801 research outputs found

    Using distributional similarity to organise biomedical terminology

    Get PDF
    We investigate an application of distributional similarity techniques to the problem of structural organisation of biomedical terminology. Our application domain is the relatively small GENIA corpus. Using terms that have been accurately marked-up by hand within the corpus, we consider the problem of automatically determining semantic proximity. Terminological units are dened for our purposes as normalised classes of individual terms. Syntactic analysis of the corpus data is carried out using the Pro3Gres parser and provides the data required to calculate distributional similarity using a variety of dierent measures. Evaluation is performed against a hand-crafted gold standard for this domain in the form of the GENIA ontology. We show that distributional similarity can be used to predict semantic type with a good degree of accuracy

    Biomedical ontology alignment: An approach based on representation learning

    Get PDF
    While representation learning techniques have shown great promise in application to a number of different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic similarity information becomes inscribed onto fields of pre-trained word vectors. The resulting framework also incorporates a novel outlier detection mechanism based on a denoising autoencoder that is shown to improve performance. An ontology matching system derived using the proposed framework achieved an F-score of 94% on an alignment scenario involving the Adult Mouse Anatomical Dictionary and the Foundational Model of Anatomy ontology (FMA) as targets. This compares favorably with the best performing systems on the Ontology Alignment Evaluation Initiative anatomy challenge. We performed additional experiments on aligning FMA to NCI Thesaurus and to SNOMED CT based on a reference alignment extracted from the UMLS Metathesaurus. Our system obtained overall F-scores of 93.2% and 89.2% for these experiments, thus achieving state-of-the-art results

    In no uncertain terms : a dataset for monolingual and multilingual automatic term extraction from comparable corpora

    Get PDF
    Automatic term extraction is a productive field of research within natural language processing, but it still faces significant obstacles regarding datasets and evaluation, which require manual term annotation. This is an arduous task, made even more difficult by the lack of a clear distinction between terms and general language, which results in low inter-annotator agreement. There is a large need for well-documented, manually validated datasets, especially in the rising field of multilingual term extraction from comparable corpora, which presents a unique new set of challenges. In this paper, a new approach is presented for both monolingual and multilingual term annotation in comparable corpora. The detailed guidelines with different term labels, the domain- and language-independent methodology and the large volumes annotated in three different languages and four different domains make this a rich resource. The resulting datasets are not just suited for evaluation purposes but can also serve as a general source of information about terms and even as training data for supervised methods. Moreover, the gold standard for multilingual term extraction from comparable corpora contains information about term variants and translation equivalents, which allows an in-depth, nuanced evaluation

    Text Mining the History of Medicine

    Get PDF
    Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform

    Evaluating gold standard corpora against gene/protein tagging solutions and lexical resources

    Get PDF
    Motivation The identification of protein and gene names (PGNs) from the scientific literature requires semantic resources: Terminological and lexical resources deliver the term candidates into PGN tagging solutions and the gold standard corpora (GSC) train them to identify term parameters and contextual features.Ideally all three resources, i.e.~corpora, lexica and taggers, cover the same domain knowledge, and thus support identification of the same types of PGNs and cover all of them.Unfortunately, none of the three serves as a predominant standard and for this reason it is worth exploring, how these three resources comply with each other.We systematically compare different PGN taggers against publicly available corpora and analyze the impact of the included lexical resource in their performance.In particular, we determine the performance gains through false positive filtering, which contributes to the disambiguation of identified PGNs. RESULTS: In general, machine learning approaches (ML-Tag) for PGN tagging show higher F1-measureperformance against the BioCreative-II and Jnlpba GSCs (exact matching), whereas the lexicon basedapproaches (LexTag) in combination with disambiguation methods show better results on FsuPrgeand PennBio. The ML-Tag solutions balance precision and recall, whereas the LexTag solutions havedifferent precision and recall profiles at the same F1-measure across all corpora. Higher recall isachieved with larger lexical resources, which also introduce more noise (false positive results). TheML-Tag solutions certainly perform best, if the test corpus is from the same GSC as the trainingcorpus. As expected, the false negative errors characterize the test corpora and - on the other hand- the profiles of the false positive mistakes characterize the tagging solutions. Lex-Tag solutions thatare based on a large terminological resource in combination with false positive filtering produce betterresults, which, in addition, provide concept identifiers from a knowledge source in contrast to ML-Tagsolutions. CONCLUSION: The standard ML-Tag solutions achieve high performance, but not across all corpora, and thus shouldbe trained using several different corpora to reduce possible biases. The LexTag solutions havedifferent profiles for their precision and recall performance, but with similar F1-measure. This resultis surprising and suggests that they cover a portion of the most common naming standards, but copedifferently with the term variability across the corpora. The false positive filtering applied to LexTagsolutions does improve the results by increasing their precision without compromising significantlytheir recall. The harmonisation of the annotation schemes in combination with standardized lexicalresources in the tagging solutions will enable their comparability and will pave the way for a sharedstandard

    Adapting a general parser to a sublanguage

    Full text link
    In this paper, we propose a method to adapt a general parser (Link Parser) to sublanguages, focusing on the parsing of texts in biology. Our main proposal is the use of terminology (identication and analysis of terms) in order to reduce the complexity of the text to be parsed. Several other strategies are explored and finally combined among which text normalization, lexicon and morpho-guessing module extensions and grammar rules adaptation. We compare the parsing results before and after these adaptations

    Using Distributed Representations to Disambiguate Biomedical and Clinical Concepts

    Full text link
    In this paper, we report a knowledge-based method for Word Sense Disambiguation in the domains of biomedical and clinical text. We combine word representations created on large corpora with a small number of definitions from the UMLS to create concept representations, which we then compare to representations of the context of ambiguous terms. Using no relational information, we obtain comparable performance to previous approaches on the MSH-WSD dataset, which is a well-known dataset in the biomedical domain. Additionally, our method is fast and easy to set up and extend to other domains. Supplementary materials, including source code, can be found at https: //github.com/clips/yarnComment: 6 pages, 1 figure, presented at the 15th Workshop on Biomedical Natural Language Processing, Berlin 201

    Probing Pre-Trained Language Models for Disease Knowledge

    Get PDF
    Pre-trained language models such as ClinicalBERT have achieved impressive results on tasks such as medical Natural Language Inference. At first glance, this may suggest that these models are able to perform medical reasoning tasks, such as mapping symptoms to diseases. However, we find that standard benchmarks such as MedNLI contain relatively few examples that require such forms of reasoning. To better understand the medical reasoning capabilities of existing language models, in this paper we introduce DisKnE, a new benchmark for Disease Knowledge Evaluation. To construct this benchmark, we annotated each positive MedNLI example with the types of medical reasoning that are needed. We then created negative examples by corrupting these positive examples in an adversarial way. Furthermore, we define training-test splits per disease, ensuring that no knowledge about test diseases can be learned from the training data, and we canonicalize the formulation of the hypotheses to avoid the presence of artefacts. This leads to a number of binary classification problems, one for each type of reasoning and each disease. When analysing pre-trained models for the clinical/biomedical domain on the proposed benchmark, we find that their performance drops considerably.Comment: Accepted by ACL 2021 Finding
    • …
    corecore