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Abstract

Pre-trained language models such as Clini-
calBERT have achieved impressive results on
tasks such as medical Natural Language In-
ference. At first glance, this may suggest
that these models are able to perform medi-
cal reasoning tasks, such as mapping symp-
toms to diseases. However, we find that stan-
dard benchmarks such as MedNLI contain rel-
atively few examples that require such forms
of reasoning. To better understand the medi-
cal reasoning capabilities of existing language
models, in this paper we introduce DisKnE, a
new benchmark for Disease Knowledge Eval-
uation. To construct this benchmark, we an-
notated each positive MedNLI example with
the types of medical reasoning that are needed.
We then created negative examples by corrupt-
ing these positive examples in an adversar-
ial way. Furthermore, we define training-test
splits per disease, ensuring that no knowledge
about test diseases can be learned from the
training data, and we canonicalize the formu-
lation of the hypotheses to avoid the presence
of artefacts. This leads to a number of binary
classification problems, one for each type of
reasoning and each disease. When analysing
pre-trained models for the clinical/biomedical
domain on the proposed benchmark, we find
that their performance drops considerably.

1 Introduction

Pre-trained language models (LMs) such as BERT
(Devlin et al., 2019) are currently the de-facto ar-
chitecture for solving most NLP tasks, and their
prevalence in general language understanding tasks
is today indisputable (Wang et al., 2018, 2019).
Beyond generic benchmarks, it has been shown
that LMs are also extremely powerful in domain-
specific NLP tasks, e.g., in the biomedical do-
main (Lewis et al., 2020). While there are sev-
eral reasons why they are preferred over standard

neural architectures, one important (and perhaps
less obvious) reason is that LMs capture a sub-
stantial amount of world knowledge. For instance,
several authors have found that LMs are able to
answer questions without having access to exter-
nal resources (Petroni et al., 2019; Roberts et al.,
2020), or that they exhibit commonsense knowl-
edge (Forbes et al., 2019; Davison et al., 2019). To
analyze the capabilities of LMs in a more system-
atic way, there is a growing interest in designing
probing tasks, which are now common across the
NLP landscape, e.g., for word and sentence-level
semantics (Paperno et al., 2016; Conneau et al.,
2018). In this paper we focus on (generic and
specialized) LMs in the biomedical domain, and
ask the following question: what kinds of medi-
cal knowledge do pre-trained LMs capture? More
specifically, we focus on disease knowledge, which
encompasses for instance the ability to link symp-
toms to diseases, or treatments to diseases.

Among the several biomedical LMs (i.e. LMs
that have been pre-trained on biomedical text cor-
pora) that exist today, some of the most promi-
nent are SciBERT (Beltagy et al., 2019), BioBERT
(Lee et al., 2020) and ClinicalBERT (Alsentzer
et al., 2019). Rather than architectural features,
these models differ from each other mostly in the
pre-training corpora: SciBERT was trained from
scratch on scientific papers; BioBERT is an adapted
version of BERT (Devlin et al., 2019), which was
fine-tuned on PubMed articles as well as some full
text biomedical articles; and ClinicalBERT was ini-
tialized from BioBERT and further fine-tuned on
MIMIC-III notes (Johnson et al., 2016), which are
clinical notes describing patients admitted to criti-
cal care units. These LMs have enabled impressive
results on various reading comprehension bench-
marks for the medical domain, such as MedNLI
(Romanov and Shivade, 2018) and MEDIQA-NLI
(Abacha et al., 2019) for Natural Language Infer-



ence (NLI), and PubMedQA (Jin et al., 2019b) for
QA. As an example, Wu et al. (2019) achieved an
accuracy of 98% on MEDIQA-NLI, which might
suggest that medical NLI is essentially a solved
problem. This would be exciting, as medical NLI
intuitively requires a wealth of medical knowledge,
much of which is not available in structured form.

However, a closer inspection of MedNLI, the
most well-known medical NLI benchmark, re-
veals three important limitations, namely: (1) only
few test instances actually require medical disease
knowledge, with instances that (only) require termi-
nological and lexical knowledge (e.g. understand-
ing acronyms or paraphrases) being more prevalent;
(2) training and test examples often cover the same
diseases, and thus it cannot be determined whether
good performance comes from the capabilities of
the pre-trained LM itself, or from the fact that the
model can exploit similarities between training and
test examples; and (3) hypothesis-only baselines
perform rather well on MedNLI, which shows that
this benchmark has artefacts that can be exploited,
similarly to general-purpose NLI benchmarks (Po-
liak et al., 2018).

We therefore propose DisKnE (Disease Knowl-
edge Evaluation), a new benchmark for evaluating
biomedical LMs. This dataset explicitly addresses
the three limitations listed above and thus con-
stitutes a more reliable testbed for evaluating the
disease knowledge captured by biomedical LMs.
DisKnE is derived from MedNLI and is organized
into two top-level categories, which cover instances
requiring medical and terminological knowledge
respectively. The medical category is furthermore
divided into four sub-categories, depending on the
type of medical knowledge that is required.

We empirically analyse the performance of exist-
ing biomedical LMs, as well as the standard BERT
model, on the proposed benchmark. Our results
show that all the considered LMs struggle with NLI
examples that require medical knowledge. We also
find that the relative performance of the pre-trained
models differs across medical categories, where
the best performance is obtained by ClinicalBERT,
BioBERT, SciBERT or BERT depending on the
category and experimental setting. Conversely, for
examples that are based on terminological knowl-
edge, overall performance is much higher, with
relatively little difference between different pre-
trained models. The contributions of this paper are

as follows1:

• We introduce a new benchmark to assess the
disease-centred knowledge captured by pre-
trained LMs, organised into categories that
reflect the type of reasoning that is needed,
and with training-test splits that avoid leakage
of disease knowledge.

• We analyze the performance of several clini-
cal/biomedical BERT variants on each of the
considered categories. We find that all con-
sidered models struggle with examples that
require medical disease knowledge.

• We find that without canonicalizing the hy-
potheses, hypothesis-only baselines achieve
the best results in some categories. This shows
that the original MedNLI dataset suffers from
annotation artefacts, even within the set of
entailment examples.

2 Related Work & Background

Knowledge Encoded in LMs There is a rapidly
growing body of work that is focused on analyzing
what knowledge is captured by pre-trained LMs.
A recurring challenge in such analyses is to sep-
arate the knowledge that is already captured by a
pre-trained model from the knowledge that it may
acquire during a task-specific fine-tuning step. A
common solution to address this is to focus on zero-
shot performance, i.e. to focus on tasks that require
no fine-tuning, such as filling in a blank (Davison
et al., 2019; Talmor et al., 2020). As an alternative
strategy, Talmor et al. (2020) propose to analyse
the performance of models that were fine-tuned on
a small training set. Other work has focused on
extracting structured knowledge from pre-trained
LMs. Early approaches involved manually design-
ing suitable prompts for extracting particular types
of relations (Petroni et al., 2019). Recently, how-
ever, several authors have proposed strategies that
automatically construct such prompts (Bouraoui
et al., 2020; Jiang et al., 2020; Shin et al., 2020).
Finally, Bosselut et al. (2019) proposed to fine-tune
LMs on knowledge graph triples, with the aim of
then using the model to generate new triples.

1All code for reconstructing the dataset and replicat-
ing the experiments is available at: https://github.
com/israa-alghanmi/DisKnE. License and access to
MedNLI, MEDIQA-NLI and UMLS will be needed.

https://github.com/israa-alghanmi/DisKnE
https://github.com/israa-alghanmi/DisKnE


LMs for Biomedical Text As already mentioned
in the introduction, a number of pre-trained LMs
have been released for the biomedical domain.
Several authors have analyzed the performance
of these models, and the impact of including dif-
ferent types of biomedical corpora in particular.
For instance, Peng et al. (2019) proposed an eval-
uation framework for biomedical language un-
derstanding (BLUE). They obtained the best re-
sults with a BERT model that was pre-trained on
PubMed abstracts and MIMIC-III clinical notes.
Another large-scale evaluation of biomedical LMs
has been carried out by Lewis et al. (2020). To
evaluate the biomedical knowledge that is captured
in pre-trained LMs, as opposed to acquired dur-
ing training, Jin et al. (2019a) freeze the trans-
former layers during training. They find that when
biomedical LMs are thus used as fixed feature ex-
tractors, BioELMo outperforms BioBERT. Most
closely related to our work, He et al. (2020) re-
cently also highlighted the limited ways in which
biomedical LMs capture disease knowledge. To
address this, they proposed a pre-training objec-
tive which relies on a weak supervision signal,
derived from the structure of Wikipedia articles
about diseases. Other authors have suggested to
include structured knowledge, e.g. from UMLS,
during the pre-training stage of BERT-based mod-
els (Michalopoulos et al., 2020; Hao et al., 2020).
Another strategy is to inject external knowledge
into task-specific models (rather than at the pre-
training stage), for instance in the form of defini-
tions (Lu et al., 2019) or again UMLS (Sharma
et al., 2019). Kearns et al. (2019) presented a re-
lated approach to our work in which they categorize
each sentence pair according to the tense and focus
(e.g. medication, diseases, procedures, location) of
the hypothesis, with the aim of providing a detailed
examination of MEDIQA-NLI. Based on this cat-
egorization, they compare the performance of En-
hanced Sequential Inference Model (ESIM) using
ClinicalBERT, Embeddings of Semantic Predica-
tions (ESP), and cui2vec. However, their analysis
was limited to the MEDIAQ-NLI test set, whereas
we include entailment examples from the entire
MedNLI and MEDIQA-NLI datasets. Moreover,
we focus specifically on the ability of LMs to dis-
tinguish between closely related diseases, and we
move away from the NLI setting to avoid training-
test leakage and artefacts.

Adversarial NLI Several Natural Language In-
ference (NLI) benchmarks have been found to con-
tain artefacts that can be exploited by NLP systems
to perform well without actually solving the in-
tended task (Poliak et al., 2018; Gururangan et al.,
2018). In particular, it has been found that strong
results can often be achieved by only looking at
the hypothesis of a (premise, hypothesis) pair. In
response to this finding, several strategies for cre-
ating harder NLI benchmarks have been proposed.
One established approach is to create adversarial
stress tests (Naik et al., 2018; Glockner et al., 2018;
Aspillaga et al., 2020), in which synthetically gen-
erated examples are created to specifically test for
phenomena that are known to confuse NLI models.
This may, for instance, involve the use of WordNet
to obtain nearly identical premise and hypothesis
sentences, in which one word is replaced by an
antonym or co-hyponym. In this paper, we rely
on a somewhat similar strategy, using UMLS to
replace diseases in hypotheses. As another strategy
to obtain hard NLI datasets, Nie et al. (2020) used
human annotators to iteratively construct examples
that are incorrectly labelled by a strong baseline
model. While the aforementioned works are con-
cerned with open-domain NLI, some work on creat-
ing adversarial datasets for the biomedical domain
has also been carried out. In particular, Araujo
et al. (2020) studied the robustness of systems for
biomedical named entity recognition and seman-
tic text similarity, by introducing misspellings and
swapping disease names by synonyms. To the best
of our knowledge, no adversarial NLI datasets for
the biomedical domain have yet been proposed.

3 Dataset Construction

In this section, we describe the process we followed
for constructing DisKnE. As we explain in more
detail in Section 3.1, this process involved filter-
ing the entailment instances from the MedNLI and
MEDIQA-NLI datasets, to select those in which
the hypothesis expresses that the patient has (or is
likely to have) a particular target disease. These
instances were then manually categorized based
on the type of knowledge that is needed for rec-
ognizing the validity of the entailment. Section
3.2 discusses our strategy for generating negative
examples, which were obtained in an adversarial
way, by replacing diseases occurring in entailment
examples with similar ones. Details of the resulting
training-test splits are provided in Section 3.3. In a



Category # inst. Premise Hypothesis

Symptoms → Disease 112 The patient developed neck pain while training
with increasing substernal heaviness and left arm
pain together with sweating.

The patient has symptoms of acute
coronary syndrome

Treatments → Disease 60 The patient started on Mucinex and Robitussin. The patient has sinus disease

Tests → Disease 116 Cardiac enzymes recorded CK 363, CK-MB 33,
TropI 6.78

The patient has cardiac ischemia

A large R hemisphere ICH was revealed when
the patent had head CT

The patient has an aneurysm

Procedures → Disease 70 Bloody fluid was removed by pericardiocentesis The patient has hemopericardium.

Terminological 259 The patient has urinary tract infection The patient has a UTI

The patient has high blood pressure Hypertension

Transfusions in the past could be the cause of
the patient having hepatitis C

The patient has hepatitis C

Table 1: Considered categories of disease-focused entailment pairs.

final step, we canonicalize the hypotheses of all ex-
amples, as explained in Section 3.4. Note that the
benchmark we propose consists of binary classifi-
cation problems (i.e. predicting entailment or not),
rather than the standard ternary NLI setting (i.e.
predicting entailment, neutral, or contradiction),
which is motivated by the fact that natural contra-
diction examples are hard to find when focusing on
disease knowledge.

3.1 Selecting Entailment Pairs

We started from the set of all entailment pairs
(i.e. premise-hypothesis pairs labelled with the
entailment category) from the full MedNLI and
MEDIQA-NLI datasets. We used MetaMap to
find those pairs whose hypothesis mentions the
name of a disease, and to retrieve the UMLS CUI
(Concept Unique Identifier) code corresponding to
that disease. We then manually identified those
pairs, among the ones whose hypothesis mentions
a disease, in which the hypothesis specifically ex-
presses that the patient has that disease. For in-
stance, in this step, a number of instances were
removed in which the hypothesis expresses that
the patient does not have the disease. The remain-
ing cases were manually assigned to categories
that reflect the type of disease knowledge that is
needed to identify that the hypothesis is entailed
by the premise. The considered categories are de-
scribed in Table 1, which also shows the number
of (positive) examples we obtained and illustrative
examples2. The primary distinction we make is

2For data protection reasons, we only provide synthetic
examples, which are different from but similar in spirit to

between examples that need medical knowledge
and those that need terminological knowledge. The
former category is divided into four sub-categories,
depending on the type of inference that is needed.
First, we have the symptoms-to-disease category,
containing examples where the premise describes
the signs or symptoms exhibited by the patient, and
the hypothesis mentions the corresponding diag-
nosis. Second, we have the treatments-to-disease
category, where the premise instead describe med-
ications (or other treatments followed by the pa-
tient). The third category, tests-to-disease, involves
instances where the premise describes lab tests and
diagnostic tools such as X-rays, CT scans and MRI.
Finally, the procedures-to-disease category has in-
stances where the premise describes surgeries and
therapeutic procedures that the patient underwent.
In the terminological category, the disease is men-
tioned in both the premise and hypothesis, either as
an abbreviation, a synonym or within a rephrased
sentence.

3.2 Generating Examples

The process outlined in Section 3.1 only provides
us with positive examples. Unfortunately, MedNLI
and MEDIQA-NLI contain only few negative ex-
amples (i.e. instances of the neutral or contradic-
tion categories) in which the hypothesis expresses
that the patient has some disease. For this rea-
son, rather than selecting negative examples from
these datasets, we generate negative examples by
corrupting the positive examples. In particular, to
generate negative examples, we replace the disease

those from the original MedNLI dataset.



X from a given positive example by other diseases
Y1, ..., Yn that are similar to X , but not ancestors
or descendants of X in SNOMED CT (Donnelly
et al., 2006). To identify similar diseases, we have
relied on cui2vec (Beam et al., 2020), a pre-trained
clinical concept embedding that was learned from a
combination of insurance claims, clinical notes and
biomedical journal articles. Apart from the require-
ment that the diseases Y1, ..., Yn should be similar
to X , it is also important that they are sufficiently
common diseases, as including unusual diseases
would make the corresponding negative examples
too easy to detect. For this reason, we only consider
the diseases that occur in the hypothesis of other
positive examples as candidates for the negative ex-
amples. Specifically, among these set of candidate
diseases, we selected the n = 10 most similar ones
to X , which were not descendants or ancestors of
X in SNOMED CT (as ancestors and descendants
would not necessarily invalidate the entailment).
This resulted in a total of 4133 examples requiring
medical knowledge and 2639 examples requiring
terminological knowledge.

3.3 Training-Test Splits

Because our focus is on evaluating the knowledge
captured by pre-trained language models, we want
to avoid overlap in the set of diseases in the train-
ing and test splits. In other words, if the model
is able to correctly identify positive examples for
a target disease X , this should be a reflection of
the knowledge about X in the pre-trained model,
rather than knowledge that it acquired during train-
ing. However, any single split into training and
test diseases would leave us with a relatively small
dataset. For this reason, we consider each disease
X in isolation. Let E be the set of all positive ex-
amples, obtained using the process from Section
3.1. Furthermore, we write EX for the set of those
examples from E in which the target disease in the
hypothesis is X . Finally, we write neg(X) for the
set {Y1, ..., Yn} of associated diseases that was se-
lected to construct negative examples, following
the process from Section 3.2.

For each target disease X , we define a corre-
sponding test set TestX and training set TrainX as
follows. TestX contains all the positive examples
from EX . Moreover, for each e ∈ EX and each
Y ∈ neg(X) we add a negative example eX→Y

to TestX which is obtained by replacing the occur-
rence of X by Y . If the word before the occurrence

<Pb>,  <HbY>
<Pb>, <HbZ>
<Pc>, <HcZ>
<Pc>, < HcY>

<Pa>, <HaX>
<Pa>, <HaY>
<Pa>, <HaZ>

<Pa>, <HaX> 
<Pa>,<HaY>
<Pa>, <HaZ>
<Pb>, <HbY>
<Pb>, <HbZ>
<Pb>, <HbX>
<Pc>, <HcZ>
<Pc>, <HcX>
<Pc>, <HcY>

Fitered 
 Dataset 

Target 
 Disease X

+
-
- 

P         Premise 
H         Hypothesis 
a,b,c    Set of examples 
X,Y,Z   Set of diseases

+
-
- 
+
-
- 
+
-
- 

Training

Testing

+
-
+
-

Figure 1: Illustration of training-test splitting process.

of X is a or an, we modify it depending on whether
Y starts with a vowel or consonant. The positive
examples in TrainX consist of all examples from
E in which X is not mentioned. Note that we
also remove examples in which these diseases are
only mentioned in the premise. Furthermore, we
check for occurrences of all the synonyms of these
diseases that are listed in UMLS. The process of
creating the training and test set for a given target
disease X is illustrated in Figure 1.

3.4 Canonicalization

We noticed that the way in which a given hypoth-
esis expresses that “the patient has disease X” is
correlated with the type of the disease. For this rea-
son, as a final step, we canonicalize the hypotheses
in the dataset. Specifically, we replace each hypoth-
esis by the name of the corresponding disease X .
Several hypotheses in the dataset already have this
form. By converting the other hypotheses in this
format, we eliminate any artefacts that are present
in their specific formulation.

4 Experiments

We experimentally compare a number of pre-
trained biomedical LMs on our proposed DisKnE
benchmark. In Section 4.1, we first describe the
considered LMs and the experimental setup. The
main results are subsequently presented in Section
4.2. This is followed by a discussion in Section 4.3.
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coronary atherosclerosis 0 0 29 10
chf 67 67 67 67
acs 04 33 0 05
stroke 80 56 90 90
heart disease 80 87 93 100
myocardial infarction 0 0 19 0
heart failure 0 0 22 0
urinary tract infection 100 100 67 100
disorder of lung 89 97 97 100
cirrhosis of liver 0 11 0 0
hyperglycemic disorder 27 13 22 0
pneumonia 89 93 67 100
neurological disease 67 67 80 67
respiratory failure 87 70 22 43
pulmonary edema 74 25 0 50
ami 0 0 0 0
deep vein thrombosis 47 48 50 48
acute cardiac ischemia 0 45 17 72
uri 78 45 67 83
cholangitis 22 22 33 22
atherosclerosis 66 0 67 0

Macro-average 46±3.0 42±7.3 43±3.1 46±3.4

Weighted average 49±3.1 47±6.0 49±2.7 51±2.7

Table 2: Results for the Symptoms → Disease cate-
gory in terms of F1 (%) averaged over three runs. Stan-
dard deviations (over the three runs) of the macro and
weighted average are also reported.

4.1 Experimental Setup

Pre-trained LMs. To understand to what extent
the pretraining data of an LM affects its perfor-
mance on our fine-grained evaluation of disease
knowledge, we used the following BERT variants:

BERT We use the BERTbase-cased model (Devlin
et al., 2019).

BioBERT Lee et al. (2019) proposed a model
based on BERTbase-cased, which they further
trained on biomedical corpora. We use the ver-
sion where PubMed and PMC were utilized
for this further pre-training.

ClinicalBERT Alsentzer et al. (2019) introduced
four BERT model variants, trained on vari-
ous clinical corpora. We use the version that
was initialized from BioBERT and trained on
MIMIC-III notes afterwards.

SciBERT Beltagy et al. (2019) introduced a BERT
model variant that was trained from scratch on
approximately 1.14M scientific papers from
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chf 55 55 53 55
acs 12 19 0 0
hypertensive disorder 55 67 54 22
heart disease 45 22 0 89
urinary tract infection 100 100 100 100
disorder of lung 82 89 100 93
hyperglycemic disorder 100 69 87 69
pneumonia 60 67 78 57
anemia 17 17 45 22
renal insufficiency 69 89 67 72
pulmonary infection 82 77 89 83
copd 45 67 61 39
hyperlipidemia 59 61 61 55

Macro-average 60±6.1 61±1.4 61 ±3.8 58±1.6

Weighted average 51 ±5.3 54 ±1.6 51±1.7 45±2.4

Table 3: Results for the Treatments → Disease cate-
gory in terms of F1 (%) averaged over three runs. Stan-
dard deviations (over the three runs) of the macro and
weighted average are also reported.

semantic scholar, 82% of which were biomed-
ical articles. The full text of the papers was
used for training. We use the cased version.

Training Details. For fine-tuning, model hyper-
parameters were the same across all BERT variants
such as the random seeds, batch size and the learn-
ing rate. In this study, we fix the the learning rate
at 2e-5, batch size of 8 and we set the maximum
number of epochs to 8 with the use of early stop-
ping. We used 10% of the training set as validation
split.

Evaluation Protocol. We analyze the results per
disease and per category in terms of F1 score for
the positive class, reporting results for all diseases
that have at least two positive examples for the con-
sidered category. To this end, for each disease X ,
we start from its corresponding training-test split,
which was constructed as explained in Section 3.3.
To show the results for a particular category, we
remove from the test set all the examples that do
not belong to that category.

4.2 Results

The main results are shown in Tables 2–6. A num-
ber of clear observations can be made. First, the
results for the terminological category are substan-
tially higher than the results for the other categories,
which suggests that the masked language modelling
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coronary atherosclerosis 0 0 0 0
chf 52 55 52 55
acs 0 22 0 0
stroke 87 87 95 77
hypertensive disorder 09 26 45 21
myocardial infarction 28 0 30 14
heart failure 0 55 40 0
urinary tract infection 87 90 59 90
hyperglycemic disorder 81 10 68 33
pneumonia 100 100 89 89
anemia 0 0 24 0
aortic valve stenosis 11 24 0 27
syst. inflam. resp. syndr. 76 64 80 80
acute renal failure syndr. 0 0 0 22
chronic renal insufficiency 0 0 0 0
kidney disease 22 0 45 0
ischemia 93 100 93 100

Macro-average 38 ±2.4 37±1.6 42±3.1 36 ±5.0

Weighted average 31 ±2.6 32±1.2 37±1.5 31 ±3.7

Table 4: Results for the Tests → Disease category in
terms of F1 (%) averaged over three runs. Standard de-
viations (over the three runs) of the macro and weighted
average are also reported.

objective, which is used as the main pre-training
task in all the considered LMs, may not be ideally
suited for learning medical knowledge. Second,
recall that the main difference between the con-
sidered biomedical LMs comes from the corpora
that were used for pre-training them. As the results
for the terminological category (Table 6) reveal,
the inclusion of domain-specific corpora does not
seem to benefit their ability to model biomedical
terminology, as similar results for this category
are obtained with the standard BERT model, which
was pre-trained on Wikipedia and a corpus of books
and movie scripts. For the Symptoms → Disease
category, we see that ClinicalBERT outperforms
the other biomedical LMs, although the standard
BERT model actually achieves the best perfor-
mance overall. The results suggest that Clini-
calBERT is better at distinguishing between rel-
atively rare diseases, but that the focus on ency-
clopedic text benefits BERT for more common
diseases. Intuitively, we can indeed expect that
the encyclopedic style of Wikipedia focuses more
on symptoms of diseases than scientific articles,
which might focus more on treatments, procedures
and diagnostic tests. This is also in accordance
with the findings from He et al. (2020), who ob-
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coronary atherosclerosis 0 0 16 0
heart disease 83 74 84 84
heart failure 33 33 50 0
cirrhosis of liver 0 0 0 0
end stage renal disease 37 29 70 79
respiratory failure 58 27 57 27
renal insufficiency 100 100 93 100
cardiac arrest 100 100 93 100
disorder of resp. syst. 76 80 80 71
peripheral vascular dis. 0 0 78 0

Macro-average 49 ±3.2 44±5.9 62±3.9 46±5.0

Weighted average 40±3.3 36 ±7.4 55 ±5.6 44 ±4.6

Table 5: Results for the Procedures → Disease cate-
gory in terms of F1 (%) averaged over three runs. Stan-
dard deviations (over the three runs) of the macro and
weighted average are also reported.

tained promising results with a disease-centric LM
pre-training task that relies on Wikipedia. On the
Procedures → Disease and Tests → Disease cat-
egories, we can see that SciBERT achieves the
best results, with a particularly wide margin on
the Procedures → Disease category. Finally, for
the Treatments → Disease category, the relatively
poor performance of BERT stands out, which con-
forms with the aforementioned intuition that sci-
entific articles put more emphasis on procedures,
treatments and tests. BioBERT achieves the best
results, although the performance of the other
biomedical LMs is quite similar.

4.3 Discussion

Which LM model? Several published works
have found ClinicalBERT to outperform the other
considered biomedical LMs on biomedical NLP
tasks (Alsentzer et al., 2019; Kearns et al., 2019;
Hao et al., 2020). In our results, however, SciBERT
achieves the most consistent performance, clearly
outperforming ClinicalBERT on the Procedures →
Disease and Test → Disease categories, while per-
forming similar to ClinicalBERT on the remain-
ing categories. However, rather than providing a
blanket recommendation for SciBERT, our fine-
grained analysis highlights the fact that different
models have different strengths. The most surpris-
ing finding, in this respect, is the performance of
the standard BERT model, which achieves the best
results on the Symptoms → Disease category and
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anemia 95 100 100 93
aortic valve stenosis 100 100 93 100
carotid artery stenosis 50 50 60 50
coronary atherosclerosis 79 79 76 79
type 2 diabetes mellitus 67 56 64 61
gerd 0 0 0 0
cardiac arrest 95 97 92 97
heart disease 100 100 93 80
heart failure 100 100 100 100
chf 19 37 35 36
hyperglycemic disorder 57 63 80 57
hypertensive disorder 84 87 90 84
acute renal failure synd. 67 67 58 61
end-stage renal disease 77 77 78 70
disorder of lung 89 76 70 52
copd 100 100 97 100
myocardial infarction 24 25 25 21
pancreatitis 33 0 22 33
pleural effusion 80 100 100 80
pneumonia 89 93 89 66
pulmonary edema 87 82 56 76
stroke 81 100 71 100
urinary tract infection 78 77 78 77
aaa 100 96 100 100

Macro-average 73 ±2.7 73±0.4 72±2.5 70±3.2

Weighted average 74±1.8 76 ±1.4 75 ±1.3 72±3.0

Table 6: Results for the terminological category in
terms of F1 (%) averaged over three runs. Standard de-
viations (over the three runs) of the macro and weighted
average are also reported.

performs comparably to BioBERT on several other
categories (with Treatments → Disease being a
notable exception).

Dataset Artefacts. As already reported by Ro-
manov and Shivade (2018), the original MedNLI
dataset has a number of annotation artefacts, which
mean that hypothesis-only baselines can perform
well. In our dataset, we tried to address this by
only using entailment examples, and creating nega-
tive examples by corrupting these. However, with-
out canonicalizing the hypotheses, we found that
hypothesis-only baselines were still performing
rather well. This is shown in Table 7, which sum-
marizes the results we obtained for a version of
our dataset without canonicalization, i.e. where the
full hypotheses are provided, and the canonicalized
version, where the hypotheses were replaced by
the disease name only. The table shows results
for the standard ClinicalBERT model, as well as
for a hypothesis-only variant, which is only given
the hypothesis. As can be seen, without canoni-

Standard Hyp. only

full can full can

M
A

C
R

O

Symptoms → Dis. 48 ±0.7 46±3.0 47±4.9 23±0.5

Treatments → Dis. 64±4.7 60 ±6.1 65±2.5 29±2.1

Tests → Dis. 41±1.7 38±2.4 44±2.3 18±2.0

Procedures → Dis. 59 ±4.9 49 ±3.2 52±2.6 19 ±3.0

Terminological 71±2.3 73±2.7 39±1.3 25±0.4

W
E

IG
H

T
E

D Symptoms → Dis. 54 ±2.9 49±3.1 53±4.7 23±1.3

Treatments → Dis. 62±2.8 51±5.3 60±7.1 24±1.0

Tests → Dis. 37±1.4 31±2.6 42±0.2 17±2.8

Procedures → Dis. 54±6.2 40±3.3 59±5.1 14±2.0

Terminological 71±1.1 74±1.8 41±2.7 22±0.4

Table 7: Comparison between a variant with the full
hypothesis and the proposed canonicalized version. Re-
sults are for the ClinicalBERT model in terms of F1 (%)
averaged over three runs. Standard deviations (over the
three runs) of the macro and weighted average are also
reported.
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O

Symptoms → Dis. 66±4.0 56±3.2 57±5.2 56±4.1

Treatments → Dis. 69±4.3 70±2.0 76±4.5 55±4.8

Tests → Dis. 53±0.9 49±3.3 52±1.0 47±0.6

Procedures → Dis. 60 ±1.8 56±0.8 76±2.6 60±4.5

Terminological 77±0.9 77±0.6 74±0.6 76±1.0

W
E

IG
H

T
E

D Symptoms → Dis. 66 ±5.2 59±3.5 59±4.1 56±4.6

Treatments → Dis. 64±6.2 59±3.6 68±4.8 46±3.1

Tests → Dis. 53 ±0.6 51±2.4 54±1.6 43±4.0

Procedures → Dis. 65±3.0 58±1.0 76±0.4 67±4.5

Terminological 76 ±1.6 77±1.0 75 ±0.4 72 ±0.7

Table 8: Results for a variant of our benchmark, in
which negative examples were selected at random, in
terms of F1 (%) averaged over three runs. Standard de-
viations (over the three runs) of the macro and weighted
average are also reported.

calization, the hypothesis only baseline performs
similarly to the full model, even outperforming it in
a few cases, with the exception of the Terminologi-
cal category where a clear drop in performance for
the hypothesis-only baseline can be seen. In con-
trast, for the canonicalized version of the dataset,
we can see that the hypothesis only baseline, which
only gets access to the name of the disease in this
case, under-performs consistently and substantially.
Note that the hypothesis-only baseline still achieves
a non-trivial performance in most cases, noting that
an uninformed classifier that always predicts true
would achieve an F1 score of 0.167. However, this
simply shows that the model has learned to prefer



frequent diseases over rare ones.

Adversarial Examples. A key design choice has
been to select negative examples from the diseases
that are most similar to the target disease. To anal-
yse the impact of this choice, we carried out an ex-
periment in which negative examples were instead
randomly selected. As before, we only consider
diseases that are present in the dataset, and we en-
sure that negative examples are not ancestors or
descendants of the target disease in SNOMED CT.
The results are presented in Table 8. As expected,
the results are overall higher than those from the
main experiment. More surprisingly, this easier set-
ting benefits some models more than others. The
relative performance of ClinicalBERT in particular
is now clearly better, with this model achieving
the best results for Symptoms → Disease. Fur-
thermore, the standard BERT model now clearly
underperforms the biomedical LMs, except for
Procedures → Disease where it outperforms Clin-
icalBERT and BioBERT.

5 Conclusion

We have proposed DisKnE, a new benchmark for
analysing the extent to which biomedical language
models capture knowledge about diseases. Posi-
tive examples were obtained from MedNLI and
MEDIQA-NLI, by manually identifying and cat-
egorizing hypotheses that express that the patient
has some disease. Negative examples were selected
to be similar to the target disease. To prevent short-
cut learning, the hypotheses were canonicalized,
such that models only get access to the name of
the disease that is inferred. Our empirical analysis
shows that existing biomedical language models
particularly struggle with cases that require medical
knowledge. The relative performance on the differ-
ent categories suggests that different (biomedical)
LMs have complementary strengths.

References
Asma Ben Abacha, Chaitanya Shivade, and Dina

Demner-Fushman. 2019. Overview of the MEDIQA
2019 shared task on textual inference, question en-
tailment and question answering. In Proceedings of
the 18th BioNLP Workshop and Shared Task, pages
370–379.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal bert embeddings. In Proceedings of the 2nd Clin-

ical Natural Language Processing Workshop, pages
72–78.

Vladimir Araujo, Andres Carvallo, Carlos Aspillaga,
and Denis Parra. 2020. On adversarial examples for
biomedical NLP tasks. arXiv:2004.11157.

Carlos Aspillaga, Andrés Carvallo, and Vladimir
Araujo. 2020. Stress test evaluation of transformer-
based models in natural language understanding
tasks. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 1882–
1894.

Andrew L Beam, Benjamin Kompa, Allen Schmaltz,
Inbar Fried, Griffin Weber, Nathan Palmer, Xu Shi,
Tianxi Cai, and Isaac S Kohane. 2020. Clinical con-
cept embeddings learned from massive sources of
multimodal medical data. In Pacific Symposium on
Biocomputing, volume 25, pages 295–306.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, pages 3613–3618.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
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