844 research outputs found

    Social media mining for identification and exploration of health-related information from pregnant women

    Get PDF
    Widespread use of social media has led to the generation of substantial amounts of information about individuals, including health-related information. Social media provides the opportunity to study health-related information about selected population groups who may be of interest for a particular study. In this paper, we explore the possibility of utilizing social media to perform targeted data collection and analysis from a particular population group -- pregnant women. We hypothesize that we can use social media to identify cohorts of pregnant women and follow them over time to analyze crucial health-related information. To identify potentially pregnant women, we employ simple rule-based searches that attempt to detect pregnancy announcements with moderate precision. To further filter out false positives and noise, we employ a supervised classifier using a small number of hand-annotated data. We then collect their posts over time to create longitudinal health timelines and attempt to divide the timelines into different pregnancy trimesters. Finally, we assess the usefulness of the timelines by performing a preliminary analysis to estimate drug intake patterns of our cohort at different trimesters. Our rule-based cohort identification technique collected 53,820 users over thirty months from Twitter. Our pregnancy announcement classification technique achieved an F-measure of 0.81 for the pregnancy class, resulting in 34,895 user timelines. Analysis of the timelines revealed that pertinent health-related information, such as drug-intake and adverse reactions can be mined from the data. Our approach to using user timelines in this fashion has produced very encouraging results and can be employed for other important tasks where cohorts, for which health-related information may not be available from other sources, are required to be followed over time to derive population-based estimates.Comment: 9 page

    Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort

    Get PDF
    Drug-drug interactions account for up to 30% of adverse drug reactions. Increasing prevalence of electronic health records (EHRs) offers a unique opportunity to build machine learning algorithms to identify drug-drug interactions that drive adverse events. In this study, we investigated hospitalizations\u27 data to study drug interactions with non-steroidal anti-inflammatory drugs (NSAIDS) that result in drug-induced liver injury (DILI). We propose a logistic regression based machine learning algorithm that unearths several known interactions from an EHR dataset of about 400,000 hospitalization. Our proposed modeling framework is successful in detecting 87.5% of the positive controls, which are defined by drugs known to interact with diclofenac causing an increased risk of DILI, and correctly ranks aggregate risk of DILI for eight commonly prescribed NSAIDs. We found that our modeling framework is particularly successful in inferring associations of drug-drug interactions from relatively small EHR datasets. Furthermore, we have identified a novel and potentially hepatotoxic interaction that might occur during concomitant use of meloxicam and esomeprazole, which are commonly prescribed together to allay NSAID-induced gastrointestinal (GI) bleeding. Empirically, we validate our approach against prior methods for signal detection on EHR datasets, in which our proposed approach outperforms all the compared methods across most metrics, such as area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC)

    Use of Real-World Data in Pharmacovigilance Signal Detection

    Get PDF

    Use of Real-World Data in Pharmacovigilance Signal Detection

    Get PDF

    Mining Adverse Drug Reactions from online healthcare forums using Hidden Markov Model

    Get PDF
    Background Adverse Drug Reactions are one of the leading causes of injury or death among patients undergoing medical treatments. Not all Adverse Drug Reactions are identified before a drug is made available in the market. Current post-marketing drug surveillance methods, which are based purely on voluntary spontaneous reports, are unable to provide the early indications necessary to prevent the occurrence of such injuries or fatalities. The objective of this research is to extract reports of adverse drug side-effects from messages in online healthcare forums and use them as early indicators to assist in post-marketing drug surveillance. Methods We treat the task of extracting adverse side-effects of drugs from healthcare forum messages as a sequence labeling problem and present a Hidden Markov Model(HMM) based Text Mining system that can be used to classify a message as containing drug side-effect information and then extract the adverse side-effect mentions from it. A manually annotated dataset from http://www.medications.comis used in the training and validation of the HMM based Text Mining system. Results A 10-fold cross-validation on the manually annotated dataset yielded on average an F-Score of 0.76 from the HMM Classifier, in comparison to 0.575 from the Baseline classifier. Without the Plain Text Filter component as a part of the Text Processing module, the F-Score of the HMM Classifier was reduced to 0.378 on average, while absence of the HTML Filter component was found to have no impact. Reducing the Drug names dictionary size by half, on average reduced the F-Score of the HMM Classifier to 0.359, while a similar reduction to the side-effects dictionary yielded an F-Score of 0.651 on average. Adverse side-effects mined from http://www.medications.comand http://www.steadyhealth.comwere found to match the Adverse Drug Reactions on the Drug Package Labels of several drugs. In addition, some novel adverse side-effects, which can be potential Adverse Drug Reactions, were also identified. Conclusions The results from the HMM based Text Miner are encouraging to pursue further enhancements to this approach. The mined novel side-effects can act as early indicators for health authorities to help focus their efforts in post-marketing drug surveillance.The authors would like to acknowledge the support from National Science Foundation awards IIS-0644366 and OIA-1028098, and KU General Research Fund GRF-2301677

    Signaling potential gender effect in a spontaneous reporting system : cardiac effects associated with the use of antibiotics

    Full text link
    Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

    Information Extraction from Biomedical Text Using Machine Learning

    Get PDF
    Inadequate drug experimental data and the use of unlicensed drugs may cause adverse drug reactions, especially in pediatric populations. Every year the U.S. Food and Drug Administration approves human prescription drugs for marketing. The labels associated with these drugs include information about clinical trials and drug response in pediatric population. In order for doctors to make an informed decision about the safety and effectiveness of these drugs for children, there is a need to analyze complex and often unstructured drug labels. In this work, first, an exploratory analysis of drug labels using a Natural Language Processing pipeline is performed. Second, Machine Learning algorithms have been employed to build baseline binary classification models to identify pediatric text in unstructured drug labels. Third, a series of experiments have been executed to evaluate the accuracy of the model. The prototype is able to classify pediatrics-related text with a recall of 0.93 and precision of 0.86

    Using Big Data Analytics and Statistical Methods for Improving Drug Safety

    Get PDF
    This dissertation includes three studies, all focusing on utilizing Big Data and statistical methods for improving one of the most important aspects of health care, namely drug safety. In these studies we develop data analytics methodologies to inspect, clean, and model data with the aim of fulfilling the three main goals of drug safety; detection, understanding, and prediction of adverse drug effects.In the first study, we develop a methodology by combining both analytics and statistical methods with the aim of detecting associations between drugs and adverse events through historical patients' records. Particularly we show applicability of the developed methodology by focusing on investigating potential confounding role of common diabetes drugs on developing acute renal failure in diabetic patients. While traditional methods of signal detection mostly consider one drug and one adverse event at a time for investigation, our proposed methodology takes into account the effect of drug-drug interactions by identifying groups of drugs frequently prescribed together.In the second study, two independent methodologies are developed to investigate the role of prescription sequence factor on the likelihood of developing adverse events. In fact, this study focuses on using data analytics for understanding drug-event associations. Our analyses on the historical medication records of a group of diabetic patients using the proposed approaches revealed that the sequence in which the drugs are prescribed, and administered, significantly do matter in the development of adverse events associated with those drugs.The third study uses a chronological approach to develop a network of approved drugs and their known adverse events. It then utilizes a set of network metrics, both similarity- and centrality-based, to build and train machine learning predictive models and predict the likely adverse events for the newly discovered drugs before their approval and introduction to the market. For this purpose, data of known drug-event associations from a large biomedical publication database (i.e., PubMed) is employed to construct the network. The results indicate significant improvements in terms of accuracy of prediction of drug-evet associations compared with similar approaches

    Pharmacogenomics

    Get PDF
    This Special Issue focuses on the current state of pharmacogenomics (PGx) and the extensive translational process, including the identification of functionally important PGx variation; the characterization of PGx haplotypes and metabolizer statuses, their clinical interpretation, clinical decision support, and the incorporation of PGx into clinical care

    Adverse Drug Event Detection, Causality Inference, Patient Communication and Translational Research

    Get PDF
    Adverse drug events (ADEs) are injuries resulting from a medical intervention related to a drug. ADEs are responsible for nearly 20% of all the adverse events that occur in hospitalized patients. ADEs have been shown to increase the cost of health care and the length of stays in hospital. Therefore, detecting and preventing ADEs for pharmacovigilance is an important task that can improve the quality of health care and reduce the cost in a hospital setting. In this dissertation, we focus on the development of ADEtector, a system that identifies ADEs and medication information from electronic medical records and the FDA Adverse Event Reporting System reports. The ADEtector system employs novel natural language processing approaches for ADE detection and provides a user interface to display ADE information. The ADEtector employs machine learning techniques to automatically processes the narrative text and identify the adverse event (AE) and medication entities that appear in that narrative text. The system will analyze the entities recognized to infer the causal relation that exists between AEs and medications by automating the elements of Naranjo score using knowledge and rule based approaches. The Naranjo Adverse Drug Reaction Probability Scale is a validated tool for finding the causality of a drug induced adverse event or ADE. The scale calculates the likelihood of an adverse event related to drugs based on a list of weighted questions. The ADEtector also presents the user with evidence for ADEs by extracting figures that contain ADE related information from biomedical literature. A brief summary is generated for each of the figures that are extracted to help users better comprehend the figure. This will further enhance the user experience in understanding the ADE information better. The ADEtector also helps patients better understand the narrative text by recognizing complex medical jargon and abbreviations that appear in the text and providing definitions and explanations for them from external knowledge resources. This system could help clinicians and researchers in discovering novel ADEs and drug relations and also hypothesize new research questions within the ADE domain
    • …
    corecore