302 research outputs found

    Automatic Finding Trapezoidal Membership Functions in Mining Fuzzy Association Rules Based on Learning Automata

    Get PDF
    Association rule mining is an important data mining technique used for discovering relationships among all data items. Membership functions have a significant impact on the outcome of the mining association rules. An important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata (CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The spreads and centers of the TMFs were taken into account as parameters for the research space and a new approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to increase the convergence speed of the proposed approach and remove bad shapes of membership functions, a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed algorithm improves the efficiency of the extracted rules by finding optimized membership functions

    Discovery of Spatiotemporal Event Sequences

    Get PDF
    Finding frequent patterns plays a vital role in many analytics tasks such as finding itemsets, associations, correlations, and sequences. In recent decades, spatiotemporal frequent pattern mining has emerged with the main goal focused on developing data-driven analysis frameworks for understanding underlying spatial and temporal characteristics in massive datasets. In this thesis, we will focus on discovering spatiotemporal event sequences from large-scale region trajectory datasetes with event annotations. Spatiotemporal event sequences are the series of event types whose trajectory-based instances follow each other in spatiotemporal context. We introduce new data models for storing and processing evolving region trajectories, provide a novel framework for modeling spatiotemporal follow relationships, and present novel spatiotemporal event sequence mining algorithms

    Exploring anomalies in time

    Get PDF

    Evaluating Rank-Coherence of Crowd Rating in Customer Satisfaction

    Get PDF
    AbstractCrowd rating is a continuous and public process of data gathering that allows the display of general quantitative opinions on a topic from online anonymous networks as they are crowds. Online platforms leveraged these technologies to improve predictive tasks in marketing. However, we argue for a different employment of crowd rating as a tool of public utility to support social contexts suffering to adverse selection, like tourism. This aim needs to deal with issues in both method of measurement and analysis of data, and with common biases associated to public disclosure of rating information. We propose an evaluative method to investigate fairness of common measures of rating procedures with the peculiar perspective of assessing linearity of the ranked outcomes. This is tested on a longitudinal observational case of 7 years of customer satisfaction ratings, for a total amount of 26.888 reviews. According to the results obtained from the sampled dataset, analysed with the proposed evaluative method, there is a trade-off between loss of (potentially) biased information on ratings and fairness of the resulting rankings. However, computing an ad hoc unbiased ranking case, the ranking outcome through the time-weighted measure is not significantly different from the ad hoc unbiased case

    Comparing Defeasible Argumentation and Non-Monotonic Fuzzy Reasoning Methods for a Computational Trust Problem with Wikipedia

    Get PDF
    Computational trust is an ever-more present issue with the surge in autonomous agent development. Represented as a defeasible phenomenon, problems associated with computational trust may be solved by the appropriate reasoning methods. This paper compares two types of such methods, Defeasible Argumentation and Non-Monotonic Fuzzy Logic to assess which is more effective at solving a computational trust problem centred around Wikipedia editors. Through the application of these methods with real-data and a set of knowledge-bases, it was found that the Fuzzy Logic approach was statistically significantly better than the Argumentation approach in its inferential capacity

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Process Mining Concepts for Discovering User Behavioral Patterns in Instrumented Software

    Get PDF
    Process Mining is a technique for discovering “in-use” processes from traces emitted to event logs. Researchers have recently explored applying this technique to documenting processes discovered in software applications. However, the requirements for emitting events to support Process Mining against software applications have not been well documented. Furthermore, the linking of end-user intentional behavior to software quality as demonstrated in the discovered processes has not been well articulated. After evaluating the literature, this thesis suggested focusing on user goals and actual, in-use processes as an input to an Agile software development life cycle in order to improve software quality. It also provided suggestions for instrumenting software applications to support Process Mining techniques

    Fast Detection of Zero-Day Phishing Websites Using Machine Learning

    Get PDF
    The recent global growth in the number of internet users and online applications has led to a massive volume of personal data transactions taking place over the internet. In order to gain access to the valuable data and services involved for undertaking various malicious activities, attackers lure users to phishing websites that steal user credentials and other personal data required to impersonate their victims. Sophisticated phishing toolkits and flux networks are increasingly being used by attackers to create and host phishing websites, respectively, in order to increase the number of phishing attacks and evade detection. This has resulted in an increase in the number of new (zero-day) phishing websites. Anti-malware software and web browsers’ anti-phishing filters are widely used to detect the phishing websites thus preventing users from falling victim to phishing. However, these solutions mostly rely on blacklists of known phishing websites. In these techniques, the time lag between creation of a new phishing website and reporting it as malicious leaves a window during which users are exposed to the zero-day phishing websites. This has contributed to a global increase in the number of successful phishing attacks in recent years. To address the shortcoming, this research proposes three Machine Learning (ML)-based approaches for fast and highly accurate prediction of zero-day phishing websites using novel sets of prediction features. The first approach uses a novel set of 26 features based on URL structure, and webpage structure and contents to predict zero-day phishing webpages that collect users’ personal data. The other two approaches detect zero-day phishing webpages, through their hostnames, that are hosted in Fast Flux Service Networks (FFSNs) and Name Server IP Flux Networks (NSIFNs). The networks consist of frequently changing machines hosting malicious websites and their authoritative name servers respectively. The machines provide a layer of protection to the actual service hosts against blacklisting in order to prolong the active life span of the services. Consequently, the websites in these networks become more harmful than those hosted in normal networks. Aiming to address them, our second proposed approach predicts zero-day phishing hostnames hosted in FFSNs using a novel set of 56 features based on DNS, network and host characteristics of the hosting networks. Our last approach predicts zero-day phishing hostnames hosted in NSIFNs using a novel set of 11 features based on DNS and host characteristics of the hosting networks. The feature set in each approach is evaluated using 11 ML algorithms, achieving a high prediction performance with most of the algorithms. This indicates the relevance and robustness of the feature sets for their respective detection tasks. The feature sets also perform well against data collected over a later time period without retraining the data, indicating their long-term effectiveness in detecting the websites. The approaches use highly diversified feature sets which is expected to enhance the resistance to various detection evasion tactics. The measured prediction times of the first and the third approaches are sufficiently low for potential use for real-time protection of users. This thesis also introduces a multi-class classification technique for evaluating the feature sets in the second and third approaches. The technique predicts each of the hostname types as an independent outcome thus enabling experts to use type-specific measures in taking down the phishing websites. Lastly, highly accurate methods for labelling hostnames based on number of changes of IP addresses of authoritative name servers, monitored over a specific period of time, are proposed

    Aligning observed and modeled behavior

    Get PDF
    • …
    corecore