repeats. However, the peaks are preserved in several other distributions.

To select words with single over-favoured distances, in these masked sequences, we applied the procedure 
described in the previous section. As before, results were classified in three subsets.

The highest-ranking words in the d ≤ 30 group are TA-rich words. Also, we observed that the shape of the 
DNRC distributions for these words remain unchanged by the masking of repeats. These distributions pre-
serve their characteristic islands of enriched short distances. The distributions of highest-ranking words in the 
other two groups do not show islands of favouring distances. They display just one or a few strong peaks in the 
repeat-masked genome.

Globally, the distance peak of the DNRC distributions in the repeat-masked genome correspond to a local 
maximum in the original genome (80% of the distributions).

Table 4 shows the first five words obtained for each subset, for k = 7. The words reported in Table 4 do not 
show up in the top-5 list of the complete genome sequence (Table 2). Nevertheless, the peaks detected in their 
distributions are also local maxima, or even global, in the corresponding non-masked distribution. As an exam-
ple, Fig. 7 shows the DNRC distribution of TATGAAT in the complete genome (left) and in the repeat-masked 
genome (right). Distance 63 is the distribution mode (peak) in the repeat-masked genome, and also a local max-
imum in the distribution extracted from the complete genome.

Figure 6.  DNRC distribution fw,w′ for w = CCACAAT, and global DNRC distribution, fk=7, for the complete 
human genome. Very strong enrichment of distance 133: fw,w′(133) = 0.455 (left). The right plot is a zoom of y 
axis.

Distance Celera HuRef GRCh38.p2

125 76 81 81

126 35 40 43

127 78 82 83

128 117 125 131

129 196 205 206

130 402 426 437

131 469 512 524

132 1103 1235 1263

133 12962 14938 15599

134 528 472 472

135 131 126 129

136 98 109 108

137 98 101 109

138 46 56 56

139 52 51 55

Table 3.  DNRC partial distribution of CCACAAT, around distance 133, for three distinct human genome 
assemblies (Celera, HuRef, GRCh38.p2).

7.Article IV 97



www.nature.com/scientificreports/

9Scientific Reports | 7: 728  | DOI:10.1038/s41598-017-00646-2

The peaks of DNRC distributions of words in Table 4 were analysed in order to assess the existence of biolog-
ical features. The peak distances in the d ≤ 30 subset arise from the overall contribution of several chromosomes. 
For the words in the other subsets, there is clearly a chromosome that is the main contributor to the single dis-
tance peak (see Table 4). Annotations within genomic coordinates for the words listed in Table 4 were retrieved 
from UCSC GENCODE v24 (https://genome.ucsc.edu/cgi-bin/hgTables) and the resulting gene lists were ana-
lysed with the functional annotation tool in DAVID31, 32. Overall, word pairs with peaks at distances d > 30 are 
enriched in genes with several and well-defined protein domains, namely, DNA-binding Zinc-finger proteins 
and members from the neuroblastoma breakpoint family (NBPF). These are duplicated genes with extreme copy 
number expansion that are associated with brain development and pathology, and are located in a human-specific 
pericentric inversion in chromosome 133, 34. Word pairs with distance peaks at d ≤ 30 are scattered throughout the 
genome, and show enrichment in genes associated with the membrane, which also display a conserved protein 
topology. As in the T1 group of the complete genome, the words of this subset are TA-rich which may be associ-
ated with cruciforme structure occurrence.

Conclusions
We developed new procedures to describe some characteristics of genomic words. In particular, the relative posi-
tion and distance between reverse complemented word pairs was addressed, using the notion of distance to the 
nearest reversed complement (DNRC). Under this framework, we studied the DNRC distribution of each word 
in comparison with the global DNRC distribution and verified the homogeneity of the global DNRC distribution 
across human chromosomes, for word sizes 1 ≤ k ≤ 7.

Using these novel procedures for genomic word detection, we were able to find words with unexpected fea-
tures in the DNRC distribution, which could not be detected by word frequency procedures alone. The detection 
of pairs of symmetric words that occur very often at a fixed distance (e.g., the pair (CCACAAT, ATTGTGG) at 
distance 133) suggests structural characteristics of the DNA. Some of these are already known but some others 
may be new.

Peak type w max(fw,w′) arg max(fw,w′) chr

d ≤ 30

TGTGTAT 0.033 9 several

TATATAT 0.031 13 several

AATATAT 0.027 9 several

TGTGTGC 0.027 9 several

ATATACA 0.027 13 several

30 < d ≤ 200

GGGCCCA 0.033 101 chr13

CAGGCTC 0.023 31 chr1

AAGCTTT 0.020 83 chr19

TATGAAT 0.018 63 chr19

GCCACAG 0.013 115 chr1

d > 200

GTTTTCC 0.010 425 chr1

TGAAATC 0.010 555 chr1

GGCTCAG 0.009 401 chr1

TGAGAGA 0.009 502 chr1

TTTTGTC 0.009 256 chr1

Table 4.  Words with highest fw,w′ maximum, with indication of the maximising distance, in masked sequences, 
organised by peak type: d ≤ 30, 30 < d ≤ 200 and d > 200.

Figure 7.  DNRC distribution fw,w′ for w = TATGAAT in the complete genome (left) and in the repeat-masked 
genome (right). The triangle symbol identifies the mode in the complete genome (d = 22) and the asterisk 
symbol is the mode in the masked genome (d = 63).
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We explored the global DNRC distributions of words of lengths k = 6 and k = 7 in the human genome, com-
paring them with the expected distributions obtained under k-order Markov dependence. A lack of fit was glob-
ally detected. The global DNRC distributions show a strong overrepresention of distances up to 350, a feature that 
may be associated with the occurrence of cruciform structures.

The DNRC distributions of some word pairs display significantly overrepresented distances. In the complete 
genome, those distributions fall into one of several distinct patterns: distributions with islands of favoured dis-
tances d < 100 (typically TA-enriched words); distributions with islands of favoured distances between 50 and 
350; distributions with a single overrepresented distance. In the masked genome version, distributions with 
islands of favoured distances for d ≤ 30 (typically TA-enriched words) and distributions with single over-favoured 
distance for d > 30, were observed. Some of these peaks are present in both complete and masked genomes, thus 
they are not related to the major known classes of repeats.

DNA structures such as stem-loops and cruciforms are formed at sites that contain reversed complementary 
words. For this reason, their study naturally leads to the study of the symmetry properties of the sequences, and in 
particular to the study of the distribution of distances between nearest reversed complements. We performed an 
exhaustive study of these distance distributions and identified words that are strong candidates to the formation 
of cruciform structures in human DNA. We are convinced that the new procedures defined and proposed in this 
work are relevant for a better understanding of the structure of DNA.
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Abstract
In this work, we study reverse complementary genomic word pairs in the human DNA, by comparing both the distance dis-
tribution and the frequency of a word to those of its reverse complement. Several measures of dissimilarity between distance 
distributions are considered, and it is found that the peak dissimilarity works best in this setting. We report the existence of 
reverse complementary word pairs with very dissimilar distance distributions, as well as word pairs with very similar distance 
distributions even when both distributions are irregular and contain strong peaks. The association between distribution dis-
similarity and frequency discrepancy is also explored, and it is speculated that symmetric pairs combining low and high values 
of each measure may uncover features of interest. Taken together, our results suggest that some asymmetries in the human 
genome go far beyond Chargaff’s rules. This study uses both the complete human genome and its repeat-masked version.

Keywords  Chargaff’s rules · Human genome · Distance distribution · Peak dissimilarity · Symmetric word pairs

1  Introduction

The analysis of DNA sequences is an extremely broad 
research domain which has seen several new approaches over 
the last years. One of these newer approaches is the study of 
distance distributions of genomic words. A genomic word, 
also called an oligonucleotide, is a sequence of nucleotides 
which are represented by the letters {A,C,G,T} . In DNA 
segments, the inter-word distance is defined as the num-
ber of nucleotides between the first symbol of consecutive 

occurrences of that word [1, 2]. For instance, in the DNA 
segment ACGTCGATCCGTGCGCG the inter-CG distances 
are (3, 5, 4, 2). For each word, all of its inter-word distances 
in the genome sequence can be counted and aggregated into 
a distance distribution, which contains the frequency of each 
distance. These distributions provide a characterization of 
genomic words which can be studied using statistical tech-
niques for probability density functions.

In this paper, we are particularly interested in the study 
of symmetric word pairs. A symmetric word pair is formed 
by a word w and its reverse complement w̄ , which is the 
word obtained by reversing the order of the letters and 
interchanging the complementary nucleotides A ↔ T  and 
C ↔ G . For instance, the reverse complement of w = AAGT  
is w̄ = ACTT  , and together they form the symmetric pair 
{w, w̄} . The interest in these pairs stems from Chargaff’s sec-
ond parity rule which implies that within a strand of DNA 
the number of complementary nucleotides is similar [3]. 
One potential explanation postulates that this phenomenon 
would be an original feature of the primordial genome, the 
most primitive nucleic acid genome, and the preservation 
of strand symmetry would rely on evolutionary mechanisms 
[4]. Symmetric word pairs can occur in a genome through 
recombination events such as duplications, inversions and 
inverted transpositions [5, 6]. These segments have been 
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associated with specific biological functions, namely, rep-
lication and transcription, and major evolutionary events 
including recombination and translocations. Also, the poten-
tial to form secondary DNA structures can cause the genome 
instability observed in some diseases [7].

Chargaff’s second parity rule has led to the natural ques-
tion whether this also holds for symmetric word pairs. This 
question has been answered to a certain extent in the exist-
ing literature [6, 8–10], as it has been observed that even for 
long DNA words in several organisms, including the human 
genome, the frequency of a word is typically (but not always) 
similar to that of its reverse complement. However, two 
words with the same frequency in a sequence may exhibit 
very distinct distance distributions along that sequence. This 
leads to the natural follow-up question: do symmetric word 
pairs have similar distance distributions?

Tavares et al. [2] addressed this question for words of 
length k ≤ 5 in the human genome. Adopting a whole-
genome analysis approach, the discrepancy between dis-
tance distributions was evaluated using an effect size meas-
ure. The authors concluded that the dissimilarity between 
the distributions of symmetric word pairs of this length was 
negligible. The authors also reported that for each word w, 
the distance distribution nearest to the distance distribution 
of w is most often that of w̄ , the reverse complement of w.

As an example, Fig. 1 shows the distance distribution of 
the word w = GGGAGGC in the human genome. Its peaks 
correspond to three distances that occur much more often 
than others. In this example, the distance distribution of the 
reverse complement w̄ = GCCTCCC is extremely similar.

In order to study differences between distance distribu-
tions, a new dissimilarity measure was proposed by Tavares 
et al. [11]. Based on the gaps between the locations of their 
peaks and the difference between the sizes of these peaks, 
the peak dissimilarity becomes high when the distribu-
tions have very different peaks, or when one distribution 
has strong peaks and the other does not. In this article, we 
extend their work in two ways. First, we compare the peak 

dissimilarity with two earlier dissimilarity measures and 
argue for its superiority in the analysis of distance distribu-
tions between symmetric word pairs. Secondly, we combine 
the peak dissimilarity with information about the frequen-
cies of the word and its reverse complement to improve 
the identification of atypical genomic word pairs. We also 
draw a comparison between the observed distribution and 
the expected distribution under randomness. Using these 
techniques we detect several atypical word pairs, which we 
annotate by identifying the chromosomes and genes where 
their differences are most pronounced.

The paper is organized as follows. In Sect. 2, we describe 
measures of the discrepancy between frequencies and dis-
tance distributions, including the peak dissimilarity. Sec-
tion 3 compares the behavior of these dissimilarity measures 
in our particular research problem. Section 4 identifies and 
investigates the symmetric word pairs that are most and least 
dissimilar, using both their frequencies and their distance 
distributions. It also explores how well the results hold up 
in a masked sequence. Section 5 concludes.

2 � Measures of Dissimilarity

2.1 � Discrepancy Between Word Frequencies

To measure the discrepancy between the total absolute 
frequencies of reverse complementary words w and w̄ , we 
count all occurrences of each word along the DNA sequence. 
The number of times w occurs is denoted as nw , and that of 
w̄ is nw̄ . Under the null hypothesis that the true underlying 
probabilities of w and w̄ are equal, the expected frequency 
of w is e = (nw + nw̄)∕2. The Pearson residual [12] of w is 
then given by (nw − e)∕

√
e. The absolute Pearson residual 

(APR) of w is thus

Note that APR(w) = APR(w̄) and that 2APR2(w) equals 
the usual chi-squared statistic for testing the equality of the 
underlying probabilities.

2.2 � Dissimilarity Measures for Distance 
Distributions

Assuming that the DNA sequence is read through a sliding 
window of word length k, the inter-word distance sequence 
is defined as the differences between the positions of the 
first symbol of consecutive occurrences of that word. For 
instance, the inter-CG distances sequence in the DNA seg-
ment CGT​ACG​CGACG​ is (4, 2, 3). The distance distribution 

(1)APR(w) =
�nw − e�
√
e

=
�nw − nw̄�

√
2(nw + nw̄)

.
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Fig. 1   Distance distribution of the genomic word w = GGGAGGC 
and of its reverse complement w̄ = GCCTCCC in the human genome. 
Adapted from [2]
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of w, denoted by f w , gives the relative frequency of each 
distance, i.e., the number of times a certain distance occurs 
divided by the total number of occurrences of the word w.

The word structure influences the distance distribution, as 
some distances from 1 to k may be absent. As an example, 
note that the inter-AAA​ distance can be equal to one, but can-
not be two or three. So, for words of length k we will only 
consider distances greater than k.

We now wish to compare the distance distribution of 
each word w with the distance distribution of w̄ . For this we 
describe three dissimilarity measures, two of which have 
been used for a long time and one is new.

2.2.1 � Euclidean Distance

The Euclidean distance is a standard tool which is also used 
between distributions. In our situation, the discrete probabil-
ity distributions f w and f w̄ have the same domain. The word 
‘discrete’ refers to the domain, as the distances are always 
integers. The probabilities (i.e., frequencies) of a distance i 
are denoted as pi = f w(i) and qi = f w̄(i) . Then the Euclidean 
distance DE(f

w, f w̄) is obtained by summing the squares of 
the frequency differences:

2.2.2 � Jeffreys Divergence

The Kullback–Leibler divergence [13] between f w and f w̄ 
is given by

where the 0 log 0 = 0 convention is adopted. The Kull-
back–Leibler divergence stems from information theory. It 
is always nonnegative and becomes zero when the distribu-
tions are equal, and it is widely used as a divergence measure 
between distributions. But it is not symmetric, as DKL(f

w, f w̄) 
need not equal DKL(f

w̄, f w) . Therefore, we will use a sym-
metrized version called the Jeffreys divergence [14]:

Note that DJ is not well defined if some pi or qi are zero. In 
practice this can be avoided by replacing the zero values 
by a small positive value. The Jeffreys divergence DJ is a 
semimetric, meaning that it is symmetric, nonnegative, and 
reduces to zero when the two distributions are identical.

2.2.3 � Peak Dissimilarity

The distance distributions f w and f w̄ may present several 
peaks, i.e., distances with frequencies much higher than the 

(2)DE(f
w, f w̄) =

√∑

i

(pi − qi)
2.

DKL(f
w, f w̄) =

∑

i

pi log(pi∕qi),

(3)DJ(f
w, f w̄) = DKL(f

w, f w̄) + DKL(f
w̄, f w).

global tendency of the distribution, as we saw in Fig. 1. To 
describe the recently proposed peak dissimilarity [11] we go 
through three steps.

1. Identifying peaks To determine peaks we slide a window 
of fixed width h along the domain of the distribution. In each 
such interval of width h we average the absolute values of the 
differences between successive frequencies, and call the result 
the size of the peak on that interval. The peak’s location is 
defined as the midpoint of the interval. The strongest peak is 
then determined by the interval with the highest size. For the 
second strongest peak we only consider intervals that do not 
overlap with the first one, and so on.

The bandwidth h is a tuning parameter which controls the 
number of consecutive frequencies that are aggregated in a 
region. There is no best bandwidth, and different bandwidths 
can reveal different features of the data. To illustrate the effect 
of h on peak identification, consider the distance distribution 
of the word w = GGGAGGC in Fig. 1 which has a local maxi-
mum at distance 135. When h ≤ 3 the region around distance 
135 gives rise to two intervals with high peak size. However, 
when h ≥ 4 these high frequencies are combined into a single 
peak.

2. Dissimilarity between two peaks To measure the dissimi-
larity between two peaks, we take into account the difference 
between their sizes and between their locations. Consider the 
distance distributions f w and f w̄ which are defined on the same 
domain with length R. Let tw

i
 be a peak of f w with location li 

and size vi and let tw̄
j
 be a peak of f w̄ with location l̄j and size 

v̄j . To measure the dissimilarity between these peaks we pro-
pose to use

where v and v̄ are the highest peak sizes observed in each dis-
tribution. If the peaks have the same location the dissimilar-
ity is reduced to a relative size difference |vi − v̄j|∕min{v, v̄} , 
and if they have the same size it is reduced to a relative loca-
tion difference |li − l̄j|∕R . The denominator min{v, v̄} yields 
a high dissimilarity when one distribution has strong peaks 
and the other does not.

3. Peak dissimilarity between two distributions To measure 
the dissimilarity between two distributions, we compare their 
n strongest peaks, for fixed n. We propose

where � is a permutation of the indices i = 1,… , n , meaning 
that �(i) is the image of i. The minimum is taken over the set 
n of all permutations � of n elements. In Fig. 1, the mini-
mum in (5) is attained for the simple permutation �(1) = 1 , 

(4)d(tw
i
, tw̄
j
) =

(
|li − l̄j|

R
+ 1

)( |vi − v̄j|
min{v, v̄}

+ 1

)
− 1,

(5)DP(f
w, f w̄) = min

𝜋∈n

{
n∑

i=1

d(tw
i
, tw̄
𝜋(i)

)

}
,
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�(2) = 2 , �(3) = 3 yielding a tiny dissimilarity. In general 
the proposed measure (5) depends on n, the number of peaks 
considered, and on the bandwidth h used in the peak search. 
Like DJ also DP is a semimetric, which is why we call it a 
‘dissimilarity’ rather than a ‘distance’.

2.3 � Data and Data Preprocessing

In this study, we used the complete genome assembly, build 
GRCh38.p2, downloaded from the website of the National 
Center for Biotechnology Information (http://www.ncbi.nlm.
nih.gov/genome). We also used pre-masked data available 
from the UCSG Genome Browser (http://genome.ucsc.edu), 
in which the repeats determined by Repeat Masker [15] and 
Tandem Repeats Finder [16] were replaced by Ns.

The chromosomes were processed as separate sequences 
and non-ACGT symbols were used as sequence separators. 
The counts of word distances were generated using the C 
language, taking overlap between successive words into 
account and setting the maximal distance to 1000. The R 
language was used to compute the distance distributions, the 
dissimilarity measures and to perform the statistical analysis.

3 � Comparison of Dissimilarity Measures

In this section, we will compare the dissimilarity measures 
of Sect. 2 on the data under study, consisting of all words 
of lengths 5, 6, and 7 in the human genome. In particular, 
the peak dissimilarity is computed with bandwidth h = 5 
which revealed the essential peak structure of the data, by 
capturing both “isolated” and “grouped” high frequencies. 
The results are not overly sensitive to this choice, and in fact 
very similar results were obtained for h = 4, 5, 6 . Also, we 
used the n = 3 strongest peaks (for n = 4,… , 7 we obtained 
similar results in much higher computation time).

3.1 � Correlation Analysis

For every symmetric word pair {w, w̄} , each of the four 
dissimilarity measures provides a value. These are the fre-
quency discrepancy APR, Euclidean distance DE , Jeffreys 
divergence DJ , and peak dissimilarity DP . To evaluate the 

agreement between these four measures we compute Spear-
man’s rank correlation coefficient rS between each pair. For 
instance, to compare APR and DE we rank the values of each 
of them, and then compute the product-moment correlation 
between these two vectors of ranks. Comparing each pair 
of measures yields the Spearman correlation matrices in 
Table 1, one for each word length k = 5, 6, 7.

Overall the correlations decrease with increasing word 
length, with DE and DJ remaining the most correlated 
( rS > 0.90 ). The rather high correlation between DE and DJ 
may perhaps be explained by the formal analogy between 
D2

E
=
∑

i(pi − qi)
2 and DJ =

∑
i(pi − qi)(log pi − log qi) . By 

comparison DP is less correlated with either of them, espe-
cially for k = 7 . The correlation between APR and the meas-
ures DE , DJ and DP lies in between. We may conclude that 
the various measures yield complementary information, with 
the possible exception of DE and DJ . Therefore, the adopted 
measure(s) should take into account the features that are 
considered important for the subject matter. In the next sub-
section, we will argue which dissimilarity measures are the 
most useful in the context of the present research problem.

3.2 � Comparing Top‑Ranked Sets

For each distance distribution dissimilarity measure ( DE , DJ 
and DP ), we now rank the dissimilarity values from smallest 
to largest. The highest ranks correspond to the most dissimi-
lar word pairs for that particular dissimilarity measure. For 
instance, the top 10% ranked set for DE consists of the word 
pairs whose Euclidean distance exceeds the 90th percen-
tile of DE . As discussed earlier, the ranks of DE and DJ are 
more correlated than those of DP and DJ (see Table 1). One 
way to assess whether the most dissimilar distributions are 
the same in each top-ranked set (regardless of their position 
within that set) is to count the number of common word pairs 
in those sets. In particular, Table 2 records the fraction of 
common elements in the top 1% ranked sets for DE and DJ 
(under the heading RE,J) , etc. The top 1% ranked sets for DE 
and DJ indeed have the largest overlap, whereas those of DJ 
and DP have the least in common, especially for k = 6 and 
k = 7 . The results for the top 10% ranked sets are similar.

Looking at the top-ranked sets for k = 7 in more detail 
shows specific differences. In Fig. 2a, we see that the 1% 

Table 1   Spearman rank 
correlation matrices for 
frequency discrepancy APR 
and distance distribution 
dissimilarities DE , DJ , and DP , 
by word length

Bolded numbers refers to values referred in the text. DE and DJ are the most correlated (rS >0.9)

k = 5 k = 6 k = 7

APR DE DJ DP APR DE DJ DP APR DE DJ DP

APR 1 1 1
DE 0.635 1 0.551 1 0.283 1
DJ 0.573 0.988 1 0.403 0.962 1 0.029 0.904 1
DP 0.663 0.836 0.800 1 0.622 0.784 0.678 1 0.457 0.641 0.427 1
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top-ranked word pairs for DJ and DE consist of words with 
low word frequencies, whereas the 1% top-ranked word 
pairs for DP are composed of words with much higher fre-
quencies. In Fig. 2b, we note that the top-ranked word 
pairs for DP also have higher frequency discrepancy values 
(absolute Pearson residuals).

A visual inspection of the distance distributions in 
word pairs with high-ranked DJ reveals that there are many 
sparse distributions among them. By sparse we mean that 
there are many zero frequencies f w(i) , and we already 
saw that these words have a low total absolute frequency. 
Indeed, the dissimilarity measures DJ and DE may be over-
stating the disagreement between distance distributions 
with local differences. In fact, DJ is quite sensitive to small 
frequencies, while DE is sensitive to the presence of a few 
high frequencies. It should be noted that in the presence of 
sparse distributions both low and high relative frequency 
values are expected, which strongly affect the results of DE 
and DJ . On the other hand, DP ignores small frequencies 
and evaluates the disagreement between the sizes of the 
three strongest peaks, which are taken into account even 
when their locations do not precisely coincide. Moreover, 
the peak size differences are scaled by the highest peak 
sizes observed in each distribution.

In view of these results, in what follows we will focus on 
the dissimilarity measures DP and APR for the detection of 
discrepancies between symmetric word pairs.

4 � Detection of Atypical Symmetric Word 
Pairs

In this section, we focus on symmetric word pairs consisting 
of words with length k = 5, 6, and 7, both in the complete 
human genome assembly and in a masked version.

In order to identify atypical words, we will use three 
approaches. First, we will consider the peak dissimilarity 
between the distance distributions. Second, we will combine 
this information with the frequency discrepancy. Finally, we 
will study the deviations between the observed distance dis-
tributions and the distance distributions under the assump-
tion of randomness and Chargaff’s parity rule.

4.1 � Analyzing the Observed Peak Dissimilarities

As before, the peak dissimilarity is computed with band-
width h = 5 and the n = 3 strongest peaks. To capture the 
most dissimilar distance distributions we select those sym-
metric word pairs with peak dissimilarity above the 99th per-
centile of DP values. This procedure captured 6 word pairs of 

Table 2   Comparison between 
the rankings for DE , DJ and DP : 
fraction of common elements in 
the top 1% and top 10% ranked 
sets

Bolded numbers refers to values referred in the text. DJ and DP have the least in common, especially for 
k>=6

k Overlap in top-ranked sets

Top 1% Top 10%

RE,J RE,P RJ,P RE,J RE,P RJ,P

5 0.98 0.49 0.49 0.89 0.66 0.63
6 0.12 0.24 0.05 0.63 0.61 0.38
7 0.23 0.03 0.00 0.58 0.47 0.18

Fig. 2   Statistics of sym-
metric pairs {w, w̄} in the 
1% top-ranked set of each 
divergence measure, for k = 7 : 
a average word pair frequency 
(nw + nw̄)∕2 and b frequency 
discrepancy APR. Complete 
genome
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length k = 5 , 21 of length k = 6 and 82 of length k = 7 . Next, 
these words were sorted by decreasing peak dissimilarity 
value. The results are listed in Table 3 (for k = 6 and k = 7 
only the first 20 results are shown).

Looking at these distributions, it turns out that these high 
peak dissimilarities are often caused by one distribution 

with strong peak(s) and another displaying low variability 
or small peaks, as illustrated in Fig. 3.

The symmetric pairs with low values of Dp have very 
similar distributions. For some words, this dissimilarity is 
surprisingly low in spite of their distance distributions hav-
ing irregular patterns and/or some strong peaks. Some of 

Table 3   Symmetric word pairs 
with peak dissimilarity above 
the 99th percentile of DP values, 
by word length (only the first 20 
results are shown)

For each word w its DP(w, w̄) value is given. Complete genome

k = 5 k = 6 k = 7

w DP w DP w DP w DP w DP

CGAAG​ 127.9 AGT​ATC​ 91.0 GAA​ATC​ 58.7 AAA​TTC​C 178.8 AGG​TTA​A 106.0
ACGAA​ 87.2 AGT​TAC​ 86.4 AAG​GCC​ 46.3 ACT​TTA​C 145.4 AAC​AAT​C 105.2
TACGA​ 43.5 GGT​TAA​ 84.5 CCT​TCG​ 46.3 GCT​TGA​A 138.9 AAA​CTT​A 102.5
AACGG​ 37.0 AGT​AAC​ 80.7 ATA​CGA​ 45.8 CTG​TCA​A 123.8 GCA​GTT​A 102.3
GAAAC​ 25.8 GTT​GGA​ 80.6 GTC​ACA​ 45.1 AAC​ACA​A 120.4 CTT​GAC​A 100.1
TCCAA​ 22.1 ACC​CGT​ 69.1 CTT​CGA​ 44.6 AGT​TTA​A 116.1 GTA​GAA​C 97.1

AGG​TTA​ 68.2 AAG​TTA​ 43.6 GGG​AAG​A 110.4 AAA​TCC​T 96.8
AAA​TCG​ 65.9 ACG​AAG​ 42.3 GAT​GCC​A 107.7 CGG​GTT​C 96.3
GAA​TAC​ 61.2 AGT​CAC​ 41.6 CAC​TAA​G 107.5 AAG​GTT​A 95.0
AGT​CGA​ 60.1 CGG​GTA​ 39.4 AAC​AGT​A 106.8 ATT​GGA​G 91.7

Fig. 3   Distance distributions of some reverse complements, f w and f w̄ , with high peak dissimilarity values: a DP = 145.4, APR = 37.0; b 
DP = 107.6, APR = 4.9; c DP = 96.8, APR = 50.9; d DP = 55.75, APR = 2.0. Complete genome
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those distributions, with peak dissimilarities below the 10th 
percentile of DP , are illustrated in Fig. 4.

4.2 � Combining Peak Dissimilarity and Frequency 
Discrepancy

In order to explore the (dis)similarity between reverse com-
plements, we also combine the peak dissimilarity DP with 
the frequency discrepancy APR. Figure 5 plots DP against 
APR for each word length, with lines indicating the 90th and 
99th percentile of both. Whereas there is a kind of positive 
relation between DP and APR for short words, this becomes 
less clear for longer words, where we know that the rank 
correlation between these measures decreases (see Table 1).

Several combinations of APR and DP are observed in 
Fig. 5: similar word frequency with similar distance dis-
tribution (call this case c1, which is common); dissimilar 
word frequency with similar distance distribution (c2); and 
similar word frequency with dissimilar distance distribution 
(c3). (A fourth combination, dissimilar word frequency and 
dissimilar distance distribution, becomes increasingly rare 
for longer words.)

The interesting cases are (c2) and (c3), which may 
reveal features of interest and should be further studied. 
In case (c2), words have similar distance distributions but 
their frequencies of occurrence are quite different, which 
corresponds to points at the upper left of Fig. 5. To illus-
trate, consider the symmetric pair with w = CCGTCCG 
(Fig. 4c), which has peak dissimilarity below the 10th per-
centile of DP and frequency discrepancy around the 90th 
percentile of APR. Conversely, in case (c3) strand symme-
try holds but the words have distinct distance distributions 
along the genome. This corresponds to points at the bot-
tom right of the plot. For instance, the symmetric pair with 
w = AGTTATG (Fig. 3d) has peak dissimilarity above the 
90th percentile of DP and frequency discrepancy around 
the median of APR. Observe that all word pairs listed in 
Table 3 are located on the right side of the scatter plot.

These results indicate that some asymmetries in the 
human genome go far beyond Chargaff’s parity rule.

Fig. 4   Distance distributions of some reverse complements, f w and f w̄ , with low peak dissimilarity values: a DP = 0.012, APR = 0.70; b 
DP = 0.026, APR = 0.73; c DP = 0.060, APR = 11.1; d DP = 0.116, APR = 4.04. Complete genome
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4.3 � Deviations from Randomness

It is intriguing that the distance distributions of a sym-
metric pair can be very similar even when their pattern is 
unexpected. If genomic sequences were generated from 
independent symbols only subject to Chargaff’s parity rule 
( %A = %T  and %C = %G ), the inter-word distance distribu-
tions would be close to an exponential distribution. We are 
interested in investigating how dissimilar distance distribu-
tions from such symmetric pairs can be from the pattern 
under the random scenario. For that purpose, we compute 
the peak dissimilarity between the averaged distance dis-
tribution of the symmetric pair, (f w + f w̄)∕2 , and the cor-
responding averaged reference distribution. The expected 
distance distribution can be deduced using a state diagram, 
which represents the progress made towards identifying w 
as each symbol is read from the sequence. The input param-
eters are the nucleotide frequencies in the sequence. The 
algorithm used to construct those reference distributions is a 
special case of Fu’s procedure based on finite Markov chain 
embedding [17].

We select all symmetric pairs with intra-pair peak dis-
similarity below the 10th percentile of DP , and ranked them 
according to the peak dissimilarity between their aver-
age distribution and their average reference distribution 
(denoted as rs). This yields a list of symmetric pairs with 
similar but unexpected distance distributions. For each word 
length the top 20 results are listed in Table 4. To illustrate 
some distance distribution of symmetric word pairs with 
this behavior, consider the pairs associated with the words 
w = CCGTCCG (Fig.  4c) and w = ATCATCG (Fig.  4d), 
which are listed in this table under k = 7 . The symmetric 
pairs have very similar distance distributions and their strong 
peaks make them very dissimilar from the expected distribu-
tions in the random scenario.

4.4 � Masked Genome Assembly

To reduce the effect of repetitive sequences in the original 
genome assembly, we also analyze a masked version of the 
genome which excludes major known classes of repeats [18], 
such as long and short interspersed nuclear elements (LINE 
and SINE), long terminal repeat elements (LTR), satellite 
repeats or simple repeats (micro-satellites). All distribu-
tions and measures in this subsection are from the masked 
sequence and for k = 7.

Masking the genome sequence markedly affects the shape 
of the distance distributions. Several strong peaks observed 
in the complete genome are eliminated by masking, as 
described in [11]. It also greatly reduces the frequency dis-
crepancy between reverse complements. To visually inspect 
those discrepancies, we plot the word frequencies against 
those observed for the reverse complement. We observe that, 
for the masked genome, the points are located much closer to 
the diagonal line than in the complete genome (Fig. 6a, b).

To select symmetric pairs with similar and dissimilar 
distance distributions, the authors in [11] retained word 
pairs with peak dissimilarity below the 10th percentile of 
DP values and those above the 90th percentile of DP val-
ues, after filtering out words with low total absolute fre-
quency. They distinguish between two groups of word pairs 
with low peak dissimilarity: those where both distributions 
have strong peaks at short distances, and on those where 
neither distribution has strong peaks. These patterns are 
illustrated in Fig. 7a, b. Interestingly, the unusual pattern of 
w = ATCATCG in the complete sequence (Fig. 4d) remains 
in the masked sequence (Fig. 7b). Symmetric pairs with 
high dissimilarity usually have one distribution with one or 
more strong peaks at short distances ( < 200 ), whereas the 
other presents low variability. Some very dissimilar pairs are 
shown in Fig. 7c, d.

Fig. 5   Frequency discrepancy (APR) versus peak dissimilarity, for word lengths 5, 6 and 7. Solid and dashed lines indicate the 90th and the 99th 
percentile of each measure, respectively. Complete genome
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4.4.1 � Annotation Analysis

To investigate whether an association exists between 
dissimilar reverse complements and functional DNA 
elements, we perform an annotation analysis for the 15 
most dissimilar symmetric pairs. For each such pair we 
list the word with the strongest peaks. Then we look for 

the ‘favored’ distance(s), i.e., those where the strongest 
peak(s) are located. These peaks are often concentrated 
in one chromosome rather than being spread over the 
entire genome sequence. Table 5 lists the chromosome 
in which the favored distances are most pronounced, for 
each of the 15 pairs. The positions of the words occur-
ring at that distance from each other are recorded. Then, 

Table 4   Symmetric pairs with 
intra-pair peak dissimilarity 
below the 10th percentile 
of DP , sorted by decreasing 
dissimilarity to the random 
scenario (only the first 
20 results are shown) and 
organized by word length

For each word w its DP(w, w̄) value is given and dissimilarity to the random scenario (rs). Complete 
genome

k = 5 k = 6 k = 7

w DP rs w DP rs w DP rs

CGCCC​ 0.009 213.80 CGC​CCG​ 0.029 583.44 ACG​CGT​A 0.141 1621.58
CCTCC​ 0.015 207.89 CGG​GAG​ 0.018 443.79 CAA​CGA​G 0.122 1556.41
CGGCC​ 0.014 206.40 GCC​TCC​ 0.005 418.84 CTC​GAG​A 0.160 1481.80
CCAGC​ 0.009 190.02 AGG​CCG​ 0.014 360.64 ATC​GCC​A 0.082 1350.15
CCTCG​ 0.025 184.80 CAG​ACG​ 0.012 354.04 CGT​CTG​A 0.130 1292.38
CGCCA​ 0.014 174.63 CAG​GAG​ 0.012 339.94 ACG​CAA​A 0.056 1257.21
CCGCC​ 0.014 153.47 GGT​CTA​ 0.034 332.90 GTT​CGG​A 0.120 1097.62
CAGGC​ 0.008 136.91 AGA​TCG​ 0.024 326.56 ATC​ATC​G 0.116 1040.96
GCCGA​ 0.024 136.10 CGA​GAC​ 0.025 291.41 CAT​CGA​A 0.111 1038.82
CCCGG​ 0.021 133.17 CAC​GCC​ 0.038 289.29 TCA​TCG​A 0.143 1031.44
CCACC​ 0.023 115.13 CCC​GTC​ 0.037 276.62 AGG​AGC​G 0.099 995.72
CTCCC​ 0.018 103.37 ACG​GGG​ 0.041 267.93 CAG​ACG​A 0.120 957.98
CCCAG​ 0.011 95.68 CGT​CTC​ 0.009 266.46 TCC​CGG​A 0.025 904.82
AGGAG​ 0.011 88.48 GAG​GCA​ 0.018 265.75 GGA​TCT​A 0.138 893.08
GGCCA​ 0.014 87.62 CCT​CCC​ 0.015 260.13 CCG​GAC​G 0.099 892.40
CAGGA​ 0.013 83.81 CTC​GGC​ 0.021 258.12 ACG​CTC​C 0.096 891.33
CCGAG​ 0.024 78.98 CCC​GGC​ 0.030 246.31 AGA​CGC​T 0.064 886.83
CCAGG​ 0.027 74.37 CCG​GGC​ 0.029 242.70 CCG​TCC​G 0.060 866.16
CTGCC​ 0.021 66.48 CCC​GGA​ 0.042 242.56 CAG​ACG​G 0.009 855.86
AGTAG​ 0.005 64.42 CGC​CTC​ 0.034 231.77 CGG​GCG​C 0.030 840.74

Fig. 6   a Word frequencies ( nw ) in the entire genome against those 
observed for the reverse complements ( nw̄ ) with both axis in log 
scale, all for k = 7 ; b same for the masked genome; c frequency dis-

crepancy versus peak dissimilarity for k = 7 in the masked genome, 
where solid lines indicate the 90th percentile of each quantity
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we retrieve annotations within these genomic coordinates 
from UCSC GENCODE v24. Interestingly, the words we 
obtain that are located on chromosome 13 all fall within 
the gene LINC01043 (long intergenic non-protein cod-
ing RNA 1043) and all of our words on chromosome 1 
are contained in the gene TTC34 (tetratricopeptide repeat 
domain 34). These results suggest that the most dissimilar 
distributions may be related to repetitive regions associ-
ated with RNA or protein structure.

A deeper investigation into the biological meaning 
of these words is necessary to investigate whether the 
observed dissimilarities reflect the selective evolutionary 
process of the DNA sequence.

5 � Conclusions

In this work, we explore the DNA symmetry phenomenon 
in the human genome, by comparing each inter-word dis-
tance distribution to the distance distribution of its reverse 
complement, for word lengths k = 5, 6 and 7.

We use the peak dissimilarity to evaluate the dissimilar-
ity between the distance distributions of reverse comple-
ments and compare it to two well-known measures. Our 
results suggest that peak dissimilarity achieves its intended 
purpose in the detection of highly dissimilar distance 
distributions.
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Fig. 7   Distance distributions of some reverse complements with low dissimilarity values: 0.144 (a), 0.125 (b); and with high dissimilarity val-
ues: 11.74 (c), 6.49 (d). Masked genome

Table 5   The 15 most dissimilar 
symmetric pairs with k = 7 , 
characterized by their word with 
the strongest peaks

The chromosome on which these peaks are prominent is indicated. Masked sequence

Chromosome 13 1 4 3 8

Word w ACC​ATT​C GGT​AAG​C AGC​ATC​T GTT​GGT​A TGG​TAT​G GCT​TAC​T
CTT​CAG​G TAA​GCA​T GAG​CAT​C TGG​TAG​A
GAC​CAT​T TCA​GGA​T TGA​GCA​T
TCC​TTC​A TTC​AGG​A

Author's personal copy

8.Article V 111



Interdisciplinary Sciences: Computational Life Sciences	

1 3

In the complete human genome, we confirm the exist-
ence of symmetric word pairs with quite distinct distance 
distributions. In such cases, one of the distance distribu-
tions typically has well-defined peaks and the other has low 
variability. We also report symmetric pairs with very similar 
distance distributions even though these distributions are 
themselves unexpected with strong peaks.

The association between distance distribution dissimilar-
ity and frequency discrepancy is analyzed. In general, the 
correlation between those measures is moderate. Several 
behaviors are observed in symmetric pairs, by combining 
low and high values of both measures. In particular, there 
are symmetric pairs that preserve strand symmetry (similar 
frequency) but have dissimilar distance distributions; and 
symmetric pairs with dissimilar frequencies and similar dis-
tance distributions. Symmetric pairs with either behavior 
may uncover features of interest.

We also investigate how well our results hold up in a 
masked sequence, which excludes major known classes of 
repeats. Even though masking generally reduces the dissim-
ilarity between distance distributions of symmetric pairs, 
there remain quite a few word pairs with high dissimilar-
ity, which in our study are mainly localized on a specific 
chromosome and even a specific gene. A question worth 
investigating is to what extent the high dissimilarities may 
be linked to evolutionary processes.

Taken together, our results suggest that some asym-
metries in the human genome go far beyond Chargaff’s rules. 
Of particular note are some symmetric pairs with a perfectly 
ordinary frequency similarity and distribution similarity, that 
exhibit a strong preference for occurring at some particular 
distances.
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1 Introduction

Genomes encode and store information that defines any

living organism. They may be represented as sequences
of symbols from the nucleotide alphabet {A,C,G, T}. A
segment of k consecutive nucleotides is called a genomic

word of length k. For each length k there are 4k distinct
words.

Some words have a well-defined biological function,
and several functionally important regions of the gen-

ome can be recognized by searching for sequence pat-
terns, also called ‘motifs’ [21]. For instance, the trinuc-
leotide ATG serves as an initiation site in coding re-

gions, i.e. a marker where translation into proteins be-
gins [25]. Also the word CG is interesting. Although
CG dinucleotides are under-represented in the human
genome, clusters of CG dinucleotides (‘CpG islands’)

are used to help in the prediction and annotation of
genes [3]. Furthermore, CpG islands are known to be
associated with the silencing of genes [8,16,36]. These

examples illustrate the importance of identifying word
patterns in genomic data.

Finding over- or under-represented words in biolo-
gical sequences, to discover “relevant” words, is a com-

mon task in genomics (see e.g. [22]). The comparison
between frequencies observed in real sequences and in
random sequences allows evaluating the exceptionality

of a given word. The number of word occurrences in a
random text has been intensively studied, with many
concurrent approaches. Useful reviews of different ap-
proaches on random word occurrences can be found

in [28,29,20,30,26].

A particular characteristic of a genomic word is its
distribution pattern. For some practical purposes, we

may care for how a certain word spreads out in the
sequence, but not for the specific positions that the
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value occupies in it. The distribution pattern of a word
along a genomic sequence can be characterized by the
distances between the positions of the first symbol of
consecutive occurrences of that word. The distance dis-

tribution of the word is the frequency of each lag in
the DNA sequence. Patterns in distance distributions
of genomic words have been studied through several

approaches (see e.g. [2,42,43]) and form an interesting
research topic due to their link with positive or negative
selection pressures during evolution [5,18].

The search for features in genomic data by inter-

word distances and by word frequency are obviously
related. However, a plain distinction between the two
kinds of features’ study exists. Over-represented words
are generally related to repetitive elements, which may

or not have some known biological function. The dis-
position of repetitive elements, found in genomes, con-
sists either in tandem repeats (arrays of copies which lie

adjacent to each other) or in repeats dispersed through-
out the genome. This latter case is related with words
that are over-represented, but not necessarily at the

same distance from each other. Thus, their distance
distributions may not point to any strong irregular-
ity. Conversely, a word with a perfectly ordinary overall
frequency, may display a preference to repeat itself at

an exact distance. This behavior may not be detected
by word frequency procedures alone. Indeed, two words
with the same frequency may exhibit very distinct pat-

terns of distribution. Consequently, word frequency and
distance between words must be considered distinct is-
sues, deserving separated research.

In this paper we look for clusters of genomic word

distance distributions. Because of the particularly spiked
nature of these distributions, we have developed a 3-
step procedure. First, we fit a smooth baseline distribu-
tion using an outlier-robust fitting technique. Secondly,

we identify and characterize the peak structure on top
of that baseline. Finally, a clustering procedure is ap-
plied to the characterization obtained in the first two

steps.

The paper is organized as follows. Section 2 de-
scribes distance distributions and the proposed clus-
tering procedure. Section 3 describes and reports the

results of a simulation study which measures the per-
formance of the proposed method. Section 4 clusters
real data, consisting of distance distributions of words
in the human genome. Section 5 concludes and outlines

future research directions.

2 Methodology

2.1 Word distance distributions

Distance between words and waiting times are closely

related topics. One of the most general techniques in
waiting times studies is the Markov chain embedding
method introduced by Fu [9] and further developed by
several authors (for a review see [10,4]). Exact distri-

butions of the distance between occurrences of words
are obtained by probabilistic techniques in [31,32,39]
and their approximations thereof by compound Poisson

processes are given in [33]. The approach of Stefanov et
al. [37,38] combines Markov chain embedding with an
exponential family methodology.

In a simple random sequence with words generated
independently from an identical distribution, the dis-

tance distribution of a word (without overlap struc-
ture) follows a geometric distribution [27], whose con-
tinuous approximation is an exponential distribution.

By adding some correlation structure between a sym-
bol and the symbols at preceding positions, a more re-
fined DNA model is obtained. This can be achieved by
assuming a k-th order Markov model, as in [42].

However, real genomic sequences are more complex

and do not follow the simple models mentioned above.
Many unexpected patterns occur in the distance distri-
butions of genomic words. For instance, Figure 1 shows

the distance distributions of the words w = TACT and
w = ACGG in the human genome assembly. They have
strong peaks, which correspond to distances that occur
much more often than others.

The distance between neighboring occurrences of a

certain word translates local behaviors of the word (as-
sociated with low or long range) in a global way, since
those behaviours are not confined to a specific location.
When it matters most, positions associated with fea-

tures of interest (such as very frequent distances) may
be extracted and other analyzes carried out.
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Figure 1 Distance distribution of the genomic words w =
TACT (left) and w = ACGG (right) in the human genome.
Both distributions exhibit over-favored distances (peaks).
The strongest peaks correspond to distances 54 (left) and
340 (right).
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2.2 Decomposition of distance distributions

In this study we decompose a distance distribution into
a smooth underlying distribution (the ‘trend’) and a
peak function. This decomposition allows us to separate

the two essential properties of a distribution.

Consider a genomic word w of length k and denote
its relative frequency (histogram) by f , observed on a
domain consisting of lags {k+1, k+2, . . . , L}. Note that∑L
j=k+1 f(j) = 1. Such a distribution typically consists

of an overall trend and some upward peaks. Therefore,
we model the distribution as a mixture of a baseline
distribution fb and a peak function fpk :

f = fb + fpk . (1)

We will denote the mass of the baseline component as
mb =

∑L
j=k+1 fb(j) and that of the peak function as

mpk =
∑L
j=k+1 fpk(j). Both fb and fpk are nonnegative

hence 0 ≤ mb ≤ 1 and 0 ≤ mpk ≤ 1, with mb+mpk = 1.

From many trial fits on distance distributions of

genomic words we concluded that a properly scaled
gamma density function provides a good fit of the un-
derlying trend. Therefore we set fb = αfγ with α ≥ 0

and

fγ(x; θ, λ) =
λθxθ−1e−λx

Γ (θ)
I(x > 0) (2)

where θ > 0 is the shape parameter, λ > 0 is the rate
parameter (note that 1/λ is a scale parameter), and
Γ (.) is Euler’s gamma function [1]. The gamma distri-
bution includes the exponential distribution as a special

case (with θ = 1) and can therefore be seen as an ex-
tension of the model in [27].

The peak function fpk describes the mass excess
above the baseline. If there is a peak at lag j it fol-

lows that fpk(j) = f(j)− fb(j), and if there is no peak
fpk(j) = 0.

Figure 2 illustrates the decomposition of the dis-
tance distribution of the word w = ACGG shown in

Figure 1 into a smooth baseline function fb and a peak
function fpk.
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Figure 2 Decomposition of the distance distribution of the
genomic word w = ACGG into fb (left) and fpk (right).

2.3 Estimating the baseline

To estimate the baseline distribution fb we need to fit
a scaled gamma curve αfγ to the points (j, f(j)) of the

observed histogram, where j = k+1, k+2, . . . , L . Note
that fb is defined by three parameters: α, θ and λ, so
we have to estimate all three together.

A first thought would be to work with the residuals

f(j) − f̂b(j), but these suffer from heteroskedasticity
as the variability in f(j) is larger for low j than for
high j. In fact, if we generate n data points from the

model (1) the observed absolute frequency fob(j) at a
lag j in which there is no peak follows a binomial dis-
tribution with n experiments and success probability

fb(j) . (Note that in the real data n is the total num-
ber of times the word w occurs in the genome.) When
the success probability is low and n is high the binomial
distribution can be well approximated by a Poisson dis-

tribution with mean and variance n fb(j). The standard
deviation of that Poisson distribution is thus

√
n fb(j)

and therefore decreasing in j, which implies heteroske-

dasticity of fob(j) − nf̂b(j). On the other hand, it is
known that the square root of a Poisson variable has a
nearly constant standard deviation. Therefore, we will

fit the function
√
n fb to the transformed data

√
fob .

We thus use the square root as a variance-stabilizing
transform for the Poisson distribution. In practice, we
will consider the residuals

r(j) =
√
fob(j)−

√
n f̂b(j) (3)

whose standard deviation is roughly constant at those
j in which there is no peak, so we are in the usual

homoskedastic setting.
The next question is how to combine these residuals

in an objective function to be minimized. The stand-

ard approach for this is the least squares (LS) object-
ive, which is simply the sum of all squared residuals∑L
j=k+1 r

2(j) . However, this does not work in our case
because of the peaks in the data, which are outliers.

Minimizing the LS objective would assign very high
weight to the outliers, which do not come from the
baseline fb . Instead we apply the least trimmed squares

(LTS) approach of [34]. This method minimizes the sum
of the h smallest squared residuals, so that

(α̂, θ̂, λ̂) minimizes
h∑

i=1

(r2)(i) (4)

where (r2)(1) 6 (r2)(2) 6 . . . are the ordered squared

residuals. In this application we set h equal to 95% of
the number of values j in the domain. By using only
the 95% smallest squared residuals, the LTS method

does not fit the peaks of the distribution and focuses
only on the trend. To avoid overemphasizing the high
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lags j where the fit is close to zero and to get a more
accurate fit for the lower lags, we carry out the LTS fit
on a shorter set j ∈ {k + 1, . . . , L∗} with L∗ < L.

2.4 Estimating the peak function

We now want to flag the peaks in the observed absolute
frequencies fob(j), noting that even in lags j without a
peak we do not expect fob(j) to be exactly equal to

nf̂b(j) because fob(j) exhibits natural Poisson variabil-
ity with mean and variance nf̂b(j). Therefore we assess
the extremity of the observed frequency fob(j) by com-

paring it with a high quantile Q(j) (e.g. with probabil-
ity 0.99) of the Poisson distribution with mean nf̂b(j).
That is, we flag a peak at the lag j if and only if

fob(j) > Q(j) . (5)

At any lag j that is flagged we set the peak function
value equal to the difference between the observed and
the expected relative frequencies, i.e. fpk(j) = f(j) −
f̂b(j) > 0. At all the other lags we set fpk(j) = 0 .

2.5 Dimension reduction

Suppose now that we wish to analyze m genomic words,
wherem could be the number of words of length k in the
genome. The raw data is then a matrix of size m× (L−
k) containing the m observed lag distributions. Each
row corresponds to a discrete distribution (a vector of
length L− k), denoted by f , which sums to one. In the

preceding subsections we have seen how each row f can
be decomposed into the sum of a baseline and a peak
function.

First consider the baseline functions. In what fol-
lows we are interested in computing a kind of distance

between such functions. Since each baseline function fb
is characterized by a triplet of parameters (α, θ, λ), a
simple idea would be to compute the Euclidean dis-

tance between such triplets. However, the three para-
meters have different scales, and triplets with relatively
high Euclidean distance can describe similar-looking
curves and vice versa. To remedy this, we first con-

struct the cumulative distribution function (CDF) of
each baseline, given by Fb(j) =

∑j
i=k+1 fb(i) for j =

k + 1, . . . , L. The left panel of Figure 3 illustrates this

for the word w = ACGG, the lag distribution of which
was shown in Figure 1 and decomposed in Figure 2.
Note that Fb(L) = mb < 1 when mpk > 0.

We can then think of the Euclidean distance between
two CDFs Fb and Gb as a way to measure their dis-

similarity. Note that these CDFs still have L − k di-
mensions, which is usually very high. Therefore, in the
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Figure 3 Cumulative distribution functions of the baseline
(left) and the peak function (right) of the genomic word w =
ACGG.

second step we apply a principal component analysis
(PCA) to these m high-dimensional vectors. This op-

eration preserves much of the Euclidean distances. The
number of components we retain, qb , is selected such
that at least a given percentage of the variance is ex-

plained. Typically qb � L − k so the dimension is re-
duced substantially. The scores associated to the first
qb components yield a data matrix of much smaller size

m × qb . Note that these scores are uncorrelated with
each other by construction.

For the peak functions, stacking the m rows on top
of each other also yields a matrix of size m × (L − k).

This data matrix is sparse in the sense that few of its
elements are nonzero. We then follow the same strategy
to that used for the baseline functions: first we convert

the peak functions to CDFs as illustrated in the right
panel of Figure 3, and then we apply PCA yielding
qpk components, where qpk is selected to attain at least

a given explained variance. The resulting score matrix
has size m× qpk .

2.6 Clustering

Clustering, also known as unsupervised classification,
aims to find groups in a dataset (see e.g. [17]). Here our
dataset is a matrix of size m × (qb + qp) obtained by
applying the above preprocessing to all of the m fre-

quency distributions. We explore clustering based on
only the peak component (Method 1), only the baseline
component (Method 2), and based on both (Method 3).

To each of these datasets we apply the k-means method,
in which k stands for the number of clusters which is
specified in advance. (The letter ‘k’ in the name of this
method differs from the word length k used elsewhere in

this paper.) This approach defines the center of a cluster
as its mean, and assigns each object to the cluster with
the nearest center. Its goal is to find a partition such

that the sum of squared distances of all objects to their
center is as small as possible. The algorithm starts from
a random initialization of cluster centers and then it-

erates from there to a local minimum of the objective
function. This is not necessarily the global minimum.
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As a remedy for this problem, multiple initial configur-
ations are generated and iterations are applied to them,
after which the final solution with the lowest objective
is retained.

Since k-means looks for spherical clusters, it works
best when the input variables are uncorrelated and have
similar scales. The preprocessing by PCA in the pre-

vious step has created uncorrelated variables, and in
our experiments their scales were of the same order of
magnitude. However, in other data sets it is necessary

to take into account the possibility of observing non-
spherical clusters and clusters of unequal volume after
preprocessing.

2.7 Selecting the number of clusters

The result of k-means clustering depends on the number
of clusters k, which is often hard to choose a priori.

Therefore it is common practice to run the method for
several values of k, and then select the ‘best’ value of k
as the one which optimizes a certain criterion called a

validity index. Many such indices have been proposed
in the literature. Here we will focus on three of them:
the Calinski-Harabasz (CH) index, the C index, and the

silhouette (S) index.
The CH index [6] evaluates the clustering based

on the average between- and within-cluster sums of
squares. The approach selects the number of clusters

with the highest CH index.
The C index reviewed in [15] relates the sum of dis-

tances over all pairs of points from the same cluster (say

there are N such pairs) to the sum of the N smallest
and the sum of the N largest distances between pairs of
points in the entire data set. It ranges from 0 to 1 and
should be minimized. To compute the C index all pair-

wise distances have to be computed and stored, which
can make this index prohibitive for large datasets.

The S index [35] is the average silhouette width over

all points in the dataset. The silhouette width of a point
relates its average distance to points of its own cluster
to the average distance to points in the ‘neighboring’

cluster. The silhouette index ranges from −1 to +1 and
large values indicate a good clustering.

The performance of these measures depends on vari-
ous data characteristics. An early reference for com-

paring clustering indices is [23], which concludes that
CH and C exhibit excellent recovery characteristics in
clean data (the S index was not yet proposed at that

time). More recent works evaluate clustering indices
also in datasets with outliers and noise, see e.g. [12,
19]). Guerra et al. [12] rank CH and S in top positions,
and report poor performance of the C index in that

situation.

Rather than choosing one of these indices we will

compute all three in our study, and plot each of them
against the number of clusters. The local extrema in
these curves can be quite informative.

3 Simulation study

To better understand the behavior of the proposed pro-
cedure, a simulation study is performed. To assess how
well a clustering method performs, we compute a meas-
ure of agreement between the resulting partition and

the true one.

3.1 Study design

Experiments are performed on datasets consisting of
three distinct groups of discrete distributions, denoted

by G1, G2 and G3, whose characteristics are defined
by a five factor factorial design. The factors and levels
used in the study are listed in Table 1. They have the

following meaning.

– Trend (T ) is defined by the Gamma parameters θ
(shape) and λ (rate). When T is ‘same’ the distri-
butions in all groups have the same baseline para-

meters.
– Number of peaks (NP ) gives the number of peaks

generated in each distribution. When NP is ‘same’

all distributions exhibit the same number of peaks,
np, set as 10. In case NP is ‘distinct’ the number of
peaks is set to 20 in G1, 10 in G2, and 5 in G3.

– Peak locations (PL). In each group the ‘mean loca-

tions’ (ml) are generated uniformly on the domain.
For each member of that group the peak locations
are generated around the mean locations of that

group (ml ± h, with h = 3). When PL is ‘similar’
all groups have the same mean locations.

– Peak mass (PM) corresponds to the amount of mass

mp in the peaks of the distribution, so the mass of
the baseline is 1 −mp. Three levels are considered:
distributions of all groups have the same mp > 0;
distributions of distinct groups have different mp >

0; distributions of G1 and G2 have different mp > 0
and distributions from G3 have mp = 0. Note that
the factors NP and PM are not independent, as

NP = 1 implies PM 6= 3, and PM = 3 implies that
the distributions in G3 have no peaks (np = 0).

– Sample size (SS) describes the number of elements
in each group. In the ‘balanced’ setting all groups

have the same number of distributions.

Each simulated distribution is constructed from a
baseline function and a peak function. All distributions

belonging to the same group have the same factor levels.
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Table 1 Factors of the experimental study and correspond-
ing levels. Factors: trend, T ; number of peaks, NP ; peak loc-
ations, PL; peak mass, PM ; sample size per group, SS.

Factor Level
Para- Groups

meters G1 G2 G3

Trend (T)

1. same
θ 0.8 0.8 0.8

λ 0.0005 0.0005 0.0005

2. distinct
θ 0.6 0.8 0.95

λ 0.0001 0.0005 0.001

Number of Peaks 1. same np 10 10 10∗

(NP ) 2. distinct np 20 10 5∗

Peak Locations 1. similar - - - -

(PL) 2. distinct - - - -

Peak Mass (PM)

1. same mp 0.05 0.05 0.05

2. distinct mp 0.1 0.05 0.02

3. distinct with 0 mp 0.1 0.05 0

Sample Size (SS)
1. balanced 200 200 200

2. not balanced 50 150 400

∗These values are replaced by 0 in case factor PM takes level 3.

Note that for the baseline function (2) only the para-
meters θ and λ are user-defined, while α is not. This is
because α is determined from the peak mass mp by

α = (1−mp)/
L∑

j=k+1

fγ(j; θ, λ) . (6)

Therefore the baseline functions are determined by the
trend T and the total peak mass PM . Since the baseline

construction depends on PM , it is required that the
peak mass takes the same value in all groups (PM=1)
in order to obtain similar baselines (T=1).

We will say that groups have similar baselines when
their T is ‘same’ and peak mass PM is ‘same’, and that
they have distinct baselines when T is ‘distinct’. Also,

when number of peaks NP is ‘same’ and peak location
PL is ‘similar’, we will say that the groups have similar
peak functions, and when PL is ‘distinct’ they are said

to have distinct peak functions.

We are interested in the following three scenarios:

Scenario 1 - Groups have similar baselines and dis-
tinct peak functions;
Scenario 2 - Groups have similar peak functions
and distinct baselines;

Scenario 3 - Groups have distinct baselines and
distinct peak functions.

The remaining case where both the baselines and the

peaks are similar is not of interest since its groups are
basically the same.

The combination of the three scenarios of interest

with the possible levels of the design factors leads to 20
possible data configurations: 4 cases for scenario 1, 4

cases for scenario 2 and 12 cases for scenario 3, as can be

seen in Table 2. For each case 100 independent samples
were generated, and the clustering methods described
in section 2.6 were applied to each sample.

Table 2 Possible combinations of factor levels, leading to 20
data conditions, organized by scenario (1, 2 or 3).

Peak Functions

Similar Distinct

Factor
NP=PL=1 PL 6=1

Levels

B
a
se
li
n
e
s S
im

il
a
r

Scenario 1

T = 1 T = 1; NP ∈ {1, 2};
and PL = 2; PM = 1;

PM = 1 SS ∈ {1, 2}

D
is
ti
n
c
t

Scenario 2 Scenario 3

T = 2; NP = 1; T = 2; NP ∈ {1, 2};
T = 2 PL = 1; PM ∈ {1, 2}; PL = 2; PM ∈ {1, 2, 3};

SS ∈ {1, 2} SS ∈ {1, 2}

3.2 Data generation

The data sets were generated according to the corres-
ponding levels of the factors T , NP , PL, PM and SS.

All data sets consist of m = 600 discrete distributions
on L = 1500 lags, with their peaks located in the first
1000 lags. The distributions are labeled by group (G1,
G2 and G3).

Baseline distribution. The baseline distributions fb
are given by α times the gamma density fγ(θ, λ) of (2).
The gamma parameters θ and λ are determined by the
factor T with parameter values shown in Table 1, plus

Gaussian noise. The formula is

fb(j) = αfγ(j; θ + δθ, λ+ δλ) (7)

where δθ ∼ N(0, 0.01), δλ ∼ N(0, 0.00001) and α is de-
termined from the triplet (θ+ δθ, λ+ δλ,mp) according

to (6).

Peak function. To define a peak function fpk we first
determine the peak locations from the factors PL and

NP (as described above), and their magnitudes from
PM and T . In all non-peak positions the peak function
is set to zero.

Sampling variability. The generated baseline func-

tion and peak function together yield a discrete distri-
bution f as in formula (1). We then sample a dataset
with 50,000 observations from this population distribu-

tion, in a natural way. We first construct the CDF of f ,
given by F (j) =

∑
i6j f(i) for all j in the domain. Then
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we consider the quantile function denoted as F−1: for
each value u in ]0, 1[ we set F−1(u) = min{j ; F (j) >
u}. This quantile function takes only a finite number
of values. Now we draw 50,000 random values from the

uniform distribution on ]0, 1[ and apply F−1 to each,
which yields 50,000 lags in the domain that are a ran-
dom sample from the distribution f given by (1). This

sample forms an empirical probability function fob . We
then apply the procedure of Section 2 to carry out a
clustering on 600 such empirical distributions.

3.3 Performance evaluation

Each replication takes a set of 600 distributions and re-
turns a partition of these data. To assess the perform-
ance of the method, a measure of agreement between

the resulting partition and the true partition is needed.
Milligan and Cooper [24] evaluated different indices for
measuring the agreement between partitions and re-
commended the Adjusted Rand Index (ARI), introduced

in [14]. The ARI has a maximum value of 1 for match-
ing classifications and has an expected value of zero
for random classifications [40]. For each case we report

the mean and standard deviation of ARI over the 100
replications.

3.4 Results

Table 3 summarizes the results of the simulation. Each

row in the table corresponds to a particular case, de-
termined by the levels of the 5 factors (T, NP, PL, PM,
SS). The rows are grouped by the 3 scenarios listed in

Table 2. Scenario 1 has distinct peak functions, scenario
2 has distinct baselines, and scenario 3 has both.

The first columns of Table 3 describe the factor
levels, followed by columns for each of the three meth-

ods. In each of those the mean and the standard de-
viation (in parentheses) of the Adjusted Rand Index
over the 100 replications are listed. The final columns
list the number of principal components retained for

the baselines (b) and the peak functions (pk). These
numbers were obtained by requiring that the percent-
age of explained variance is at least 90%. We see that

the baselines require only 2 components. For the peaks
the number is high when the peak masses are the same
(PM=1) and low otherwise (in the latter case it requires
few PCs to explain the larger peaks).

Method 1 The first method applies the clustering to the
PCA scores obtained from the peak functions. There-

fore, good performance is expected in scenarios with
distinct peak locations between the groups (scenarios 1

Table 3 Mean and standard deviation of the Adjusted Rand
Index obtained from 100 replicas of each case. Results are
organized by scenario and method. Each case is defined by
a combination of five factors: trend, T; number of peaks,
NP; peak locations, PL; peak mass, PM; and sample size
per group, SS. The final columns list the number of prin-
cipal components retained for the baselines (b) and the peak
functions (pk).

Factors Method 1 Method 2 Method 3 #PC

T NP PL PM SS b pk

Scenario 1

1 1 2 1 1 0.989 (0.046) 0.000 (0.003) 0.817 (0.255) 2 62

1 1 2 1 2 0.886 (0.224) 0.000 (0.007) 0.493 (0.245) 2 58

1 2 2 1 1 0.987 (0.052) 0.000 (0.002) 0.837 (0.245) 2 55

1 2 2 1 2 0.821 (0.245) -0.002 (0.007) 0.530 (0.208) 2 39

Scenario 2

2 1 1 1 1 0.082 (0.131) 0.966 (0.019) 0.969 (0.018) 2 42

2 1 1 1 2 0.043 (0.085) 0.934 (0.036) 0.940 (0.036) 2 45

2 1 1 2 1 1.000 (0.000) 0.987 (0.008) 1.000 (0.000) 2 3

2 1 1 2 2 1.000 (0.000) 0.989 (0.008) 1.000 (0.000) 2 2

Scenario 3

2 1 2 1 1 0.976 (0.060) 0.965 (0.019) 0.999 (0.002) 2 58

2 1 2 1 2 0.919 (0.183) 0.988 (0.009) 1.000 (0.000) 2 58

2 1 2 2 1 1.000 (0.000) 0.992 (0.006) 1.000 (0.000) 2 5

2 1 2 2 2 1.000 (0.000) 0.998 (0.003) 1.000 (0.000) 2 5

2 1 2 3 1 1.000 (0.000) 0.933 (0.036) 0.999 (0.004) 2 3

2 1 2 3 2 1.000 (0.000) 0.988 (0.008) 1.000 (0.000) 2 2

2 2 2 1 1 0.989 (0.030) 0.989 (0.008) 1.000 (0.000) 2 56

2 2 2 1 2 0.900 (0.203) 0.992 (0.007) 1.000 (0.000) 2 40

2 2 2 2 1 1.000 (0.000) 0.997 (0.004) 1.000 (0.000) 2 6

2 2 2 2 2 1.000 (0.000) 0.964 (0.022) 0.999 (0.002) 2 4

2 2 2 3 1 1.000 (0.000) 0.929 (0.042) 0.999 (0.002) 2 3

2 2 2 3 2 1.000 (0.000) 0.988 (0.009) 1.000 (0.000) 2 2

and 3). Indeed, Method 1 performs very well in scenario

1 (ARI > 0.821) and scenario 3 (ARI > 0.900).

In scenario 2 the peak locations are the same. In
the first two cases the peak masses are similar and in

the other two cases the peak masses are distinct. As
expected, Method 1 recovers the peak differences in the
latter cases, whereas there are no differences to recover

in the former.

Method 2 This method clusters the PCA scores of the
baselines, so it is expected to work well in scenarios 2

and 3 in which the trends are distinct, and not in scen-
ario 1 in which the baselines are similar. The simulation
results confirm this, as the groups are not recovered in
scenario 1 (ARI ≈ 0) and are identified with high ac-

curacy in scenarios 2 and 3 (ARI > 0.929).

Method 3 The input for Method 3 are the scores of
the baselines as well as those of the peaks, and in-

deed it is the best performer in scenario 3 where the
groups have distinct baselines combined with distinct
peaks (ARI > 0.999). In that scenario it is also good at

distinguishing groups with peaks from groups without
peaks (PM = 3). Also in scenario 2 we see that Method
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3 works well, in fact it even slightly outperforms the
other methods in that situation. Only in scenario 1
does Method 3 perform less well. It is still fine when
the groups have balanced sizes (SS = 1) but becomes

weaker when the groups are unbalanced (SS = 2).
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Figure 4 Performance of each method, given by the mean
ARI of all replications from cases in each scenario: groups
with similar trends and distinct peak locations (scenario 1);
groups with distinct trends and similar peak locations (scen-
ario 2); and groups with distinct trends and distinct peak
locations (scenario 3). The clustering methods 1, 2 and 3 cor-
respond to the three broken lines.

Figure 4 provides a rough summary of the simula-
tion results by showing the ARI averaged over all cases
of each scenario. The performance of a method is thus

measured by three numbers. We note that no method
is best in all scenarios. Method 2, which ignores the
peak information, is never the best method. Method 1

is the best in scenario 1, and Method 3 is the best in
scenarios 2 and 3. For a given dataset it is recommen-
ded to carry out a preliminary inspection to determine
which scenario it corresponds to, before selecting the

clustering method.

4 Application to real data

In this section we analyze two datasets, consisting of the
lag distributions of all words of length k = 3 and k = 5

in the complete human genome. These datasets are de-
noted by DDk where k identifies the word length. DD3

consists of 64 distributions and DD5 contains 1024 dis-
tributions. A preliminary visual inspection of these his-

tograms revealed that there are substantial differences
in both the trends and the peak structures, so in ac-
cordance with the conclusions of the simulation study

we selected Method 3 (described in Section 2.6) for clus-
tering the words in each dataset.

4.1 Data and data processing

We used the complete DNA sequence of the human gen-
ome assembly, downloaded from the website of the Na-
tional Center for Biotechnology Information. The avail-
able assembled chromosomes (in version GRCh38.p2)

were processed as separate sequences and all non-ACGT
symbols were considered as sequence separators.

The counts of word lags were obtained by a dedic-
ated C program able to handle large datasets (the hap-

loid human genome has over 3 billion symbols). We ana-
lyzed the absolute frequences of the lags j = k+1, . . . , L
where L = 1000 for k = 3 and L = 4000 for k = 5.

The R language was used to decompose the lag dis-
tributions, to perform the principal component analysis

and the clustering and to carry out further statistical
analysis.

4.2 Decomposing the lag distributions

In both datasets we first estimated the baseline distri-
bution by LTS as described in Subsection 2.3, in which
we set L∗ = 200 for DD3 and L∗ = 1500 for DD5.

The peak functions were then estimated as described
in Subsection 2.4.

4.3 Clustering words of length 3

Each distribution in DD3 is summarized by 4 values,
as the PCA retains 2 components for the peaks and 2
components for the baselines.

Figure 5 plots the validation indices against the num-

ber of clusters (< 10). The CH index has a local max-
imum at 3 clusters and is high again at 6 clusters or
more, whereas the silhouette index is highest for 2 clusters

and the C index is lowest (best) for 2 clusters and gets
low again for over 6 clusters. From the 3 indices to-
gether it would appear natural to select 2 clusters, for
which CH = 108, S = 0.68 and C = 0.052. The cluster

C1 has 8 elements, and cluster C2 has 56.
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Figure 5 Validation indices for clustering DD3 by the num-
ber of clusters nc: the Calinsky-Harabasz index (left), silhou-
ette coefficient (center) and C-index (right).
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To test the stability of this clustering we follow the
approach of Hennig [13]. We draw a so-called bootstrap
sample, which is a random sample with replacement
from the 64 objects in the DD3 dataset. This creates a

different dataset with 64 objects, some of which coin-
cide. We then apply the same clustering method to it,
set to 2 clusters. Let us call the new clusters Da and

Db. Then we compute the so-called Jaccard similarity
coefficient of C1 with the new clustering, defined as

J(C1) = max
( |C1 ∩Da|
|C1 ∪Da|

,
|C1 ∩Db|
|C1 ∪Db|

)
6 1 (8)

where | . . . | stands for the number of elements. A high
value J(C1) indicates that C1 is similar to one of the

clusters of the new partition. We compute J(C2) ana-
logously. Then we repeat this whole procedure for a
new bootstrap sample and so on, 200 times in all. The
average of the 200 values of J(C1) equals 0.952, which

means that the cluster C1 is very stable. For cluster C2

we attain the stability index 0.978 which is even higher.
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Figure 6 Clustering of the dataset DD3 in clusters C1 and
C2. The lag distributions are shown on the left, and the cor-
responding baselines on the right. Cluster C1 is in black and
C2 in red.

Figure 6 depicts the clusters C1 and C2. The lag
distributions in C1 are flatter than those in C2. It turns

out that all the words in C1 contain the dinucleotide
CG (known as CpG). In fact, C1 consists exactly of the
8 words of length 3 that contain CG (i.e., ACG, CCG,
GCG, TCG, CGA, CGC, CGG, CGT), so C2 contains

no words with CG. The special behaviour of the CG di-
nucleotide in the human genome is well reported in the
literature. Although human DNA is generally depleted

in the dinucleotide CpG (its occurrence is only 21% of
what would be expected under randomness), the gen-
ome is punctuated by regions with a high frequency of
CpG’s relative to the bulk genome. This DNA charac-

teristic is related to the CpG methylation [7,11]. We
may conclude that the clustering of DD3 has biological
relevance.

It is worth noting that if one considers all k-means

clusterings into 2 to 40 clusters, the second best silhou-
ette coefficient is attained for 26 clusters, which also

corresponds to the point where the CH index has a

large increase and the C-index is very small (CH = 436,
S = 0.61 and C = 0.0046). In this partition with 26
clusters, over half of the clusters are formed by pairs

of words that are reversed complements of each other,
i.e., obtained by reversing the order of the word’s sym-
bols and interchanging A-T and C-G. The similarity

between lag patterns of reversed complements is a well-
known feature described in the literature, see e.g. [41].

4.4 Clustering words of length 5

Also the lag distributions of DD5 contain quite dis-
tinct baselines and peak structures. Figure 7 shows four

lag distributions, with their corresponding estimated
baselines.
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Figure 7 Lag distributions of some words of length k = 5,
with the corresponding baselines indicated in red.

Our procedure retains 3 principal components for

the peaks and 2 components for the baselines, so that
each lag distribution is converted into 5 scores. Car-
rying out k-means clustering for different numbers of

clusters yields the plots of validation indices in Figure
8. They do not all point to the same choice, however.
The CH and S indices have local maxima at 2 and 6
clusters, while the C-index would support a choice of 5

or more clusters. It would appear that 2 or 6 clusters
are appropriate.

When choosing 2 clusters we obtain clusters with
278 and 746 members, and when choosing 6 clusters
they have sizes 19, 92, 166, 141, 367 and 239.

We verified that both these partitions are very stable.
For this we again drew 200 bootstrap samples, and par-
titioned each of them followed by computing the Jac-

card similarity coefficient of the original clusters. In the
case of 2 clusters the average Jaccard (stability) indices
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were 0.94 and 0.97. In the case of 6 clusters they were
0.84, 0.91, 0.93, 0.92, 0.93 and 0.93. Since we aim to
decompose the DD5 dataset of 1024 distributions into
smaller groups with similar patterns, we will focus on

the solution with 6 clusters from here onward.
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Figure 8 Validation indices for clustering DD5 by the num-
ber of clusters nc: the Calinsky-Harabasz index (left), average
silhouette width (center) and C-index (right).

The 6-cluster partition consists of two large clusters
(|C5| = 367 and |C6| = 239), three middle-sized clusters
(|C2| = 92, |C3| = 166 and |C4| = 141), and the much

smaller cluster C3 with only 19 elements. Figure 9 shows
the lag distributions of each cluster. As a graphical
summary we also consider the median function of each
cluster, which in each domain point (lag) equals the

median of the cluster’s function values in that point.

We see the most pronounced peaks in the clusters
C1, C3 and C4. Those in the small cluster C1 are the

strongest. Several of them occur in the same location
for most of the cluster members, which explains why
they remain visible in the median function. The words
in C1 are listed in Table 4.

Table 4 List of words in cluster C1 of the partition of DD5

in six clusters.

AAACG AACGG ACGGG AGCGC CGAGA CGCTT

CGGGA CGTTC CGTTG CTTCG GAGGC GCCTC

GCGCT GCGTT TCGTA TCGTT TCTCG TTCGT

TTTCG

The distributions in C4 have most of their peaks

before lag 500, with little going on after that. Cluster
C3 is quite different, as strong peaks occur over the
whole domain. The distributions in clusters C2, C5 and

C6 have rather small peaks, so few major irregularities.
Their main difference is in the baselines: those of C2

have a high rate λ, whereas the baselines of C6 are

much flatter.

We also explore the composition of the words in each
cluster, by computing the percentage of words that con-
tain a given dinucleotide or trinucleotide. Clusters C1,

C2 and C3 stand out in this respect. Cluster C2 contains
the largest proportion of words with the dinucleotides

AA (47%) and TT (49%), which is also reflected in the
high frequency of AAA and TTT (25% and 26%, re-
spectively). The clusters C1 and C3 have a lot of words
containing the dinucleotide CG (89% and 98%). This

is very different from the other clusters: only 9% of the
words in C2 contain CG, in C4 this is 11%, in C5 only
1%, and in C6 16%. Even though both C1 and C3 have

many CG dinucleotides, these occur in different trinuc-
leotides: C1 has many words containing CGT and TCG
(both 32%), whereas in C3 many words contain CGA
(27%) and ACG (23%).

5 Summary and conclusions

In this work we have proposed a methodology for de-
composing the lag distribution of a genomic word into

the sum of a baseline distribution (the ‘trend’) and a
peak function. The baseline component is estimated by
robustly fitting a parametric function to the data distri-
bution, in which the residuals are made homoskedastic

and the robustness to outliers is essential. The peak
function is then obtained by comparing the absolute
frequency at each lag to a quantile of a Poisson distri-

bution.

When analyzing a dataset consisting of many gen-

omic words we can apply principal component analysis
to the set of baselines and the set of peak functions,
which greatly reduces the dimensionality. This lower-
dimensional data set has uncorrelated scores and re-

tains much of the original information, such as that in
the Euclidean distances. This allows us to carry out k-
means clustering, in which we have the choice whether

to use only the baseline information, only the peak in-
formation, or both. The performance of this approach
was evaluated by a simulation study, which concluded

that in situations where both distinct baselines as well
as distinct peak functions occur, the clustering proced-
ure using the combined information performs very well.

This procedure was applied to the data set DD3 of
all genomic words of 3 symbols in human DNA, as well
as the set DD5 of all words of length 5. This resulted in

clusters of words with specific distribution patterns. By
looking at the composition of the words in each cluster
we found connections with the frequency of certain tri-

nucleotides and dinucleotides, such as CG which plays
a particular biological role.

Topics for further research are the analysis of longer
words, and the application of other statistical methods
(such as classification) on genomic data after apply-
ing the decomposition technique developed here. In the

classification task, genomic words may be classified in
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Figure 9 Clustering of DD5 in six clusters. In each cluster the lag distributions are shown in grey, and the cluster’s median
function is in color (top). The median functions are also shown with a scaled vertical axis (bottom).

groups according to the similarities between their dis-
tributions patterns and, eventually, putting in evidence

functional or structural biological relationships between
those words.
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Chapter 10

Discussion

Throughout the present work, exploratory data analysis was performed on datasets of genomic

sequences to maximize data acquaintance, bringing insights that were not evident beforehand

or appeared to be worth investigating. The patterns found by exploring the data suggested

hypothesis which led to interesting follow-up studies. Moreover, they give clues to properly

infer what model would be appropriate to create knowledge (conclusions) about the dataset.

As an example, let us mention the unexpected similarity found between the frequencies of

inter-w distance of reversed complementary words. The identi�cation of this behaviour in a

few words of length four with irregular distribution patterns, led us to conduct a systematic

study about it (Article II) and has in�uenced the de�nition of a dissimilarity measure to

compare inter-word distance distributions (Article V) and on tracing relevant features for the

clustering procedure of such distributions (Article VI).

The exploratory data analysis (EDA) procedures applied fall back on summary statistics,

residual analysis, principal component analysis and cluster analysis. Having in mind that

EDA is mostly a philosophy of data analysis, it is not restricted to techniques described in

a compendium; sometimes it is necessary to trace new ways of looking at speci�c data. This

was precisely the situation we have faced at some stages of our research study about genomic

sequences.

The research questions put forward for this thesis met three main objectives, namely,

similarity assessment, clustering and outlier detection. This chapter is dedicated to the

integrated discussion of the major accomplishments along research pursued. The speci�c

achievements that resulted from the research processes described within the set of original

studies are now discussed together as a continuum, in articulation with the research

questions presented above.
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10.1 Random variables under study

To unify the terminology used in previous articles, improving the discussion of stated

procedures and results, a standard nomenclature is introduced. DNA sequences are herein

considered as �nite totally ordered sets with elements belonging to the nucleotide alphabet

A = {A,C,G, T}. In such sequences, words of di�erent sizes can be identi�ed. By word of

length k, we refer to a sub-sequence w = x1x2 . . . xk with xi ∈ A. The reversed complement

of a word w is obtained by reversing the order of the letters in the word interchanging

letters A− T and C − T , and is denoted by w′. Let Ω be a set of genomic sequences, and Ak

be the set of all genomic words of length k. Considering an arbitrary, but �xed, S ∈ Ω and

w ∈ Ak, the following random variables are de�ned:

L
w

S - position (local index) of word w in S;

N
w

S - frequency of word w in S;

D
w

S - distance between consecutive occurrences of word w in S;

DR
w

S - distance between w and its reversed complement w′, without w or w′

between them, in S.

Note that both N
w

S and D
w

S can be de�ned as a function of L
w

S . In fact, if L̂ = (l1, . . . , lm),

N̂ and D̂ denote a concretization of L
w

S , N
w

S and D
w

S , then

N̂ = m

and

D̂ = (l2 − l1, l3 − l2, . . . , lm − lm−1).

Random variable DR
w

S can also be de�ned as a function of L
w

S and L
w′

S , but its formula is

not so straightforward. The discrete probability distribution functions of N
w

S , D
w

S and DR
w

S

random variables are denoted as

fw,S
N

(t) = P (N
w

S = t) (10.1)

fw,S
D

(n) = P (D
w

S = n) (10.2)

fw,S
DR

(n) = P (DR
w

S = n) (10.3)

with t ∈ N0 and n ∈ N. Whenever it is not misunderstood which genomic sequence is

being studied, the probability distribution functions are simply denoted as f
w

N
, f

w

D
and f

w

DR
.

The research project here described focus on the exploration of these three distributions,

and on the development of statistical procedures to reveal relevant features about nucleotide

sequences: f
w

N
is the probability of occurrence of word w, dealt within Article I; f

w

DR
is the

probability distribution of distances between near reversed complementary words, tackled in

Article IV; and f
w

D
is the probabilitry distribution of the inter-word distances, explored trough



10.Discussion 131

the remaining four articles.

In some studies it may be opportune to study distances restricted to a subset of their

domain. For example, to compare distributions that have distinct domains, or if, for some

reason, only distances lower or greater than a given number (say > k or <1000) are of interest.

In these situations the studied distance distributions refer to a conditional inter-word distance

distribution.

To de�ne a distance distribution �pro�le� for a set of words, functions of the previous

random variables may be considered. For instance, to explore the inter-word distances

regarding words in the set W we could consider the random variable

D
W

S =
∑

w∈W
D

w

S (10.4)

whose corresponding probability distribution function, denoted as f
W

D
, veri�es the following

relation

f
W

D
(d) =

1

nW

∑

w∈W
(nw − 1)f

W

D
(d) (10.5)

where nW is the number of words in that speci�c set, and nw are the corresponding

realizations of Nw. This reasoning could be applied to globally study patterns of inter-word

distance distributions regarding symmetric word pairs, e.g. W = {CC,GG}, as well as to
study global patterns regarding words belonging to the same equal composition group, e.g.

W = {CC,CG,GC,GG}. The corresponding probability distribution functions are denoted

as fww
′

D
and f

ECG

D
, respectively.

Throughout the remaining of the text, we refer to the inter-word distance simply as iwD,

and to the near-reverse-complements distance simply as rcD. Moreover, expressions f
w

N
, fw

D

and fw
DR

interchangeably denote the probability distribution of variables Nw
S , D

w
S and DRwS

(respectively), or empirical distributions obtained by a concretization of them.

A genomic sequence could be randomly generated through a stochastic process. Let SR

denote a random sequence {Xi}i∈I , where Xi are random variables associated with the

generation of one symbol from A, I is an ordered and numerable set of indexes. If SR is

generated by a Bernoulli model, i.e. each symbol Xi is generated independently of the other

symbols, then the following equality is veri�ed for all x1 . . . xi ∈ SR,

P (Xi = xi|Xi−1Xi−2 . . . X1) = P (Xi = xi) . (10.6)

On the other hand, if the sequence is randomly generated by a m-order Markov model, i.e.

if the probability of occurrence of Xi depends on the previous m symbols (1 ≤ m ≤ i), then

the equality

P (Xi = xi|Xi−1Xi−2 . . . X1) = P (Xi = xi|Xi−1Xi−2 . . . Xi−m) (10.7)
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is veri�ed for all x1 . . . xi ∈ SR. Note that a memoryless source is interpretable both as a

Bernoulli source and a zero-order Markov source.

Let SR be a sequence generated by one of the previous models. In the case where the

Bernoulli model is used, SR is referred to as a random sequence under the nucleotide

independence scenario; else, as a random sequence under a m-order Markov dependence

scenario.

10.2 Word frequencies

Previous studies evaluated the prevalence of the symmetry phenomenon in several organisms,

by analysing their genomes locally (stretches of DNA) or globally (complete genome), and

con�rming that the frequency distribution of words along nucleotide sequences tend to be

statistically similar [150].

Random variables Nw
S and Nw′

S are considered in this thesis in order to study the

symmetry phenomenon. In particular, the dissimilarity between the frequency of a word and

the frequency of its reversed complement is evaluated regarding the word frequency

dissimilarities within the corresponding equivalent composition group (ECG).

To study the symmetry phenomenon, a measure of �exceptional symmetry� was proposed

in [8], that evaluates the symmetry above that expected in independence contexts. The

authors state that the frequency of a word is more similar to the frequency of its reversed

complement than to that of any other word in the same ECG. A pair of words formed by a

word and its reversed complement is called symmetric word pair. In spite of the fact that their

R measure allows obtaining ranks of genomic words by exceptional symmetry, two undesirable

features were observed in such ranks. First the R measure may produce distinct values for

each word of the same symmetric pair. Second, two symmetric word pairs with identical

dissimilarities between their frequency of occurrence, could present distinct R values. To

exemplify, let us consider a toy example where nwi denotes the frequency of word wi and nw′i
that of its reversed complement such that: nw1 = nw′1 + 1 = 20, nw2 = nw′2 + 1 = 9 and

nw3 = nw′3 +1 = 1. The symmetric word pair with occurrences nearest to the average number

of occurrences (equal to 9.5) is ranked as less exceptional than the word pair whose number

of occurrences is most distant.

In order to avoid the described disadvantage of the R measure we introduced a new

measure, T , to assess the word pair symmetry e�ect (Article I). This new measure of

exceptional symmetry overcomes the disadvantages detected in the previous measure.

Namely, the e�ect for both words of one symmetry word pair is the same, T (w) = T (w′);

and the global deviation between words of the same ECG is taken into account, instead of

the deviation to the mean of the number of occurrences thereof (as in the previous measure).

Moreover, measure T avoids indetermination cases produced with R by self symmetric
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words (w = w′).

To identify word pairs (w,w′) as exceptional their T (w) value is compared with a critical

value obtained by control experiments. By control experiment we mean sequences generated

under the nucleotide independence scenario and assuming the validity of the second parity

rule (%A = %T and %C = %G). Under this scenario all words in the same ECG have equal

expected probability of occurrence.

Word pairs with T value higher than the third quartile of those obtained from random

sequences are �agged as exceptional. Our results show that the symmetry e�ect value has

the potential to discriminate between species groups. And that there are sets of words which

present high symmetry e�ect in all species under study.

10.3 Word distances

10.3.1 Expected distance distributions

Let w = x1x2 . . . xk ∈ Ak be a generic word and SR be a nucleotide random sequence generated

under a Markov model. Considering that the sequence is read through a sliding window of

length k, with word overlapping, what is the probability that consecutive occurrences of w

are 10 symbols apart? And 12 symbols? And 1978 symbols?

The exact distribution of the iwD can be deduced using a state diagram, which represents

the progress made towards identifying w as each symbol is read from the sequence. A general

state diagram and the corresponding transition matrix of probabilities are described in Article

III, from which f
w

SR
is easily obtained. The state diagram is composed by k non-absorbing

states and one absorbing state, reached when a new occurrence of w is identi�ed in the

sequence. Later, we became aware that our approach to obtain the exact distribution of inter-

word distances is a special case of a procedure based on �nite Markov chain embedding [76].

As pointed out by Fu in [76], to �nd the transition matrix for a given word requires �a

deep understanding of the structure of the speci�ed pattern�. In Article III explicit general

expressions are proposed both to identify the initial state and to compute the transition matrix

between non-absorbing states, based on the concept of word overlap. The expected iwD

distribution under an independent nucleotide generation hypothesis, can be easily computed

for any whole-genome and for any genomic word, using only four input parameters: the

nucleotide frequencies in the sequence.

The Markov chain approach described in Article III was also explored to obtain iwD

distributions under k-order Markov dependence. In such scenario, the transition matrix

depends on the 4k frequencies of words of length k that occur in the sequence. In the

development of the research described in Article IV this procedure was adjusted to generate

the exact rcD distributions under k-order Markov dependence. The rationale behind is the

same, however the state diagram accommodates not just one but two absorbing states
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(reached when a new occurrence of w or w′ is identi�ed in the sequence).

10.3.2 Dissimilarity measures for iwD distributions

Data collected through a concretization of the D
w

S random variable for two distinct words,

say w1 and w2, give rise to two datasets of iwD. How to evaluate the similarity between the

corresponding iwD distributions? When the question of dissimilarity measurement between

distributions was initially posed in this study, a survey was made on this topic.

To compare two discrete probability distributions several dissimilarity measures may be

used. A possible approach is to assess the homogeneity (or agreement) between the two

empirical distributions, using the chi-square statistic, and then use an e�ect size measure to

assess the dissimilarity between them.

Indeed, the chi-square statistic was used to determine whether iwD frequency counts are

distributed identically across empirical and random sequences, corresponding to an agreement

between f
w,S

D
and f

w,SR

D
(Article III); and similarly, for rcD distribution from empirical and

random sequences, i.e. f
w,S

DR
and f

w,SR

DR
(Article IV). The same statistics was used to asses the

similarity between pairs of distance distributions in a same genomic sequence (the human

genome) associated with reversed complementary words, i.e. f
w

D
and f

w′

D
(Article II). The

dissimilarity between each pair of distributions was measured by an e�ect size measure.

The similarity between the iwD distribution of words belonging to the same ECG was

evaluated. Let w1, . . . , wn∗ denote the words on the same ECG and n∗ denote the number of

words in that ECG. The chi-square statistic was used to assess whether Dw1 , . . . , Dwn∗

variables are identically distributed in the Human Genome (Article II). An e�ect size

measure based on chi-square statistic was interpreted as a measure of the global

disagreement between the distributions associated to a same ECG set of words. In Article

II, we also assess the similarity between the iwD distribution, f
w

D
, and the distance

distribution pro�le of its ECG, f
ECG

D
, as de�ned in Equation (10.5). To assess whether Dw

and DECG variables are identically distributed in the Human Genome, the chi-square

statistic was used. Then, an e�ect size measure based on its value was computed and

interpreted as a measure of the global disagreement between two distributions.

The literature on dissimilarity measures is vast. Some common dissimilarity measures

between probability distributions may be classi�ed as bin-to-bin measures or cross-bin

measures. The former means that given two probability vectors P and Q, the dissimilarity

measure is based on di�erences between corresponding elements Pi and Qi; the latter refers

to measures that take into account cross-bin relationships [143]. From this perspective, the

well known Lp norms and Kulback-Leibler divergence are bin-to-bin distances, while

Mallows (or Wasserstein), Mahalanobis and Kolmogorov-Smirnov distances are cross-bin

measures.

The decision on which measure of dissimilarity should be used should take into account
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the nature of the data. For instance, noticing that probability vectors represent the parts of

a whole, carrying only relative information of it components, iwD distributions could be

interpreted as compositional data (with the disadvantage of being a vector shu�e invariant

approach). In the context of Compositional Data Analysis, some usual measures of the

di�erence between two compositions are Mahalanobis, Minkowski, City Block and Aitchison

distances [128]. The Earth Mover's Distance [169] is a cross-bin distance widely used for

measuring dissimilarity between histograms, in the �el of Computer Science. It can be

interpreted as the least amount of work needed to transform one histogram into the other

histogram; when used to measure the di�erence between two probability distributions it is

exactly the same as the Mallows distance [117; 201].

The discussion around distribution dissimilarities is extensive and proli�c. For example,

Aherne et al. [15] highlights the advantageous properties of the Bhattacharyya metric over the

chi-squared statistic for comparing frequency distributed data. According to Aitchison, an

adequate measure for Compositional Data analysis should be invariant to scale, permutation

and perturbation [16], which exclude the Euclidean distance. In the context of Histogram

Data, Verde and Irpino [200] argue the superiority of the Mahalanobis-Wassertein distance.

For a review on dissimilarity measures see [44; 45; 52; 143].

The dissimilarity measure adopted to perform a statistical study should take into

account both the nature of the data and which features are important for the subject

matter. This means that higher dissimilarity values should be obtained under a perceived

feature dissimilarity between elements of the dataset; and lower dissimilarity values should

be achieved under a perceived feature similarity in data elements. To clarify, consider fA, fB

and fC as the distributions represented in Figure 10.1. A quick visual perception will rank

fA and fB as more similar than fA and fC , as it is for the Mallows distance (Earth Mover's

Distance). However, according to the Euclidean distance, fA is so similar to fB as it is to

fC . As a remark, the three distributions could be considered as equidistant by a measure

that assumes invariance of horizontal translations.

Figure 10.1: Dissimilarity measure between two distributions. Let fA, fB and fC be
distributions associated with histograms represented at left. Euclidean and Mallows
dissimilarity values are given at right.

Throughout the development of this research project we used the Mallows distance to

measure the dissimilarity between pairs of iwD distributions, in order to take into account
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the similarity between non-overlapping parts of the distributions. Such values were then used

to de�ne a dissimilarity matrix and to perform hierarchical cluster analysis (not shown in this

thesis).

To study the similarity between the iwD distribution of pair of reversed complementary

words, w and w′, we de�ned a dissimilarity measure that puts in evidence how consistent

are the peaks of such distributions. The peak dissimilarity measure introduced in [188], relies

precisely on the observed di�erences in location and magnitude of a given number of peaks.

The rationale behind the de�nition of this measure is as follows.

An initial exploratory analysis of genomic datasets evidenced that the iwD distribution of

some words is very similar to that of its reversed complement, despite their irregular pattern.

The observed irregular patterns result, essentially, from the existence of peaks of frequency,

and are not expected in random scenarios. The fact that pairs of reversed complementary

words are associated with a �same� irregular pattern, led us to explore this topic (related with

questions Q7). Therefore, a dissimilarity measure based on the observed di�erences between

the peaks of the distributions, was assumed as adequate for assessing the similarity of iwD

distributions of words that are reversed complements.

The peak dissimilarity is compared with two earlier dissimilarity measures, the Euclidean

distance and the Je�reys divergence, and we argue for its superiority in the analysis of distance

distributions between pairs of reversed complementary words (Article V). While the Je�reys

divergence, dJ , is quite sensitive to small frequencies, the Euclidean distance, dE , is sensitive

to the presence of a few high frequencies. In the presence of sparse distributions both low and

high relative frequency values are expected, which strongly a�ect the results of dJ and dE .

The proposed peak dissimilarity ignores small frequencies and evaluates the disagreement

between the sizes of the n strongest peaks, which are taken into account even when their

locations do not coincide. Moreover, the peak size di�erences are scaled by the highest peak

sizes observed in each distribution.

10.3.3 Clustering procedure

The knowledge accumulated through the exploratory analysis performed along the various

studies focusing on the iwD distributions, drew our attention to two main characteristics of

their plots. Such characteristics are related with an overall trend and some upward peaks,

i.e. distances presenting frequencies much higher than that presented by neighbor distances.

Concerning the overall trend, some distribution plots present higher rates of decreasing and

shorter tails, while others present an opposite baseline behaviour. Distance distributions also

display di�erent peak behaviors, which could be roughly described as: one or more isolated

very spiked frequency values (isolated peaks); one or more consecutive distances with high

frequency values (peak islands); smaller peaks spread along the function domain; or slightly

pronounced peaking behavior. Examples of such behaviours are depicted in Figure 1 and
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Figure 7 of Article V.

Given the speci�c characteristics of these data sets, we developed a clustering procedure

that �rst decomposes each distribution into a baseline and a peak distribution, described in

Article VI. By noticing that a properly scaled Gamma density function provides a good �t

of the baseline, a least trimmed squares approach is used to estimate a baseline Gamma

distribution. The obtained Gamma baseline is outlier-robust, since the objective function to

minimize excludes a small percentage of residuals (the highest 5% residual were excluded).

Then, the peak structure on top of that baseline is captured by assessing the extremity of

the observed frequencies, which allows distinguishing peaks from sampling variability.

Therefore, the initial dataset of iwD distributions is transformed into a dataset of baselines

and a dataset of peak functions. The next step consists in applying a clustering algorithm.

It could be applied only on the baseline datasets, only on the peak functions, or on both

baseline and peak functions. In the �rst case, words (distributions) are clustered according

to the similarity between their iwD trend; in the second case, they are clustered according

to the peak behaviour of their iwD distribution; and, in third case, both trend and peak

features are considered to form the clusters of words.

An advantage of k-mean over hierarchical methods is that it does not require the

computation of the dissimilarity matrix between all pairs of elements, making it suitable to

use on datasets with a large number of elements. The proposed procedure was constructed

taking into account the application of k-means, which performs best when the input

variables are uncorrelated. Therefore, the set of baselines and the set of peak functions are

pre-processed before carrying out the clustering algorithm. First, peak and baseline

functions are converted into cumulative functions. Then, each dataset of cumulative

functions is transformed by principal component analysis to ful�ll a twofold objective: to

reduce the data dimension and to create uncorrelated variables.

To assess how well the clustering procedure performs, it was applied over controled data,

i.e. synthetic data. The agreement between the resulting partition and the true partition

could be assessed by the Adjusted Rand Index (ARI), whose maximum value is equal to

one and indicates matching classi�cations. For each one of the considered scenarios of the

simulation study, ARI values close to 1 were obtained (> 0.9) by selecting an appropriate

data matrix (peak matrix, baseline matrix or both peak and baseline matrices).

The procedure was applied to real genomic data allowing obtaining a partition of the

words of same length (lengths 3 and 5) according to the peak patterns and the baseline of the

corresponding iwD distributions. In the particular case of trinucleotides, we observed that

for a large number of clusters there is a tendency for the formation of clusters composed by

a pair of reversed complementary words.
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10.4 Outlier detection

The detection of phenomena and universal rules is often triggered by the observation of

patterns that repeat themselves in all (or almost all) elements of a large dataset. The nature

of such underlying rule, law or phenomenon can be deterministic or probabilistic, and an

explanation for its occurrence must be sought. Elements that deviate strongly from such rule

uncover a breakdown mechanism that could be of interest.

A key issue of statistics, is to develop ways of presenting the data that highlight interesting

and important features, which may imply to investigate central characteristics, variability and

the presence of outliers.

Throughout this study we point out some features of genomic sequences as deserving

a more careful study, such as the total number of reversed complementary words or the

distribution patterns thereof. Nucleotide sequences with similar number of complementary

nucleotides obey to an extension of the symmetry phenomenon stated by Charga�'s second

parity rule; in particular, reversed complementary words whose iwD distributions have a

similar pattern are in compliance with a distinct parity �rule�. The identi�cation of atypical

genomic words is a transversal theme throughout this thesis. However, no general procedure

was developed for their identi�cation. In fact, a survey on word outlier detection would imply

a de�nition of atypical word or atypical distribution, which could be di�cult to de�ne.

Regarding a feature of interest, atypical words can be sought by measuring the di�erence

between the observed behavior and a reference behavior. The latter may re�ect a global

behavior observed in the data set, or the expected behavior under some theoretical

considerations. The de�nition of a reference, as well as the establishment of a measure of

discrepancy between the reference and the observed values, seems to be unavoidable for

outlier detection. The procedure of reducing data to a numerical value and then look for

outlying values in the obtained dataset (e.g. reduce an iwD distribution to a discrepancy

value) is sensitive to both the reference and the discrepancy measure adopted.

The identi�cation of observations worthy of the epithet of outlier can be performed by

evaluating the depth or the outlyingness of the discrepancy values. Some common methods

are Standard Deviation Method, Z-score, modi�ed Z-score or Tukey fence. The depth of a

point is inversely related to its outlyingness and trimmed regions depth-based can be

interpreted as quantiles. These concepts have proved extremely fruitful and a rich statistical

methodology has developed around the concept of data depth (for a review see [134; 216],

and [137] in portuguese language). Tukey depth measure for d-dimensional points

generalizes the univariate median to the multivariate case (median is a point with maximum

Tukey depth). The degree of outlyingness concept, independently proposed by Stahel [178]

and by Donoho [63], relies on the assumption that a multivariate outlier should also be an

univariate outlier in some projection. Thus, the measure of the outlyingness is based on
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one-dimensional projection of multivariate data.

The procedure of reducing data to a numerical value and then look for outlying values in

the obtained dataset, although simple, involves loss of information. The most sensitive aspect

of this approach lies in the establishment of the discrepancy measure to adopt, as it may or

may not put in evidence deviations regarding features of interest.

Outlying words By comparing the observed value with the expected value, according to

a theoretical model or to global values observed in the dataset, we identi�ed atypical words

regarding di�erent characteristics:

� Assessing the dissimilarity between f
w,S
N , f

w′,S
N and f

wi,SR

N for all wi in the same ECG,

led to the identi�cation of symmetric word pairs whose similarity between the frequency

of occurrence is above that expected under the independence scenario (Article I).

� Evaluation of the agreement bewteen f
w,S
D and f

w,SR

D led to the identi�cation of word

pairs of two types of exceptionality (Article III). One is related with words having iwD

distributions highly dissimilar to the one expected under the independence scenario.

The other set holds words whose dissimilarity is not too strong and, simultaneously,

present strong local dissimilarity (local deviations evaluated by residual analysis).

� Determining whether iwD frequency counts are distributed identically across empirical

and random sequence, symmetric word pairs were identi�ed with very dissimilar f
w

D

and f
w′

D (Article II). Given that in an independence scenario it is expected that

symmetric words have similar iwD distributions, strong dissimilarity is pointed out as

an exceptional behaviour.

� Measuring the similarity between f
w,S
DR and f

w,SR

DR allows identifying words of length k

whose rcD distribution is very dissimilar to that expected under the k-order dependence

scenario.

In the design of the clustering procedure described in Article VI, the concept of atypical

frequency is also present. In fact, when di�erentiating between frequencies that are peaks

or a result of mere sample variability, an univariate analysis was performed at each point of

the domain, evaluating the distance between the observed frequency value and the expected

frequency according to the Poisson distribution. A frequency is determined to be an outlier

if the observed value surpasses a given quantil.

Functional approaches In the context of �nding outlying distributions, an alternative to

the reduction of each distribution to a dissimilarity measure is the application of a univariate

procedure, point by point. This procedure, which can be seen as a residual analysis, allows

identifying curves that are outliers at a given domain. However this procedure does not
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allows identifying all type of atypical curves, since it does not consider dependencies along

the domain.

A curve could be considered outlier by its global behavior, even when it displays an inner

behavior at any domain point [67]. A functional approach allows overcoming the limitation

inherent to the residual analysis. Fraiman and Muniz [72] were the �rst to introduce a depth

measurement for functional data, whose central idea is to measure how long a curve lies in

the middle of the group of all other trajectories. The generalization of the concept of depth

to functional data allows for the evaluation of the centrality of a curve in relation to a set of

curves. Furthermore, the ordering of the curves in ascending order of their depth measurement

provides a rank from inner to outer distributions.

There is an increasing interest in developing procedures for detection of outliers in

functional data. The procedure must be preceded by an adequate de�nition of the outlier

concept inherent to the application context and by the development of methods for its

identi�cation.

For a �xed word length, the set of 4k distance distributions can be seen as a sample of

curves, which may be treated as (discrete) functional data. Throughout the development of

this project we have experimented several functional approaches in the exploration of outlier

distance distributions in our genomic datasets. For instance, we applied the method proposed

in [59], which makes use of functional depths and trimming bootstrap to estimate the cuto� of

depth values. We also applied the functional highest density region (HDR) boxplot proposed

in [101], which makes use of the �rst two robust principal component scores, Tukey's depth

and highest density regions (this work is not reported in Part II).

Let wD3 denote the dataset consisting of the iwD distributions of all words of length

k = 3 in the complete human genome, and dmax denote the maximum distance of such

distributions. Outlier detection by depth measures was performed in the wD3 dataset with

dmax = 200, considering several depth measures: Fraiman-Muniz depth, dpFM (see [72]);

h-modal depth, dpMO, random projection depth, dpRP, and random projection depth using

derivatives, dpRPD (see [59]); and random Tukey depth, dpRT (see [58]).

In general, it has been observed that the procedure does not necessarily detect the same

curves at each iteration. When the procedure is based on dpFM, it tends to �ag as outlier

curves that reach high values of frequency in the �rst distances; based on dpMO, dpRT or

dpRP, it identi�es �atter curves; and based on dpRPD, it retrieves curves of the two types.

The computational speed of the outlier detection method depends on the depth measure:

dpRT is the fastest (2.78 min), closely followed by dpFM (4.25 min) and dpRP (4.77 min),

while dpRPD (3.51 hrs) stands out for its slowness. By increasing the size of the dataset the

procedure becomes considerably more time consuming. For example, considering the wD5

with dmax = 400, dpFM takes 53.45 minutes and dpMO takes 3.77 days (mean values of 10

repetitions).
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We also applied the functional highest density region (HDR) boxplot proposed in [101],

which makes use of the �rst two robust principal component scores, Tukey's depth and highest

density regions. Figure 10.2 shows the HDR boxplot related with the wD3 dataset in the

human genome with dmax = 200. The iwD distribution of the �agged outliers are outlined

with distinct colors.

Figure 10.2: Highest density region boxplot for the iwD distributions of words of length
k = 3 (left): the black line is the modal curve. The curves outside the outer region are
outliers. The iwD distribution of �agged outliers are represented in color (right).

More recently, a new procedure to detect outlying functions was proposed by Rousseeuw

et al. [167]. They introduced a measure of directional outlyingness (DO), based on the Stahel-

Donoho outlyingness. By assigning a value of outlyingness to each gridpoint of the function

domain, they designed a procedure that allows detecting outlying functions and outlying parts

of a function. Such distinct types of outlying curves may be highlighted in an graphical tool

that they call functional outlier map.

We apply the DO measure to identify atypical distance distributions between genomic

words (see preliminary results in [191]). The results indicate that the DO procedure is

promising for our problem. It allowed capturing iwD distributions whose shape strongly

di�ers from the majority, distributions with several strong peaks, and distributions with

peaks at subdomains where no other peaks occur.

However, the e�ciency of the procedure falls as the word length increases. For words

of length k = 7 there are many distributions �agged as exceptional. The functional outlier

map does not show a cloud of points near the origin, on the contrary it is a cloud of points

tracing a kind of two semi-arcs, as shown in Figure 10.3. Indeed our data is characterized by

a strong peak behaviour, spread along the domain. The log transformation proposed in [167]

to transform the right-skewed distribution of DO values into a closer gaussian distribution is

not e�ective in our wD7 dataset.
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Figure 10.3: Functional outlier map of the iwD distributions of words of length k = 7,
in the complete human genome.

The results obtained by applying such functional procedures for outlier detection on our

genomic data lead us to question whether it will even be possible to identify a set of

distributions that are somehow suspicious or surprising as they do not follow the same

pattern as that of the rest of curves. Indeed such methods seem to be designed for sets of

distributions that are generated by a same process (which is indeed the assumption in [59]).

Faced with large datasets of distributions characterized by a strong peak behaviour, spread

along the domain, we wonder if the detection of outlying curves in such heterogeneous

datasets will even be possible by those functional approaches.

If large heterogeneous datasets where distinct patterns coexist can validly be clustered,

then the class labels may provide a meaningful description of similarities and di�erences in

the data. By representing each group by its class label, the inicial dataset is reduced to a

given number of distributions. So, why not to use a functional outlier procedure on the set

of (class label) distributions to evaluate the existence of outliers? Apart from that, if one of

these distributions is �agged as atypical, why not to introduce a concept of atypical group?

An outlier de�nition widely reported in the scienti�c literature is the one proposed by

Grubbs [91] and quoted in Barnett and Lewis [28]: An outlying observation, or outlier, is

one that appears to deviate markedly from other members of the sample in which it occurs.

This general de�nition of outlier is vague and becomes meaningful only under a given context

or application. As a result, outliers have been de�ned in various ways and a wide variety

of outlier detection methods have been drawn from Computer Science and Statistics, and

outlier detection is still considered an open-ended problem. To the best of our knowledge, the

concept of outlier group is new and worth investigating.
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10.5 Present and Future work

The work described in this thesis is organized into three research topics dedicated to the

development of procedures for similarity assessment, outlier detection and clustering. During

its development, several scienti�c results and observations gave origin to a reorganization of

ongoing and future research topics.

This research project is clearly associated with the analysis of complete genomes, since

our goal is to develop procedures able to perform comparisons between genomic sequences,

within and between species. However, it is not inappropriate to apply the procedures herein

proposed on small stretch of DNA to perform local analysis.

In the future we intend to continue this research on the study of similarities between

distance distributions. Thus, one possible step is to assess how well our results hold up in a

local analysis of genomic sequences.

Another topic for further research is the application of other statistical methods (such

as classi�cation) on genomic data after applying the decomposition technique developed in

Article VI.

A feature that we detected and remained to investigate is the identi�cation of a set of

words with patterns of rcD distribution that are surprisingly di�erent from those of the

majority. Figure 10.4 displays the case of distances between w = CACTGCA and its reversed

complement, in the complete human genome. This distribution, fCACTGCADR , will certainly be

mentioned in future works that embrace the research on clustering distributions and outlier

detection.

Figure 10.4: Distance distribution between w = CACTGCA and its reversed
complement, in the complete human genome.

Ongoing work is related with the issue of atypical group identi�cation. Challenges that

arise in atypical group detection �rst concern the identi�cation of a segmentation of the

data, and secondly �agging the atypical segments. To the best of our knowledge, this
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concept is new. We focus our work on the detection of atypical groups in data that can be

represented by a function and, in particular, in distance distributions between genomic

words. We are particularly interested in studying a method that recovers groups of words

with similar distribution patterns and, in particular, those very small groups with a

distribution pattern which is demarcated from the majority, here called an atypical group.

The interest in atypical groups identi�cation stems from the fact that word clusters may

provide useful applications in DNA sequence characterization, such as sequence classi�cation

and function prediction. Moreover, atypical distribution patterns may be related with words

that have speci�c biological meaning.
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Conclusions

The development of this thesis has allowed for the characterization of distance distributions

between genomic words and the development of some procedures to e�ectively extract

information from this type of data. Considering the research questions initially proposed the

following milestones have been accomplished:

� The de�nition of a new measure of dissimilarity between distributions that focuses on

the gaps between the locations of their peaks and the di�erence between the sizes of

these peaks.

� The development of an innovative research tool for clustering distributions based on

baseline and peak features.

An open question is the de�nition of atypical word-distance distribution. Throughout the

work several meaningful criteria of exceptionality were explored regarding features of interest

of the nucleotide sequences. We are convinced that the identi�cation of a more general

procedure for the identi�cation of atypical distributions may involve the introduction of the

atypical group concept. This is the goal of our ongoing work and, to the best of our knowledge,

this concept is new.

In the more restricted context of the application of these methodologies in the �eld of

genomic data, the following milestones have been accomplished:

� The de�nition of a new measure of exceptional symmetry to analyse exceptional

symmetry phenomenon by word. The word exceptional symmetry values contain

information speci�c to the species and seem to contain information about the species

evolution.

� The detection of exceptional words based on the discrepancy between their iwD and

the expected one under a random scenario. We evaluated the discrepancy between

real sequences and the random background, as a way of emphasizing the contribution

145
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of selective evolution, and found that the di�erences mimic, to a certain extent, the

evolutionary relations between the species.

� An unexpected similarity between the iwD distribution of some words and that of its

reversed complement was found. After a systematic study, it was shown that the lack

of homogeneity between symmetric words is negligible, for words of length up to �ve.

� The de�nition of a new distance between distributions based on the location and

magnitude of their peaks, the peak distance. It was shown to improve existent

dissimilarity measures in the detection of highly dissimilar symmetric word pairs. We

report the existence of reverse complementary word pairs with very dissimilar distance

distributions, as well as word pairs with very similar distance distributions even when

both distributions are irregular and contain strong peaks.

� The design of new procedures to identify symmetric word pairs with uncommon

empirical distance distribution and with clusters of overrepresented short distances.

We performed an exhaustive study of these distance distributions and identi�ed words

that are strong candidates to the formation of cruciform structures in human DNA.

� The proposal of a new methodology for decomposing the distance distribution of a

genomic word into the sum of a baseline distribution and a peak function.

This new understanding could contribute to the advancement of knowledge about DNA

sequences. As expected, there are no de�nitive answers or knowledge produced in such fast

evolving �elds as Genomics. The answers provided to the research questions proposed herein,

allowed for the development of methodologies raising new hypotheses for further studies.
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