4,300 research outputs found

    Advanced framework for microscopic and lane‐level macroscopic traffic parameters estimation from UAV video

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166282/1/itr2bf00873.pd

    An adaptive, fault-tolerant system for road network traffic prediction using machine learning

    Get PDF
    This thesis has addressed the design and development of an integrated system for real-time traffic forecasting based on machine learning methods. Although traffic prediction has been the driving motivation for the thesis development, a great part of the proposed ideas and scientific contributions in this thesis are generic enough to be applied in any other problem where, ideally, their definition is that of the flow of information in a graph-like structure. Such application is of special interest in environments susceptible to changes in the underlying data generation process. Moreover, the modular architecture of the proposed solution facilitates the adoption of small changes to the components that allow it to be adapted to a broader range of problems. On the other hand, certain specific parts of this thesis are strongly tied to the traffic flow theory. The focus in this thesis is on a macroscopic perspective of the traffic flow where the individual road traffic flows are correlated to the underlying traffic demand. These short-term forecasts include the road network characterization in terms of the corresponding traffic measurements –traffic flow, density and/or speed–, the traffic state –whether a road is congested or not, and its severity–, and anomalous road conditions –incidents or other non-recurrent events–. The main traffic data used in this thesis is data coming from detectors installed along the road networks. Nevertheless, other kinds of traffic data sources could be equally suitable with the appropriate preprocessing. This thesis has been developed in the context of Aimsun Live –a simulation-based traffic solution for real-time traffic prediction developed by Aimsun–. The methods proposed here is planned to be linked to it in a mutually beneficial relationship where they cooperate and assist each other. An example is when an incident or non-recurrent event is detected with the proposed methods in this thesis, then the simulation-based forecasting module can simulate different strategies to measure their impact. Part of this thesis has been also developed in the context of the EU research project "SETA" (H2020-ICT-2015). The main motivation that has guided the development of this thesis is enhancing those weak points and limitations previously identified in Aimsun Live, and whose research found in literature has not been especially extensive. These include: • Autonomy, both in the preparation and real-time stages. • Adaptation, to gradual or abrupt changes in traffic demand or supply. • Informativeness, about anomalous road conditions. • Forecasting accuracy improved with respect to previous methodology at Aimsun and a typical forecasting baseline. • Robustness, to deal with faulty or missing data in real-time. • Interpretability, adopting modelling choices towards a more transparent reasoning and understanding of the underlying data-driven decisions. • Scalable, using a modular architecture with emphasis on a parallelizable exploitation of large amounts of data. The result of this thesis is an integrated system –Adarules– for real-time forecasting which is able to make the best of the available historical data, while at the same time it also leverages the theoretical unbounded size of data in a continuously streaming scenario. This is achieved through the online learning and change detection features along with the automatic finding and maintenance of patterns in the network graph. In addition to the Adarules system, another result is a probabilistic model that characterizes a set of interpretable latent variables related to the traffic state based on the traffic data provided by the sensors along with optional prior knowledge provided by the traffic expert following a Bayesian approach. On top of this traffic state model, it is built the probabilistic spatiotemporal model that learns the dynamics of the transition of traffic states in the network, and whose objectives include the automatic incident detection.Esta tesis ha abordado el diseño y desarrollo de un sistema integrado para la predicción de tráfico en tiempo real basándose en métodos de aprendizaje automático. Aunque la predicción de tráfico ha sido la motivación que ha guiado el desarrollo de la tesis, gran parte de las ideas y aportaciones científicas propuestas en esta tesis son lo suficientemente genéricas como para ser aplicadas en cualquier otro problema en el que, idealmente, su definición sea la del flujo de información en una estructura de grafo. Esta aplicación es de especial interés en entornos susceptibles a cambios en el proceso de generación de datos. Además, la arquitectura modular facilita la adaptación a una gama más amplia de problemas. Por otra parte, ciertas partes específicas de esta tesis están fuertemente ligadas a la teoría del flujo de tráfico. El enfoque de esta tesis se centra en una perspectiva macroscópica del flujo de tráfico en la que los flujos individuales están ligados a la demanda de tráfico subyacente. Las predicciones a corto plazo incluyen la caracterización de las carreteras en base a las medidas de tráfico -flujo, densidad y/o velocidad-, el estado del tráfico -si la carretera está congestionada o no, y su severidad-, y la detección de condiciones anómalas -incidentes u otros eventos no recurrentes-. Los datos utilizados en esta tesis proceden de detectores instalados a lo largo de las redes de carreteras. No obstante, otros tipos de fuentes de datos podrían ser igualmente empleados con el preprocesamiento apropiado. Esta tesis ha sido desarrollada en el contexto de Aimsun Live -software desarrollado por Aimsun, basado en simulación para la predicción en tiempo real de tráfico-. Los métodos aquí propuestos cooperarán con este. Un ejemplo es cuando se detecta un incidente o un evento no recurrente, entonces pueden simularse diferentes estrategias para medir su impacto. Parte de esta tesis también ha sido desarrollada en el marco del proyecto de la UE "SETA" (H2020-ICT-2015). La principal motivación que ha guiado el desarrollo de esta tesis es mejorar aquellas limitaciones previamente identificadas en Aimsun Live, y cuya investigación encontrada en la literatura no ha sido muy extensa. Estos incluyen: -Autonomía, tanto en la etapa de preparación como en la de tiempo real. -Adaptación, a los cambios graduales o abruptos de la demanda u oferta de tráfico. -Sistema informativo, sobre las condiciones anómalas de la carretera. -Mejora en la precisión de las predicciones con respecto a la metodología anterior de Aimsun y a un método típico usado como referencia. -Robustez, para hacer frente a datos defectuosos o faltantes en tiempo real. -Interpretabilidad, adoptando criterios de modelización hacia un razonamiento más transparente para un humano. -Escalable, utilizando una arquitectura modular con énfasis en una explotación paralela de grandes cantidades de datos. El resultado de esta tesis es un sistema integrado –Adarules- para la predicción en tiempo real que sabe maximizar el provecho de los datos históricos disponibles, mientras que al mismo tiempo también sabe aprovechar el tamaño teórico ilimitado de los datos en un escenario de streaming. Esto se logra a través del aprendizaje en línea y la capacidad de detección de cambios junto con la búsqueda automática y el mantenimiento de los patrones en la estructura de grafo de la red. Además del sistema Adarules, otro resultado de la tesis es un modelo probabilístico que caracteriza un conjunto de variables latentes interpretables relacionadas con el estado del tráfico basado en los datos de sensores junto con el conocimiento previo –opcional- proporcionado por el experto en tráfico utilizando un planteamiento Bayesiano. Sobre este modelo de estados de tráfico se construye el modelo espacio-temporal probabilístico que aprende la dinámica de la transición de estadosPostprint (published version

    An adaptive, fault-tolerant system for road network traffic prediction using machine learning

    Get PDF
    This thesis has addressed the design and development of an integrated system for real-time traffic forecasting based on machine learning methods. Although traffic prediction has been the driving motivation for the thesis development, a great part of the proposed ideas and scientific contributions in this thesis are generic enough to be applied in any other problem where, ideally, their definition is that of the flow of information in a graph-like structure. Such application is of special interest in environments susceptible to changes in the underlying data generation process. Moreover, the modular architecture of the proposed solution facilitates the adoption of small changes to the components that allow it to be adapted to a broader range of problems. On the other hand, certain specific parts of this thesis are strongly tied to the traffic flow theory. The focus in this thesis is on a macroscopic perspective of the traffic flow where the individual road traffic flows are correlated to the underlying traffic demand. These short-term forecasts include the road network characterization in terms of the corresponding traffic measurements –traffic flow, density and/or speed–, the traffic state –whether a road is congested or not, and its severity–, and anomalous road conditions –incidents or other non-recurrent events–. The main traffic data used in this thesis is data coming from detectors installed along the road networks. Nevertheless, other kinds of traffic data sources could be equally suitable with the appropriate preprocessing. This thesis has been developed in the context of Aimsun Live –a simulation-based traffic solution for real-time traffic prediction developed by Aimsun–. The methods proposed here is planned to be linked to it in a mutually beneficial relationship where they cooperate and assist each other. An example is when an incident or non-recurrent event is detected with the proposed methods in this thesis, then the simulation-based forecasting module can simulate different strategies to measure their impact. Part of this thesis has been also developed in the context of the EU research project "SETA" (H2020-ICT-2015). The main motivation that has guided the development of this thesis is enhancing those weak points and limitations previously identified in Aimsun Live, and whose research found in literature has not been especially extensive. These include: • Autonomy, both in the preparation and real-time stages. • Adaptation, to gradual or abrupt changes in traffic demand or supply. • Informativeness, about anomalous road conditions. • Forecasting accuracy improved with respect to previous methodology at Aimsun and a typical forecasting baseline. • Robustness, to deal with faulty or missing data in real-time. • Interpretability, adopting modelling choices towards a more transparent reasoning and understanding of the underlying data-driven decisions. • Scalable, using a modular architecture with emphasis on a parallelizable exploitation of large amounts of data. The result of this thesis is an integrated system –Adarules– for real-time forecasting which is able to make the best of the available historical data, while at the same time it also leverages the theoretical unbounded size of data in a continuously streaming scenario. This is achieved through the online learning and change detection features along with the automatic finding and maintenance of patterns in the network graph. In addition to the Adarules system, another result is a probabilistic model that characterizes a set of interpretable latent variables related to the traffic state based on the traffic data provided by the sensors along with optional prior knowledge provided by the traffic expert following a Bayesian approach. On top of this traffic state model, it is built the probabilistic spatiotemporal model that learns the dynamics of the transition of traffic states in the network, and whose objectives include the automatic incident detection.Esta tesis ha abordado el diseño y desarrollo de un sistema integrado para la predicción de tráfico en tiempo real basándose en métodos de aprendizaje automático. Aunque la predicción de tráfico ha sido la motivación que ha guiado el desarrollo de la tesis, gran parte de las ideas y aportaciones científicas propuestas en esta tesis son lo suficientemente genéricas como para ser aplicadas en cualquier otro problema en el que, idealmente, su definición sea la del flujo de información en una estructura de grafo. Esta aplicación es de especial interés en entornos susceptibles a cambios en el proceso de generación de datos. Además, la arquitectura modular facilita la adaptación a una gama más amplia de problemas. Por otra parte, ciertas partes específicas de esta tesis están fuertemente ligadas a la teoría del flujo de tráfico. El enfoque de esta tesis se centra en una perspectiva macroscópica del flujo de tráfico en la que los flujos individuales están ligados a la demanda de tráfico subyacente. Las predicciones a corto plazo incluyen la caracterización de las carreteras en base a las medidas de tráfico -flujo, densidad y/o velocidad-, el estado del tráfico -si la carretera está congestionada o no, y su severidad-, y la detección de condiciones anómalas -incidentes u otros eventos no recurrentes-. Los datos utilizados en esta tesis proceden de detectores instalados a lo largo de las redes de carreteras. No obstante, otros tipos de fuentes de datos podrían ser igualmente empleados con el preprocesamiento apropiado. Esta tesis ha sido desarrollada en el contexto de Aimsun Live -software desarrollado por Aimsun, basado en simulación para la predicción en tiempo real de tráfico-. Los métodos aquí propuestos cooperarán con este. Un ejemplo es cuando se detecta un incidente o un evento no recurrente, entonces pueden simularse diferentes estrategias para medir su impacto. Parte de esta tesis también ha sido desarrollada en el marco del proyecto de la UE "SETA" (H2020-ICT-2015). La principal motivación que ha guiado el desarrollo de esta tesis es mejorar aquellas limitaciones previamente identificadas en Aimsun Live, y cuya investigación encontrada en la literatura no ha sido muy extensa. Estos incluyen: -Autonomía, tanto en la etapa de preparación como en la de tiempo real. -Adaptación, a los cambios graduales o abruptos de la demanda u oferta de tráfico. -Sistema informativo, sobre las condiciones anómalas de la carretera. -Mejora en la precisión de las predicciones con respecto a la metodología anterior de Aimsun y a un método típico usado como referencia. -Robustez, para hacer frente a datos defectuosos o faltantes en tiempo real. -Interpretabilidad, adoptando criterios de modelización hacia un razonamiento más transparente para un humano. -Escalable, utilizando una arquitectura modular con énfasis en una explotación paralela de grandes cantidades de datos. El resultado de esta tesis es un sistema integrado –Adarules- para la predicción en tiempo real que sabe maximizar el provecho de los datos históricos disponibles, mientras que al mismo tiempo también sabe aprovechar el tamaño teórico ilimitado de los datos en un escenario de streaming. Esto se logra a través del aprendizaje en línea y la capacidad de detección de cambios junto con la búsqueda automática y el mantenimiento de los patrones en la estructura de grafo de la red. Además del sistema Adarules, otro resultado de la tesis es un modelo probabilístico que caracteriza un conjunto de variables latentes interpretables relacionadas con el estado del tráfico basado en los datos de sensores junto con el conocimiento previo –opcional- proporcionado por el experto en tráfico utilizando un planteamiento Bayesiano. Sobre este modelo de estados de tráfico se construye el modelo espacio-temporal probabilístico que aprende la dinámica de la transición de estado

    Using Machine Learning to Predict the Evolution of Physics Research

    Full text link
    The advancement of science as outlined by Popper and Kuhn is largely qualitative, but with bibliometric data it is possible and desirable to develop a quantitative picture of scientific progress. Furthermore it is also important to allocate finite resources to research topics that have growth potential, to accelerate the process from scientific breakthroughs to technological innovations. In this paper, we address this problem of quantitative knowledge evolution by analysing the APS publication data set from 1981 to 2010. We build the bibliographic coupling and co-citation networks, use the Louvain method to detect topical clusters (TCs) in each year, measure the similarity of TCs in consecutive years, and visualize the results as alluvial diagrams. Having the predictive features describing a given TC and its known evolution in the next year, we can train a machine learning model to predict future changes of TCs, i.e., their continuing, dissolving, merging and splitting. We found the number of papers from certain journals, the degree, closeness, and betweenness to be the most predictive features. Additionally, betweenness increases significantly for merging events, and decreases significantly for splitting events. Our results represent a first step from a descriptive understanding of the Science of Science (SciSci), towards one that is ultimately prescriptive.Comment: 24 pages, 10 figures, 4 tables, supplementary information is include

    Geospatial Framework for the Use of Natural Resource Extraction in Public Private Partnerships

    Get PDF
    Resources for the maintenance and expansion of existing highway infrastructure are scarce. Public Private Partnerships (PPP) are feasible solutions to the concern of lagging investment. PPP are increasingly used for the procurement of services and goods, because of their flexibility and ability to channel private resources. This research addresses the possible implementation of a barter approach in Public Private Partnerships (PPP), which includes natural resources for trade model to offset costs.;Federal law permits the extraction of coal when it is a byproduct of the construction process, coal which under normal circumstances would not be economically feasible to extract. West Virginia law allows PPP to extract coal by surface mining when they develop road beads for new highways. There is no exchange of funds between the coal company and the West Virginia Department of Transportation; the benefits are derived entirely from the construction cost savings for roadbed construction.;This dissertation develops a geospatial method to quantify the availability of natural resources along predetermined roadway alignments. The methodology is divided in three phases: Macroscopic (Level I), Mesoscopic (Level II) and Microscopic (Level III), for the King Coal Highway. The process considers laws and industry best practices in the calculation. The research outcome suggests that there are segments of the road with enough, as well as segments of the road without enough coal

    Adarules: Learning rules for real-time road-traffic prediction

    Get PDF
    Traffic management is being more important than ever, especially in overcrowded big cities with over-pollution problems and with new unprecedented mobility changes. In this scenario, road-traffic prediction plays a key role within Intelligent Transportation Systems, allowing traffic managers to be able to anticipate and take the proper decisions. This paper aims to analyze the situation in a commercial real-time prediction system with its current problems and limitations. We analyze issues related to the use of spatiotemporal information to reconstruct the traffic state. The analysis unveils the trade-off between simple parsimonious models and more complex models. Finally, we propose an enriched machine learning framework, Adarules, for the traffic state prediction in real-time facing the problem as continuously incoming data streams with all the commonly occurring problems in such volatile scenario, namely changes in the network infrastructure and demand, new detection stations or failure ones, among others. The framework is also able to infer automatically the most relevant features to our end-task, including the relationships within the road network, which we call as “structure learning”. Although the intention with the proposed framework is to evolve and grow with new incoming big data, however there is no limitation in starting to use it without any prior knowledge as it can starts learning the structure and parameters automatically from data. (Part of special issue: 20th EURO Working Group on Transportation Meeting, EWGT 2017, 4-6 September 2017, Budapest, Hungary)Peer ReviewedPostprint (published version

    Short-Term Travel Time Prediction on Freeways

    Get PDF
    Short-term travel time prediction supports the implementation of proactive traffic management and control strategies to alleviate if not prevent congestion and enable rational route choices and traffic mode selections to enhance travel mobility and safety. Over the last decade, Bluetooth technology has been increasingly used in collecting travel time data due to the technology’s advantages over conventional detection techniques in terms of direct travel time measurement, anonymous detection, and cost-effectiveness. However, similar to many other Automatic Vehicle Identification (AVI) technologies, Bluetooth technology has some limitations in measuring travel time information including 1) Bluetooth technology cannot associate travel time measurements with different traffic streams or facilities, therefore, the facility-specific travel time information is not directly available from Bluetooth measurements; 2) Bluetooth travel time measurements are influenced by measurement lag, because the travel time associated with vehicles that have not reached the downstream Bluetooth detector location cannot be taken at the instant of analysis. Freeway sections may include multiple distinct traffic stream (i.e., facilities) moving in the same direction of travel under a number of scenarios including: (1) a freeway section that contain both a High Occupancy Vehicle (HOV) or High Occupancy Toll (HOT) lane and several general purpose lanes (GPL); (2) a freeway section with a nearby parallel service roadway; (3) a freeway section in which there exist physically separated lanes (e.g. express versus collector lanes); or (4) a freeway section in which a fraction of the lanes are used by vehicles to access an off ramp. In this research, two different methods were proposed in estimating facility-specific travel times from Bluetooth measurements. Method 1 applies the Anderson-Darling test in matching the distribution of real-time Bluetooth travel time measurements with reference measurements. Method 2 first clusters the travel time measurements using the K-means algorithm, and then associates the clusters with facilities using traffic flow model. The performances of these two proposed methods have been evaluated against a Benchmark method using simulation data. A sensitivity analysis was also performed to understand the impacts of traffic conditions on the performance of different models. Based on the results, Method 2 is recommended when the physical barriers or law enforcement prevent drivers from freely switching between the underlying facilities; however, when the roadway functions as a self-correcting system allowing vehicles to freely switching between underlying facilities, the Benchmark method, which assumes one facility always operating faster than the other facility, is recommended for application. The Bluetooth travel time measurement lag leads to delayed detection of traffic condition variations and travel time changes, especially during congestion and transition periods or when consecutive Bluetooth detectors are placed far apart. In order to alleviate the travel time measurement lag, this research proposed to use non-lagged Bluetooth measurements (e.g., the number of repetitive detections for each vehicle and the time a vehicle spent in the detection zone) for inferring traffic stream states in the vicinity of the Bluetooth detectors. Two model structures including the analytical model and the statistical model have been proposed to estimate the traffic conditions based on non-lagged Bluetooth measurements. The results showed that the proposed RUSBoost classification tree achieved over 94% overall accuracy in predicting traffic conditions as congested or uncongested. When modeling traffic conditions as three traffic states (i.e., the free-flow state, the transition state, and the congested state) using the RUSBoost classification tree, the overall accuracy was 67.2%; however, the accuracy in predicting the congested traffic state was improved from 84.7% of the two state model to 87.7%. Because traffic state information enables the travel time prediction model to more timely detect the changes in traffic conditions, both the two-state model and the three-state model have been evaluated in developing travel time prediction models in this research. The Random Forest model was the main algorithm adopted in training travel time prediction models using both travel time measurements and inferred traffic states. Using historical Bluetooth data as inputs, the model results proved that the inclusion of traffic states information consistently lead to better travel time prediction results in terms of lower root mean square errors (improved by over 11%), lower 90th percentile absolute relative error ARE (improved by over 12%), and lower standard deviations of ARE (improved by over 15%) compared to other model structures without traffic states as inputs. In addition, the impact of traffic state inclusion on travel time prediction accuracy as a function of Bluetooth detector spacing was also examined using simulation data. The results showed that the segment length of 4~8 km is optimal in terms of the improvement from using traffic state information in travel time prediction models

    A framework for smart traffic management using heterogeneous data sources

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Traffic congestion constitutes a social, economic and environmental issue to modern cities as it can negatively impact travel times, fuel consumption and carbon emissions. Traffic forecasting and incident detection systems are fundamental areas of Intelligent Transportation Systems (ITS) that have been widely researched in the last decade. These systems provide real time information about traffic congestion and other unexpected incidents that can support traffic management agencies to activate strategies and notify users accordingly. However, existing techniques suffer from high false alarm rate and incorrect traffic measurements. In recent years, there has been an increasing interest in integrating different types of data sources to achieve higher precision in traffic forecasting and incident detection techniques. In fact, a considerable amount of literature has grown around the influence of integrating data from heterogeneous data sources into existing traffic management systems. This thesis presents a Smart Traffic Management framework for future cities. The proposed framework fusions different data sources and technologies to improve traffic prediction and incident detection systems. It is composed of two components: social media and simulator component. The social media component consists of a text classification algorithm to identify traffic related tweets. These traffic messages are then geolocated using Natural Language Processing (NLP) techniques. Finally, with the purpose of further analysing user emotions within the tweet, stress and relaxation strength detection is performed. The proposed text classification algorithm outperformed similar studies in the literature and demonstrated to be more accurate than other machine learning algorithms in the same dataset. Results from the stress and relaxation analysis detected a significant amount of stress in 40% of the tweets, while the other portion did not show any emotions associated with them. This information can potentially be used for policy making in transportation, to understand the users��� perception of the transportation network. The simulator component proposes an optimisation procedure for determining missing roundabouts and urban roads flow distribution using constrained optimisation. Existing imputation methodologies have been developed on straight section of highways and their applicability for more complex networks have not been validated. This task presented a solution for the unavailability of roadway sensors in specific parts of the network and was able to successfully predict the missing values with very low percentage error. The proposed imputation methodology can serve as an aid for existing traffic forecasting and incident detection methodologies, as well as for the development of more realistic simulation networks
    corecore