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ABSTRACT 

 
ADVERSE DRUG EVENT DETECTION, CAUSALITY INFERENCE, PATIENT 

COMMUNICATION AND TRANSLATIONAL RESEARCH 

 
by 

Balaji Polepalli Ramesh 

The University of Wisconsin-Milwaukee, 2014 
Under the supervision of Professor Susan McRoy and Professor Hong Yu 

 

Adverse drug events (ADEs) are injuries resulting from a medical intervention related to 

a drug. ADEs are responsible for nearly 20% of all the adverse events that occur in 

hospitalized patients. ADEs have shown to increase the cost of health care and the length 

of stay in hospital. Therefore, detecting and preventing ADEs for pharmacovigilance is 

an important task that can improve the quality of health care and reduce the cost in a 

hospital setting. In this dissertation, we focus on the development of ADEtector, a system 

that identifies ADEs and medication information from electronic medical records and the 

FDA Adverse Event Reporting System reports. The ADEtector system employs novel 

natural language processing approaches for ADE detection and provides a user interface 

to display ADE information. The ADEtector employs machine learning techniques to 

automatically processes the narrative text and identify the adverse event (AE) and 

medication entities that appear in that narrative text. The system analyzes the entities 

recognized to infer the causal relation that exists between AEs and medications by 

automating the elements of Naranjo causality assessment scale using knowledge and rule 

based approaches. The Naranjo causality assessment scale is a validated tool for finding 
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the causality of a drug induced adverse event or ADE. The scale calculates the likelihood 

of an adverse event related to drugs based on a list of weighted questions. The ADEtector 

also presents the user with evidence for ADEs detected by extracting figures that contain 

ADE related information from biomedical literature. A brief summary is generated for 

each of the figures that are extracted to help users better comprehend the figure. This will 

further enhance the user experience in understanding the ADE information better. The 

ADEtector also helps patients better understand the narrative text by recognizing 

complex medical jargon and abbreviations that appear in the text by providing definitions 

and explanations for them from external knowledge resources. This system could help 

clinicians and researchers in discovering novel ADEs and also hypothesize new research 

questions within the ADE domain. 
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Chapter	  1:	  Introduction	  

An adverse event (AE) is an injury or untoward medical occurrence to a patient or 

clinical investigation subject who was administered a pharmaceutical product that does 

not necessarily have a causal relationship with the treatment received by the patient [1,2]. 

An adverse drug event (ADE) is an injury resulting from a medical intervention related to 

a drug including the harm caused by a drug (adverse drug reactions and overdoses) and 

harm from the use of the drug (including dose reductions and discontinuations of drug 

therapy) [3,4].	  Studies have reported that ADEs account for nearly 20% of all adverse 

events that occur in hospitalized patients [5-7]. In the United States alone, ADEs account 

for more than 770,000 injuries and deaths annually [8-10], and an increased average 

length of stay in hospitals at a cost of $1.56-$5.60 billion annually [3,11]. Improved 

methods for ADE detection and analysis may identify novel drug safety signals and lead 

to improved methods for avoiding ADEs, with their inherent burden of morbidity, 

mortality, and cost.  

Some ADEs are identified during clinical trails but these trials are often conducted on a 

small cohort of patients and do not represent the entire population. The majority of ADEs 

come to light only after the drug is widely used in the market by patients and hospitals. 

Electronic Medical Records (EMRs) in hospitals contain vast amounts of data regarding 

patient health, drug usage and unprecedented events that occurred during the hospital 

stay. A study by Cullen et al. [10] found that information regarding ADEs appear in the 

unstructured or narrative text. Studies have also shown that patient discharge summaries 
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incorporate ADE information [11,12]. However, currently, ADE information is mainly 

extracted manually [2,13]. Figure 1 below shows a sample discharge summary from the 

University of Pennsylvania Medical Center (UPMC). We can see that medication 

information and other information related to ADE are in the form of narrative text.  

As part of a major effort to support post-marketing drug safety surveillance, the US Food 

and Drug Administration (FDA) receives mandatory reports on ADEs from 

manufacturers through the FDA Adverse Event Reporting System (FAERS). The FAERS 

is a database that captures information concerning adverse events and medication errors 

associated with FDA approved prescription drugs. Currently, FAERS contains over four 

million reports of adverse events dating from 1969 to present [12]. It serves as a rich 

resource for pharmacovigilance – the study of drug-related injuries for the purpose of 

making warning or withdrawal recommendations for pharmaceutical products [4]. A 

typical FAERS report incorporates both structured data and unstructured free text, as 

shown in Figure 2. The structured data entries incorporate each patient’s personal and 

demographic information, a list of prescribed drugs, and the class of drug reaction (in this 

example, “anaphylactic reaction”) (Figure 2). The event/problem narrative contains 

additional information relevant to describing the event, assessing causality, and grading 

severity (Figure 2). In the example, the narrative text contains the phrase (highlighted in 

yellow) that indicates the causality between paclitaxel and anaphylactic reaction and 

“experienced a life threatening anaphylactic reaction” shows the severity of the event, 

which is not coded in the structured data. 

Although EMRs and FAERS reports are an excellent resource to study drug effects [13], 
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the structured data do not incorporate confounding factors, including concomitant 

medications and patient medical histories, which limits effectiveness of these data for 

Figure 1:  A sample electronic medical record (EMR). The adverse events are highlighted 
in red and the medications in yellow. 
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pharmacovigilance. In contrast, such confounding factors are frequently described in the 

unstructured FAERS narratives. Making these data computationally available is critical 

for pharmacovigilance.  

	  

Figure 2: A sample FAERS report. (A) structured data. (B) narrative free text 

Currently, manual abstraction is required for identification of relevant data in EMR and 

FAERS narratives. Given the enormous number of EMR reports generated at the 

hospitals and FAERS reports received by the FDA, manual abstraction is impractical and 

expensive. Therefore, it is important to develop computational approaches to 

automatically extract information from these narratives. In this dissertation, our goal is to 
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develop natural language processing (NLP) approaches to automatically extract ADE 

information from the narratives of both EMRs and FAERS reports. This is an important 

step toward enriching the existing capacity of narrative text for pharmacovigilance.   

The task is, however, very challenging. The detection of ADE involves identification of 

not only medication and AE entities but also inferring the causal relation that exists 

between them. We focus on the development of a system, ADEtector, which employs 

novel NLP approaches for ADE detection. After recognizing the ADE, we find evidence 

from the biomedical literature in the form of figures using a simple keyword search to 

further support the finding. This helps the users to visually see the ADE information in 

literature and corroborate it. The EMR and FAERS reports often contain domain-specific 

terms that may be hard for users to comprehend. To help users better understand the 

report, we build an NLP system that identifies complex medical terms that appear in the 

report and provide definitions and explanations to them from external knowledge 

resources. We also develop a new user interface integrating all these systems that can aid 

in viewing the ADE information and facilitate discovery of novel ADEs from the 

narrative text.  

We hypothesize such a tool can be useful to various group of users. Patients can use this 

tool to better understand the content of the reports and examine if any ADEs were 

reported in their records. Clinicians and researchers can use it to find the presence of 

ADE in a report and use it as a tool to help in translational research by further 

investigating the biomedical literature for ADE information using the figure evidence 

component. The tool could also be used by regulatory agencies such as the FDA, for 
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pharmacovigilance to monitor ADEs in the reports and investigate them further by 

looking at the figure evidence and definitions for the terms that appear in the report.  

We envision that ADEtector will not only be a tool for pharmacovigilance but also an 

application that can improve communication between physicians and patients in 

comprehending adverse drug events. As such we need to simplify the EHR text to make it 

readable by patients who have little clinical knowledge.  

Figure 3 below shows the schematic of the proposed system architecture. The system 

consists of five components. 

1. Adverse Event and Medication Named Entity Tagger 

2. Causality Inference Engine 

3. Figure Evidence Generator 

4. NoteAid 

5. ADE View 

 Given an AERS report or an EMR narrative, the first component, Adverse Event and 

Medication Named Entity Tagger, automatically processes the narrative and identifies the 

adverse event and medication-related entities that appear in that report. The second 

component, Causality Inference Engine, is an inference engine that derives a relation 

between the AE and the medication entities. The component analyzes the ADEs using 

rule- and knowledge-based approaches to derive the causality between drugs and adverse 

events. We automate the elements of Naranjo Causality Assessment Scale. We also 

develop a discourse connective identifier with sense detector that can be used to aid the 

automation of elements of the Naranjo score. Discourse connectives are words or phrases 

that connect or relate two coherent sentences or phrases and indicate the presence of 
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discourse relations. The discourse connective recognizer identifies the presence of 

explicit discourse cue that appear in the narrative text. The Naranjo Adverse Drug 

Reaction Probability Scale [14] is a validated tool for finding the causality of a drug-

induced adverse event or ADE. The scale calculates the likelihood of an AE related to 

drugs based on a list of weighted questions or elements. The scale also examines factors 

such as the temporal association of drug administration and event occurrence, alternative 

causes for the event, drug levels, dose–response relationships, and previous patient 

experience with the medication. The response to each of these questions is assigned 

points, and the ADE is assigned to a probability category from the total score, as follows: 

definite if the overall score is 9 or greater, probable for a score of 5-8, possible for 1-4, 

and doubtful if the score is 0.  

Table 1: The Naranjo Adverse Drug Reaction Probability Scale to assess the 
causality of an ADE 

 Yes No Do not 
know 

1.  Are there previous conclusive reports on this reaction? +1 0 0 
2.  Did the adverse event occur after the suspected drug was 
administered? 

+2 -1 0 

3.  Did the adverse reaction improve when the drug was discontinued 
or a specific antagonist was administered? 

+1 0 0 

4.  Did the adverse reaction reappear when the drug was 
readministered? 

+2 -1 0 

5.  Are there alternative causes (other than the drug) that could have 
on their own caused the reaction? 

-1 +2 0 

6.  Did the reaction reappear when a placebo was given? -1 +1 0 
7.  Was the drug detected in the blood (or other fluids) in 
concentrations known to be toxic? 

+1 0 0 

8.  Was the reaction more severe when the dose was increased or less 
severe when the dose was decreased? 

+1 0 0 

9.  Did the patient have a similar reaction to the same or similar drugs 
in any previous exposure? 

+1 0 0 

10.  Was the adverse event confirmed by any objective evidence? +1 0 0 
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Table 1 shows the Naranjo elements that are used to assess the causality of an ADE by a 

drug. Previous work has shown that physicians are able to assess the causality with the 

Naranjo scores [15-18]. In this dissertation, we automate three elements of the Naranjo 

scores due to limitations of the data availability and infer the causality using the AE and 

medication entities recognized by rule- and knowledge-based approaches.  

The third component, Figure Evidence Generator, extracts figures related to the ADE 

from biomedical literature as evidence [19] to support the ADE information extracted 

from the narrative text using a simple keyword-based search. It also generates a concise 

summary for each figure that is extracted to help in comprehending the figure better. The 

fourth component, NoteAid, processes the narrative text and identifies clinical concepts 

such as medical jargon, abbreviations, and complex disease and medication names. It 

then fetches definitions and explanations for the identified concepts from external 

knowledge resources to help understand the narrative text. The fifth and the final 

component, ADE View is a user interface that displays the ADE inferred along with the 

figure evidence, a summary for each of the figures and NoteAid simplified text to aid 

clinicians and researchers in discovering novel ADEs from the narrative text.   

Although several studies have identified ADEs, most employ the simple approach of co- 

occurrence between the mention of a drug and an AE, which does not necessarily reflect 

the causal relation between the two entities. In this dissertation, we employ machine-

learning approaches to identify AE and medication named entities and infer the causal 

relation that exists between AE and medication entities.  
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Figure 3: Schematic of the proposed architecture of the system. The first component is 
Medication and Adverse Event Named Entity Tagger, the second component is Causality 
Inference Engine, the third component is Figure Evidence Generator, the fourth 
component is NoteAid and the final one is ADE View, which displays the output of the 
all the four components  

The remaining parts of the dissertation are organized as follows: Chapter 2 discusses the 

supervised machine-learning methods utilized for the identification of adverse events and 

medication-related named entities. Chapter 3 and Chapter 4 discuss the automatic 

recognition discourse connective and the automation of the Naranjo Adverse Drug 

Reaction Probability Scale elements. Chapter 5 talks about the methods used to generate 

summaries for the figure evidence that is extracted from biomedical literature and its 

evaluation. Chapter 6 describes the NoteAid system developed to help users understand 

the content of the narrative text better and its evaluation. The development of the user 

interface to display the ADE information is discussed in Chapter 7. 
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Chapter	  2:	  Named	  Entity	  Recognition	  from	  FDA	  AERS	  Narratives	  

and	  EMR	  Reports	  	  

In this chapter, we describe recognizing adverse events, medications and other named 

entities in narrative text, the first component of the ADEtector system. The entities 

recognized by the named entity recognizer are used to infer the causality between 

medication and adverse event. We use only adverse event and medication entities in this 

dissertation since we automate only three Naranjo elements. Although the other entities 

are not utilized, they are required to automate the other Naranjo elements. The narrative 

text in EMR and FAERS reports is very rich and contains a lot of information such as 

adverse events, indications, laboratory findings, medications, dosage, and others. 

Identification of the named entities is an important step toward recognizing ADE. We 

develop an annotation guideline and annotate medication information and adverse event-

related entities on 122 FAERS reports and 150 EMR narratives comprising of ~23K and 

~103K word tokens respectively. A named entity tagger using supervised machine-

learning approaches is built for detecting medication information and adverse event 

entities using various categories of features. The annotated corpus had an agreement of 

over 0.9 Cohen’s κ for medication and adverse event entities. The best performing tagger 

achieves an overall performance of over 74% for detection of medication, adverse event 

and other named entities. 



	  

	  

	  

11	  

Related	  Work	  

There is extensive research related to AE and ADE detection and analysis from a variety 

of data sources. Earlier work has examined patients’ paper medical records to determine 

whether AE and ADE can be reliably abstracted based on the information conveyed in 

those records. For example, Hiatt et al. [20] was among one of the early studies that 

defined AE as an injury caused at least in part by medical mismanagement (negligence). 

They then manually abstracted ADE from patients’ paper-based clinical medical records. 

Similarly, other early studies (e.g., [3,7,21]) defined AEs and ADEs and then manually 

abstracted them from clinical records. These studies indicate the feasibility and value of 

clinical records for ADE surveillance and prevention.  

When electronic medical records (EMRs) became available, computational approaches 

were developed to automatically identify AE and ADE information from EMRs. Studies 

used rule-based approaches for detecting ADEs from EMR data [22-24]. Tinoco et al. 

[25] compared a rule-based computer surveillance system called Health Evaluation 

through Logical Processing (HELP) [26] with manual chart reviews of 2,137 patient 

admissions. They reported that HELP detected as many ADEs as were found by manual 

chart review, suggesting that NLP systems could improve ADE detection from EMR 

narrative data.  

Many studies applied NLP [27] to detect AEs and then inferred a causality relationship 

between a drug and an AE – called an ADE – using logical rules, statistical analyses, and 

supervised machine-learning approaches. Hazlehurst et al. [28] developed MediClass, a 

knowledge-based system that deploys a set of domain-specific logical rules to medical 
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concepts that are automatically identified from EMR narratives (e.g., progress notes) or 

precoded data elements (e.g., medication orders). The system achieved a precision of 

64% for detecting vaccine-related AEs [29]. A number of studies [30-32] applied the 

NLP system, MedLEE [33] to detect AEs from discharge summaries and hospitalization 

records. For example, Wang et al. [30] applied MedLEE to detect terms and mapped 

them to the UMLS semantic types. Subsequently, they detected medication and AEs 

when the terms were mapped to the UMLS concepts with the semantic types of Clinical 

Drug (T200) and Disease or Symptom (T047), respectively. The causality relationship 

between a medication and an AE was extracted from 25K discharge summaries based on 

a χ2-statistical analysis of medication and AE. Evaluation of seven drugs for known 

ADEs led to a recall and precision of 75% and 31% respectively. Aramaki et al. [34] 

manually annotated 435 discharge summaries for drugs and ADEs and then applied 

supervised machine learning to detect these named entities. They identified the causality 

between drugs and AEs using pattern matching and SVM techniques. They reported a 

recall and precision of 0.81 and 0.87 for drug and 0.80 and 0.86 for AE detection 

respectively. For inferring causality they achieved recall and precision of 0.92 and 0.41 

using pattern matching and 0.62 and 0.58 using SVM technique respectively.  

In addition to EMRs, studies have explored other data sources for ADE information, 

including biomedical literature [35,36], product labels [37], social media and the Internet 

[38,39]. Shetty and Dalal [40] mined ADEs from the PubMed citations. They first built a 

document classifier to identify relevant documents that incorporate ADE relationships 

using MeSH terms. For example, if an article is assigned with “chemically induced” or 

“adverse effects,” then the article is likely to incorporate an ADE. They then identified 
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ADE signals using disproportionality analysis in which the rate at which a particular AE 

of interest co-occurs with a given drug is compared to the rate an AE occurs without the 

drug in the collection. Their evaluation of a predefined set of 38 drugs and 55 AEs 

showed that their literature-based approach could uncover 54% of ADEs prior to FDA 

warnings.  

A number of studies have explored approaches for extracting medication-related entities 

from clinical text [41-45]. In 2009 i2b2 organized a medication information extraction 

competition, in which 20 teams from around the world participated [46]. From all the 

teams that participated, the medication entities achieved F1 scores over 0.75, while the 

duration and indication entities achieved the best performance of 0.52 and 0.46 

respectively. 

There is also a rich store of literature for ADE detection on Spontaneous Reporting 

Systems (SRS) such as the FAERS reports and WHO VigiBase [47]. Studies have 

explored several statistical data mining and machine-learning techniques on SRS for the 

detection of ADE signals [13,48-73]. However, all aforementioned approaches for ADE 

detection from FAERS are based on its structured data. In this study, we report the 

development and evaluation of supervised machine-learning approaches for automatically 

detecting medication information and adverse events from the FAERS narratives. We 

speculate that such information can be a useful addition to the FAERS structured data for 

ADE detection.  
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Materials	  and	  Methods	  

Annotation	  Data	  and	  Procedure	  

The annotation was carried out using Knowtator (http://knowtator.sourceforge.net), a 

plugin for Protégé (http://protege.stanford.edu). The Knowtator interface allows users to 

define entities that need to be annotated and configure the relationships between them. 

The annotated narratives were used as both training and testing data for machine learning 

approaches and evaluated using cross-validation. We also report Cohen’s κ, a well-

known statistic used to assess the degree of Inter-Annotator Agreement (IAA) between 

annotators [74]. 

FAERS	  Reports	  

Through our collaboration at Northwestern University [75], we obtained a collection of 

150 de-identified FAERS narratives; a sample is shown in Figure 2. The data collection 

originally came as a scanned PDF image file. We manually transcribed the PDF file into 

a computer-readable text file. 

We randomly selected a set of 28 narratives for developing the annotation guideline. Our 

annotation guideline was based on the i2b2 challenges in NLP for Clinical Data 

Medication Extraction [46,76]. A balanced interdisciplinary team consisting of a linguist 

(NF), a physician (SB), two informaticians (BPR and HY) and a physician informatician 

(ZFL) developed the annotation guideline through an iterative process. Following the 

final annotation guideline, two annotators (ZFL, designated as AnnPhy, and NF, 

designated as AnnLing), both of whom were the primary annotators for the i2b2 
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medication event detection challenge [76] in which we participated, independently 

annotated the remaining 122 AERS narratives. A physician (SB) served as a tiebreaker 

and resolved annotation disagreements. This collection of 122 narratives is comprised 

~23K word tokens and the average number of words per narrative is 190.2±130.3.   

The annotated data were grouped into four collections each containing 122 narratives: 

AnnPhy and AnnLing – data annotated by annotators AnnPhy (ZFL) and AnnLing (NF), 

respectively; Comb – a joint set of annotations agreed upon by both AnnPhy and 

AnnLing; and Tie – a joint set of AnnPhy and AnnLing annotations where disagreements 

were resolved by the tiebreaker SB. We use these four sets of data to build robust 

supervised machine-learning classifiers to identify entities. 

EMR	  reports	  from	  Pittsburgh	  repository	  

We randomly selected 150 de-identified discharge summary reports from Pittsburgh NLP 

repository, as shown in Figure 1. We incorporated the guideline from FAERS annotation 

and further refined the guideline iteratively to represent various attributes of entities. For 

example, for the dosage entity we included fields to represent the strength, form and type. 

The adverse event, indication and OSSD entities incorporated attributes, present and 

history to indicate their status. Following the final annotation guideline, AnnLing 

independently annotated all the 150 reports. AnnPhy independently annotated a subset of 

25 reports in the set of 150 articles to measure the IAA. This collection of 150 EMR 

narratives comprised ~103K word tokens and the average number of words per narrative 

is 685.3 ± 346.3.   
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Supervised	  Machine	  Learning	  	  

Three supervised machine-learning approaches were explored for automatically 

identifying medication information and adverse events: Naïve Bayes (NB), Support 

Vector Machines (SVMs), and Conditional Random Fields (CRFs) [77]. We built NB and 

SVM classifiers using Weka [78] and the CRF model using ABNER toolkit [79]. NB is a 

simple model that assumes that all attributes of the examples are independent of each 

other given the context of the class. SVMs are a well-known statistical machine-learning 

algorithm and have shown very good performance in many classification tasks [80,81]. 

CRFs have shown success in named entity recognition in biomedical domain [79,82].  

Learning	  Features	  

We explored a variety of features, such as syntactic features, semantic features based on 

the external knowledge resource (UMLS), morphological and contextual features, 

presence of negation, hedging and discourse connectives as a feature in addition to 

ABNER default features which include bag of words and orthogonal features. We 

describe each of these in detail below. 

The syntactic features include the part-of-speech (POS), the phrasal class of each token, 

and the POS of the token immediately to the left of the token under consideration. The 

syntactic features were extracted from the constituency parse tree generated by Charniak–

Johnson parser [83] trained in the biomedical domain. The parser was evaluated to have 

the best performance when tested on the GENIA corpus [84]. Figure 4 shows a sample 

constituency parse tree. In this example, the POS features DT (determiner), JJ 

(Adjective), NN (Noun) are the POS of tokens “A,” “female,” and “patient” respectively. 
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Further, the phrasal class for all the three tokens is NP. The left sibling POS value of “A” 

is NONE assuming it is the start of the sentence. The left sibling POS of “female” and 

“patient” tokens are DT and JJ respectively.  

We applied the UMLS Metamap [85] (http://metamap.nlm.nih.gov/) to extract semantic 

features, which are concepts and semantic types represented in the UMLS Metathesaurus. 

The morphological features were obtained by considering various characteristics of the 

word. We took attributes of the word such as whether it was a digit, was capitalized, its 

alphanumeric order (if the token started with letters and was followed by numerals or 

vice versa), and the presence of punctuation such as commas and hyphens. These features 

were extracted using a simple pattern-matching technique. The first (prefix) and last 

(suffix) three and four characters of the token were added as affix features. 

	  

Figure 4: The sample constituency parse tree 

Our manual examination of the data showed that named entities appeared around 

negation, hedging and discourse connectives. We further investigated our observation by 

conducting a small distributional study of the presence of discourse connectives around 
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entities and of negation and hedging scopes incorporating entities. Table 2 shows the 

distribution of negation and hedging scopes incorporating entities and the presence of 

discourse connective around named entities on 20 randomly selected FAERS reports. 

Table 2: Distribution of negation and hedging scopes and discourse connectives on 
randomly selected 20 FAERS reports 

Number of Reports 20	  
Number of Connectives 41	  

Number of Connectives around entities 26	  
Number of negation scopes 41	  
Number of negation scopes 

incorporating entities 
20	  

Number of hedging scopes 29	  
Number of hedging scopes incorporating 

entities 
25	  

Table 2 shows that 63.4% of the time connectives appeared within a two-word window of 

entities. The negation and the hedging scopes incorporate entities 49% and 86% of the 

times. In Table 3 below, example 1 shows that the adverse event “cerebral hemorrhage” 

appears after the connective “due to” and example 2 shows connective “while” appears in 

between the “hypersensitive reaction” and “Taxol.” Examples 3 and 4 show instances 

where the named entities are incorporated within the scope of negation. Similarly 

examples 5 and 6 show instances where the hedging scope incorporates the named 

entities. Therefore, the negation and hedging cues with their scope that were detected 

automatically by the systems [86] and [87] and the presence of discourse connectives that 

were automatically detected by discourse parser [88] were added as features.	  
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Table 3: Examples from FAERS reports with entities around discourse connectives and 
negation and hedging scope incorporating named entities. Connectives are shown in 
bold. The scope of negation and hedging is shown in italics and the cue is shown in bold 
italics 

Discourse 
connectives around 

entities 

1) The patient died due to cerebral hemorrhage. 
2) Patient experienced a hypersensitive reaction while on 

Taxol 

Entities within 
negation scope 

3) …death not related to Taxol. 
4) She experienced pleural suffusion without 

pueumothorax 

Entities within 
hedging scope 

5) …possibly related to vinorelbin and underlying disease 
6) … death possibly related to paclitaxel and radiotherapy. 

Systems	  

We developed several taggers to evaluate (a) the complexity of the task for identifying 

medication information and adverse events and (b) the impact of features.	  

Systems	  to	  Evaluate	  Task	  Complexity	  

In this experiment, we built two baseline systems to compare the performance of ML 

algorithms. First, BaseDict, a system based on dictionary matching. A lexicon of AEs and 

medication is compiled from UMLS Metathesaurus using the semantic types as defined 

in [30]. The baseline system BaseDict tags all the instances of the lexicon that match the 

text. Second, MetaMapTagger, a system based on UMLS Metamap. We apply Metamap 

to tag AEs and medications using UMLS semantic types similar to BaseDict. 

The baseline systems were compared with taggers built using bag of words as default 

feature – NBTagger, an NB-based tagger; SVMTagger, an SVM-based tagger and 

SimpleTagger, a CRF-based tagger built using ABNER default features. We then 

evaluate the taggers by adding all the features defined in learning features, which we call 
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NBTagger+, SVMTagger+ and CombinedTagger for NB, SVM and CRF based taggers 

respectively. We also built and ensemble classifier EnsembleTagger, an SVM classifier 

that combines the output of the SVM and CRF taggers. 

Systems	  to	  Evaluate	  Impact	  of	  Features	  

We evaluate the impact of various features on the performance of the tagger. We used the 

ML technique that achieved the best performance in our previous experiment.	  In addition 

to the default features trained as SimpleTagger, we individually added syntactic features 

(SyntacticTagger), semantic features (SemanticTagger), morphological features 

(MorphologicalTagger), affix features (AffixTagger), negation and hedging features 

(NegHedgeTagger), discourse connective features (ConnectiveTagger), and a tagger 

incorporating all the features (CombinedTagger) were trained to identify the named 

entities.	  

Machine	  Learning	  Evaluation	  Metrics	  

All the AE taggers trained were evaluated using ten-fold cross validation. We reported 

recall, precision, and the F1 score. Recall is the ratio of the number of entities of a certain 

class correctly identified by the system and the number of entities of that class in gold 

standard. Precision is the ratio of the number of entities of a certain class correctly 

identified by the system and the number of entities of that class predicted by the system. 

F1 score is the harmonic mean of precision and recall. 
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Results	  

Corpus	  Characteristics	  and	  Annotation	  Agreement	  

In this section, we discuss the corpus characteristics and the annotation agreement 

between the annotators on FAERS reports and EMR narratives. The annotation 

agreement is calculated based on two criteria: strict in which the two annotations have an 

exact match, and relaxed in which there exists an overlap of at least one word between 

the two annotations. We measured the agreement using relaxed criteria to estimate the 

agreement when the boundary of the entity is ignored. 

FAERS	  Reports	  

Table 4 below shows the definitions of adverse event and medication-related named 

entities, the number of annotated instances, and Cohen’s κ value. The table also shows 

the number of instances annotated in all four datasets.  

As shown in Table 4, adverse event (AE) was the most frequently annotated entity 

followed by medication entity in FAERS reports. Duration had the least number of 

annotated instances and lowest kappa value (0.34) for strict criteria. Indication had the 

second highest kappa value for relaxed criteria (0.93) after medication (0.95), since most 

of the indication entities were followed by explicit and unambiguous patterns, such as 

“for the treatment of”, “diagnosed with”, “due to”, “enrolled in breast cancer study” and 

so on. 	  
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Table 4: Named entity definition, number of instances annotated, inter annotator 
agreement measured by Cohen’s κ for both strict and relaxed criterion of named entities 
on FAERS reports 

Number of Instances 
Annotated 

Named 
Entity 

Definition 

AnnPh
y 

AnnLin
g 

Comb Tie 

κ 
(strict) 

κ 
(relaxed

) 

Medicatio
n Name of the drug 

administered to patient 
including drug class 
name or medications 

referred to with 
pronouns. 

1231 1278 1152 1286 0.92 0.95 

Dosage Amount of a single 
medication used in each 

administration. 

143 315 137 205 0.59 0.82 

Route Method for 
administering the 

medication. 

115 244 107 132 0.59 0.64 

Frequency 
How often each dose of 
the medication should 

be taken. 

25 56 21 42 0.58 0.74 

Duration 
How long the 

medication is to be 
administered. 

34 153 24 51 0.34 0.87 

Indication Medical conditions for 
which the medication is 

given. 

175 148 126 175 0.76 0.93 

Adverse 
event 
(AE) 

Harm directly caused 
including the pronouns 

referring to it by the 
drug at normal doses 

and during normal use. 

1689 2083 1646 1842 0.83 0.93 

Other 
Signs, 

Symptom
s and 

Diseases 
(OSSD) 

Other symptoms 
associated with the 

disease. 

234 140 90 147 0.50 0.71 

Treatment Treatment the patient 
received for the disease. 

77 216 62 153 0.39 0.77 

Total 3723 4633 3365 4033 
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EMR	  Reports	  

Table 5 below shows the adverse event and medication-related named entities, the 

number of annotated instances, and Cohen’s κ value on EMR reports. As shown in Table 

5, Other Signs Symptoms and Diseases (OSSD) was the most frequently annotated entity 

followed by medication entity in EMR reports. Adverse event had the least number of 

annotated instances followed by Duration. Duration had the lowest kappa value (0.06) 

for strict criteria. Frequency, dosage and medication had the kappa values greater than 

0.9 for relaxed criteria.  

Table 5: Number of entities annotated and their inter annotator agreement measured by 
Cohen’s κ for both strict and relaxed criterion of named entities on EMR reports 

Named Entity Number of Instances 
Annotated 

κ (strict) κ (relaxed) 

Medication 1290 0.92 0.93 
Dosage 599 0.89 0.94 
Route 484 0.88 0.90 
Frequency 964 0.94 0.97 
Duration 49 0.06 0.37 
Indication 196 0.37 0.75 
Adverse event (AE) 26 0.39 0.81 
Other Signs, 
Symptoms and 
Diseases (OSSD) 

2123 0.61 0.88 

Total 5731 

Results	  of	  Supervised	  Learning	  

FAERS	  Reports	  

Table 6 below reports recall, precision, and the F1 score of the AETaggers for identifying 

the AE and other medication-related named entities on each of the four datasets as 

described in the annotation and data procedure on FAERS reports.  
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The baseline system BaseDict and MetamapTagger that matches only AE and medication 

achieved an F1 score of 0.45, 0.41, 0.46, 0.42 and 0.41, 0.41, 0.42, 0.40 on AnnPhy, 

AnnLing, Comb, and Tie datasets respectively. Among the taggers using a bag of words 

as features, CRF-based SimpleTagger had the best performance. The addition of features 

improved the performance of ML classifiers. The CombinedTagger achieved best 

performance of 0.69, 0.74 and 0.73 F1 scores on AnnPhy, AnnLing and Comb datasets 

respectively. The SVMTagger+ had the best performance of 0.66 F1 score on Tie dataset. 

The difference in performance between CombinedTagger and SVMTagger+ taggers was 

statistically significant only on AnnLing dataset (t-test, p < 0.05).  The ML-based taggers 

clearly outperform the baseline method. The CRF-based tagger had the best overall 

performance and was therefore chosen as the system to be adapted for subsequent 

experiments measuring impact of features. EnsembleTagger improved the performance 

on all the four datasets, but the improvement in performance was statistically significant 

only on the Tie dataset (t-test, p < 0.05). 

We trained CRF-based AETagger’s using different features as described in learning 

features section. The results show that CombinedTagger achieved the highest 

performance on all datasets. Our results also show that the AnnLing dataset has the 

highest performance while Tie performs the lowest. Comb outperforms both Tie and 

AnnPhy. 

Since the Comb dataset’s performance (0.73 F1 score) is close to the highest (0.74 F1 

score) and contains annotations agreed by both annotators, we further report feature 
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Table 6: The performance of the taggers (Mean ± std dev) on each of the four FAERS 
datasets * (t-test, p < 0.05) 

         Dataset 

ML 

AnnPhy          
F1 score 

(Precision, 
Recall) 

AnnLing       
F1 score 

(Precision, 
Recall) 

Comb           
F1 score 

(Precision, 
Recall) 

Tie               
F1 score 

(Precision, 
Recall) 

BaseDict 0.45 ± 0.10                  
(0.86 ± 0.08, 
0.31 ± 0.09) 

0.41 ± 0.09                  
(0.91 ± 0.07, 
0.27 ± 0.08) 

0.46 ± 0.12                  
(0.82 ± 0.06, 
0.32 ± 0.11) 

0.42 ± 0.10                  
(0.86 ± 0.13, 
0.28 ± 0.08) 

MetaMapTagger 0.41 ± 0.17                  
(0.41 ± 0.16, 
0.42 ± 0.18) 

0.41 ± 0.10                  
(0.47 ± 0.20, 
0.37 ± 0.15) 

0.42 ± 0.18                  
(0.41 ± 0.17, 
0.43 ± 0.19) 

0.40 ± 0.16                  
(0.46 ± 0.19, 
0.36 ± 0.14) 

NBTagger 0.22 ± 0.08                  
(0.39 ± 0.17, 
0.15 ± 0.05) 

0.23 ± 0.08                  
(0.45 ± 0.14, 
0.16 ± 0.06) 

0.24 ± 0.08                  
(0.40 ± 0.17, 
0.17 ± 0.05) 

0.20 ± 0.06                  
(0.47 ± 0.19, 
0.13 ± 0.04) 

SVMTagger 0.55 ± 0.05                  
(0.77 ± 0.10, 
0.44 ± 0.04) 

0.55 ± 0.05                  
(0.78 ± 0.07, 
0.43 ± 0.05) 

0.58 ± 0.04                  
(0.78 ± 0.10, 
0.46 ± 0.04) 

0.59 ± 0.04                 
(0.80 ± 0.05, 
0.46 ± 0.05) 

SimpleTagger 0.67 ± 0.09                  
(0.77 ± 0.09, 
0.60 ± 0.09) 

0.72 ± 0.08                 
(0.81 ± 0.06, 
0.66 ± 0.10) 

0.71 ± 0.08                  
(0.81 ± 0.09, 
0.63 ± 0.08) 

0.63 ± 0.09                  
(0.69 ± 0.08, 
0.55 ± 0.10) 

NBTagger+ 0.45 ± 0.09                  
(0.38 ± 0.10, 
0.56 ± 0.06) 

0.44 ± 0.06                  
(0.39 ± 0.07, 
0.50 ± 0.06) 

0.46 ± 0.09                  
(0.37 ± 0.11, 
0.60 ± 0.04) 

0.43 ± 0.07                  
(0.38 ± 0.08, 
0.51 ± 0.07) 

SVMTagger+ 0.66 ± 0.07                  
(0.78 ± 0.10, 
0.58 ± 0.06) 

0.67 ± 0.07                  
(0.78 ± 0.07, 
0.59 ± 0.07) 

0.70 ± 0.06                  
(0.80 ± 0.11, 
0.63 ± 0.05) 

0.66 ± 0.07                  
(0.78 ± 0.06, 
0.57 ± 0.08) 

CombinedTagger 0.69 ± 0.09                  
(0.77 ± 0.10, 
0.62 ± 0.09) 

0.74 ± 0.08                
(0.81 ± 0.07, 
0.68 ± 0.09) 

0.73 ± 0.08                  
(0.81 ± 0.10, 
0.66 ± 0.07) 

0.65 ± 0.08                  
(0.71 ± 0.08, 
0.60 ± 0.09) 

T
as

k 
C

om
pl

ex
ity

 

EnsembleTagger 0.72 ± 0.09                  
(0.82 ± 0.10, 
0.64 ± 0.09) 

0.77 ± 0.08                
(0.83 ± 0.07, 
0.71 ± 0.09) 

0.76 ± 0.07                  
(0.86 ± 0.10, 
0.68 ± 0.06) 

0.71 ± 0.08                  
(0.78 ± 0.06, 
0.65 ± 0.10) 

SimpleTagger 0.67 ± 0.09                  
(0.77 ± 0.09, 
0.60 ± 0.09) 

0.72 ± 0.08                 
(0.81 ± 0.06, 
0.66 ± 0.10) 

0.71 ± 0.08                 
(0.81 ± 0.09, 
0.63 ± 0.08) 

0.63 ± 0.09                 
(0.69 ± 0.08, 
0.55 ± 0.10) 

AffixTagger 0.67 ± 0.09                  
(0.78 ± 0.09, 
0.60 ± 0.09) 

0.73 ± 0.09                  
(0.81 ± 0.06, 
0.66 ± 0.10) 

0.70 ± 0.08                  
(0.81 ± 0.09, 
0.63 ± 0.08) 

0.61 ± 0.09                  
(0.70 ± 0.08, 
0.52 ± 0.10) 

ConnectiveTagger 0.67 ± 0.09                  
(0.77 ± 0.09, 
0.60 ± 0.09) 

0.73 ± 0.08                  
(0.81 ± 0.06, 
0.66 ± 0.10) 

0.71 ± 0.08                  
(0.81 ± 0.09, 
0.63 ± 0.08) 

0.63 ± 0.09                  
(0.70 ± 0.07, 
0.57 ± 0.10) Im

pa
ct

 o
f F

ea
tu

re
s 

MorphologicalTag
ger 

0.68 ± 0.09                  
(0.77 ± 0.08, 
0.60 ± 0.10) 

0.73 ± 0.08                  
(0.81 ± 0.06, 
0.66 ± 0.09) 

0.71 ± 0.08                  
(0.80 ± 0.09, 
0.63 ± 0.08) 

0.64 ± 0.08                  
(0.71 ± 0.07, 
0.59 ± 0.09) 
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NegHedgeTagger 0.66 ± 0.09                  
(0.77 ± 0.09, 
0.59 ± 0.10) 

0.72 ± 0.08                  
(0.81 ± 0.06, 
0.65 ± 0.10) 

0.71 ± 0.08                  
(0.81 ± 0.09, 
0.63 ± 0.08) 

0.61 ± 0.09                  
(0.69 ± 0.08, 
0.54 ± 0.10) 

SemanticTagger 0.68 ± 0.09                  
(0.77 ± 0.10, 
0.61 ± 0.09) 

0.70 ± 0.09                  
(0.78 ± 0.07, 
0.64 ± 0.10) 

0.72 ± 0.09                  
(0.80 ± 0.11, 
0.65 ± 0.08) 

0.63 ± 0.09                  
(0.69 ± 0.10, 
0.58 ± 0.09) 

SyntacticTagger 0.68 ± 0.09                  
(0.78 ± 0.09, 
0.61 ± 0.10) 

0.72 ± 0.08                  
(0.80 ± 0.06, 
0.65 ± 0.09) 

0.71 ± 0.08                  
(0.80 ± 0.09, 
0.64 ± 0.08) 

0.63 ± 0.08                  
(0.70 ± 0.08, 
0.58 ± 0.09) 

 

CombinedTagger 0.69 ± 0.09                  
(0.77 ± 0.10, 
0.62 ± 0.09) 

0.74 ± 0.08                  
(0.81 ± 0.07, 
0.68 ± 0.09) 

0.73 ± 0.08                  
(0.81 ± 0.10, 
0.66 ± 0.07) 

0.65 ± 0.08                  
(0.71 ± 0.08, 
0.60 ± 0.09) 

analyses using the Comb dataset. Table 7 below shows how different learning features 

affect AETagger’s performance on FAERS data. The results show that adding a single 

feature added little to overall performance, although the performance of different entities 

varied. Affix features improved route and duration but decreased AE, medication, and 

dosage. This could be because affix features capture the explicit patterns of route such as 

“venous” in “intravenous.” The decrease in performance of affix features could be due to 

the sparsity of such common patterns. Connective features increased the performance of 

dosage, route, and indication; however, the performance of medication decreased. This 

could be again due to the presence of connectives around dosage, route, and indication 

entities such as “…surged from an endometrial carcinoma, she then had chemo-

radiotherapy…” The connective “then” appears around the indication “endometrial 

carcinoma.” But the decrease in performance for medication could be due to the sparsity 

of such patterns. Other features (morphological, negation, hedge, semantic, and syntactic) 

showed similar patterns. On the other hand, when all features were added, the overall 

performance increased to 0.73 F1 score (default 0.71), although the increase was not 

statistically significant (t-test, p < 0.05).  
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Table 7: The F1 score performance of different named entities with different features of 
Comb dataset on FAERS dataset. 

Feature 
group 

AE Medi
cation 

Dos
age 

Freq
uenc
y 

Rou
te 

Durat
ion 

Indica
tion 

OSSD Treat
ment 

Overal
l 

Default 0.70 
± 
0.10 

0.82 ± 
0.10 

0.59 
± 
0.35 

0.57 
± 
0.46 

0.36 
± 
0.33 

0.20 ± 
0.42 

0.57 ± 
0.12 

0.44 ± 
0.45 

0.60 ± 
0.52 

0.71 ± 
0.08 

Affix 0.69 
± 
0.11 

0.81 ± 
0.12 

0.58 
± 
0.37 

0.59 
± 
0.45 

0.55 
± 
0.37 

0.40 ± 
0.52 

0.57 ± 
0.09 

0.51 ± 
0.44 

0.60 ± 
0.52 

0.70 ± 
0.08 

Connect
ive 

0.70 
± 
0.10 

0.81 ± 
0.10 

0.69 
± 
0.31 

0.57 
± 
0.46 

0.44 
± 
0.36 

0.20 ± 
0.42 

0.60 ± 
0.15 

0.44 ± 
0.45 

0.60 ± 
0.52 

0.71 ± 
0.08 

Morpho
logical 

0.70 
± 
0.10 

0.82 ± 
0.10 

0.57 
± 
0.35 

0.59 
± 
0.45 

0.32 
± 
0.32 

0.20 ± 
0.42 

0.62 ± 
0.12 

0.47 ± 
0.43 

0.60 ± 
0.52 

0.71 ± 
0.08 

NegHed
ge 

0.69 
± 
0.10 

0.82 ± 
0.10 

0.56 
± 
0.36 

0.59 
± 
0.45 

0.36 
± 
0.33 

0.20 ± 
0.42 

0.59 ± 
0.11 

0.50 ± 
0.43 

0.60 ± 
0.52 

0.71 ± 
0.08 

Semanti
c 

0.71 
± 
0.11 

0.82 ± 
0.11 

0.56 
± 
0.35 

0.65 
± 
0.40 

0.34 
± 
0.33 

0.30 ± 
0.48 

0.64 ± 
0.13 0.43 ± 

0.39 

0.60 ± 
0.52 0.72 ± 

0.09 
Syntacti
c 

0.70 
± 
0.10 

0.81 ± 
0.11 

0.61 
± 
0.35 

0.59 
± 
0.45 

0.32 
± 
0.31 

0.34 ± 
0.47 

0.58 ± 
0.11 

0.44 ± 
0.45 

0.60 ± 
0.52 

0.71 ± 
0.08 

All 0.72 
± 
0.10 

0.83 ± 
0.11 

0.61 
± 
0.37 

0.59 
± 
0.44 

0.32 
± 
0.31 

0.34 ± 
0.47 

0.65 ± 
0.11 

0.55 ± 
0.39 

0.60 ± 
0.52 

0.73 ± 
0.08 

EMR	  Reports	  

Table 8 below reports recall, precision, and F1 score of the AETaggers for identifying the 

AE and other medication-related named entities on EMR reports.  

The baseline system BaseDict and MetamapTagger that matches only AE and medication 

achieved an F1 score of 0.45 and 0.42 respectively, similar to the performance on FAERS 

reports. Among the taggers using bag of words as features, CRF-based SimpleTagger had 

the best performance. The SVMTagger+ achieved an F1 score of 0.62. Addition of 

features did not improve the performance in the case of EMR reports. The difference in 
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performance between CombinedTagger and SVMTagger+ taggers was statistically 

significant (t-test, p < 0.05).  The ML-based taggers clearly outperform the baseline 

method. The CRF-based tagger had the best overall performance and was therefore 

chosen as the system to be adapted for subsequent experiments measuring the impact of 

features. 

We trained CRF-based AETagger’s using features described in learning features section. 

The results show that all the taggers performed equally well and addition of features did 

not affect the performance of the SimpleTagger.  

Table 8: Performance of the taggers (Mean ± std dev) on EMR reports. 

System Precision Recall F1 score  
BaseDict 0.76 ± 0.14  0.33 ± 0.12  0.45 ± 0.13  

MetaMapTagger 0.41 ± 0.17  0.41 ± 0.10  0.42 ± 0.18  
NBTagger 0.64 ± 0.29  0.10 ± 0.02  0.17 ± 0.02  

SVMTagger 0.82 ± 0.03  0.55 ± 0.04  0.66 ± 0.04  
SimpleTagger 0.81 ± 0.03  0.72 ± 0.04  0.77 ± 0.03  

NBTagger+ 0.40 ± 0.05  0.45 ± 0.03  0.42 ± 0.04  
SVMTagger+ 0.75 ± 0.17  0.53 ± 0.16  0.62 ± 0.18  

CombinedTagger 0.81 ± 0.03  0.72 ± 0.04  0.76 ± 0.03  

T
as

k 
C

om
pl

ex
ity

 

EnsembleTagger 0.83 ± 0.03  0.75 ± 0.04  0.79 ± 0.03  
SimpleTagger 0.81 ± 0.03  0.72 ± 0.04  0.77 ± 0.03  
AffixTagger 0.82 ± 0.03  0.72 ± 0.05  0.77 ± 0.04  

ConnectiveTagger 0.82 ± 0.03  0.72 ± 0.05  0.77 ± 0.04  
MorphologicalTagge

r 
0.82 ± 0.03  0.73 ± 0.04  0.77 ± 0.04  

NegHedgeTagger 0.82 ± 0.03  0.72 ± 0.05  0.77 ± 0.04  
SyntacticTagger 0.82 ± 0.03  0.72 ± 0.04  0.76 ± 0.04  

Im
pa

ct
 o

f F
ea

tu
re

s 

CombinedTagger 0.81 ± 0.03  0.72 ± 0.04  0.76 ± 0.03  

Later we trained another tagger by combining the output of CombinedTagger and 

SVMTagger+ taggers to produce an EnsembleTagger. The EnsembleTagger had the best 

F1 score of 0.79. The difference in improvement of EnsembleTagger against 

CombinedTagger and SVMTagger+ taggers was statistically significant (t-test, p < 0.05). 
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Table 9 below shows how different learning features affect AETagger’s performance on 

EMR reports. It was interesting to see that adding features had little or no influence on 

the overall performance of the taggers and their performance difference was not 

statistically significant (t-test, p < 0.05). From this we could infer that the features are 

really very sparse and do not have a strong influence on the performance of the ML 

model. The CRF model incorporated in the ABNER with its default features works the 

best. 	  

Table 9: The F1 score performance of the different named entity categories with different 
features on EMR reports. 

Feature 
group 

AE Medic
ation 

Dosa
ge 

Frequ
ency 

Rout
e 

Durati
on 

Indicati
on 

OSSD Overall 

Default 0.29 ± 
0.10 

0.83 ± 
0.04 

0.85 
± 
0.07 

0.92 ± 
0.03 

0.89 
± 
0.03 

0.52 ± 
0.13 

0.30 ± 
0.10 

0.64 ± 
0.04 

0.77 ± 
0.03 

Affix 0.26 ± 
0.15 

0.84 ± 
0.03 

0.87 
± 
0.05 

0.92 ± 
0.05 

0.88 
± 
0.06 

0.53 ± 
0.13 

0.32 ± 
0.11 

0.64 ± 
0.05 

0.77 ± 
0.04 

Connect
ive 

0.29 ± 
0.19 

0.84 ± 
0.04 

0.87 
± 
0.06 

0.91 ± 
0.04 

0.88 
± 
0.04 

0.53 ± 
0.14 

0.30 ± 
0.12 

0.64 ± 
0.05 

0.77 ± 
0.04 

Morphol
ogical 

0.26 ± 
0.20 

0.85 ± 
0.03 

0.87 
± 
0.05 

0.91 ± 
0.04 

0.88 
± 
0.05 

0.52 ± 
0.14 

0.30 ± 
0.13 

0.63 ± 
0.04 

0.77 ± 
0.04 

NegHed
ge 

0.29 ± 
0.19 

0.83 ± 
0.04 

0.86 
± 
0.06 

0.91 ± 
0.05 

0.88 
± 
0.04 

0.51 ± 
0.13 

0.32 ± 
0.13 

0.64 ± 
0.05 

0.77 ± 
0.04 

Syntacti
c 

0.30 ± 
0.17 

0.84 ± 
0.03 

0.87 
± 
0.06 

0.90 ± 
0.05 

0.88 
± 
0.04 

0.51 ± 
0.12 

0.33 ± 
0.12 

0.64 ± 
0.04 

0.76 ± 
0.04 

All 0.27 ± 
0.11 

0.84 ± 
0.03 

0.87 
± 
0.05 

0.91 ± 
0.04 

0.87 
± 
0.06 

0.52 ± 
0.13 

0.33 ± 
0.10 

0.66 ± 
0.05 

0.76 ± 
0.03 
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Annotation	  Disagreements	  	  

We manually analyzed the annotation disagreements and found they can be organized 

into three main categories: 

(1) Boundary inconsistencies – disagreement due to inconsistent boundary 

annotation.  

(2) Missed named entity annotations – disagreement where one annotator annotated 

an entity and the other annotator completely failed to annotate it. 

(3) Inconsistent named entity annotations – disagreement due to inconsistent 

categorization of entities. 

There were a total of 2,955 disagreed token instances in FAERS reports, of which 

1,591 (~54%) were related to AE and medication named entities. Similarly, there 

were a total of 2,227 disagreed token instances in 25 EMR reports, of which 1,625 

(~73%) were related to OSSD. 

Boundary	  Inconsistencies	  

We found that inconsistencies related to boundary accounted for nearly 13.9% (412 of 

2,955) of disagreement in FAERS reports and 8.6% (191 of 2,227) disagreement in EMR 

reports. In all the examples in the article, the named entity instance is shown in bold and 

the named entity type is shown within the “[].” 

Example 1: She received approximately less than two minutes of therapy 

with intravenous Taxol (paclitaxel), 280 mg in a three hour [duration] 
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infusion [route] for phase IIID ovarian cancer, when the symptoms 

occurred.	  

In example 1, AnnLing annotated “three hour” as duration and “infusion” as route, 

AnnPhy annotated “three hour infusion” as duration only. This inconsistency exemplifies 

differences between the linguist and the physician. While the linguist can separate the 

linguistic differences between different named entities, we found that physicians (both 

ZFL and SB) frequently overlook the differences, which leads to inconsistent 

annotations. 	  

Missed	  Named	  Entity	  Annotations	  	  

Missed named entity annotation was the major cause for disagreement. Among 2,955 

disagreed token instances, 2,355 (~79.7%) belong to this category in FAERS report and 

among 2,227 disagreed token instances, 1872 (~84%) belong to this category in EMR 

reports. Table 10 shows instances of medication that were annotated by one annotator and 

missed by other on FAERS reports. Examples 1-5 were annotated by AnnPhy but missed 

by AnnLing; examples 6-10 were annotated by AnnLing but missed by AnnPhy.  

AnnLing explained that “blood transfusion,” “fluids,” and “red packed cells” shown in 

examples 1, 2 and 5, were not medication, but referred to a kind of treatment or medical 

procedure. In example 3, AnnLing missed annotating “normal saline” as medication. In 

example 4, “oxygen” was not annotated because AnnLing felt it did not represent 

medication. Annotators did not reach any consensus on whether to annotate “oxygen” as 

medication or not. The differences here exemplify the strength of the physician as a 
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domain expert who may interpret the semantics of EMR notes more accurately than the 

linguist.   

In contrast, in examples 7, 8, and 10, AnnPhy did not annotate “treatment,” “Re-

exposure,” and “chemotherapy” as these entities were anaphoric references; AnnLing, 

being a linguist, annotated these anaphoric references as medication. In example 6, 

AnnLing annotated “drug” as medication but AnnPhy did not annotate the entity because 

the text did not refer to any medication. Later, AnnLing agreed that while there is 

mention of entities, they do not refer to specific entities such as “drug” in example 6 and 

therefore should not be annotated. Example 9 was a special case where “concomitant 

drug” refers to the role or function of the drug “Solupred” rather than referring to a drug. 

AnnPhy did not annotate such instances. These examples demonstrated that annotating 

medical texts is a complex and cumbersome task. Further refinement of guidelines in 

such instances may improve the consistency of annotations. 

Table 10: Disagreement in medication annotation (medication is shown in bold) on 
FAERS reports 

Annotated 
by AnnPhy 
but not 
annotated 
by AnnLing 

1. Given multiple blood transfusions (hemoglobin: 4.8). 
2. Pressors continued with fluids.  
3. He was admitted to the hospital and hydrated with normal saline.  
4. The event was treated with steroids and oxygen.  
5. Pancytopenia, treated with G-CSF, erythropoetin, and red packed cells.   

Annotated 
by AnnLing 
but not 
annotated 
by AnnPhy 

6. Causality assessment drug relationship is unable to determine for Taxol  
7. The 4th previous courses of treatment were well tolerated.                                           
8. During the first infusion of paclitaxel, the patient experienced a decrease in 
blood pressure and was unconscious for a short while. Re-exposure elicited the 
same symptoms. 
9. The concomitant drug prescribed was oral Solupred instead of Solumedrol  
10. A female patient possibly received non-therapeutic dosages of intravenous 
Taxol (paclitaxel), Paraplatin (carboplatin), and/or Platinol (cisplatin) for the 
treatment of ovarian cancer and subsequently expired. It was reported that the 
pharmacist possibly diluted the chemotherapy improperly. 
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Inconsistent	  Named	  Entity	  Category	  Annotations	  

We have annotated a total of eight different named entity types, as shown in Table 4 and 

Table 5. The third type of inconsistency was caused by inconsistent named entity 

assignments. Among 2,955 disagreed token instances, 188 (~6.4%) belong to inconsistent 

named entity category in FAERS report and among 2,227 disagreed token instances, 164 

(~7.4%) belong to inconsistent named entity category. We manually examined few 

instances and examples 2-6 below show the annotated sentences where inconsistency 

occurred in FAERS reports. Examples 7 and 8 show the annotated sentences where 

annotators disagreed in EMR reports. Example 2 is an instance where both annotators 

agreed on the AE annotation.  

Example 2: The patient then became lightheaded [AE], collapsed [AE], and was 

unconscious [AE].  

Example 3, however, shows an instance where AnnPhy and the tiebreaker agreed on 

“haematologic toxicity” as an AE whereas AnnLing did not initially annotate the entity. 

This inconsistency suggests that domain knowledge is required for annotation. After 

discussion with two other annotators, AnnLing agreed that “haematologic toxicity” 

should be annotated an AE.	  

Example 3: Investigator considers that haematologic toxicity [AE] of methotrexate 

could be increased by interaction with apranax (naproxene) and sintrom 

(acenocoumarol). 

Example 4 shows an instance where AnnLing and tiebreaker agreed on “cardiogenic 

shock” as an AE but AnnPhy annotated it as OSSD. AnnPhy argued that “cardiogenic 
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shock” caused “death;” therefore “death” should be an AE and “cardiogenic shock” is the 

reason for death and therefore was annotated as OSSD. This example shows the 

complexity of clinical cause.  

Example 4: On [words marked], the patient died, presumed to be a result of cardiogenic 

shock [AE]. Prior to death, on [words marked], the patient was noted for having an 

increase in troponin T level, and found to be more unresponsive.  

In example 5, the tiebreaker annotated “allergy” as an AE, whereas AnnPhy annotated it 

as OSSD and AnnLing did not annotate it as an AE because it refers to the patient’s 

history of “allergy” and does not represent a current instance of AE. We will need to 

refine our annotation guideline to add current or past status in addition to the named 

entity annotation. 	  

Example 5: Moderate anaphylactoid symptom appeared after administration of 

docetaxel and recovered later. After the end of administration, convulsion appeared. 

Anti-convulsion agent could not be administered due to allergy [AE].  

Example 6 shows an instance of boundary inconsistency. AnnPhy and AnnLing both 

annotated “NCI/CTC grade 4 neutropenia without fever” as an AE whereas the tiebreaker 

annotated “NCI/CTC grade 4 neutropenia” as an AE and “fever” as OSSD. This is a case 

in which annotators interpret clinical texts differently. Such an inconsistency is difficult 

to address due to the nature of ambiguity in clinical texts. 	  

Example 6: …days after the last Vinorelbine intake patient was hospitalized due to 

NCI/CTC grade 4 neutropenia [AE] without fever [OSSD]…   
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Example 7 shows an instance of inconsistent entity categorization in EMR reports. 

AnnPhy annotated the entire span “baby aspirin” as medication, whereas AnnLing 

annotated “baby” as dosage and “aspirin” as medication. This shows the complexity on 

medical narratives and how annotators interpret text differently as we saw before.  

Example 7: … I have also advised her to change her aspirin from 325 to a baby [dosage] 

aspirin [medication] especially in view of now the concomitant Coumadin use. 

In Example 8, AnnPhy annotated the “minimally invasive esophagectomy” as OSSD, but 

AnnLing failed to annotate it showing the advantage of having domain knowledge.  

Example 8:	   …gentleman with a complicated medical history secondary to a minimally 

invasive esophagectomy [OSSD] with complications of an esophageal leak requiring an 

initial takedown… 

Error	  Analyses	  

FAERS	  Reports	  

For error analyses on FAERS reports, we focused on CombinedTagger because it yielded 

the highest performance (as shown in Table 6) and the Comb dataset because it contained 

annotations agreed on by both annotators. We randomly selected 100 named entities 

predicted wrongly by CombinedTagger and manually analyzed them. As shown in Figure 

5, we group the errors into a total of five types of errors and give an illustrative example 

for each. In all examples, annotated named entities are shown in bold, the tagger output 

in {italicized} and the named entity type is shown within “[]”. The leading type of error 

was data sparseness (35%). Data sparseness is a common problem and the major cause of 
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poor performance. For instance, the gold standard consisted a number of singleton 

instances (instances that appear only once) like “cytolysis,” “sodium chloride solution 

0.9% 100ml,” and “neoplasm of unspecified nature of respiratory system” that created 

sparseness in the data. 

The second cause of error was inconsistent inclusion of punctuation (21%). The gold 

standard had an inconsistency in inclusion of punctuation (eg., a period [.] in 

“neutropenia.”) as a part of the named entity. This boundary inconsistency reduced the 

overall performance. Figure 5 shows an instance where the gold standard included a 

period as part of named entity (“neutropenia.”) but the tagger failed to include it 

(“neutropenia”). This was followed by an error caused by ambiguous named entities 

(15%). The instances in gold standard that were assigned to multiple named entity 

categories resulted in ambiguous entities. For example, “death” was annotated as either 

AE or OSSD. This could have confused the ML algorithm and yielded a lower 

performance. In Figure 5, the instance “death” was not annotated as AE in the Comb 

dataset due to disagreements between annotators, but tagger identified it as an AE. The 

missed pronoun annotations such as “the event,” contributed to 8% of the errors. The 

final category was for the other type of errors (21%), for which the exact cause of error 

could not be determined. In Figure 5, “seizure” was annotated as an AE but the tagger 

failed to identify it. The exact cause for miscategorization could not be determined. 

For error analyses on EMR reports, we focused on EnsembleTagger because it yielded 

the highest performance (as shown in Table 8). We construct an error matrix of word 

tokens as shown in Table 11 below to investigate the errors caused by the 
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EnsembleTagger. We can see that a huge portion of errors belonged to OSSD and 

Indication categories. 

 

	  

Figure 5: Error categories, their frequency and an illustrative example of error category 
on 100 randomly sampled instances in FAERS reports. The annotated entities are shown 
in bold, the entity type is shown in "[]," and tagger output is {italicized}. 

Table 11: Error matrix showing the distribution of tokens and their categories on EMR 
reports by EnsembleTagger 

 Predicted Category 
 O ad m route indication f OSSD du do 
O 67849 11 231 108 69 89 2435 26 76 
ad 69 24 1 1 1 1 97 0 2 
m 339 1 3309 19 6 7 68 0 45 
route 131 0 12 1392 0 17 10 0 35 
indication 308 0 18 3 111 10 555 0 13 
f 281 0 5 10 2 3236 10 5 8 
OSSD 4308 5 70 47 130 0 10603 0 1 
du 175 0 0 3 0 9 0 164 6 

G
ol

d 
St

an
da

rd
 

do 356 0 53 33 1 18 12 6 3316 

Similar to the FAERS report, we randomly selected 100 named entities predicted 

wrongly by EnsembleTagger and manually analyzed them. We group the errors into a 

total of five types of errors and give an illustrative example for each as shown in Figure 

6. The leading type of error was ambiguous named entities in EMRs (59%). For example, 
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“prophylaxis” was annotated as either indication or OSSD. This could have confused the 

ML algorithm and yielded a lower performance as in the FAERS reports. In Figure 6, the 

instance “prophylaxis” was not annotated as indication in EMR reports, but the tagger 

identified it as an OSSD. Data sparseness was the second major reason of error (18%). 

For instance, the gold standard consisted of a number of singleton instances (instances 

that appear only once) like “slurred speech,” “pulse is in the low 100s,” and “popliteal 

veins” that created sparseness in the data. 

This was followed by errors due to inconsistent inclusion of punctuation, which also 

caused 10% of the error. The gold standard had an inconsistency in inclusion of 

punctuation (eg., a period [.] in “insulin.”) as a part of a named entity. This boundary 

inconsistency reduced the overall performance. Figure 6 shows an instance where the 

gold standard included a period as part of a named entity (“insulin.”) but the tagger failed 

to include it (“insulin”). This was followed by error caused by ambiguous named entities 

(15%). The missed pronoun annotations such as “medications,” contributed to 2% of the 

errors. The final category was other type of errors (11%), for which the exact cause of 

error could not be determined. In Figure 6, “hemodialysis” was not annotated, but the 

tagger identified it as an OSSD. The exact cause for miscategorization could not be 

determined. 

Annotation	  Inconsistencies	  

As predicted, annotation inconsistency played an important role on AETaggers’ 

performance as our Pearson correlation results (coefficient of 0.73 on FAERS and 0.83 

on EMR reports) show that the IAA value (Cohen’s κ) is positively correlated with 
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machine-learning performance of named entity recognition. This is not surprising 

because inconsistent annotations confuse the machine-learning systems.  

 

	  

Figure 6: Error categories, their frequency and an illustrative example of error category 

on 100 randomly sampled instances on EMR reports. The annotated entities are shown in 

bold, the entity type is shown in “[],” and tagger output is {italicized}. 

Our manual analysis of inconsistency revealed that nearly 20% of errors were due to 

inconsistent inclusion of punctuation in the annotation in FAERS reports. When we 

removed the inconsistency in punctuation, the F1 score of CombinedTagger increased 

from 0.73 to 0.79, which was statistically significant (t-test, p < 0.05). Unlike FAERS 

reports, manual analysis of EMR reports showed only ~6% of errors were related to 

punctuation inconsistencies. The missed pronoun annotations of AE and medication, 
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although they can be fixed readily, also contributed to the lower performance of the 

tagger.   

Data	  Sparseness	  

Data sparseness is a common problem and the major cause of poor performance. The 

performance of AETagger was positively correlated with the size of annotated data for 

each named entity (a Pearson correlation coefficient of 0.64 in FAERS reports and 0.49 

in EMR reports). In the cases of frequency, duration, OSSD, and treatment entities, data 

were very sparse (Table 4) and taggers showed low performance on these named entities. 

In addition to low performance, data sparseness also contributed to a higher standard 

deviation (Table 7). When the training data incorporate instances of a named entity but 

the testing data do not, the precision decreases. When the training data miss instances of a 

named entity but the testing data do not, then recall suffers. 	  

Learning	  Features	  

To further understand the contribution of learning features on the performance of 

AETagger in FAERS data, we first trained the tagger with all the features and used it as a 

baseline system (CombinedTagger). We then removed each feature category one at a 

time. Table 12 below shows the performance of taggers when a feature category was 

removed iteratively from the CombinedTagger. Consistent with Table 7, the results show 

that each feature contributed to the performance differently. But in EMR reports, the 

removal of features did not have any effect on the performance of the taggers. 
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Discussion	  

Our results show that medication and adverse events can be reliably annotated (Cohen’s 

κ value of 0.64~0.95 IAA as shown in Table 4) in the FAERS narratives and (Cohen’s κ 

value of around 0.9 IAA for most of the categories as shown in Table 5) in EMR reports. 

Many named entities (e.g., indication) that had shown low annotation agreements in the 

i2b2 challenge [76] had good annotation agreements on FAERS dataset.  

Table 12: The precision, recall, and F1 score (mean ± std dev) of taggers with feature 
categories removed one at a time on each of the four annotated datasets. 

Dataset 
 
Tagger 

AnnPhy 
F1 score 

(Precision, 
Recall) 

AnnLing 
F1 score 

(Precision, 
Recall) 

Combined 
F1 score 

(Precision, 
Recall) 

Tie 
F1 score 

(Precision, 
Recall) 

All Features 0.67 ± 0.09                  
(0.77 ± 0.10, 
0.62 ± 0.09) 

0.74 ± 0.08                  
(0.81 ± 0.07, 
0.68 ± 0.09) 

0.73 ± 0.08                  
(0.81 ± 0.10, 
0.66 ± 0.07) 

0.65 ± 0.08                  
(0.71 ± 0.08, 
0.60 ± 0.09) 

No Affix 
Features 

0.68 ± 0.09                  
(0.76 ± 0.10, 
0.62 ± 0.09) 

0.71 ± 0.10                  
(0.78 ± 0.07, 
0.65 ± 0.11) 

0.71 ± 0.09                  
(0.79 ± 0.11, 
0.64 ± 0.09) 

0.64 ± 0.08                  
(0.70 ± 0.08, 
0.60 ± 0.08) 

No Connective 
Features 

0.69 ± 0.09                  
(0.77 ± 0.10, 
0.62 ± 0.09) 

0.74 ± 0.08                  
(0.81 ± 0.06, 
0.69 ± 0.09) 

0.73 ± 0.08                  
(0.81 ± 0.10, 
0.66 ± 0.07) 

0.65 ± 0.08                  
(0.71 ± 0.08, 
0.60 ± 0.09) 

No 
Morphological 
Features 

0.69 ± 0.09                  
(0.78 ± 0.10, 
0.62 ± 0.09) 

0.73 ± 0.08                  
(0.81 ± 0.06, 
0.66 ± 0.09) 

0.73 ± 0.08                  
(0.82 ± 0.10, 
0.66 ± 0.07) 

0.65 ± 0.08                  
(0.72 ± 0.08, 
0.60 ± 0.08) 

No Negation 
and Hedge 
Features  

0.68 ± 0.09                  
(0.77 ± 0.10, 
0.62 ± 0.09) 

0.74 ± 0.08                  
(0.81 ± 0.07, 
0.68 ± 0.09) 

0.72 ± 0.08                  
(0.81 ± 0.10, 
0.65 ± 0.07) 

0.64 ± 0.09                  
(0.71 ± 0.09, 
0.59 ± 0.09) 

No Semantic 
Features 

0.67 ± 0.08                  
(0.77 ± 0.08, 
0.60 ± 0.09) 

0.74 ± 0.08                  
(0.82 ± 0.05, 
0.68 ± 0.10) 

0.71 ± 0.08                  
(0.80 ± 0.09, 
0.64 ± 0.08) 

0.64 ± 0.08                  
(0.71 ± 0.07, 
0.59 ± 0.08) 

No Syntactical 
Features 

0.68 ± 0.09                  
(0.77 ± 0.10, 
0.61 ± 0.09) 

0.73 ± 0.08                  
(0.80 ± 0.07, 
0.68 ± 0.09) 

0.71 ± 0.09                  
(0.80 ± 0.11, 
0.64 ± 0.08) 

0.64 ± 0.08                  
(0.70 ± 0.09, 
0.58 ± 0.09) 

The improvements were attributed to improved annotation guidelines and the quality and 

domain specificity of the FAERS narratives.    
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With a good IAA, we still found room to further improve the annotation guideline. For 

example, our error analyses (Figure 5) show that inconsistencies were introduced by 

annotation boundary; therefore it can be further refined. Although medication had the 

highest IAA (0.95 on FAERS reports and 0.93 on EMR reports), our analysis (Table 10) 

found that the inconsistency in medication was introduced by whether instances like 

“fluids” could be considered as medication or not. In the future, we may separate 

medication into two classes: strict medication and relaxed medication. The names and 

mentions of all drugs appearing in the United States Pharmacopeia will belong to strict 

medication; any substances or chemicals — including oxygen, fluids, drinks, and others – 

given to patients during the treatment will be classified as relaxed medication. Refining 

the guideline to annotate previous and potential AEs like “allergy” (example 5) may 

further reduce the inconsistency.  

We explored various ML methods and compared them with a baseline string matching 

system to assess the complexity of the task. Our model achieved comparable performance 

of 0.74 F1 score on FAERS data and 0.76 on EMR data to our previous work in i2b2 that 

had an F1 score of 0.76 [76]. The CRF-based tagger had the best performance. Further 

analyses of the CRF tagger found that data sparseness affected the taggers’ performance 

(Figure 5 and Figure 6). For example, the standard deviation of treatment is high because 

we found that the testing data did not incorporate treatment instances in FAERS report. 

Similar behavior was also observed for other sparse entities (Table 7).  

Using the best performing ML technique, we explored a variety of features (Table 6 and 

Table 7). The features had a mixed effect on the performance of the taggers and the 
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combination of all the features improved overall performance slightly. This suggests the 

robustness of the default features for CRFs. Since most of the features were extracted 

automatically, for example, negation, hedge cues, and discourse connectives were 

extracted using the taggers [86,87] and parser [88] we developed. The accuracy of the 

extracted features played an important role in overall performance of the tagger. To avoid 

the noise introduced by automatic feature extraction, one may explore the features 

manually annotated such as POS in PennTree Bank [89]. This is, however, expensive. An 

alternative is to further improve the performance of the BioNLP systems for feature 

extraction.  

Throughout the study, we found that additional features may be further included. For 

example, we observed that OSSD most often appeared in the patient’s medical history. 

We therefore, added a feature representing patient history and found that the performance 

of the CombinedTagger on OSSD increased 1.2% absolute (results not reported in the 

Result section), although the increase was not statistically significant (t-test, p < 0.05).    

Our study has limitations. The AETaggers were trained on the FAERS and EMR report 

corpus we constructed. Like any other NLP system, the performance of the tagger on 

other types of records can vary based on the structure and content of the narrative text. 

On the other hand, since our selection of the FAERS and EMR reports corpus was 

through a random process, we speculate that the data are representative. Although the 

taggers performed well, the training and evaluation were based on a relatively small 

training data. We speculate that increasing the size of training can further improve the 

performance.  
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Conclusion	  

In this study, we developed an annotation guideline for medication and adverse event 

information from the FAERS and EMR narratives. Our annotation of 122 FAERS 

narratives (a total of ~23K tokens) and 150 EMR reports (a total of ~103K tokens) 

showed a reliable inter-rater annotation agreement. We then developed machine-learning 

based models for automatically extracting medication and adverse event information 

from the FAERS narratives. We explored different learning features. The results show 

that features such as syntactic, semantic, morphological, and affix improved the 

performance and the best performing system had an overall F1 score of 0.73 on FAERS 

reports and 0.77 on EMR reports. In the future, we would like to refine further the 

annotation guideline, explore features and increase the annotation size to improve system 

performance. We will also explore approaches for normalizing the entities by mapping 

them to standard terminologies like MedDRA and identify the causal relation between a 

medication and an adverse event.	  
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Chapter	  3:	  Automatic	  Discourse	  Connective	  Detection	  in	  

Biomedical	  Text	  

This chapter discusses the identification of discourse connectives in biomedical text. 

Discourse connectives are used as features in the named entity recognition task as they 

appeared 63.4% of the time around entities (Table 2). The identification of the discourse 

connectives can also aid in the automation of the elements of the Naranjo Score that 

calculates the likelihood of adverse events caused due to drugs.  

Relation extraction in biomedical text mining systems has largely focused on identifying 

clause-level relations, but increasing sophistication demands the recognition of relations 

at discourse level. A first step in identifying discourse relations involves the detection of 

discourse connectives: words or phrases used in text to express discourse relations. We 

describe the development and evaluation of supervised machine-learning approaches for 

automatically identifying discourse connectives in biomedical text. Two supervised 

machine-learning models (support vector machines and conditional random fields) for 

identifying discourse connectives in biomedical literature were explored. We trained in-

domain supervised machine-learning classifiers on the Biomedical Discourse Relation 

Bank (BioDRB), an annotated corpus of discourse relations over 24 full-text biomedical 

articles (~112,000 word tokens), subset of the GENIA corpus. We also explored novel 

domain adaptation techniques to leverage the larger open-domain Penn Discourse 

Treebank (PDTB) (~1 million word tokens). We evaluated the models using the standard 

evaluation metrics of precision, recall, and F1 scores. Supervised machine-learning 

approaches can automatically identify discourse connectives in biomedical text, and the 
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novel domain adaptation techniques yielded the best performance: 0.761 F1 score. A 

demonstration version of the fully implemented classifier BioConn is available at: 

http://bioconn.askhermes.org. Further experiments for identifying the sense of explicit 

discourse connectives show the connective itself as a highly reliable indicator for coarse 

sense classification achieving a performance of 0.9 F1 score. 

We apply this model developed in biomedical journal articles to narrative text written by 

health-care providers. While, the model performs well in the biomedical journal domain, 

we expect there would be a drop in performance when applied to medical text. Future 

work will focus on developing an annotated gold standard with discourse relations and 

identifying discourse connectives on medical text. 

Introduction	  

The desire for knowledge discovery through text mining of biomedical literature has led 

to a great deal of research on the extraction and retrieval of valuable and useful 

information from biomedical text, through natural language processing (NLP) methods 

developed for recognizing entities (e.g., proteins, genes, drugs, diseases, etc.), facts, 

hypotheses, events, and relations between entities. However, with the exception of some 

recent work on coreference resolution [90], much of this processing has been restricted to 

the level of the clause, focusing on identifying entities and relations within a clause, and 

has ignored the importance of identifying relations expressed at the level of discourse, 

i.e., relations expressed across clauses or sentences. In example 1, for instance, queries 

regarding the inhibitory effect of IL-10 could be answered more accurately when the 

“concession” relation between the two sentences is identified, signaled by the word 
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However. Taking the first sentence alone would otherwise lead to the false inference that 

the IL-10 mediated inhibitory effect is unrestricted.  

Example 1: IL-10-mediated inhibition of CD4+ T-cell cytokine production is 

principally dependent on its inhibition of macrophage antigen-presenting cell 

function [1]. However, this indirect inhibitory effect is thought to be restricted at 

the site of T-cell activation in RA… (Concession: Contra-expectation) 

Knowledge of such relations, called discourse relations, can be very useful in extracting 

various kinds of biomedical information. In this chapter, we present the first 

investigations into identifying discourse relations in biomedical literature. We focus on 

identifying “discourse connectives,” which are words or phrases used to indicate the 

presence of discourse relations, such as the word However in example 1. Following the 

terms and definitions of the Penn Discourse Treebank (PDTB) [91], discourse relations 

hold between abstract objects (AOs), such as eventualities and proposition, which serve 

as the arguments to the relation. Each discourse relation is assumed to hold between 

precisely two arguments (named Arg1 and Arg2). Discourse relations are characterized in 

terms of several semantic (or sense) classes, including “contrast,” “conjunction,” “cause,” 

“condition,” and “instantiation,” among others. In example 2, the word but is a discourse 

connective that indicates the presence of a “contrast” relation between the eventualities 

expressed by the two sentences. In all the examples in this paper, Arg2, the argument 

syntactically associated with or bound by the connective is underlined, while Arg1 is 

shown in italics. The discourse connective is in bold. The semantics (or sense) of the 

connective is shown in parentheses at the end of the examples. 
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Example 2: The phosphorylation of signal transducer and activator of 

transcription 3 was sustained in both blood and synovial tissue CD4+ T cells of 

RA, but it was not augmented by the presence of 1 ng/ml IL-10. (Contrast) 

Identifying the presence of discourse relations can help in the extraction of valuable 

information from natural language text and also benefit many natural language 

processing applications [92-98]. For example, identifying causal discourse relations will 

make it possible to generate repositories of “why” questions from biomedical text [99]. In 

general, question-generation systems [96], as well as question-answering systems, stand 

to benefit greatly from recognizing discourse relations because it will allow for the 

generation and answering of complex questions about biomedical events and situations.  

Discourse relations can also be used to benefit information extraction from clinical 

narratives. Unique adverse drug event (ADE) information often appears in narratives of 

electronic health records. While most BioNLP (Biomedical Natural Language 

Processing) algorithms for ADE extraction are based on co-occurrence of an adverse 

event and a drug, problems exist with such an approach, as illustrated by examples 3 and 

4. In example 3, the connective after has a temporal function describing the 

administration of atenolol; in Example 4, the connective after has a causal interpretation. 

The “bradycardia” is caused by atenolol. We can utilize the presence of such connectives 

to automate the elements of Naranjo elements that require identifying the presence of 

temporal and causal relations that exist between the drug and the adverse event. 

Example 3: …atenolol should be continued while he is at hospital and after he is 
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discharged. (Temporal: Succession) 

Example 4: Patient was noted to bradycardia as heart rate fell to low 50s after 

taking atenolol, (Cause: Result) 

The examples below show instances where identifying discourse relations are very 

helpful in information retrieval and extraction tasks.  The connective also in example 5 

suggests that its sentence, taken in isolation, does not provide the complete information 

about where the IgMhi cells are found. In order to complete this information, the previous 

sentence must be taken into account as well. 

Example 5: In control B6 mice, IgMhi cells (in red) were present in the MZ, 

outside of the MOMA-1+ cells. IgMhi MZ B cells were also found outside of the 

MOMA-1 ring in p50-/- mice, but in reduced numbers, as expected from the 

drastic reductions in MZ B cells in these mice. (Conjunction) 

Discourse relations can also be useful for categorizing citations and the relations between 

the citations to enhance information retrieval: the connective In contrast in example 6 

signals a contrast relation between two cited articles, 48 and 49, mentioned in two 

different sentences. 

Example 6: The importance of PU.1 for Btk gene regulation is underlined by the 

fact that the absence of PU.1 leads to a two- to 3-fold reduction of Btk expression 

(48). In contrast, the deficiency of Sp1 that also stimulates Btk promoter activity 

together with PU.1 (49) had no influence on Btk expression (49). (Contrast) 
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For summarization tasks, it is useful to identify summary sentences, as well as the larger 

text segments that such sentences summarize. Connectives like In conclusion in example 

7 are important indicators of such relations. 

Example 7: Consistent with our binding studies, we observed that BOB.1/OBF.1 

together with Oct2 was able to activate the murine Btk promoter ∼150-fold in a 

dose-dependent manner (Figure 5A, B and data not shown). Transfection 

experiments using NIH/3T3 cells revealed that BOB.1/OBF.1 together with PU.1 

only marginally enhanced PU.1-mediated Btk promoter activity. In contrast, co-

transfection of Oct2 together with PU.1 stimulated PU.1-mediated Btk promoter 

activity significantly (from 6- to 75-fold). Moreover, co-transfection of PU.1 

together with Oct2 and BOB.1/OBF.1 led to an even stronger and synergistic 

activation (325-fold) of the murine Btk promoter (Figure 5C). In conclusion, 

these findings indicate that the transcriptional coactivator BOB.1/OBF.1 regulates 

the Btk promoter activity in B cells in vitro as well as in vivo, in concert with Oct 

and PU.1 proteins. (Restatement: Generalization) 

Causal and justification relations also constitute a very important part of the knowledge 

dealt within information extraction: for example, the connective since in example 8 

signals a causal relation between the two clauses. In other words, the fact that “HeLa 

cells do not express Oct2” is the reason (or reason for believing) that “the addition of an 

anti-Oct2 antibody did not interfere with complex formation.” 
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Example 8: The addition of an anti-Oct2 antibody did not interfere with complex 

formation, since HeLa cells do not express Oct2. (Cause: Reason) 

Example 9 illustrates the importance of accurately disambiguating ADE causal relations. 

Here, with a co-occurrence approach, both “Solu-Medro” and “cyclosporin” present 

themselves as the causes of the “acute renal failure.” On the other hand, by recognizing 

the connective so and its arguments, we can accurately select “cyclosporin” as the drug 

causing the renal failure. 

Example 9: In the emergency department, he was given one dose of Solu-Medro 

500 mg, however, he was found to have elevated cyclosporin levels at 679, so this 

was thought to be the likely cause of his acute renal failure and his cyclosporin 

was temporarily held. Since that time, on his hospital day #1, his cyclosporin 

levels trended down to the point at which there were just slightly over 100 on 

hospital day #3 and cyclosporin was reinitiated at lower doses. He was dialyzed 

on admission with removal of 4 liters of fluid, CVM, BK, and LDH were sent from 

dialysis. His creatinine improved, so further dialysis and biopsy were deemed 

unnecessary. (A narrative excerpt released by the i2b2 organizer [44].) 

Therefore, the identification of discourse relations would enable text-mining engines to 

discover not only entities and events but also relations between biological or medical 

events, such as the temporal and causal relations, relations between facts, and relations 

between experimental evidence and their conclusions.  
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Words that function as discourse connectives in some instances may have non-discourse 

related functions in others. Therefore, one cannot identify discourse connectives by 

simply using a list of connective expressions and applying pattern matching over the 

texts. For instance, the word so functions as a connective in example 10(a), expressing a 

result relation, while acting as an intensifier in example 10(b) with no discourse function 

at all. A similar example of such functional ambiguity is given for “briefly” is shown in 

example 11. In example 11a, the word “Briefly” is used to express the elaboration or 

specification relation in discourse, whereas the same word in example 11b functions as a 

temporal adverbial modifier for an action verb.  

Example 10(a): however, CsA also inhibits activation of the JNK pathway 

following TcR/CD3 and CD28 stimulation [29,30], and so CsA pretreatment may 

act to prevent early T cell activation of these pathways, thus blocking cytokine 

production and protecting mice from the effects of subsequent SEB exposure. 

(Cause: Result) 

Example 10(b): It is striking that ductal growth is so exquisitely focused in the 

end buds.  

Example 11(a): CD4+ T cells were isolated from ST samples, as previously 

described [27]. Briefly, fresh ST samples were fragmented and digested with 

collagenase and DNase for 1 hour at 37°C. (Restatement:Specification) 

Example 11(b): 2.5×106 cells were lysed in lysis buffer [100 mM N-2-

hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), pH 7.9, 10 mM KCl, 
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0.1 mM EDTA, 1.5 mM MgCl2, 0.2% Nonidet P-40, 1 mM dithiothreitol (DTT), 

and 0.5 mM PMSF], briefly vortexed at a moderate speed, then incubated on ice 

for 5 minutes. 

Automatic discourse parsing comprises several subtasks, including discourse connective 

detection, argument detection, discourse connective sense categorization, and discourse 

structure composition. The first step toward a full-fledged discourse relation detection 

system and parser is the detection of discourse connectives. In this study, we explore 

supervised machine-learning approaches to automatically identify discourse connectives 

in biomedical literature and compare them with simple lexical pattern matching-based 

approaches. Later we predict the class-wise sense of the discourse connectives. The main 

contributions are 1) we are the first group to identify discourse connectives in the 

biomedical domain; 2) we explore the use of domain-specific features in addition to the 

normal syntactic features used in machine learning and 3) we use domain adaptation 

techniques to leverage larger open-domain data sets and further improve the performance 

of the discourse connective identification. 

Related	  Work	  

A great deal of work has been performed to explore methods for discourse parsing [100- 

102] and discourse identification in the open domain [103,104]. Pitler and Nenkova [105] 

explored supervised machine-learning approaches to identify explicit discourse 

connectives and disambiguate their sense in the PDTB. 



	  

	  

	  

54	  

In contrast, work on discourse parsing in the biomedical domain has been limited. 

BioNLP tasks have traditionally focused on sentence-level analysis and information 

extraction. Studies [106-108] have explored approaches to segment biomedical text into 

sections and topics. Szarvas et al. [109] created BioScope, a corpus annotated with 

negative and speculative keywords and their linguistic scope in biomedical text. Agarwal 

and Yu [110,111] subsequently developed a system to automatically identify negation 

and hedging cues and their scope in biomedical text. 

The most closely related work is the development of an annotated corpus of discourse 

relations called the BioDRB [112,113], and studies on the sense disambiguation of 

discourse connectives [112]. Studies have also examined certainty [114] and future 

research direction in biomedical literature [115] using discourse structure. Other 

discourse aspects have been researched in the biomedical domain, such as the annotation 

of co-reference relations [90,116-118] and anaphora resolution [119].  

We developed a preliminary CRF-based classifier to identify discourse connectives using 

the PDTB and BioDRB corpora. Then we expanded the classifier by exploring new 

features including syntactic and domain specific semantic features and novel domain 

adaptation techniques. We also explored supervised machine-learning techniques to 

identify the sense of connective and classified it into one of four categories: comparison, 

expansion, contingency and temporal. 
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Materials	  and	  Methods	  

Discourse	  Relations	  Corpora	  

The two annotated corpora we used in this study are the Penn Discourse TreeBank [91] 

(PDTB 2.0, http://www.seas.upenn.edu/~pdtb) and the Biomedical Discourse Relation 

Bank [112] (BioDRB, http://biodiscourserelation.org/). The PDTB annotations are done 

over 2,159 texts (over 1 million word tokens) from the Wall Street Journal (WSJ) articles 

collection of the Penn Treebank [120]. The Penn Treebank is an open domain large-scale 

annotated corpus of syntactic phrase structure that has been very widely used by 

researchers for data-driven parser development. The source WSJ articles have also been 

annotated for other kinds of linguistic information, including semantic roles [121] and 

coreference [122], among others. The PDTB was developed to further enrich the WSJ 

annotations at the level of discourse and provides annotations of explicit and implicit 

discourse relations their arguments, their senses, and the attributions of discourse 

relations and each of their two arguments.  

The BioDRB is a corpus of discourse relations annotated over 24 full-text articles 

(~112,000 word tokens) taken from the GENIA corpus [123]. The GENIA articles were 

selected by querying the PubMed for “blood cells” and "transcription factors" and were 

considered representative of scientific articles in this domain by the GENIA research 

group [124]. Discourse relation annotations of the BioDRB largely follow the PDTB 

guidelines and, like the PDTB, include annotations of explicit and implicit discourse 

relations, their arguments and their semantics. Unlike the PDTB, however, the BioDRB 
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does not currently annotate attribution. An overall agreement of 85% was reported among 

annotators of BioDRB [113].  

The PDTB and BioDRB contain annotations for 18,459 and 2,637 total explicit 

connectives, or 18.5 and 26.4 discourse connectives per 1,000 tokens, respectively. After 

connective stemming (e.g., “three days after” stemmed to “after”) there are 100 unique 

explicit discourse connectives in the PDTB and 123 in the BioDRB.  

Our analysis shows that 56% of the explicit discourse connectives in the BioDRB occur 

in the PDTB, including common connectives like and, also, so, and however. Thirty-

three percent of the connectives in BioDRB comprise the class of “subordinators” 

like followed by, in order to, and due to, which are not annotated as connectives in the 

PDTB corpus (connectives in the PDTB are defined as belonging to three grammatical 

classes: subordinating conjunctions, coordinating conjunctions, and discourse adverbials). 

The final 11% of the connectives in the BioDRB consist of lexical items that do not occur 

in the PDTB texts and were therefore not classified as connectives. Examples of these 

include: In outline, As a consequence, and In summary.	  

Figure 7 below shows the frequency of the tokens in the BioDRB corpus and their 

frequency as connectives. From our analysis of the BioDRB data we found that 76% of 

the connectives had both discourse and non-discourse usage and 43.5% of the 

connectives occur only once in the entire corpus as connectives. 
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Figure 7: Frequency of the tokens in the BioDRB corpus and their frequency as 

connectives	  

Domain	  Adaptation	  Approaches	  

In order to compensate for the relatively small size of the BioDRB (~112K tokens) and to 

leverage the much larger open-domain PDTB (~1 million tokens), we explored domain 

adaptation approaches to build models trained on both corpora. In domain adaptation, the 

larger corpus is referred to as source domain (PDTB in this case) and the smaller one as 

the target domain (BioDRB in this case). In this study, we explored three supervised 

domain adaptation techniques: 

Instance weighting combines the data from both corpora but assigns different weights to 

them during the training phase. The weights are usually inversely proportional to the size 

of the corpus to compensate for the larger number of training examples and to avoid 
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overfitting to the source domain. The classifier was then trained using this weighted 

training dataset.  

Instance pruning actively removes misleading training instances. For example, if for 

training example d, we find different labels for d in the source and target domains, then 

we remove all such instances of d from the source domain training data. To apply 

instance pruning, we first trained a classifier on the target domain data (BioDRB) and 

then applied this classifier to the source domain data (PDTB). All the instances in the 

source domain that were incorrectly classified are pruned from the source training set (~ 

1% of data was pruned). The final classifier was trained using this pruned source domain 

dataset. 

Feature augmentation is a method in which additional metafeatures are added to indicate 

whether a specific feature came from the source or target dataset. For each training 

example, the feature vector is expanded to contain not only the original features, but also 

indicators representing the domain from which each feature was taken. This makes it 

possible for us to represent the effect of individual features in the source and target 

domain respectively, and for the machine-learning algorithms to distinguish between 

features important to the respective domains. The classifier is then trained on the 

combined dataset with the additional features. Consider the example, “…industry is 

regulated by commodity futures …” in the source domain and “…resulted in a small 

overlap in regulated mRNAs at 4 …” in the target domain. The word “regulated” is used 

as a verb in source domain whereas it is used as an adjective in target domain. In the 

feature vector for the word “regulated,” the source-specific indicator linked to “verb” and 
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the target-specific indicator linked to “adjective” is set.  

Supervised	  Machine	  Learning	  	  

The two supervised machine-learning approaches we explored were Conditional Random 

Fields (CRFs) and Support Vector Machines (SVMs). Our aim in using these two 

approaches was to explore whether it was more beneficial to cast the problem of 

identifying discourse connectives as a sequence-labeling task (with CRFs) or as a 

classification task (with SVMs). 

CRFs are a probabilistic modeling framework [125] commonly used for sequence 

labeling problems. In our experiments, we treated documents as a sequence of words, and 

the classifier determined whether or not each word in the sequence was part of a 

connective. We built the CRF classifiers using the ABNER toolkit [126].  

To test connective identification as a classification task, we built an SVM classifier using 

Weka. SVMs are a well-known statistical machine-learning algorithm and have shown 

very good performance in many classification tasks [80,81]. We used the SVM to classify 

each word in a sentence as either a discourse connective token or a non-discourse token. 

We also trained SVM and logistic regression-based classifier to predict the class-wise 

discourse sense of the connective and classify it into one of the four expansion, 

contingency, comparison or temporal categories. 
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Figure 8: Sample parse tree 

In addition to the default ABNER features, we evaluated syntactic and domain-specific 

learning features. We explored the syntactic features that have been shown to be 

important in previous studies [100,103,105], namely part-of-speech (POS) of the token, 

the label of the immediate parent of the token’s POS in a parse tree, and the POS of the 

left sibling (the token to the left of the current word inside the innermost constituent). 

Figure 8 shows a sample parse tree. The tags IN and NN are used as the POS features; PP 

and NP are used as the label of the immediate parent of POS for the word tokens "in" and 

"contrast." The left sibling value is NONE assuming it is the start of the sentence. The 

syntactic features were obtained using the Charniak–Johnson parser trained in the 

biomedical domain. The parser was evaluated to have the best performance when tested 

on the GENIA corpus [127]. We also explored domain-specific features by using 

Metamap, the BANNER [128] gene tagger, and the LINNAEUS [129] species tagger to 

map text elements to the Unified Medical Language System (UMLS) [130] semantic 

types, and to identify named entities including gene and species.   
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Experiments	  and	  Systems	  

We developed several systems to evaluate (a) the complexity of connective identification 

in open domain, (a) the complexity of connective identification in biomedical domain, (c) 

the impact of different syntactic and domain-specific features for connective 

identification, (d) the impact of different domain adaptation models for connective 

identification, and (e) discourse connective sense identification. Since there are a total of 

24 articles in the BioDRB, to simplify the task, we used 12-fold cross-validation rather 

than the common 10-fold so that an article (not a segment of it) was assigned as either a 

training or a testing article.   

Complexity	  of	  discourse	  connective	  identification	  in	  open	  domain	  	  

In this experiment we built systems to measure the complexity by gradually increasing 

the training size from 0.24, 0.48, 0.7 to 1 million tokens on the PDTB corpus. We 

compare the performance of the systems using syntactic features generated from open 

domain Stanford parser and compare it with the features annotated by humans using the 

Penn Tree Bank [120]. Experiments were performed to ascertain the value of syntactic 

features with the open domain classifier. Starting with just the default ABNER feature 

set, each syntactic feature was considered independently, and then various combinations 

of features were evaluated. 

Complexity	  of	  discourse	  connective	  identification	  in	  biomedical	  domain	  	  

In this experiment, we develop two heuristic baseline systems and compare their 

performance with our in-domain CRFs and SVM-based classifiers.  
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Baseline Systems 

The first baseline system, BaseLex, uses a lexical heuristic, creating a lexicon by 

extracting the connectives annotated in the BioDRB corpus and then tagging all instances 

of these words in the text as connectives.  

The second baseline system, BaseLexPunct, is a combination of the lexical heuristic from 

BaseLex and additional heuristics related to observed punctuation patterns associated 

with connectives. In particular, we observed that connectives were often either preceded 

or followed by a comma or appeared as the first word in the sentence. The system first 

identifies all connective terms from the lexicon in the text and then filters out the 

instances that do not match with the manually created punctuation heuristic.  

Supervised Machine Learning Systems 

The two baseline systems were compared against our supervised machine-learning 

systems: In-domainSVM, the SVM classifier, and the In-domainCRF, the CRFs-based 

classifier. Both the classifiers were trained and tested on BioDRB, using syntactic 

features discussed above.  

Measuring	  the	  Impact	  of	  Semantic	  Features	  for	  Discourse	  Connective	  Identification	  

In this experiment, we evaluated the impact of different types of features; in particular we 

wished to determine the relative performance of syntactic versus domain-specific 

features. For this reason we built variants of the best performing classifier from the first 

experiment using different features, as follows: The UMLS classifier exclusively uses 

UMLS features extracted using Metamap; the GeneSpecies classifier exclusively uses the 
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gene and species categories extracted with BANNER and LINNAEUS as features. We 

then evaluate both of these classifiers after adding the features used in previous 

experiment, which we call UMLS+ and GeneSpecies+ respectively. Finally, we combined 

all of the features into a classifier, which we will call Semantics+. 

Systems	  to	  Measure	  Impact	  of	  Domain	  Adaptation	  for	  Discourse	  Connective	  

Identification	  

In this experiment, we evaluated the impact of the domain-adaptation approaches 

described in the domain adaptation section, for which we compared several classifiers 

with and without domain adaptation. We used the classifier type and feature sets found to 

have the best performance in our previous experiments.  

Baseline Systems 

The following systems did not incorporate domain adaptation and were used as the 

baseline: the In-domain classifier, trained exclusively on the target domain; the Cross-

domain classifier, trained on the source domain; and the Unweighted classifier, trained on 

the merged source and target domains. 

Domain Adaptation Systems 

To test the various domain adaptation techniques, we developed three classifiers: the 

InstanceWeighting classifier, where source domain data were given a weight 0.1 times 

that of target domain data1; the InstancePruning classifier and the FeatAugment 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

1 The value of 0.1 was used as an approximation of the relative sizes of the datasets. 
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classifier, which were trained using the instance weighting, instance pruning and feature 

augmentation approaches respectively.  

Combined Domain Adaptation Systems 

The following systems incorporated combinations of the domain adaptation techniques: 

the Weighted-Pruning classifier, trained using a combination of instance weighting and 

instance pruning approaches; the Weighted-FeatAugment classifier, trained using a 

combination of instance weighting and feature augmentation approaches; the Hybrid 

classifier, trained using a combination of instance pruning and feature augmentation 

approaches; and finally, the Weighted-Hybrid classifier, trained using the combination of 

all three approaches. For the combined methods using instance weighting, the source 

weight was changed from 0.1 to 0.5 to reflect the effects of the other two adaptation 

methods. 

Discourse	  Connective	  Sense	  Identification	  

In this experiment, we built two classifiers to identify the class-wise sense of the 

discourse connective as either expansion, contingency, comparison or temporal. We 

extract syntactic features of the connective as described previously and build a SVM and 

logistic regression-based classifier SVMSense and LogisticSense respectively to identify 

the sense of the connective. 	  

Evaluation	  Metrics	  

All the classifiers (including the baseline classifiers) were run at the token level (i.e., the 

word level, marking each token in the evaluation corpus as either connective or not). The 



	  

	  

	  

65	  

classifiers trained in the open domain (PDTB) for connective identification and the 

classifiers trained for connective sense identification were evaluated using ten-fold cross-

validation. Other classifiers trained using biomedical domain data were evaluated with 

twelve-fold cross-validation, except for the Cross-Domain classifier, which was trained 

on the source domain and evaluated on the target domain. For systems using the 

combination of the BioDRB and the PDTB, the training for each fold was always done on 

the entire PDTB with eleven-twelfths of the BioDRB and the evaluation done on the 

remaining BioDRB data. The standard evaluation metrics of recall, precision, and F1 

score were used to measure the performance of all systems.  

Results	  

Table 13 shows the precision, recall, and F1 score of the classifier trained on the 0.24, 

0.48, 0.7, and 1 million tokens of the PDTB corpus. Automatically generated syntactic 

features reduce the performance as compared to human annotated syntactic features. As 

shown in Table 13, in the performance of 0.24 million token dataset, the F1 score 

decreases from 0.918 to 0.829, and this difference is statistically significant (p<0.05, t-

test, two tails). Table 14 shows the precision, recall, and F1 score of the ten-fold cross-

validation results of this experiment. The Parent Category feature is the single most 

effective feature, resulting in an F1 score of 0.922, while the Left Sibling feature also 

improves performance. Alone, the POS tag feature has a very small effect on the 

performance. In experiments with combined syntactic features, the POS tag feature still 

seems to be the least effective. The performance of all features combined is the same as 

the performance of all features, except the POS tag. The Left Sibling feature improves 
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performance in combination with the Parent category feature (from 0.922 F1 score to 

0.930), but the Parent category feature appears from these experiments to be the most 

valuable by far. 

Table 13: The performance (average±Std) of open domain classifier for identifying 
discourse connectives on different data sizes 

 Stanford 
parser - 0.24 
million 
tokens 

Gold syntax 
- 0.24 million 
tokens 

Gold syntax - 
0.48 million 
tokens 

Gold syntax - 
0.7 million 
tokens 

Gold syntax - 
1 million 
tokens 

Precision 0.875 ± 0.018 0.935 ± 0.021 0.938 ± 0.012 0.944 ± 0.007 0.935 ± 0.016 

Recall 0.789 ± 0.034 0.902 ± 0.026 0.923 ± 0.010 0.931 ± 0.008 0.925 ± 0.017 

F1 score 0.829 ± 0.021 0.918 ± 0.015 0.931 ± 0.008 0.937 ± 0.004 0.930 ± 0.012 

	  

Table 14: Performance (average±Std) of open domain classifier with combinations of 
syntactic features 

 Precision	   Recall	   F1 score	  

Default	   0.876±0.021 0.809±0.012 0.841±0.013 

Default+POS	   0.878±0.018 0.810±0.024 0.842±0.016 

Default+Parent	   0.932±0.016 0.914±0.018 0.922±0.013 

Default+LeftSib	   0.908±0.020 0.875±0.018 0.891±0.012 

Default+POS+LeftSib	   0.897±0.032 0.875±0.020 0.890±0.014 

Default+POS+Parent	   0.934±0.016 0.917±0.020 0.926±0.013 

Defaul+LeftSib+Parent	   0.936±0.017 0.925±0.019 0.930±0.012 

All Features	   0.935±0.016 0.925±0.017 0.930±0.012 

Default+POS: Default features of ABNER + POS feature 
Default+Parent: Default features of ABNER + Parent Category feature 

Default+LeftSib: Default features of ABNER + Left Sibling feature 
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Default+POS+LeftSib: Default features of ABNER + POS + Left Sibling 
Default+POS+Parent: Default features of ABNER + POS + Parent Category 

Default+LeftSib+Parent: Default features of ABNER + Left Sibling + Parent Category 
 

Table 15 shows the performance evaluation of the in domain classifiers relative to the 

baseline systems, as described in previous sections. The heuristic baseline systems 

BaseLex and BaseLexPunct had an F1 score of 0.33 and 0.272, respectively. The 

supervised machine-learning classifiers In-domainSVM and In-domainCRF had an F1 

score of 0.657 and 0.757, respectively. The supervised machine-learning methods clearly 

outperform the baseline methods. The CRF-based system had the best performance 

overall and was therefore chosen as the system to be adapted for subsequent experiments. 

It is clear from the data in Table 15 that the addition of domain specific semantic features 

did not help improve classifier performance. The In-domain classifier, trained using only 

the syntactic features, had the best performance, F1 score 0.757, followed by the Gene-

Species classifier, F1 0.753. While the difference between the two scores is not 

statistically significant, the additional features were clearly not providing any benefit. 

Therefore, in subsequent experiments with domain adaptation, we used only syntactic 

features to train classifiers. We can also see from the table that identification of non-

discourse connectives had good performance in all systems. 
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Table 15: Task Complexity: performance (average±Std) of different classifiers for the 
task complexity measurement. Effect of learning features: performance (average±Std) of 
in-domain CRF classifiers trained with different learning features 

 Classifier Type Overall 

Performance (F1 score) 

(Precision, Recall) 

Discourse Connectives 

Overall Performance 

(F1 score) 

(Precision, Recall) 

Non Discourse 
Connectives 

BaseLex 0.330 ± 0.044 

(0.198 ± 0.032, 1.000 ± 
0.000) 

0.948 ± 0.005 

(1.000 ± 0.000, 0.901 ± 
0.010) 

BaseLexPunct 0.272 ± 0.058 

(0.165 ± 0.041, 0.790 ± 
0.072) 

0.946 ± 0.006 

(0.994 ± 0.001, 0.901 ± 
0.010) 

In-domainSVM 0.657± 0.061 

(0.773 ± 0.066, 0.575 ± 
0.07) 

0.945 ± 0.002 

(0.998 ± 0.001, 0.897 ± 
0.004) 

 In-domainCRF 0.757± 0.059 

(0.817 ± 0.058, 0.711± 
0.086) 

0.994 ± 0.001 

(0.992 ± 0.002, 0.996 ± 
0.001) 

UMLS (UMLS 
Semantic features) 

0.681 ± 0.063 

(0.786 ± 0.050, 0.606 ± 
0.086) 

0.993 ± 0.001 

(0.990 ± 0.003, 0.996 ± 
0.001) 

Gene-Species (Gene + 
Species features) 

0.686 ± 0.058 

(0.797 ± 0.050, 0.608 ± 
0.082) 

0.993 ± 0.001 

(0.990 ± 0.002, 0.996 ± 
0.001) 

UMLS+ (Syntactic + 
UMLS Semantic 

features) 

0.744 ± 0.061 

(0.806 ± 0.051, 0.696 ± 
0.087) 

0.992 ± 0.001 

(0.986 ± 0.003, 0.997 ± 
0.001) 

Gene-Species+ 
(Syntactic + Gene + 

Species features) 

0.753± 0.052 

(0.814 ± 0.045, 0.703 ± 
0.075) 

0.994 ± 0.001 

(0.992 ± 0.002, 0.996 ± 
0.001) 

 In-domain (Syntactic 
features) 

0.757± 0.059 

(0.817 ± 0.058, 0.711± 
0.086) 

0.994 ± 0.001 

(0.992 ± 0.002, 0.996 ± 
0.001) 
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 Semantics+ (All 
features) 

0.747 ± 0.059 

(0.810 ± 0.048, 0.698 ± 
0.086) 

0.994 ± 0.001 

(0.992 ± 0.002, 0.996 ± 
0.001) 

Table 16 shows the performance of all CRF classifiers with the impact of different 

domain adaptation models, as described in the previous section. Among the simple 

domain adaptation techniques, the InstanceWeighting classifier had the best performance; 

with F1 score 0.730, compared to other individual domain adaptation-based classifiers 

InstancePruning and FeatAugment, for which F1 scores were 0.637 and 0.677, 

respectively. 

None of the methods, however, performed better than the baseline In-domainCRF 

classifier. Some classifiers increased recall (InstanceWeighting) while others increased 

precision (InstancePruning). This indicates that systems combining multiple domain 

adaptation techniques may be more robust, and therefore produce better F1 scores. 

Results of these combinations are shown in the last four rows. The Hybrid classifier had 

the best performance among all classifiers, with an F1 score of 0.761. All the classifiers 

shown in Table 16 were statistically significant (t-test, p < 0.05) when compared with the 

Cross-domain classifier. The performance of classifiers trained using simple domain 

adaptation methods were statistically significant (t-test, p < 0.05) when compared with 

the classifiers trained using combined domain adaptation methods. In contrast, the 

classifiers trained using combined domain adaptation techniques did not produce 

statistically significant differences in their results.  
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The performance of the classifier for identifying the class-wise sense of the discourse 

connective is shown below in Table 17. The SVMSense classifier achieved the highest F1 

score of 0.9. 

Table 16: Performance (average±std) of different classifiers based on CRFs for 
identifying the discourse connectives using domain adaptation techniques for various 
categories 

Classifier Type  Overall 
Performance (F1 score) 

(Precision, Recall) 
Discourse Connectives 

Overall 
Performance (F1 score) 

(Precision, Recall) 
Non Discourse Conn 

Cross-domain 0.592 ± 0.066 

(0.834 ± 0.061, 0.461 ± 0.065) 

0.992 ± 0.001 

(0.986 ± 0.002, 0.998 ± 0.001) 

UnWeighted 0.677 ± 0.071 

(0.810 ± 0.061, 0.585 ± 0.085) 

0.993 ± 0.001 

(0.989 ± 0.002, 0.997 ± 0.001) 

In-domain 0.757 ± 0.059 

(0.816 ± 0.058, 0.711 ± 0.086) 

0.994 ± 0.001 

(0.992 ± 0.002, 0.996 ± 0.001) 

Weighted 0.730 ± 0.053 

(0.805 ± 0.052, 0.671 ± 0.075) 

0.993 ± 0.001 

(0.991 ± 0.002, 0.996 ± 0.001) 

Pruning 0.637 ± 0.076 

(0.844 ± 0.070, 0.514±0.079) 

0.993 ± 0.001 

(0.987 ± 0.002, 0.998 ± 0.001) 

FeatAugment 0.695 ± 0.056 

(0.760 ± 0.048, 0.647 ± 0.090) 

0.993 ± 0.001 

(0.990 ± 0.002, 0.996 ± 0.001) 

Weighted-Pruning 0.753 ± 0.057 

(0.816 ± 0.051, 0.703 ± 0.083) 

0.994 ± 0.001 

(0.992 ± 0.002, 0.996 ± 0.001) 

Weighted-
FeatAugment 

0.757 ± 0.045 

(0.809 ± 0.050, 0.716 ± 0.068) 

0.994 ± 0.001 

(0.992 ± 0.002, 0.996 ± 0.001) 

Hybrid 0.761 ± 0.051 

(0.813 ± 0.041, 0.719 ± 0.079) 

0.994 ± 0.001 

(0.993 ± 0.002, 0.996 ± 0.001) 

Weighted-Hybrid 0.757 ± 0.050 

(0.807 ± 0.047, 0.717 ± 0.076) 

0.994 ± 0.001 

(0.992 ± 0.002, 0.996 ± 0.001) 
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Table 17: Performance (average±std) of the classifiers for indentifying class-wise sense 
of the discourse connectives. 

 Class Precision Recall F1 Score 

Comparison 0.92 ± 0.05 0.86 ± 0.09 0.88 ± 0.05 
Contingency 0.90 ± 0.05 0.94 ± 0.03 0.92 ± 0.03 
Expansion 0.84 ± 0.07 0.89 ± 0.06 0.86 ± 0.05 
Temporal 0.94 ± 0.04 0.86 ± 0.06 0.89 ± 0.03 

SV
M
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en

se
 

Overall 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.03 
Comparison 0.91 ± 0.08 0.86 ± 0.09 0.88 ± 0.07 
Contingency 0.90 ± 0.06 0.94 ± 0.02 0.92 ± 0.03 
Expansion 0.85 ± 0.07 0.88 ± 0.07 0.86 ± 0.05 
Temporal 0.88 ± 0.09 0.86 ± 0.06 0.87 ± 0.04 L

og
is

tic
 

Se
ns

e 

Overall 0.89 ± 0.04 0.89 ± 0.04 0.89 ± 0.04 

Error	  Analysis	  

For error analysis, we focused on analyzing the CRF classifiers trained on syntactic 

features, since they showed the best performance. Error analysis revealed that most of the 

errors were due to the common problem of data sparseness. Specifically, most of the false 

negatives did not appear in the training set or appeared only once as a connective in the 

entire corpus. Therefore, we assessed classifier performance while taking these 

distributions into account. We first categorized the connectives based on their occurrence 

distributions in the PDTB and BioDRB corpora. There were three categories: connectives 

that were present and annotated in both corpora (BioDRB ∩ PDTB), present in both but 

annotated only in BioDRB (BioDRB ∉ PDTB), and finally, present and annotated only in 

BioDRB (BioDRB ∅ PDTB). We then investigated the performance of each domain-

adapted classifier on each of the categories for tokens that appear at least once as 

connectives in the corpus. Table 18 shows the percentage of connectives identified by the 
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classifier in each category, the classifier’s performance in that category for identifying 

the token as a discourse connective and non-discourse connective. We can observe that 

the weighting technique improved the performance across all three categories. 

The impact of the frequency of the connectives on the performance of the classifier was 

analyzed. Figure 9 shows the graph of the number of connectives and the performance of 

the top-performing Hybrid classifier against the frequency of connectives in the BioDRB. 

Table 18: Performance (F1 Score) of the classifiers for identifying the discourse 
connectives by their distribution in BioDRB 

	   BioDRB	  ∩ 	  PDTB	   BioDRB ∉ 	  PDTB	   BioDRB ∅ 	  PDTB	  
 % Of 

conns 
Perfo
rman
ce as 
DCO
NN 

Perform
ance as 
Non 
DCON
N 

% Of 
conns 

Perfor
manc
e as 
DCO
NN 

Perform
ance as 
Non 
DCON
N 

% Of 
conn
s 

Perfor
mance 
as 
DCO
NN 

Perform
ance as 
Non 
DCON
N 

Cross-
domain 

96.7% 0.62 0.92 3.3% 0.03 0.97 0% 0 0.86 

Unweigh
ted 

84.3% 0.70 0.93 10.5% 0.21 0.98 5.2% 0.55 0.91 

In-
domain 

74% 0.78 0.94 19.8% 0.65 0.98 6.2% 0.63 0.91 

Weighte
d 

75.7% 0.75 0.94 17% 0.51 0.98 7.3% 0.7 0.92 

Pruning 93.4% 0.67 0.93 3.3% 0.08 0.97 3.3% 0.14 0.87 
FeatAug
ment 

72.8% 0.70 0.93 21% 0.58 0.98 6.2% 0.5 0.9 

Weighte
d-
Pruning 

75.3% 0.77 0.94 18.5% 0.60 0.98 6.2% 0.63 0.91 

Weighte
d-
FeatAug
ment 

72.6% 0.77 0.94 20.2% 0.67 0.98 7.2% 0.7 0.92 

Hybrid 74.4% 0.78 0.94 19.5% 0.66 0.98 6.1% 0.67 0.92 
Weighte
d-
Hybrid 

73.8% 0.78 0.94 20.2% 0.65 0.98 6% 0.67 0.92 

In general, as the frequency of the connectives increased, the performance of the 

classifier for identifying those connectives increased. This is to be expected, as increased 
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training data resulted in improved classification. The decrease in performance for very 

frequent connectives can be explained by a small number of very frequent but very 

ambiguous connectives.  

 
Figure 9: The graph of performance of Hybrid classifier over different distributions of 
the connectives 

Table 19 below shows the five most common connective forms, the likelihood of each 

form occurring as a connective, and the F1 scores of the classifiers on these connectives. 

The Hybrid and In-domain classifiers performed better for frequent connectives (>100 

occurrences as connectives). The connective and had an F1 score of approximately 0.7 ± 

0.04 for all the classifiers except for the FeatAugment classifier. For the connectives by, 
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to, and after, the table shows that as domain adaptation techniques were applied, the 

performance increased over Cross-domain and Unweighted classifiers. 

Table 19: The top 5 connectives in BioDRB and their F1 scores on the classifiers 

Classifiers and  (8.1%) by (26.1%) to (10.8%) after 
(52.7%) 

however 
(100%) 

Cross-domain 0.72 0.03 0 0.06 0.98 

Unweighted 0.73 0.3 0.07 0.67 1 

In-domain 0.7 0.64 0.66 0.74 1 

Weighted 0.7 0.52 0.53 0.72 1 

Pruning 0.74 0.04 0 0.5 0.99 

FeatAugment 0.26 0.55 0.58 0.65 0.99 

Weighted-
Pruning 

0.74 0.57 0.6 0.73 1 

Weighted-
FeatAugment 

0.67 0.59 0.67 0.72 1 

Hybrid 0.67 0.64 0.67 0.72 1 

Weighted-
Hybrid 

0.67 0.62 0.66 0.71 1 

Our results show that a significant percentage of errors were introduced by two of the 

most frequent connectives, by and to, which were annotated in the BioDRB. We assessed 

the performance of all the classifiers discussed earlier after removing the connectives by, 

to and singleton connectives. The connective by sometimes appears as Noun Phrase (NP) 

and as Clause introduced as a subordinating conjunction (SBAR) few times. In either 

case it may or may not be a connective; therefore, the connectives by and to were 

removed. Experiments were then performed on this modified set of data. The results of 

the experiments are shown in Table 20. The overall performance of all the classifiers 

increased significantly except for Weighted-FeatAugment.  
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The performance of the Cross-domain classifier increased significantly to 0.673. This 

increase is due to the removal of connectives by and to, which are highly ambiguous and 

not annotated in the PDTB corpus. The Unweighted classifier had a performance of 

0.766. 

The In-domain classifier had an F1 score of 0.791. The performance of all classifiers 

using simple domain adaptation techniques increased with the FeatAugment classifier 

performing as well as In-domain with an F1 score of 0.791. Weighted and Pruning 

classifiers had an F1 score of 0.770 and 0.718, respectively. 

The performance of the combined domain adaptation techniques also improved except 

for Weighted-FeatAugment, which performed only as well as the Cross-domain. The 

performance of Weighted-Pruning, Weighted-FeatAugment, Hybrid, and Weighted-

Hybrid are 0.788, 0.690, 0.792, and 0.789 respectively. The Hybrid classifier still had the 

best performance. 

Table 20: Performance (average±Std) of various classifiers for identifying the discourse 
connectives without singleton connectives and connectives by and to. 

Classifier Type Precision Recall F1 Score 
Cross-domain 0.824 ± 0.057 0.570 ± 0.064 0.673 ± 0.058 
Unweighted 0.826 ± 0.063 0.715 ± 0.068 0.766 ± 0.059 
In-domain 0.846 ± 0.060 0.746 ± 0.074 0.791 ± 0.056 
Weighted 0.825 ± 0.068 0.725 ± 0.062 0.770 ± 0.053 
Pruning 0.847 ± 0.060 0.625 ± 0.072 0.718 ± 0.062 
FeatAugment 0.835 ± 0.056 0.755 ± 0.072 0.791 ± 0.054 
Weighted-Pruning 0.835 ± 0.061 0.750 ± 0.079 0.788 ± 0.060 
Weighted-
FeatAugment 

0.824 ± 0.067 0.596 ± 0.073 0.690 ± 0.068 

Hybrid 0.836 ± 0.058 0.757 ± 0.074 0.792 ± 0.053 
Weighted-Hybrid 0.839 ± 0.055 0.749 ± 0.073 0.789 ± 0.053 
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Examples 

In this section we manually examined the set of classified instances to evaluate the 

classifier that had the poorest performance (Cross-domain) and the classifier that had the 

best performance (Hybrid).  

Example 12: One day after injection, the swelling of the ears was determined 

with a gauge (Hahn & Kolb, Stuttgart, Germany). (Temporal: Succession) 

Example 13: In view of the fact that NF-κB was also activated by anti-

CD3/anti-CD28, IL-15 or mitogens in our experiments, it is most likely that the 

NF-κB pathway is also actively involved in the induction of IL-17 in RA PBMC. 

(Cause: Justification) 

Examples 12 and 13 show instances in which both the Cross-domain and Hybrid 

classifiers failed to identify the connectives. The connectives One day after and In view 

of the fact that appear only once in the entire BioDRB corpus and do not occur at all in 

the PDTB corpus. Since the classifiers encounter these connectives for the first time 

during testing, they fail to recognize them as discourse connectives. Example 6 suggests 

that collecting an exhaustive list of discourse connectives will not be feasible because any 

number could be inserted into the expression One day after. 

Example 14: In order to explain this differential efficacy, several parameters 

were analyzed. (Purpose: Goal) 

Example 15: Due to the high level of sensitivity of nested RT-PCR, even low 
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levels of illegitimate transcription in PBMNCs can cause false-positive results [2-

5]. (Cause: Reason) 

Examples 14 and 15 show instances that were correctly identified by the Hybrid classifier 

but were incorrectly classified by the Cross-domain classifier. Both in order to and due to 

are subordinators that were not annotated as connectives in the PDTB corpus but were 

annotated as connectives in the BioDRB corpus. Since the Hybrid classifier is trained for 

the biomedical domain using BioDRB, it identified them as connectives; however, the 

Cross-domain classifier failed to identify them as connectives as its training set did not 

contain such instances. In fact, the only connective in the BioDRB ∉ PDTB class that 

Cross-domain correctly classifies is as an example, which shares words with common 

connectives in PDTB. 

Example 16: We considered this to be an appropriate positive control, as any cell 

that is detected using the immunobeads should express the EpCAM gene. Tests of 

the single tumor cell and 100 PBMNC aliquots with EpCAM showed that it was 

also expressed to a sufficient level to enable detection of the tumor cell in 31/35 

(89%) cases after 45 cycles of PCR amplification. (Conjunction) 

Example 17: The accelerating effect of the mAb RIB5/2 was reproduced in two 

additional treatment experiments, and this effect was observed despite a variable 

onset of AA in the PBS-treated animals (day 9 to 11). (Conjunction) 

Examples 16 and 17 show instances that were correctly identified by the Cross-domain 

classifier but incorrectly classified by the Hybrid classifier. The connectives also and and 
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occur in both the PDTB and BioDRB corpora. Table 4 shows that the connective and had 

a better F1 score for the Cross-domain and In-domain classifiers compared with the 

Hybrid classifier. In addition, the Hybrid classifier incorporates feature augmentation, 

whose difficulty classifying and is clearly illustrated in Table 4.  

Discussion	  

Automatic identification of discourse connectives is a challenging task. We performed 

various syntactic feature selection experiments (Table 14). The experiments show that the 

parent category feature had the highest single impact on the performance of the classifier 

compared with the other two syntactic features. The POS category had the least impact 

on the performance of the classifier, suggesting that POS information is largely redundant 

with the information about the word itself and not very useful. On the other hand, POS 

features may be valuable for new target domains, as they may help identify previously 

unseen connectives. The unadapted source-domain data may thus hurt adaptation 

performance by reducing the weight of POS features. Future work should focus on 

exploring POS features and related syntactic features and their benefit to the biomedical 

domain. 

On BioDRB corpus, we found 76% of connectives to be ambiguous. As such, it is not 

surprising that using simple lexical features based on connective-matching system did not 

perform well (0.33 F1 score as shown in Table 15). Our results show that the supervised 

machine-learning approaches significantly outperformed the simpler pattern-matching 

approaches, yielding a maximum 0.757 F1 score. 

We explored two different machine-learning models: SVM and CRF. We found that the 
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CRF model outperformed the SVM model, yielding 0.757 F1 score, 10% higher than that 

of the SVM model. Note that the performance of both systems was much lower than in 

the open domain (0.94 F1 score). For comparison, we trained and tested CRF models on 

the PDTB with the published feature set [105]. The classifier yielded similar results 

(0.937 F1 score), which demonstrated that our models are state-of-the-art.  

Our results have shown that in-domain classifiers out-performed cross-domain classifiers. 

While the CRF-based in-domain classifier achieved the highest performance of 0.757 F1 

score, the best cross-domain classifier yielded only 0.592 F1 score. The results 

demonstrate that the biomedical domain needs domain-specific models for discourse 

connective identification.  

We explored different learning features. Similar to previous open-domain work [105], we 

found that syntactic features are important. In contrast, adding domain-specific semantic 

features (e.g., features based on UMLS) did not improve the performance. We speculate 

that the additional features may have introduced noise that is responsible for decreased 

performance.  

Previous work has demonstrated that domain-adaption approaches can significantly 

improve the performance of tasks such as semantic role labeling [131].  In contrast, our 

experiments show that different domain adaptation methods have complementary effects 

on performance and can be combined for further improvement. Our new domain 

adaptation model Hybrid, which is a CRF model trained with a combination of instance 

pruning and feature augmentation domain adaptation techniques, outperformed all other 

models achieving an F1 score of 0.761. The Hybrid classifier used the advantages of both 
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the instance pruning (improved precision) and feature augmentation (improved recall) 

approaches thus increasing the overall performance.  

Data sparseness is a very common problem in statistical NLP. In our study, 43.5% of the 

connective types appeared only once in the entire corpus.  However, our results show that 

removal of these singleton connectives did not drastically affect system performance. 

This may be explained by the fact that the singleton connectives accounted for only a 

small portion (3%) of all discourse connective instances. This suggests that future work 

should focus on identifying improved features for disambiguating commonly occurring 

and highly ambiguous (such as by and to) connectives. 

Predicting the sense of discourse relations is an important subtask of discourse parsing 

and previous studies have shown [132] that the task is fairly easy and have achieved very 

good performance (F1 score of 0.91). Similarly, our approach yielded a very high F1 

score of 0.9 for a classifier trained on SVM to identify the class-wise sense of discourse 

connectives. 

As we observed in our results, the Crossdomain model had a reduced performance due to 

different characteristics of the data. The model trained on BioDRB corpus might have a 

similar effect when applied on the medical text written by health-care professionals, as 

they will have different characteristics compared to that of the text in biomedical domain. 

Therefore, future work should focus on developing a gold standard annotated with 

discourse relations and building models specific to the medical text. 
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Conclusion	  and	  Future	  work	  

We have presented a method to automatically identify discourse connectives in 

biomedical text. This task is difficult and poses many challenges. The Hybrid classifier 

based on CRF with a combination of instance pruning and feature augmentation domain 

adaptation techniques had the best performance (F1 score 0.761) in the biomedical 

domain, while performance in open domain is still better (F1 score 0.93). We explored 

various supervised machine-learning based algorithms for automatically identifying 

explicit discourse connectives and evaluated different domain adaptation techniques to 

adapt models trained on the PDTB to the biomedical domain with various novel features. 

Although performance of Hybrid classifier is not statistically significant than In-domain 

classifier, leveraging the large corpus from another domain makes the classifier trained 

for biomedical domain more robust when the data are sparse. Future work will explore 

features to disambiguate the commonly occurring and confounding connectives like by 

and to. The SVM classifier to identify the sense of connective had a performance of 0.9 

F1 score. Later we will extend this work to identify the arguments of explicit discourse 

connective, the next step toward developing a discourse parser. We will also explore 

techniques to identify the presence of implicit discourse relations in the text. Then we 

plan to develop a corpus annotated with discourse relations on medical text and apply 

similar techniques to identify discourse connectives and relations. 
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Chapter	  4:	  Automation	  of	  Naranjo	  Scale	  Elements	  

A causal relation exists between the drug and adverse event in an adverse drug event. In 

this chapter, we discuss the Causality Inference Engine, which automates the Naranjo 

Causality Assessment Probability Scale that infers the causality between the drug and 

adverse event as shown in Table 1. We use a knowledge-based approach to automate the 

elements of the scale. In this research we automate 3 out of 10 elements of the Naranjo 

Scale due to constraints of data availability. The remaining elements of the Naranjo 

required longitudinal patient data and objective evidence from laboratory charts that were 

not available. We obtain information from various knowledge resources and apply 

knowledge-based and rule-based methods to automate the elements of the Naranjo 

Causality Assessment Probability Scale. A score is assigned to each of the element 

automated based on the Naranjo Scale. 

There are many challenges in building such a system. As stated earlier, one of the 

challenges is the availability of the structured and longitudinal data of the patient. The 

second challenge is the construction of data to evaluate the tool. At present there is no 

gold standard that is available to conduct an evaluation to measure the effectiveness of 

the system. We have to build a gold standard of reports that are assessed and scored for 

the Naranjo elements by experts. 

Therefore, the system at its current state automates 3 out of the 10 questions of the 

Naranjo Causality Assessment Probability Scale and the remaining elements can be 

automated by utilizing the structured data from the patients health records, discourse 

analysis as shown in examples 3 and 4 in chapter 3 and using temporal analyses systems. 
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We use AE and medication entities from the named entity recognizer module to automate 

these three elements and the other entities recognized could be utilized to automate the 

other elements of Naranjo. We also evaluate the tool on a small set of three randomly 

selected discharge summaries that contain adverse events related to “aspirin.” 

Related	  Work	  

Causality assessment is the evaluation of the likelihood that a particular treatment is the 

cause of an observed adverse event [133]. It assesses the relationship between a drug 

treatment and occurrence of an adverse event. It is an important component of 

pharmacovigilance, contributing to better evaluation of the risk-benefit profiles of 

medicines [134] and is an essential part of evaluating ADE reports in early warning 

systems and for regulatory purposes [135]. 

Causality assessment in pharmacovigilance may involve making a decision based on the 

information on the relationship between a drug exposure and suspected ADE from a 

single adverse event or suspected ADE report (or a series of reports). Early solutions to 

this problem were frequently in the form of standardized decision aids (SDAs) or 

algorithms [136]. Standardized decision aids are a group of causality assessment methods 

that have several features in common: they pose a series of predetermined questions; the 

question are usually answered “yes,” “no,” or sometimes “unknown/not applicable”; the 

answers to each of the questions has a preset weight, and they are combined in an explicit 

manner. The final weight score then is converted to a probabilistic statement regarding 

the strength of the causal relationship such as “possibly” or “probably” drug related. 
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These methods are explicit, fast, and increase reproducibility. Standardized causality 

assessment is now a routine procedure at pharmacovigilance centers around the world; it 

is aimed at decreasing ambiguity of the data and also plays a key role in data exchange 

and limits the drawing of erroneous conclusions [137].  

Agbabiaka et al. [138] performed a systematic review of the causality assessment scales. 

They classified the articles into three main broad categories: expert judgment/global 

introspection, algorithms and probabilistic methods. They concluded that no method can 

be universally used to assess the causality of the ADEs. 

Karch and Lasagna [139] initially designed a decision table algorithm to identify ADEs, 

poisonings, noncompliance, and excessive self-administration. Their algorithm estimates 

the certainty of an adverse event and suspected drug. Kramer et al. [140] proposed an 

algorithm that provides detailed criteria for ranking the probability of causation when 

ADE is suspected between a drug and a clinical manifestation. The algorithm provides a 

scoring system of six axes of decision strategy: previous general experience with the 

drug, alternative etiologic candidates, timing of events, drug levels and evidence of 

overdose, dechallenge, and rechallenge. The sum of the scores is ordinally partitioned to 

rate the candidate ADE as definite, probable, possible, or unlikely. Later Naranjo et al. 

[141] developed an ADE probability scale consisting of ten questions that are answered 

as “yes,” “no,” “un-known,” or “inapplicable” to assess the causality of a drug in a 

variety of clinical situations using the conventional categories and definitions of 

“definite,” “probable,” “possible” and “doubtful.” Scores assigned to each question 

ranged from –1 to +2. The event is assigned to a probability category based on the total 
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score. A total score of ≥9 is “definite,” “probable” is 5–8, “possible” 1–4 and “doubtful” 

≤0. This scale assesses the likelihood of an ADE associated with only one drug, not for 

adverse drug events resulting from interactions between two drugs [142]. The Naranjo 

Scale does not address the main points that are necessary in causality evaluation of 

potential drug interactions. Nevertheless, the adverse reaction scores obtained by using 

the Naranjo Scale correlate well with those derived with Kramer’s algorithm, which does 

address those points [103].  

Hutchinson and Lane [143] propose that the metrics of validity and reliability are not the 

optimal measures by which to assess causality assessment methods. Then they propose a 

set of six criteria by which ADE causality assessment methods should be assessed. They 

evaluated a number of algorithms, all of which failed to satisfy the criteria they proposed. 

They suggested that the problem is at a fundamental level: the lack of a clear 

understanding of the real nature of the causality assessment problem and, therefore, the 

failure to develop and use a coherent theoretical framework for its solution. They 

formulate a Bayesian equation that satisfies all of the requirements. Danan and Benichou 

[144] described the development of a new algorithm for scoring the confidence to assess 

the causal connection between a drug and outcome called Roussel Uclaf Causality 

Assessment Method (RUCAM). The method is relatively simple like Naranjo's but adds 

some sub-scores in each question so that the system is less rigid. They evaluated and 

validated their new method on drug-induced liver injuries. Four experts evaluated 400 

cases of liver injury and had an agreement rate of 37% among four experts for identifying 
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drug-induced liver injury. Koh and Li [145] developed another algorithm by simplifying 

the algorithm in [140]. They found that their algorithm is congruent with Naranjo.  

Studies have also explored a number of Bayesian causality assessment scores [146-148]. 

Lane et al. [149] developed a new Bayesian approach to identify adverse reaction called 

Bayesian Adverse Reaction Diagnostic Instrument (BARDI). BARDI is explicit in the 

information that is used and how each piece of information is weighted. It uses Bayesian 

statistics to combine factors coherently. The Bayesian method can include any relevant 

information and can consider multiple possible causes. The tool was tested in many 

studies and was shown to be working well and valid[150,151]. Lanctot and Naranjo [146] 

developed MacBARDI-Q&A by computerizing BARDI to facilitate clinical use. The tool 

consists of three components: a UI, a spread sheet with database access and a knowledge 

base organized by clinical manifestations with a set of finite drugs. Later Lanctot and 

Narnajo [147] compared BARDI with another algorithm that calculates the probability of 

an adverse event induced by drug called Adverse drug reaction Probability Scale (APS). 

They report a high correlation (rs = 0.45, p <0.001) between BARDI and APS to 

calculate the probability of causality between drug and the adverse event. However, 

BARDI better distinguished cases that were highly probable (n = 83; PsP > or = 0.75) or 

highly improbable (n = 30; PsP < or = 0.25), whereas the APS rated the majority of these 

cases in the midrange (n = 128; range of APS, 1 to 8.9). They concluded that although 

APS is an effective screening tool, BARDI can better discriminate drug from nondrug-

induced cases better and may be more appropriate for serious cases of adverse drug 

reactions.  
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Other studies have explored techniques based on regression [152] and genetic algorithm 

[153] to assess the adverse event causality. In the current study, we automate the 

elements of Naranjo Causality Assessment Probability Scale using knowledge- and rule-

based techniques to assess the causality of drug-induced adverse event. 

Methods	  

We use knowledge- and rule- based approaches to automate the Naranjo elements shown 

in Table 1. We automate three elements of the Naranjo Causality Assessment Probability 

Scale as shown in Table 21 below.  

Table 21: The elements of the Naranjo elements automated by the tool 

Q1: Are there previous conclusive reports on this reaction?	  
Q2: Did the adverse events appear after the suspected drug was given?	  
Q9: Did the patient have a similar reaction to the same or similar drugs in any 
previous exposure?”	  
 

Given a report with the named entities recognized, we process them at sentence level and 

consider all possible drug-AE pairs that appear in the sentence to automate the elements 

of the Naranjo Scale. 	  

Automation	  of	  Naranjo	  Elements	  

As described above, we automate three elements of Naranjo causality assessment scale. 

Element	  One:	  “Are	  there	  previous	  conclusive	  reports	  on	  this	  reaction” 

The first Naranjo element we automate checks if there are any reports of this reaction. 

For each adverse event and drug pair, we examine if that drug and adverse event pair 
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occur in any of the four sources, namely: FAERS report, package inserts, SIDER 

database and Ask a patient website. 	  

The first source, the FAERS, are reports from the FDA AERS database containing 

information of adverse events and medication errors that are reported to the FDA by 

health-care providers and consumers. The second source, package inserts, provides 

additional information about the drug, such as the generic name of the drug, 

pharmacology, indications, usage, contraindication, warnings, adverse reactions, how it is 

supplied, and others. The third source, SIDER database, contains information on 

marketed drugs and their recorded adverse drug reactions. The information is extracted 

from public documents and package inserts. They also contain information regarding side 

effect frequency, drug and side effect classifications, as well as links to further 

information, such as drug–target relations. The fourth source, AskaPatient database, 

contains more than 4,000 chemically prepared prescription drugs approved by the FDA’s 

Center for Drug Evaluation and Research. It also includes some popular biological drugs 

such as vaccines, blood and blood components, allergies, somatic cells, and gene therapy 

products.	  

Element	  Two:	  Did	  the	  adverse	  events	  appear	  after	  the	  suspected	  drug	  was	  given?	  

For the second element we automate checks if the AE appear after the drug was given. To 

accomplish this task, we examine if the reports contain keywords that indicate the 

presence of AE after drug was given such as “in association with” and “experienced” and 

examine if the AE and drug appear in a given word token window around the keyword.  
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We compiled a list of seven keywords empirically by examining the reports. We use 

these keywords as cues and find the named entities around it. 

Element	  Nine:	  Did	  the	  patient	  have	  a	  similar	  reaction	  to	  the	  same	  or	  similar	  drugs	  in	  

any	  previous	  exposure?	  

This element examines if patient experienced any reaction previously when exposed to 

drugs belonging to the same drug class. We use the classification of drugs defined in the 

drugbank to automatically find drugs that belong to the same class. Given a drug, we find 

all the drugs belonging to its class and examine the report to find a mention of those 

drugs. If we find a mention of a drug belonging to the same class, we use the rules 

developed to automate element two to see if the patient had similar reaction to the drugs 

belonging to the same class.  

Evaluation	  

We apply the Naranjo automator tool that was developed on a set of discharge summaries 

and obtain the score for each of the summaries to measure the performance of the tool. 

The elements of the Naranjo are assessed at sentence level. For every sentence, we assess 

the causality by considering all possible combinations of drug-AE pairs that appear in the 

sentence.	  

Evaluation	  Data	  

We selected discharge summaries containing known drug and the adverse events caused 

by the drug, due to the lack of a gold standard annotated with the Naranjo elements. We 

randomly selected a very small set of three de-identified discharge summary notes that 
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had mention of “aspirin” in them from the Pittsburgh NLP repository [154], which 

contains a variety of de-identified clinical reports, including discharge summaries and 

progress notes. Two of the three discharge summaries contained known adverse events 

related to aspirin. There were a total of 189 sentences and 2,547 words tokens in the three 

reports. 

Results	  

The Naranjo automator automated three questions and assigned scores on three EHR 

reports. The tool obtained a score of 0 for the report that did not have any aspirin related 

adverse event. The tool assigned a score of 2 for one report and 3 for the other report. 

Example 1 below shows the instance from the report that resulted in a score of 2 and 

Example 2 shows the instance from the report that resulted in a score of 3. In all the 

examples below, the adverse events are shown in bold and medication is underlined.  

In example 1, the tool assigned a score of two as it identified the keywords 

“hypersensitive to” along with the drug and the adverse event around it. Hence, the tool 

assigned a score of 2 from question 2.  

In the case of example 2, the tool identified “GI bleed” as an AE due to “aspirin” from 

package inserts and gave a score of 1 for question 1. For question 2, it assigned a score of 

2 as the tool identified the keywords “related to” and the drug and the medication around 

it. 

Example 1: Apparently the patient was hypersensitive to aspirin 

and started oozing blood through his trach insertion site and 

pacemaker insertion site. 
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Example 2: Doctor’s assessment was that the patient had a small 

volume upper GI bleed probably related to her alcohol intake and 

aspirin and Lovenox. 

Limitations,	  Conclusion	  and	  Future	  Work	  

We automated 3 out of the 10 elements of the Naranjo Causality Assessment Probability 

Scale. Since our tool was still in its initial stage and only three elements were automated, 

we applied our tool on a very small set of three discharge summaries. Although the tool 

performed well on assigning a score, the evaluation data were very small. The second 

limitation is that we automated only 3 elements out of 10 due to limitations of data 

availability. In the future, we would like to access the structural and longitudinal patient 

data and automate all the elements of the Naranjo Scale. We will further evaluate the tool 

on a larger set of data to measure its efficiency in finding the causality between the 

adverse event and the drug.  
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Chapter	  5:	  Figure	  Evidence	  through	  Figure	  Associated	  

Text	  Summarization	  	  

The third component of the ADEtector is the Figure Evidence Generator. This component 

retrieves figures related to ADE from the biomedical literature as evidence. To help users 

comprehend the figure a concise summary is generated for each figure retrieved by the 

Figure Evidence Generator component. We describe the generation of automatic 

summary in this chapter. We hypothesize that this tool will help researchers to identify 

the causes of ADE for translational research. 

Millions of figures have been published in biomedical literature; these figures are a rich 

and important knowledge resource for scientists. Researchers need access to the figures 

and the knowledge they represent in order to validate research findings, as well as to 

generate new hypotheses. By themselves, these figures are sometimes incomprehensible 

to both humans and machines, and their associated texts are therefore essential for full 

comprehension. The associated text of a figure, however, is scattered throughout its full- 

text article and contains redundant information content.  

In this chapter, we report the development and evaluation of unsupervised figure 

summarization systems, FigSum+, that automatically identify associated text, remove 

redundant information, and generate a text summary for every figure in an article. We 

created and published a dataset on figshare.com2 that consists of 94 figures from 19 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2 http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903  
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biomedical articles. We evaluated our systems on two gold standards, the FigSumGS1 

dataset and the FigSumGS2 dataset, that were derived from the published articles using 

different techniques in order to highlight the robustness and efficacy of our system.  

We hypothesize that such figure summarization reduces information overload while 

maintaining information content and allows users to navigate content more efficiently. 

We conducted an intrinsic evaluation of the summarization systems, FigSum+, and 

measured its performance against both baseline and state-of-the-art supervised and 

unsupervised systems using precision, recall, F1, and ROUGE scores. The FigSum+ 

systems achieved the best F1 score of 0.66 and ROUGE-1 score of 0.97. We found that 

the FigSum+ systems surpassed both the baseline and state-of-the-art supervised and 

unsupervised systems in all measures except recall on the FigSumGS2 dataset, where its 

score was comparable to the state-of-the-art supervised system. The overall superior 

performance of our approach suggests that these systems can be used to efficiently 

summarize figure content. We also designed a two-tiered extrinsic evaluation approach: 

(1) a self-reported scoring of the efficiency and usefulness of a figure summarization 

system and (2) a task-driven, randomized, controlled cognitive evaluation of full article 

comprehension. We evaluated two figure summarization systems FigSum and FigSum+ 

within a novel user interface. FigSum generates figure summary by identifying sentences 

that are most similar to the figure caption and by classifying sentences to the structured 

categories of background, methods, results, and conclusion. FigSum+ incorporates 

figure-referring paragraphs as figure summary. Our results show that the novel user 
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interface incorporating figure summary reduces the time spent on comprehending the 

figure content and improves the quality of responses for users to answer a biological 

question. Our results also show that users favor FigSum+, the system that associates a 

figure with paragraphs that describe them in the full-text article. The evaluations show 

that users like the figure summaries incorporated in novel user interfaces. The users are 

able to answer questions regarding the main content of the article using a subset of 

information contained in the full text article thereby reducing the users’ information 

overload. 

Introduction	  

Figures in biomedical publications are an essential part of biomedical knowledge. They 

help researchers by providing evidence to support their finding, report their discovery and 

generate new research hypotheses. Futrelle [155] indicated that nearly 50% of the article 

content in the biological domain is figure related. Therefore, we are developing an 

intelligent figure search engine (http://figuresearch.askhermes.org) to assist biological 

researchers. Currently our figure search engine is available as a SciVerse API and has 

indexed over 4 million full-text biomedical journal articles published by Elsevier. 

Given the enormous number of figures in biomedical literature, a key aspect in building 

an effective figure search engine is the ability to automatically interpret figure content. A 

number of studies have examined various approaches for analysis and retrieval of 
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relevant figures from literature [156-167]. The ImageCLEF3 competition for automatic 

annotation and retrieval of images from literature has been held annually for the last 10 

years. But there is very limited research on extracting information related to figures from 

the full paper text in the biomedical domain [168].  

Demner-Fushman [169] emphasized the importance of analyzing the text associated with 

the figure for its comprehension. Our evaluation study [170] showed that for a figure to 

be comprehended, it must be interpreted in conjunction with the text that refers to it in the 

article. We evaluated figure comprehension when a figure was presented (1) with its 

caption only, (2) with its caption along with the article title and abstract, and (3) with the 

article full text. The study found that presentation of the figure to biomedical researchers 

with just title and abstract failed to convey 30% of the information, compared to 

comprehension of the figure with the full text article. For example, Figure 10 shows a 

graph along with its caption. The caption information alone is not sufficient for complete 

comprehension of the figure. Hence, the associated text from the full-text of the article is 

required to completely understand the figures [171]. However, the associated text can be 

scattered throughout the full-text article and, moreover, can be redundant [170]. 

We therefore developed a figure summarization system called FigSum [168] that 

automatically generates a summary for every figure by extracting summary sentences 

from a full-text article based on word-level similarities between sentences and figure 

caption. A pilot evaluation showed biologists like the summaries generated by our pilot 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

3 http://www.imageclef.org/ 
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FigSum system [172]. Such figure summarization systems can provide users with a 

succinct figure summary who would otherwise have to spend time navigating through the 

full-text article. Figure 11 shows the summary generated by our summarization system 

for the figure shown in Figure 10. The summary helps to better understand the figure. 

The summarization system also has the potential of improving figure retrieval and mining 

knowledge from figures.  

 

Figure 10: A sample figure with its caption. Figure1 appearing in article [173] 
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Figure 11: The summary generated by our system for figure shown in Figure 10 

In the current study, we explore and evaluate a number of different summarization 

approaches, which we refer to as FigSum+ systems. Specifically, in the first approach, 

we aggregate the sentences associated with a figure and remove any redundant sentences. 

In the second approach, we generate a figure summary by identifying the most relevant 

paragraph associated with the figure. In our third approach, we rank sentences based on 

content centroid. We perform intrinsic evaluation of these summarization approaches and 

report their performance. 	  

We also build a user interfaces incorporating the best performing FigSum+ system and 

FigSum system and conduct two extrinsic evaluations to measure the effectiveness of the 

summary for a specific task [174]. The first extrinsic evaluation measures the efficiency 

of the generated summary in summarizing figure content. The second extrinsic evaluation 

is a cognitive evaluation to measure the effectiveness of the summaries in allowing 

biomedical researchers to comprehend and answer questions related to the main content 

of the article. Our study suggests that summarization of figures using NLP techniques can 

help in comprehension.	  
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Related	  Work	  

Summarization is one of the most extensively studied fields in natural language 

processing (NLP). The summarization approaches can be broadly classified as extractive 

or abstractive [175,176]. Extractive approaches extract and concatenate sentences from 

the text corpus to construct a summary, whereas abstractive summarization relies on 

natural language generation approaches that build new sentences representing the content 

of a text corpus to be summarized. In this work, we focus on the task of extractive 

summarization based on the text associated with a biomedical figure. The following 

sections review related work in open domain text summarization, text summarization in 

the biomedical domain, and figure summarization. 

Open	  Domain	  Summarization	  

Extractive summarization identifies sentences that subsume the key points of a whole 

document (or collection of documents). One straightforward method is to select sentences 

based on word frequencies in the document. Very early work on summarization by Luhn, 

[177] proposed a simple idea based on the intuition that words occurring frequently in a 

document tend to describe the main topic. The approach selected sentences that contained 

many high-frequency words. Later studies improved this strategy by adding weight to 

words, using techniques such as log-likelihood and others [178-182]. For example, Brunn 

et al. [178] used syntactic parsing to identify important words for summarization. 

Approaches that identify summary sentences based on location were also developed. For 
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example, Nakov et al. [183] used citance (text that surrounds a citation reference) to 

summarize a document. 

In other early work for summarization, Edmundson [184] applied a linear function that 

combines different factors, including resemblance to the title, indicative context cues 

(e.g., in summary), keywords, and sentence location. Myaeng and Jang [185] extended 

this work by adding centrality of the sentence to the document to select summary 

sentences. 

Later studies explored various information retrieval (IR) techniques, such as the TF × 

IDF weighting scheme, [179,186-188] which alleviates the negative impact of 

overweighting of some common words, and latent semantic analysis, [189,190] which 

derives an implicit representation of text semantics based on observed word co-

occurrences for summarization. For instance, Hovy and Lin [179] developed 

SUMMARIST, which integrates IR approaches, topic signatures (words that are highly 

descriptive of a document), dictionaries, and semantic knowledge derived from WordNet 

[191] to generate summary. Inspired by link analyses and page rank algorithms for Web 

document retrieval, Mihalcea et al. [192] and Erkan et al. [193] applied a graph-based 

ranking method to select important sentences based on the graph derived from words and 

sentences. Radev et al. [194] developed a MEAD summarizer that generates summaries 

based on a cluster centroid calculated by TF × IDF word similarity. 

Studies also explored supervised machine-learning approaches for summarization [180, 

195-198]. Kupiec et al. [180] developed a Naïve Bayes classifier incorporating contextual 
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and document features to select summary sentences. Wang et al. [195] and Hirao et al. 

[196] ranked sentences using a support vector machine classifier to generate summaries. 

Leskovec et al. [198] built semantic graphs to extract subject–object–predicate triplets 

from sentences and then trained a support vector machine classifier to extract salient 

sentence triplets for summarization. 

Biomedical	  Summarization	  

Open domain summarization approaches are based on similarity and term occurrence 

approaches and have not shown to be the optimal choice for biomedical text due to 

domain-specific characteristics. For example, biomedical named entities (e.g., gene, 

protein, and chemical names) are frequently multiple words. Therefore, summarization 

systems are built upon biomedical knowledge resources, including the Medical Subject 

Headings (MeSH), the Unified Medical Language System (UMLS), and the Gene 

Ontology (GO) project.  

Chiang et al. [199] developed GeneLibrarian, which generates a viewgraph of genes 

related to the input query based on GO similarity. The system also generates a summary 

of a gene by selecting sentences based on term occurrences. Ling et al. [200] developed 

approaches to automatically generate a structured gene summary by first retrieving gene-

related documents and then extracting sentences containing factual information about the 

target gene. Jin et al. [201] developed a query-based gene summarization system that 

integrates the page rank algorithm, sentence similarity, and the function of the gene 

represented by GO. 
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Many studies have focused on summarizing content in biomedical text using semantic 

resources. Bhattacharya et al. [202] proposed a method to compute similarities between 

the MeSH terms assigned to an article and every sentence in the article and then return 

the top N-ranked sentences as summary sentences. Plaza [203] generated summaries 

based on sentence location. Reeve et al. [204] developed the BioChain system using the 

concept chaining technique. The technique links semantically related concepts in text 

using UMLS [205] and sentences with strong chains (where strength is based on the 

number of concepts) are used to form the summary. Fiszman et al. [206] applied 

handcrafted transformation rules to the output of SemRep4 to summarize content. 

SemRep extracts biomedical concepts and relations relevant to a given query from 

MEDLINE records using MetaMap5, which maps free text to UMLS concepts for concept 

extraction and the UMLS semantic network for relations between concepts. This work 

was modified by Workman et al. [207] to generate summaries relevant to the genetic 

etiology of a disease from biomedical literature to support the genetic database curation. 

Workman and Hurdle [208] applied SemRep to citations obtained from PubMed. They 

analyzed the output using statistical methods to automatically identify salient data in 

bibliographic text and generate summaries for bibliographic-based data. Shang et al. 

[209] extended the work of Fiszman et al. [206] to develop a multi-document summarizer 

for a given biomedical concept. Concepts and relations in sentences are extracted using 

SemRep. The sentences that contain high-frequency relations are then extracted as a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

4 http://semrep.nlm.nih.gov/ 

5 http://metamap.nlm.nih.gov/	  
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summary. Other studies [210,211] have explored knowledge from the UMLS to construct 

a graph and then select summary sentences based on node clustering. 

Biomedical	  Figure	  Summarization	  and	  User	  Interfacing	  

Futrelle [212] proposed the idea of diagram summarization.  He described the challenges 

related to summarizing figures and emphasized the importance of captions and referring 

text. Bhatia and Mitra [213] applied a supervised approach to summarize document 

objects such as figures, tables, and algorithms on a set of 290 document elements. Wu 

and Carberry [214] identified relevant paragraphs for images in news domain articles.  

We developed a pilot summarization system, FigSum [168] for the biomedical domain. 

FigSum first classifies sentences into the introduction, methods, results, and discussion 

categories using a supervised machine-learning classifier [215]. Each sentence is then 

scored based on its TF × IDF weighted cosine similarity with the figure caption and the 

article’s central theme. The top-scoring sentence in each category is included in the 

summary. The FigSum system is integrated into our larger figure search system 

(http://figuresearch.askhermes.org). An online survey revealed that 65.2% of participants 

found that FigSum summaries improved figure comprehension [172]. The current study 

explores additional figure summarization methods and performs an intrinsic and extrinsic 

evaluation of these approaches. In this dissertation we compare the performance of our 

approaches with supervised and unsupervised summarization approaches. 

We performed [216] an evaluation of the novel user interface built to allow bioscience to 

efficiently access all the figures in an article and emphasize the most important figure. 
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All the figures that appear in the article were shown as thumbnails, and the most 

important figure is enlarged. The evaluation showed that 92% of the bioscience 

researchers preferred the user interface. Figure 12 shows a snapshot of this user interface 

that incorporates the FigSum summary. The interface is divided into two panes. The left 

pane presents the article title, authors, journal information, abstract, and thumbnails of all 

the figures. When the user selects a figure thumbnail, the right pane displays the enlarged 

figure along with its caption and summary.	  

	  

Figure 12: Snapshot of the interface incorporating FigSum system. 

Evaluation	  

Evaluation is important for all NLP tasks. Mani [217] discussed various summarization 

evaluation criteria, including coherence, informativeness, relative utility, and relevance of 

the summary. Other studies have used evaluation methods that include word similarity 

measures (cosine similarity) [218], overlap of a sequence of words that includes n-grams 

(sequences of n-word tokens) and longest common subsequence [219,220], and the Bleu 
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[221] machine translation evaluation measure [222] for summarization. The Document 

Understanding Conference adopted the ROUGE (Recall-Oriented Understudy for Gisting 

Evaluation) package for content-based evaluation [223]. Among different summarization 

evaluation metrics [224,225], the ROUGE score is widely used and is calculated based on 

co-occurrence between the gold standard and the summary generated. All aforementioned 

evaluation approaches can be classified as intrinsic evaluation as the summary generated 

by the system is evaluated against a gold standard summary generated by human. 	  

A number of studies [226,227] have discussed extrinsic task-driven evaluation of 

summarization that measure the usefulness of summaries for specific tasks such as 

question answering and comprehension [228,229], information retrieval [230-232] and 

document categorization [233,234]. Studies have [235,236] evaluated summarization 

systems on the user’s ability to find answers quickly while satisfying information needs. 

Murray et al. [237] performed an extrinsic evaluation of speech summarization for 

understanding how decisions were made in a decision audit task.	  

In biomedical domain, Fizman et al. [238] evaluated the summaries and determined its 

usefulness in helping clinicians to provide quality patient care. Yang et al. [239] 

performed a hybrid evaluation, partway between intrinsic and extrinsic system 

evaluation, to suggest the usefulness of a gene summarization system for a micro array 

analysis.	  

In the present study, we perform an extrinsic evaluation of the best performing version of 

FigSum+, the system that extracts paragraphs that contain figure-referring sentences. The 

evaluation focuses on measuring the effectiveness of the systems to summarize figures 

and improve article comprehension while reducing user information seeking overload.	  
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Methods	  

Intrinsic	  Evaluation	  

Features	  used	  for	  Summarization	  	  

We explored a number of features to build figure summarization systems.  

1) Similarity and IR based features  

a) Caption similarity feature – the cosine similarity value between each of the 

candidate sentences in the full text and the figure caption.  

b) Title similarity feature – the cosine similarity between each of the candidate 

sentences in the full text and the article title.  

c) Reference sentence similarity feature – the cosine similarity between each of 

the candidate sentences and the sentences referring to the figure.  

d) TFIDF feature – the text association between each of the candidate sentences in 

the full text and the figure caption is computed by calculating the TF × IDF vector 

for every candidate sentence and figure caption. A score is calculated as the 

cosine similarity of the TF × IDF vectors of candidate sentences and the figure 

caption.  

2) Reference Features  
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a) Figure reference sentence feature – this feature represents if the sentence 

contains a figure mention (i.e., a sentence that incorporates figure reference cues 

such as Fig. X).  

b) Figure reference paragraph feature – this feature represents if the sentence 

belongs to a paragraph that has a figure mention.  

3) Hybrid feature – we first identify paragraphs in the full text article that contains figure 

referring sentences. We apply MEAD [194], a centroid-based text summarizer as 

described earlier on these sentences that are a part of the figure-referring paragraphs. The 

n top scoring sentences are selected as summary sentences.  

4) Position  

a) Distance from start feature - the position of the sentence from the start of the 

article.  

b) Distance from end feature - the position of the sentence from the end of the 

article.  

c) Distance from reference sentence feature – this is a binary feature that indicates 

if the candidate sentence is within 10 sentences of the reference sentence.  

5) Sentence length feature – the length of the sentence.  

6) Cue words and phrase feature – authors of articles use certain cue words and phrases to 

describe document elements such as figures, as discussed in [213]. We use the list of 140 
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cue words and phrases listed in [213] and add the presence or absence of these cue words 

in the sentence as a binary feature.  

Figure	  Summarization	  Systems	  

In this section we describe our unsupervised FigSum+ methods and other unsupervised 

and supervised systems we built for comparison with our system, FigSum+.  

FigSum+ Systems  

Figure 13 shows the general pipeline of the FigSum+ systems. Given a full text article, 

the Text Extractor module extracts individual sentences from the article. If the article is 

in XML file format, an XML parser module will process the text to extract sentences 

from the XML file. If the article is in PDF format, the PDF-to-text converter 

(PDFTextStream6) tool extracts the text from the PDF document and then we split the 

text into individual sentences using an in-house sentence splitter that splits sentences by 

determining sentence boundaries such as periods. The figure summarization module 

utilizes various unsupervised techniques described below to summarize figures in the 

article and generate a summary for each figure.  

We describe five different implementations of FigSum+ systems based on the technique 

used in the figure summarization module. Each implementation of the FigSum+ system 

differs by including one of the following five figure summarization modules: 1a, 1b, 2a, 

2b, or 3. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

6 http://snowtide.com 
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(1) IR-based approaches: we explore two IR-based approaches for summarization. 

(a) Similarity – we compute the value of the caption similarity feature and present the 

top scoring sentences as the summary for the figure. 

(b) TFIDF – we compute the value of the TFIDF feature and present the top-scoring 

sentences as the summary for the figure.. 

(2) Surface-cue approaches: We identify summary content using surface cues. 

(a) SurfaceCue – extracts all figure referring sentences in the full text and presents 

them as the summary for the figure. 

(b) Paragraph – extracts all paragraphs containing figure referring sentences and they 

are presented as a summary of the figure. 

(3) Hybrid – we compute the value of the hybrid feature and present the top scoring 

sentences as the figure summary. 
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Figure 13: The general pipeline of the figure summarization systems. Each 
implementation of the FigSum+ system differs by including only one of the five modules 
shown in the Figure Summarization component above: Similarity, TFIDF, SurfaceCue, 
Paragraph, or Hybrid.  

Unsupervised Baseline Systems  

We built three baseline unsupervised systems to compare the performance of FigSum+ 

systems: RandomSent, RandomPara, and MEAD. The RandomSent system randomly 

selects n sentences from the article as the summary for the figure. The RandomPara 

system randomly selects n paragraphs and extracts the first sentence of all the randomly 

selected paragraphs as the summary for the figure. For the last baseline system, MEAD, 

we applied the centroid summarizer MEAD to the entire full text article and select n top 

scoring sentences as the summary for each figure.  

Supervised Baseline Systems  

In FigSum+, we use five features, namely: caption similarity feature, TFIDF feature, 

figure reference sentence feature, figure reference paragraph feature and hybrid feature. 
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We explored each of these individually and trained baseline supervised machine-learning 

models to generate figure summaries using each of these features. Each individual feature 

was used with both a naive bayes (NB) and Support Vector Machine (SVM) classifier, 

thus resulting in 10 baseline supervised systems: NBSimilarity, NBTFIDF, 

NBSurfaceCue, NBParagraph, NBHybrid, SVMSimilarity, SVMTFIDF, SVMSurfaceCue, 

SVMParagraph and SVMHybrid.  

Unsupervised State-of-the-Art System  

We also implemented the state-of-the-art unsupervised system, FigSum, which 

summarizes the figure as described earlier, for performance comparison with FigSum+.  

Supervised State-of-the-Art System  

We implemented the state-of-the-art system described in [213] by building two systems, 

NBSOTA and SVMSOTA, using the NB and SVM techniques respectively, with the 

features described in [213]. The features used are: figure reference sentence, figure 

reference paragraph, caption similarity, reference sentence similarity, distance from 

reference sentence and cue words.  

We then extended the state-of-the-art system and build two more systems, NBSOTA+ and 

SVMSOTA+ using NB and SVM respectively, that incorporate all the features described 

above.  
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Evaluation	  Metrics	  

We calculate the microaveraged (as datasets are of different sizes) recall (R), precision 

(P), and F1 (F) scores to evaluate the summaries generated by each of the FigSum+ 

implementations described in the figure summarization systems section. Recall is defined 

as the ratio of the number of sentences correctly identified by the system to the total 

number of sentences in the gold standard; precision is defined as the ratio of the number 

of sentences correctly identified by the system to the total number of sentences identified 

by the system; and the F1 score is the harmonic mean of recall and precision: 

      (1) 

    (2) 

    (3) 

We also compute the ROUGE score using the parameters established by DUC 2007 

[240]. Eq (4) gives the formula to calculate ROUGE-N, where n stands for the length of 

the n-gram, gramn, and Countmatch(gramn) is the maximum number of n-grams co-

occurring in a candidate summary and a set of reference summaries. For every sentence 

in the summary generated by the FigSum+ implementation, we calculate the ROUGE 

score against every sentence in the gold standard using the formula in Eq (4) and retain 

the best scores. Then we calculate the average of the best ROUGE score sentences for 
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every figure: ROUGE-1 (R1) compares summaries based on the co-occurrence of 

unigrams (single words), ROUGE-2 (R2) compares summaries based on the co-

occurrence of bigrams (two consecutive words), and ROUGE-SU4 (RSU4) compares 

summaries based on the co-occurrence of skip bigrams with a maximum gap length of 

four [223]. 

   (4) 

Evaluation	  Data	  

We evaluate our FigSum+ the approaches on a set of 19 full-text biomedical articles. 

Nine articles were randomly selected from our BioDRB corpus, a collection of 24 

GENIA full-text articles fully annotated by us for discourse connectives and relations 

[132]. Four biologists with expertise in the biology domain each selected either two or 

three additional articles from various biomedical journals, for a total of 10 additional 

articles. The combined dataset of 19 articles comprises 94 figures and is made publicly 

available on figshare.com. The five FigSum+ implementations are evaluated against the 

following two gold standards developed on these full-text articles; we selected two gold 

standards built using different approaches to show the robustness and efficacy of the five 

different techniques to figure summarization: 

a) FigSumGS1 – a gold standard of 94 figures from 19 articles from various biomedical 

journals was created as follows: four biologists (B1 – B4) read two papers each, for a 
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sub-total of 8 articles, and then selected sentences within each article that summarized 

figure content. In addition, two (B1 – B2) of the four biologists, read and selected 

sentences from 11 additional articles, thus yielding a total of 19 articles in the gold 

standard. The two biologists (B1 and B2) identified 303 and 383 sentences, 

respectively. They had an inter-annotator agreement (IAA) of 0.68 Cohen’s κ value 

on the subset of 11 articles, which indicates a fair agreement between the annotators. 

The gold standard consists of a total of 678 sentences from 19 articles with a 

microaverage of 7.21 sentences per figure and a macroaverage of 7.73 sentences per 

figure.  

b) FigSumGS2 – a second gold standard consisting a subset of 17 articles from the 19 

articles collected in (a) was created using the guideline that was developed to evaluate 

the FigSum system [168]. Seven annotators with advanced degrees (MS and above) 

selected three to four sentences that best described the background of the figure, the 

methods used to generate the figure, the outcome of the figure, and the conclusion 

inferred from the figure on the subset of 17 articles consisting of 84 figures; this 

subset was chosen from the 19 articles due to constraints of manual annotation. 

Hence, for each figure, a summary consisting of 12 to 16 sentences was obtained. All 

seven annotators together identified 869 unique sentences from the 17 articles with a 

microaverage of 10.34 unique sentences per figure and a macroaverage of 10.44 

unique sentences per figure. 
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Table 22 shows the number of sentences and figures that appear in each article, the 

average number of unique sentences selected per figure and the total number of sentences 

annotated for both gold standards.  

Table 22: Statistics of FigSumGS1 and FigSumGS2 gold standards 

FigSumGS1 FigSumGS2 Article # of 
sents 

# of 
figs 

Avg # of 
unique sents 

per fig 

# of sents 
annotated 

Avg # of 
unique sents 

per fig 

# of sents 
annotated 

1 190 3 5.0 15 11.7 35 
2 144 3 18.0 54 11.7 35 
3 173 7 5.0 35 8.0 56 
4 160 5 8.6 43 10.2 51 
5 172 4 12.8 51 10.5 42 
6 140 5 8.4 42 10.8 54 
7 281 9 7.8 70 11.8 106 
8 137 9 4.7 42 6.3 57 
9 142 5 6.2 31 11.2 56 

10 87 5 6.4 32 8.4 42 
11 162 6 6.0 36 9.7 58 
12 34 2 7.5 15 6.0 12 
13 50 3 8.0 24 11.0 33 
14 138 3 5.0 15 12.7 38 
15 119 3 12.3 37 11.0 33 
16 120 5 9.2 46 12.4 62 
17 152 7 5.1 36 14.1 99 
18 157 4 6.2 25 - - 
19 184 6 4.8 29 - - 

Extrinsic	  Evaluation	  

Novel	  User	  Interface	  

To facilitate both evaluations, we built a user interface using standard Java servlets, 

which presents information about the article as described earlier. In this study, we 

implement four different user interfaces: 	  
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1. FigSumInt – interface with title, abstract, and figures linked to summaries 

generated from FigSum system 

2. FigSum+Int – interface with title, abstract, and figures linked to summaries 

generated from FigSum+ system 

3. SimpleInt – interface with title, abstract, figures and captions, but no 

summarization system 

4. FullTextInt – interface with the full-text pdf of the article only 

Evaluation	  Study	  1:	  Comparative	  Evaluation	  of	  FigSum	  and	  FigSum+	  Interfaces	  

We evaluate the interface incorporating FigSum+ (FigSum+Int) alone, and then in 

comparison to the interface using FigSum (FigSumInt), measuring the efficiency and 

usefulness of the figure summary for comprehending figures. For this evaluation, we 

recruited authors who evaluated how well each figure summarization system performed. 

The following evaluations were performed:	  

(i) FigSum+Int evaluation – article authors use the interface and rank it and the 

summary generated by FigSum+ on a Likert-type scale for the criteria defined in 

Table 23.  

(ii) FigSum+Int vs. FigSumInt evaluation – article authors use the FigSumInt and 

FigSum+Int interfaces and, for the evaluation criteria defined in Table 23, either 

rate one of them as superior to the other or both as being equally good, and the 

authors provide comments. 
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Study Conditions, Subjects, and Implementation 

To estimate whether the initial figure enlarged in the right pane of the interface has any 

effect on content comprehension, we evaluate the summaries under two different 

conditions. 

(a) Enlarge a random figure from the list of figures published in the article. 

(b) Enlarge the most important figure in the article. 

For condition (b), the most important figure in the article is determined by a figure ranker 

[216]. The figure ranker ranks the figure on the notion of its degree of centrality to the 

article. The centrality of the figure is calculated via the similarity between the full-text 

article and the figure. For each of evaluations (i) and (ii) described above, we evaluate 

conditions (a) and (b), resulting in four evaluations: 

1. FigSum+Int evaluation with random figure enlarged initially – (i)(a) 

2. FigSum+Int evaluation with most important figure enlarged initially – (i)(b) 

3. FigSum+Int vs. FigSumInt evaluation with random figure enlarged initially – 

(ii)(a) 

4. FigSum+Int vs. FigSumInt evaluation with most important figure enlarged 

initially – (ii)(b) 

We apply FigSum and FigSum+ on the PubMed Central article collection. As authors of 

the articles best understand the article, requests were sent to 3000 randomly selected 

corresponding authors, i.e., 750 requests for each of the four evaluations.  
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Table 23: Evaluation criteria for comparative interface evaluation 

a) Overall quality of figure summary 
b) Helpfulness of summary to understand the figure with caption 
c) Relevance of summary to figure 
d) Conciseness and coverage of information related to figure by summary	  	  

Task-‐driven	  Cognitive	  Evaluation	  

In this section, we describe the task-driven, randomized, controlled cognitive evaluation 

used to compare the efficacy and accuracy for comprehension of the article’s main 

content using the four interfaces described in previous section: FigSumInt, FigSum+Int, 

SimpleInt, and FullTextInt.  For this evaluation, our study recruited 16 users and used 16 

articles. Each of the article authors prepared a question that assessed the important aspect 

of the article. All 16 users then read each of the 16 articles and responded to author 

questions for that article. 	  

Gold Standard 

We emailed authors of articles published in The Journal of Biological Chemistry and 

Proceedings of the National Academy of Sciences. We asked authors to respond to the 

following questions “What is the most important research question that you are trying to 

address in your article?” and “What is the answer for this question?” The responses from 

16 randomly selected authors were used for the evaluation task. 

Study Design, Subjects and Procedure 

We designed a 16 × 16 Latin square evaluation to counterbalance the interfaces. We 

recruited 16 graduate students and researchers (9 women and 7 men, aged 25 to 35; 

14 Asians and 2 Caucasians) from the Department of Biology at the University of 
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Wisconsin – Milwaukee to participate in the study. There were nine early stage doctoral 

students, four advanced doctoral students, two postdoctoral fellows, and one lab research 

manager. All individuals had experience using information systems like PubMed to 

access biomedical articles. Each user was given a $20 Amazon gift card for participating 

in the study.	  

Each of the 16 users evaluated 16 articles, resulting in a 16 × 16 Latin square as shown in 

Table 29. The users were presented with a question page containing all 16 questions, a 

link to an interface, and a text box to provide answer for each question. Each question 

was assigned to one of the four interfaces as determined by the Latin square design. All 

evaluation studies were conducted in December 2011. 

Users were under no time constraints and were allowed to copy and paste text from the 

interface into their answer. They could skip to the next question and come back to it later. 

If users were not able to find the answer, they were to respond that the information 

provided was not sufficient. There were a total of 256 responses (16 users × 16 

questions); users took 76.75 ± 27.65 min on average to complete the task.	  

We recorded user interaction and activity, including user comments, using Morae 

usability software. Morae software has the ability to monitor and record a wide range of 

events and activities performed while the user interacts with the system, including mouse 

clicks, text entry, browsing behavior, change of Web page, and moving between various 

windows. Morae provides analysts the ability to code, timestamp, and categorize events. 	  
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Analysis 

To evaluate the quality of answers provided by the participants, we requested the first 

authors of the articles to rate the answers on a scale of 1 to 4, with 4 being “very good” 

and 1 being “very poor.” Eight out of 16 authors responded with evaluation scores. The 

remaining responses were evaluated similarly by a bioinformatician. Later, we performed 

cognitive evaluation as defined in [235,241,242] by identifying goals and actions 

common to all the interfaces. Table 24 shows a list of tasks performed by subjects. We 

measured time spent, number of actions, quality of answers, and analyzed participant 

comments thematically. The novel user interface design required users to make a number 

of clicks to browse through the figures. FullTextInt required users to scroll to browse 

information. Scrolling and clicks were counted as distinct actions. The number of actions 

and time spent included browsing through the interface, answering the question, adjusting 

the browser, and copying and pasting the answer. An office assistant coded the 

recordings as defined in Table 24. It took five to seven hours to code each subject’s 

recording. 
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Table 24: Description of the task performed by the subjects to answer questions 

Task Definition 
Reading Question The task begins when user starts a question and ends when 

user completes responding to the question and moves on to 
next question. 

User Comment The task begins when user is reading out loud or commenting 
on usability of interface. 

Reading Article The task begins when user starts to examine the interface to 
find answers and ends when user leaves the interface.  

Adjust browser The task begins when the user is adjusting the browser with 
actions such as expanding, moving, repositioning, or closing 
browser and ends when user returns to other task. 

View Title The task begins when user starts viewing the title and ends 
when user moves on to a different part of the article or away 
from the article to answer the question. 

View Abstract The task begins when user starts viewing the article abstract 
and ends when user moves on to a different part of the article 
or away from the article to answer the question 

View Full text The task begins when user starts viewing the article full text 
except for title and abstract and ends when user moves to title, 
abstract, or away from the article to answer the question. 

View Figure The task begins when the user starts viewing a figure, 
including its captions and summary. 

Scroll The task begins when the user is navigating the document too 
quickly and unlikely be performing any of the previously 
defined actions. 

Copy/paste The task begins when user starts to copy information from the 
interface and ends after the information is pasted. 

Return to Question 
Page 

The task begins when user returns to question page that 
contains list of questions and box for answers and ends when 
user navigates to another page. 

Answer the Question The task begins when user starts entering text in answer box 
and ends when user navigates away from answer box. 

Searching for text The task begins when user starts searching for text in the 
interface using Cntl + F option and ends when user finished 
searching. 

Encountered User 
error 

The task begins when user encounters a browser-related error 
due to problems with internet connection or takes significant 
time (>1 second) to navigate the interface or question page. 
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Results	  

Intrinsic	  Evaluation	  

The intrinsic evaluation compares the performance of all five FigSum+ implementations 

against baseline and state-of-the-art unsupervised and supervised systems. Table 25 and 

Table 26 show the average performance of the various systems we built for 

summarization on the FigSumGS1 and FigSumGS2 datasets respectively. We chose the 

value of top n to be equal to the average number of sentences per figure in the gold 

standard. Hence, n is equal to 8 and 11 sentences per figure for FigSumGS1 and 

FigSumGS2 datasets respectively.  

Baseline	  Systems	  Result	   

For unsupervised baseline case, the RandomSent system had an F1 score performance of 

0.06 and 0.08 and R1 scores of 0.28 and 0.32 on FigSumGS1 and FigSumGS2 datasets. 

The RandomPara system had an F1 score performance of 0.01 on both gold standards 

and R1 scores of 0.22 and 0.32 on FigSumGS1 and FigSumGS2 datasets respectively. 

The MEAD system achieved an F1 score performance of 0.05 and 0.07 and R1 scores of 

0.30 and 0.36 on FigSumGS1 and FigSumGS2 datasets respectively. Whereas the state-

of-the-art unsupervised method FigSum system had an F1 score performance of 0.22 and 

0.18 and R1 score of 0.51 and 0.55 on FigSumGS1 and FigSumGS2 datasets respectively.  

For supervised baseline case, all the implementations of the baseline SVM systems, 

except for the system using the hybrid feature, failed to generate summaries. Both the 
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NB- and SVM-based systems using the hybrid feature, NBHybrid and SVMHybrid, 

performed similarly and had the best baseline F1 score performance of 0.49 and 0.26 and 

R1 performance of 0.95 and 0.75 on the FigSumGS1 and FigSumGS2 datasets 

respectively.  

State-‐of-‐the-‐Art	  Systems	  Result	   

We compared our FigSum+ systems with the unsupervised FigSum system. The FigSum 

system had an F1 score performance of 0.22 and 0.18 and R1 score of 0.51 and 0.55 on 

FigSumGS1 and FigSumGS2 datasets respectively. For supervised state-of-the-art case, 

the NB-based supervised systems performed well compared to the SVM-based model 

similar to performance in article [213]. On FigSumGS1 dataset, the NB-based state-of-

the-art systems NBSOTA and NBSOTA+ had an F1 score performance of 0.53, but 

SVMSOTA+ achieved the second best R1 score of 0.95. Similarly, on FigSumGS2 

dataset, NBSOTA and NBSOTA+ had the best F1 score performance of 0.38, and 

SVMSOTA+ achieved the best R1 score of 0.76. The results of the FigSum and Bhatia 

and Mitra systems are shown in italics in Table 25 and Table 26. 

Our	  FigSum+	  Systems	  Result	   

The SurfaceCue implementation of FigSum+ achieves the highest precision on both gold 

standards (0.96 and 0.63 on FigSumGS1 and FigSumGS2 datasets respectively) and the 

Paragraph implementation results in the highest recall (0.82 and 0.42 on FigSumGS1 and 

FigSumGS2 datasets respectively) and the highest F1 score (0.66 and 0.41 on FigSumGS1 

FigSumGS2 datasets respectively). The Hybrid implementation performs second best, 
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yielding F1 scores of 0.62 and 0.39, respectively, on FigSumGS1 and FigSumGS2 

datasets.  

Table 25: Average performance and ROUGE scores of (average ± standard deviation) of 
figure summarization techniques on FigSumGS1 dataset. Bold indicates the best 
performance. 

  System Precision Recall F1 score R1 R2 RSU4 
RandomSent 0.06±0.09 0.06±0.12 0.06±0.09 0.28±0.09 0.11±0.10 0.13±0.09 

RandomPara 0.04±0.18 0.01±0.05 0.01±0.05 0.22±0.16 0.07±0.18 0.08±0.17 

U
ns

up
er

vi
se

d 

MEAD 0.05±0.09 0.06±0.11 0.05±0.08 0.30±0.08 0.12±0.09 0.14±0.09 

NBSimilarity 0.48±0.18 0.15±0.12 0.20±0.12 0.50±0.32 0.40±0.31 0.40±0.31 
SVMSimilarit

y  
- - - - - - 

NBTFIDF  - - - - - - 
SVMTFIDF  - - - - - - 

NBSurfaceCu
e  

0.44±0.11 0.17±0.20 0.18±0.15 0.57±0.19 0.45±0.24 0.46±0.24 

SVMSurface
Cue  

- - - - - - 

NBParagraph  0.54±0.20 0.74±0.19 0.59±0.14 0.73±0.20 0.66±0.25 0.66±0.25 
SVMParagra

ph  
- - - - - - 

NBHybrid 0.80±0.19 0.37±0.15 0.49±0.15 0.95±0.13 0.94±0.17 0.94±0.17 

B
as

el
in

e 

St
at

e-
of

-t
he

-a
rt

 
Su

pe
rv

is
ed

 

 

SVMHybrid 0.80±0.19 0.37±0.15 0.49±0.15 0.95±0.13 0.94±0.17 0.94±0.17 

U
ns

up
er

vi
se

d FigSum 0.28±0.24 0.19±0.19 0.22±0.19 0.51±0.18 0.36±0.22 0.37±0.21 

NBSOTA 0.44±0.15 0.74±0.17 0.53±0.12 0.63±0.12 0.53±0.15 0.53±0.14 
 SVMSOTA 0.58±0.15 0.17±0.20 0.23±0.22 0.41±0.47 0.39±0.47 0.39±0.47 

NBSOTA+ 0.47±0.16 0.70±0.19 0.53±0.13 0.67±0.16 0.57±0.20 0.57±0.20 

St
at

e-
of

-t
he

-a
rt

 

Su
pe

rv
is

ed
 

SVMSOTA+ 0.78±0.17 0.34±0.14 0.47±0.14 0.95±0.14 0.93±0.18 0.93±0.18 

 Similarity 0.28±0.20 0.38±0.28 0.30±0.20 0.52±0.17 0.38±0.20 0.38±0.20 
TFIDF 0.30±0.25 0.34±0.24 0.30±0.22 0.51±0.21 0.38±0.25 0.38±0.24 

SurfaceCue 0.96±0.13 0.41±0.22 0.54±0.21 0.97±0.07 0.97±0.10 0.97±0.10 
Paragraph 0.64±0.27 0.82±0.23 0.66±0.20 0.74±0.20 0.67±0.25 0.68±0.24 

O
ur

 S
ys

te
m

 

Fi
gS

um
+ 

 

Hybrid 0.67±0.28 0.64±0.27 0.62±0.24 0.77±0.19 0.71±0.25 0.71±0.24 
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The ROUGE score evaluation of SurfaceCue resulted in the highest R1, R2, and RSU4 

scores, all above 0.97, on FigSumGS1 dataset. Similarly, SurfaceCue resulted in the 

highest R1 score of 0.76 on FigSumGS2 dataset.  

	  

Table 26: Average performance and ROUGE scores (average ± standard deviation) of 
figure summarization techniques on FigSumGS2 dataset. Bold indicates the best 

performance. 

  System Precision Recall F1 score R1 R2 RSU4 

RandomSent 0.08±0.08 0.09±0.11 0.08±0.09 0.32±0.08 0.15±0.09 0.16±0.08 
RandomPara 0.04±0.16 0.01±0.04 0.01±0.05 0.32±0.08 0.14±0.10 0.16±0.09 

U
ns

up
er

vi
se

d 

MEAD 0.08±0.10 0.07±0.09 0.07±0.09 0.36±0.08 0.17±0.10 0.19±0.10 

NBSimilarity 0.42±0.14 0.10±0.08 0.14±0.08 0.48±0.28 0.36±0.25 0.37±0.26 
SVMSimilarit

y  
- - - - - - 

NBTFIDF  - - - - - - 
SVMTFIDF  - - - - - - 

NBSurfaceCu
e  

0.49±0.06 0.05±0.04 0.08±0.05 0.05±0.15 0.03±0.11 0.03±0.11 

SVMSurface
Cue  

- - - - - - 

NBParagraph  0.43±0.16 0.41±0.18 0.40±0.13 0.66±0.18 0.55±0.23 0.56±0.23 
SVMParagra

ph  
- - - - - - 

NBHybrid 0.55±0.17 0.18±0.08 0.26±0.11 0.75±0.25 0.66±0.33 0.66±0.33 

B
as

el
in

e 

St
at

e-
of

-t
he

-a
rt

 

Su
pe

rv
is

ed
 

 

SVMHybrid 0.55±0.17 0.18±0.08 0.26±0.11 0.75±0.25 0.66±0.33 0.66±0.33 

U
ns

up
er

vi
se

d FigSum 0.31±0.20 0.13±0.10 0.18±0.13 0.55±0.14 0.40±0.18 0.41±0.18 

NBSOTA 0.37±0.14 0.43±0.19 0.38±0.13 0.59±0.11 0.46±0.13 0.47±0.13 
SVMSOTA 0.54±0.12 0.10±0.11 0.15±0.15 0.41±0.42 0.37±0.41 0.37±0.41 

NBSOTA+ 0.37±0.13 0.43±0.20 0.38±0.13 0.60±0.15 0.47±0.18 0.47±0.18 

St
at

e-
of

-t
he

-a
rt

 

Su
pe

rv
is

ed
 

SVMSOTA+ 0.54±0.16 0.18±0.12 0.26±0.11 0.76±0.25 0.67±0.33 0.67±0.33 

Similarity 0.31±0.16 0.28±0.16 0.29±0.15 0.55±0.13 0.40±0.16 0.41±0.15 
TFIDF 0.27±0.22 0.20±0.14 0.22±0.16 0.51±0.18 0.36±0.22 0.36±0.21 

SurfaceCue 0.63±0.36 0.16±0.13 0.24±0.17 0.76±0.24 0.68±0.32 0.68±0.31 
Paragraph 0.51±0.24 0.42±0.22 0.41±0.17 0.66±0.18 0.56±0.22 0.56±0.22 

O
ur

 S
ys

te
m

 

Fi
gS

um
+ 

 

Hybrid 0.54±0.24 0.33±0.19 0.39±0.18 0.70±0.16 0.60±0.21 0.60±0.21 
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Extrinsic	  Evaluation	  

Comparative	  Evaluation	  Results	  

Table 27 presents the results of the comparative evaluation. As described in comparative 

evaluation section, we conducted four evaluations. Some of the values were missing, as 

the authors did not provide response to all the criteria in Table 23. 

The first two columns of Table 27 show the result of the FigSum+Int evaluation. The 

vast majority of authors either moderately or strongly agreed that FigSum+ was better for 

all four criteria, and we find no statistically significant difference between which figure 

was enlarged initially. 

The last two columns in Table 27 show the result of the FigSum+Int vs. FigSumInt 

evaluation, again comparing a random figure and most important figure enlarged initially. 

We performed chi-square analysis and obtained chi-square value (χ2) and degrees of 

freedom (df) to test statistical significance of the responses received. For both initial 

figure conditions, many authors indicated that FigSum+Int was either better or equal to 

FigSumInt on all four criteria. The chi-square analysis revealed that author responses 

were statistically significant (p < 0.05) for comparing the interfaces on all criteria for 

condition (a) random figure enlarged, whereas for condition (b), the most important 

figure enlarged, all criteria except overall quality of summary are statistically significant 

(p < 0.05). A chi-square analysis of both conditions combined (random figure and most 

important figure enlarged initially) showed that FigSum+Int is significantly better than 

FigSumInt (p < 0.05). The authors generally spoke positively about the summaries and 

the interface during the evaluation. A few of the comments are shown in Table 28. 
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Table 27: Results of the comparative summary evaluation 

FigSum+Int   FigSumInt vs. FigSum+Int System 

Random Fig Ranked Fig  Random Fig Ranked Fig 

# of requests sent 750 750  750 750 
# of responses  60 71  53 53 

Strongly agree 60.0% (36)  50.7% (36) FigSum 
better 

17.0% (9) 36.5% (19) 

Moderately 
agree 

 

30.0% (18) 43.7% (31) 
Both are 
same 

26.4% (14) 23.1% (12) 

Neither agree 
nor disagree 

 

3.3% (2) 1.4% (1) 
FigSum+ 
better 

56.6% (30) 40.4% (21) 

Moderately 
disagree 

3.3% (2) 4.2% (3) 

O
ve

ra
ll 

Q
ua

lit
y 

G
oo

d 

Strongly 
disagree 

3.3% (2) 0.0% (0) 
(χ2,df) 

(13.61,2) (2.57,2) 

Strongly agree 51.7% (31) 43.7% (31) FigSum 
better 

22.0%(11) 36.5% (19) 

Moderately 
agree 

33.3% (20) 42.2 (30) Both are 
same 

24.0% (12) 13.5% (7) 

Neither agree 
nor disagree 

3.3% (2) 7.0% (5) FigSum+ 
better 

54.0% (27) 50.0% (26) 

Moderately 
disagree 

8.3% (5) 2.8% (2) 

Su
m

m
ar

y 
H

el
pf

ul
 

Strongly 
disagree 

3.3% (2) 1.4% (1) 
(χ2,df) 

(9.63,2) (10.64,2) 

Strongly agree 51.7% (31) 35.2% (25) FigSum 
better 

13.7% (7) 37.3% (19) 

Moderately 
agree 

30.0% (18) 40.8% (29) Both are 
same 

39.2% (20) 13.7% (7) 

Neither agree 
nor disagree 

8.3% (5) 7.0% (5) FigSum+ 
better 

47.1% (24) 49.0% (25) 

Moderately 
disagree 

10.0% (6) 12.7% (9) 

Su
m

m
ar

y 
R

el
ev

an
t 

Strongly 
disagree 

1.7% (1) 1.4% (1) 
(χ2,df) 

(9.29,2) (9.88,2) 

Strongly agree 50.0% (30) 33.8% (24) FigSum 
better 

19.2% (10) 38.0% (19) 

Moderately 
agree 

28.3% (17) 45.1% (32) Both are 
same 

30.8% (16) 8.0% (4) 

Su
m

m
ar

y 
C

on
ci

se
 

Neither agree 
nor disagree 

13.3% (8) 11.3% (8) FigSum+ 
better 

50.0% (26) 54.0% (27) 

 

Moderately 
disagree 

5.0% (3) 7.0% (5) 
(χ2,df) 

(7.53,2) (16.34,2) 
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Table 28: Comments received from evaluators who were first authors of articles 

Positive Comments:  
Indeed, this is a great tool and I found it useful! 
It is really very convenient for the readers. I feel it very helpful for the researchers. 
It is excellent way of representing the summary of the events related to the figures in the article 
as well as brings the best out for the reader to comprehend. It is very useful and will give a new 
dimension to writing and publishing one's scientific article. The summary is concise and 
informative. 
Negative Comments: 
Summary needs to be little more informative regarding the figure by adding the observation & 
result of the figure. 

	  

Task-‐Driven	  Cognitive	  Evaluation	  Results	  

The excerpts below illustrate the coding process followed to characterize participant 

actions. Later, we report time spent, number of actions, and quality of answer for all four 

interfaces evaluated, as described in the task-driven cognitive evaluation section. Table 

29 below shows the Latin square design used in the study. Each cell contains the interface 

the user was presented and the score assigned by the author/bioinformatician for the user 

response. 

Illustration of Coding the Task 

We recorded the participant’s interaction for all 16 questions. The following excerpts 

show the process of coding the Morae recordings for each question based on the interface 

they received.  

 

Strongly disagree 1.7% (1) 1.4% (1)    
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Table 29: Latin square design. Users were assigned 16 articles. Each user was presented 
with one of the four interfaces. Each cell shows the interface presented to user and the 
score assigned to the user response on a scale of 1 to 4, with 4 being “very good” and 1 

being “very poor.” A – FullTextInt, B – FigSumInt, C – SimpleInt, D – FigSum+Int 

Q
U 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 A 
3 

B 
2 

C 
4 

D 
2 

C 
2 

D 
4 

A 
3 

B 
2 

A 
3 

B 
2 

C 
4 

D 
2 

C 
1 

D 
1 

A 
2 

B 
4 

2 B 
3 

C 
3 

D 
3 

A 
1 

D 
2 

A 
3 

B 
4 

C 
3 

B 
2 

C 
2 

D 
3 

A 
1 

D 
4 

A 
1 

B 
3 

C 
4 

3 C 
4 

D 
4 

A 
4 

B 
3 

A 
2 

B 
3 

C 
1 

D 
3 

C 
1 

D 
1 

A 
4 

B 
3 

A 
4 

B 
3 

C 
4 

D 
4 

4 D 
2 

A 
1 

B 
4 

C 
2 

B 
2 

C 
2 

D 
4 

A 
2 

D 
1 

A 
2 

B 
2 

C 
3 

B 
1 

C 
1 

D 
2 

A 
4 

5 D 
3 

A 
1 

B 
1 

C 
3 

C 
3 

D 
1 

A 
2 

B 
3 

D 
1 

A 
3 

B 
2 

C 
4 

A 
4 

B 
4 

C 
2 

D 
1 

6 A 
2 

B 
3 

C 
3 

D 
1 

D 
2 

A 
4 

B 
3 

C 
2 

A 
2 

B 
3 

C 
2 

D 
1 

B 
1 

C 
2 

D 
2 

A 
4 

7 B 
4 

C 
4 

D 
3 

A 
1 

A 
1 

B 
3 

C 
4 

D 
1 

B 
3 

C 
2 

D 
1 

A 
1 

C 
1 

D 
2 

A 
4 

B 
4 

8 C 
4 

D 
4 

A 
4 

B 
1 

B 
2 

C 
3 

D 
2 

A 
2 

C 
1 

D 
3 

A 
2 

B 
4 

D 
4 

A 
1 

B 
2 

C 
4 

9 B 
1 

C 
4 

D 
4 

A 
1 

C 
2 

D 
4 

A 
2 

B 
3 

C 
1 

D 
1 

A 
1 

B 
2 

C 
1 

D 
1 

A 
1 

B 
4 

10 C 
1 

D 
4 

A 
2 

B 
1 

D 
4 

A 
2 

B 
4 

C 
1 

D 
1 

A 
1 

B 
4 

C 
4 

D 
4 

A 
3 

B 
3 

C 
4 

11 D 
1 

A 
1 

B 
3 

C 
1 

A 
1 

B 
3 

C 
3 

D 
2 

A 
1 

B 
1 

C 
2 

D 
4 

A 
4 

B 
3 

C 
2 

D 
1 

12 A 
2 

B 
1 

C 
3 

D 
1 

B 
1 

C 
3 

D 
1 

A 
1 

B 
1 

C 
2 

D 
1 

A 
3 

B 
1 

C 
1 

D 
2 

A 
1 

13 D 
3 

A 
3 

B 
3 

C 
1 

C 
1 

D 
2 

A 
2 

B 
1 

B 
2 

C 
2 

D 
1 

A 
1 

A 
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Excerpt 1 – FullTextInt: The subject had completed five questions and was over an hour 

into the session. The subject was provided the article [243] and was asked the question, 

“Does the cancer stroma vary in between cancers?” The subject was presented with 

FullTextInt to answer the question. The participant took 9.37 min to answer this question. 
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1:08:31 START Question 

1:08:40 END ACTION Return to Question interface 

1:08:41 START ACTION Article: Click on the link for article 

1:08:45 START ACTION View Abstract 

1:09:01 START ACTION Adjust browser 

1:09:04 END ACTION Adjust browser 

1:09:22 START ACTION Adjust browser 

1:09:27 END ACTION Adjust browser 

1:09:28 END ACTION View Abstract 

1:09:29 START ACTION Examine Full text 

1:11:55 COMMENT: The figures and figure summaries are better. The 

summary describes the figure. The caption should specify the complete 

explanation of type of figure. For example, if you are looking at image 

of electro micrograph of cancerous cells, the summary should specify 

that. The figure summary does it in a nice and concise way. Going 

through the full-text article is very hard. 

1:13:51 END ACTION Examine Full text 

1:13:53 START ACTION View Abstract 

1:13:56 END ACTION View Abstract 

1:13:57 START ACTION Return to Question interface 

1:14:03 END ACTION Return to Question interface 

1:14:04 START ACTION Examine Full text 

1:14:56 END ACTION Examine Full text 
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1:14:58 START ACTION View Abstract 

1:15:43 END ACTION View Abstract 

1:15:43 START ACTION Return to Question interface 

1:15:49 END ACTION Return to Question interface 

1:15:53 COMMENT: I’m trying to scroll through all the figures. 

1:15:54 START ACTION Return to Question interface 

1:15:55 END ACTION Return to Question interface 

1:15:59 START ACTION Return to Question interface 

1:15:59 START ACTION Answer Question 

1:16:08 END ACTION Answer Question 

1:16:09 END ACTION Return to Question interface 

1:16:09 START ACTION Examine Full text 

1:16:27 END ACTION Examine Full text 

1:16:27 END ACTION Article 

1:16:27 START ACTION Return to Question interface 

1:16:28 COMMENT: I think I found answers in figures. 

1:16:28 START ACTION Answer Question 
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1:18:08 END ACTION Answer Question 

1:18:09 END Question 

Excerpt 2 – FigSum+Int: The subject had completed three questions and was nearly 

eight minutes into the evaluation. The subject was provided with FigSum+Int and asked, 

“What is the mechanism of substrate transport and binding at the binding site?” for article 

[244]. The participant took 5.37 min to answer this question. 

07:45.1 START Question 

07:45.8 START ACTION Article: Click on the link for article 

07:47.7 START ACTION Adjust browser 

08:09.2 END ACTION Adjust browser 

08:09.6 START ACTION View Abstract 

10:02.8 START ACTION Copy/Paste 

10:19.5 END ACTION View Abstract 

10:21.3 START ACTION Return to Question interface 

10:22.0 START ACTION Answer Question 

10:24.7 END ACTION Copy/Paste 

10:26.0 END ACTION Answer Question 

10:26.6 END ACTION Return to Question interface 

10:27.4 START ACTION Figure 1 

10:52.7 COMMENT: Interface is good 

11:03.5 END ACTION Figure 1 

11:05.0 START ACTION Figure 2 

11:09.6 END ACTION Figure 2 
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11:10.7 START ACTION Figure 3 

11:11.2 COMMENT: The figure summary really helps. If the interface 
had a one-line heading in bold describing the figure, it 
would be useful. 

11:45.8 END ACTION Figure 3 

11:46.6 START ACTION Figure 4 

11:54.1 END ACTION Figure 4 

11:55.7 START ACTION Figure 5 

12:23.1 COMMENT: Found the answer should I copy/paste the entire 
section? 

12:41.0 START ACTION Copy/Paste 

12:43.9 END ACTION Figure 5 

12:44.1 END ACTION Article 

12:44.8 START ACTION Return to Question interface 

12:45.3 START ACTION Answer Question 

13:21.0 END ACTION Copy/Paste 

13:21.4 END ACTION Answer Question 

13:21.8 END Question 

 

The above excerpts represent the nature of interaction of the user and the features each 

system offers. The actions performed by the participants on SimpleInt and FigSumInt 

were similar to FigSum+Int, as shown in Excerpt 2. The users browse through the 

figures, captions and summary, if available. As described in Table 24, we consider 

viewing a figure, its caption and summary as one action; hence no separate action is 

described for viewing summary and caption. 
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One participant could not find the answer to the question with FullTextInt. Similarly, 

there were 4, 4, and 3 number of participants who could not answer the questions with 

SimpleInt, FigSumInt, and FigSum+Int interfaces respectively. Participants spent an 

average of 5.01 min with the interface before indicating that they could not answer the 

question.	  

	  

Table 30 reports descriptive statistics for the cognitive evaluation criteria: time spent per 

question, number of actions per question, and quality of answer. FullTextInt took the 

longest time (ave. 5.02 min), as users had to browse through the entire text. SimpleInt 

took the least time (ave. 3.35 min), as the system had minimum information (abstract + 

figures + caption). FigSumInt and FigSum+Int took 4.27 min and 4.42 min on average, 

respectively. The average number of actions and quality of answers for all the interfaces 

was 16 and 2.4, respectively. There were no statistically significant difference between 

interfaces for number of actions and quality of answers, except for time spent on 

SimpleInt (t-test, p < 0.05).	  	  

	  

Table 30: Descriptive statistics (avg ± stddev) of task-based cognitive evaluation 

System FullTextInt SimpleInt FigSumInt FigSum+Int 
Time Spent 5.02 ± 3.05 min 3.35 ± 1.58 min 4.27 ± 3.14 min 4.42 ± 2.58 min 
Number of 

Actions 15.92 ± 9.7 15.09 ± 5.4 15.8 ± 7.84 16.73 ± 7.48 

Quality of 
Answer (4 = 
very good;  

1=very poor) 

2.17 ± 1.16 2.5 ± 1.15 2.45 ± 1.09 2.34 ± 1.23 



	  

	  

	  

134	  

Discussion	  

Intrinsic	  Evaluation	  

In this study, we developed and investigated five implementations of FigSum+ to 

automatically summarize figure-associated text from the article. These approaches 

remove redundant information by extracting sentences associated with the figure and 

decrease user information overload. We evaluated the performance of these approaches 

against two sets of gold standards. The first gold standard was comprised of 94 figures 

from 19 PMC articles (FigSumGS1 dataset) and the second, a subset of 84 figures from 

17 articles in the FigSumGS1 dataset (FigSumGS2 dataset). The FigSumGS1 dataset 

showed a good IAA of 0.68 Cohen’s κ for a subset of 11 articles.  

We first compared the performance of the five FigSum+ systems against unsupervised 

baseline (RandomSent, RandomPara, and MEAD) and unsupervised state-of-the-art 

(FigSum) systems. The improvement in both F1 score and ROUGE performance of 

SurfaceCue, Paragraph, Hybrid compared to all unsupervised systems was statistically 

significant (t-test, p < 0.05) on the FigSumGS1 dataset. Whereas, for the FigSumGS2 

dataset comparison of unsupervised baseline systems, the improvement in the ROUGE 

score performance of SurfaceCue, Paragraph, and Hybrid was statistically significant (t- 

test, p < 0.05), but the F1 score performance of only Paragraph and Hybrid was 

statistically significant (t-test, p < 0.05).  

Supervised baseline systems using the same individual features as in the FigSum+ 

systems were built using the NB and SVM machine-learning techniques. All baseline 

SVM systems except for the system using the hybrid feature failed to generate figure 
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summaries on both datasets. Among the supervised baseline systems based on NB, the 

system using the reference paragraph feature achieved an F1 score performance of 0.59 

and 0.40 on FigSumGS1 and FigSumGS2 datasets respectively. The NB system using the 

hybrid feature had the highest R1 performance of 0.95 and 0.76 on FigSumGS1 and 

FigSumGS2 datasets respectively. The difference in F1 and ROUGE score performance 

of NB-based systems was statistically significant over the Paragraph and Hybrid (t-test, 

p < 0.05).  

We also compared the performance of the FigSum+ systems against state-of-the-art 

supervised systems (NBSOTA and SVMSOTA). We extended these systems (NBSOTA+ 

and SVMSOTA+) further by adding additional features. The F1 score performance of the 

Paragraph and Hybrid systems were statistically significantly better than all state-of-the- 

art supervised systems (t-test, p < 0.05). In addition, the F1 score performance of 

SurfaceCue was statistically significantly better than the SVMSOTA system (t-test, p < 

0.05) on FigSumGS1 dataset. In terms of the ROUGE score performance, SVMSOTA+ 

achieved the best scores using supervised approaches, and the difference in performance 

against the best performing SurfaceCue was not statistically significant. The systems 

performed similarly on FigSumGS2 dataset, but the improvement of state-of-the-art 

supervised systems on Paragraph and Hybrid systems were not statistically significant.  

The better performance of our unsupervised FigSum+ systems over the state-of-the-art 

supervised systems [213] (NBSOTA and SVMSOTA) could be attributed to a number of 

reasons. First, our systems were limited to the biomedical domain. Hence, these features 

could be better tuned to outperform in our domain. Second, although we used the same 

set of features as described in [213], the implementation of the similarity feature between 
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our systems and [213] was different, as we used the cosine similarity instead of the Okapi 

BM25 similarity. Third, the evaluation data used in [213] were different from the data 

used in our experiments.  

We also found that features such as TFIDF and caption similarity could be adding noise 

to the supervised machine learning, as Table 25 and Table 26 showed that the 

performance of the baseline supervised systems using these features yielded low 

performance. The superior performance of our unsupervised FigSum+ approaches 

demonstrates their ability to generate comprehensive figure summaries to enhance user 

figure comprehension.  

The FigSum+ approaches SurfaceCue, Paragraph, and Hybrid had average F1 scores 

ranging between 0.79 and 0.26, 0.84 and 0.27, and 0.82 and 0.21, respectively, for 

FigSumGS1 dataset and between 0.62 and 0.10, 0.62 and 0.24, and 0.64 and 0.21, 

respectively, for FigSumGS2 dataset. Human-generated summaries often show such 

variations as well [245,246]. The difference in performance of the various FigSum+ 

techniques can be attributed to variations in the quality of the gold standard generated by	  

the	  annotators.	  	  

Further analysis of the FigSum+ performance on FigSumGS1 dataset using Spearman 

Rank Correlation showed that there was no correlation between the F1 score and the 

length of the article or the number of figures. However, the F1 score of SurfaceCue 

showed moderate negative correlation (rho = -0.51, p < 0.05) with the average number of 

sentences per figure. For FigSumGS2 dataset, the length of the article had a moderate 

negative correlation with the performance of Paragraph (rho = -0.52, p < 0.05) and 

Hybrid (rho = -0.50, p < 0.05) implementations and the average number of sentences per 
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figure and had a negative correlation with the performance of Paragraph (rho = -0.71, p 

< 0.05) and the Hybrid (rho = -0.74, p < 0.05) implementations. This finding suggests 

that longer summaries tend to have lower quality.  

The SurfaceCue system had a near perfect ROUGE score for FigSumGS1 dataset, since 

the annotators picked figure-referring sentences as part of the gold standard. Although the 

SurfaceCue approach had a very high ROUGE score, it also had a very low recall (0.41 

for FigSumGS1 and 0.16 for FigSumGS2 datasets) compared to the Paragraph and 

Hybrid approaches. There was no correlation between the ROUGE score performance 

and the length of the article, the number of figures, or the average number of sentences 

per figure for the FigSumGS1 dataset. Similarly, there was no correlation between the 

number of figures or the average number of sentences per figure except length of the 

article, which had a negative correlation with SurfaceCue (rho = -0.72, p < 0.05) for 

FigSumGS2 dataset.  

The FigSum+ approaches performed well against two different gold standards 

constructed using different criteria, demonstrating the robustness of the approaches and 

their efficacy in rendering comprehensive figure summaries. It was also interesting that 

one article in FigSumGS1 dataset had an F1 score of 0.44 for the Hybrid approach but 

achieved an R1 score of 0.85, indicating that the quality of the summaries extracted by 

the FigSum+ implementations were as good as human-generated summaries. 	  

One of the inherent problems of extractive summaries is that they lack coherence and 

certain sentences do not make sense when taken out of context (e.g., as in the SurfaceCue 

implementation). For example, Figure 14 shows a figure along with its caption and the 

sentence extracted by the SurfaceCue method. The sentence “The summary risk 
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difference was 0.27% (−0.10% to 0.63%, P=0.15, I2=0%; fig 2) with no indication of 

publication bias in the funnel plot,” provides very little context for the figure. To 

overcome this problem, we extracted whole paragraphs where figure-referring sentences 

appeared, as in the Paragraph approach. Figure 15 shows the summary extracted by the 

Paragraph method for the figure shown in Figure 14. The summary provides more 

information and context to help understand the figure better. We believe this method 

provides users with the sentence context and improves the overall comprehension of the 

figure while reducing user information overload.	  

 

Figure 14:  A sample figure with its caption and the summary generated by SurfaceCue. 
Figure 2 appearing in article [247].  
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Figure 15: The summary generated by Paragraph method for the figure in Figure 14 

There are, however, certain limitations to the study. The current results are based on only 

94 figures from 19 biomedical articles. Although this number of figures is small, it is on a 

par with other studies that also require extensive manual annotation [213].  The results 

indicate that the FigSum+ approaches – specifically Paragraph and Hybrid – can 

generate summaries that are closely related to the information deemed important by 

experts to explain the content of figures. We also found that the FigSumGS1 had a fair 

IAA of 0.68 Cohen’s κ value. In the future, we will further refine the guideline to 

improve the IAA. Another limitation is that FigSum+ systems do not consider the 

semantics of the sentence when generating summaries. Hence, we intend to expand our 

study by annotating more articles and to use semantic information to potentially improve 

system performance.  
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Extrinsic	  Evaluation	  

We designed and developed figure summarization systems and incorporated them within 

a user interface around findings from our previous work [170] that text associated with 

figures other than the figure caption is helpful in understanding the meaning of a figure in 

full-text biomedical articles. We sought to minimize information overload and scrolling 

through the full-text article while providing maximum information in limited space using 

NLP techniques. The interface provides access to all figures published along with their 

captions and summaries. Study users indicated that the interface helped them understand 

the content easily. 

The comparative evaluation (Table 27) to evaluate the efficiency of figure summaries 

indicate that authors find the figure summary useful for comprehending figures, and 

provided positive comments (Table 28). One limitation of this evaluation is that we had 

no control over the author’s interaction with the interface. Hence, we do not know 

whether the authors examined the entire interface before evaluating the summaries. 

Further, we compared the performance of the two summarization systems in comparative 

evaluation and their effectiveness against SimpleInt and FullTextInt in a task-based 

cognitive evaluation using a 16 × 16 Latin square design (Table 29). We recorded the 

interaction of all the 16 users using Morae software and analyzed their interaction. The 

analysis and coding of these recordings was time consuming, manually intensive and 

expensive process that took five to seven hours to analyze each evaluation.  

The users liked the figure summarization systems with interface and its ease of use. 

Although all the interfaces except FullTextInt present the user with a subset of the overall 

article information, users could provide answers using the interface incorporating 
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summarization systems (Table 30). The difference in quality of answers from the various 

systems is not statistically significant. Hence, users are able to answer the questions using 

the figure summaries incorporated in the interfaces as well as if they had access to the full 

text article. All users mentioned that the summarization systems were helpful and 

reduced their effort in going through the entire article.	  

	  

Table 30 shows that users spent less time and had fewer actions on SimpleInt. This is 

because SimpleInt provides title, abstract, and figures with captions, without providing 

any additional information to find evidence for supporting answers. When more 

information is provided, users spend time further investigating the content provided via 

the interface to find evidence and corroborate their answers. Hence, users were more 

confident with their responses using FigSumInt and FigSum+Int although it increased the 

number of actions and the time spent. 

We also found that few full-text articles contain an author summary (i.e., a summary of 

the article described by the author other than the abstract). Users mentioned that the 

author summary, when available, was helpful in answering the questions. However, an 

author summary was only included in the FullTextInt. As one would expect, the article 

and the question also influenced the quality of response and time taken by subjects. For 

example, for article [248] we asked, “How do the components of Mitotic Checkpoint 

Complex (MCC) inhibit the Anaphase Promoting Complex (APC) in fission yeast?” 

Participants with FullTextInt took 11.00 ± 3.05 min to determine the answer. Whereas, 

article [249] “Is DETC an effective drug in vivo in a murine model of Leishmania 

infection?” - needed only 1.75 ± 1.05 min to answer with FullTextInt. Also, participants 
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had expertise in different areas within the biological domain. If participants encountered 

a question in their area of expertise, they so indicated and found answers quickly. 

In addition, the task-based cognitive evaluation measures the comprehension of the 

article main content but did not measure individual figure comprehension. This is 

because we hypothesize that biomedical researchers are interested in determining the 

main research question addressed in the article rather than simply comprehending the 

content of individual figures.	  

Conclusion	  

This study explored a number of supervised and unsupervised approaches to summarize 

figures in biomedical articles by aggregating sentences associated with a figure and 

removing redundant sentences. We developed the unsupervised FigSum+ systems and 

performed an intrinsic evaluation against two different gold standards constructed on 19 

PMC articles consisting of 94 figures and reported the ROUGE and F1 scores. The 

FigSum+ systems achieved the best F1 score of 0.66 and ROUGE-1 score of 0.97. We 

performed two extrinsic evaluations of summarization systems incorporated within the 

user interface for presenting article content The comparative evaluation showed that 

FigSum+ summaries accessed through the interface were superior to its predecessor, 

FigSum, in efficiency and usefulness for comprehending figures. A task-driven cognitive 

evaluation of figure summaries within the user interface showed that users could provide 

answers to questions addressing the main content of the article with summarization 

systems without the full-text articles. Therefore, figure summaries provide an approach to 
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reducing information overload while improving user information seeking behavior and 

maintaining information content. 
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Chapter	  6:	  Improving	  comprehension	  on	  EMR	  Notes	  with	  

NoteAid	  	  

In this chapter we discuss the NLP approaches we explored to aid patient comprehension 

of EHR notes so that the ADEtector tool can improve not only pharmacovigilance but 

also the patient engagement and physician and patient communication. Allowing patients 

direct access to their electronic medical record (EMR) notes has been shown to enhance 

medical understanding and may improve healthcare management and outcomes. The 

EMR notes contain a lot of domain specific jargon, complex disease names and 

abbreviations that make them difficult for patients to fathom. Therefore, we built 

NoteAid, a NLP system that processes text and provides consumer-oriented, simplified 

explanations and definitions to complex medical concepts using external knowledge 

resources. We hypothesize such a system will help patients better comprehend the text 

and the ADE related information present in the narrative text.	   We conducted a pilot 

evaluation for linking EHR notes ⎯ through NoteAid ⎯ to three external knowledge 

resources: MedlinePlus, the Unified Medical Language System (UMLS), and Wikipedia. 

Our results show that Wikipedia significantly improves EHR note readability. 

Preliminary analyses show that MedlinePlus and the UMLS need to improve both content 

readability and content coverage for consumer health information. A demonstration 

version of the fully functional NoteAid system is available at http://clinicalnotesaid.org 
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Introduction	  

Allowing patients direct access to their electronic health record notes (EHNs) has been 

shown to enhance medical understanding and improve medication adherence [250-256]. 

However, the average American reads at or below an 8th grade level [257], and over 90 

million Americans have limited health literacy [258]. Studies have shown that lower 

health literacy leads to poor health-related knowledge [259, 260], lower use of preventive 

health services [261,262], increased risk of hospitalization [263,264], decreased 

medication adherence [265,266], greater probability of depressive symptoms [267,268], 

poorer health status [269,270], higher healthcare costs [271,272], poorer self-

management [273,274], and increased mortality [275,276]. Patients who have limited 

health literacy may have difficulty understanding written medical information, 

communicating with healthcare providers, and navigating complex EMR systems.  

A recent study [277] suggested that lack of health literacy has the potential to reach 

unacceptable degrees of negative consequences on patients. Lober et al. [278] found that 

overall health literacy, manifest by questions about conditions, medications, terminology, 

and more, presented a barrier to almost of third of their subjects. Another study 

concluded that lower health literacy had a direct impact on information seeking of 

patients [279].  

We are therefore developing NoteAid, a biomedical natural language processing 

(BioNLP) system to help patients comprehend EMRs by providing comprehensible terms 

and concepts tailored to the patient, and by linking the EMR to external patient education 

materials. Studies have shown that patient education is effective in improving health 

literacy, decreasing disease severity, improving self-management behaviors, and reducing 
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hospitalizations [253,254,280]. We therefore hypothesize that NoteAid will improve 

patient comprehension of their EMRs and therefore increase the quality of patient care. 

Related	  Work	  

Studies have shown that patients commonly have difficulty understanding at least part of 

their EMRs [250,252,281,282]. Chapman et al. [283] found that a substantial proportion 

of the lay public does not understand phrases often used in cancer consultations. Another 

study showed that patients understand less than 30% of commonly used medical terms in 

the emergency department [284]. Since medical notes were complex to comprehend, 

Keselman and Smith [285] developed a classification scheme of comprehension errors 

and categorized the errors based on lay individuals’ re-tellings of two documents 

containing clinical text. 

Zeng-Treitler et al. [286] designed and implemented a prototype text translator to make 

reports more comprehensible to consumers. The translator identified difficult terms and 

replaced them with easier synonyms, generated and inserted explanatory texts for them. 

Their prototype did not show significant better comprehension. Kandula et al. [287] 

developed a multimedia computer-based program for diabetic patients. They focused on 

communicating the learning objectives succinctly and eliminated unnecessary 

information. They showed their system to 190 patients and found that literacy levels had 

significant increases in knowledge scores after viewing the system (p < 0.05). 

Hong et al. [288] identified 340 unique diagnosis term/patient-friendly term pairs from 

UMLS. They found that use of patient-friendly terms could help to bridge the language 

gap between providers and consumers but not always. Zeng-Treitler et al. [289] 
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investigated whether multilingual machine translation could help make medical record 

content more comprehensible to patients who lack proficiency in the English. They 

translated 213 medical record sentences from English into Spanish, Chinese, Russian and 

Korean. Evaluation of comprehensibility and accuracy of the translation found that 

majority of the translations were incomprehensible and/or incorrect and suggested that 

machine translation tool can potentially be improved. 

Smith et al. [290] evaluated the comprehension of clinical document by increasing the 

coherence of the text. They defined coherence as the connectedness of ideas in a text, 

which affects comprehension. They improved the coherence by adding background 

information about patients and providing more information of the disease without 

increasing the readability level. The study found that coherence has a small effect on 

consumer comprehension of clinical text, but the task is extremely labor intensive and not 

scalable. 

A substantial amount of work has been done to compile a consumer health vocabulary 

[291, 292] by analyzing user queries to Web sites at the National Library of Medicine 

[293,294]; consumer texts [295,296]; social media, including email content [297], and 

online support groups (e.g., PatientsLikeMe [298]). Approaches have been developed to 

predict term familiarity with linguistic/stylistic features [299], term frequency [300], as 

well as machine-learning approaches [301]. Tools have also been developed to simplify 

EHR note content using both syntactic and semantic approaches (e.g., [302,303]).  

The Patient Clinical Information System (PatCIS) [256] was created to serve as a test bed 

for exploring issues related to patient access of EHR records. It provides patients with 

online information resources and educational material, and evaluations by patients have 
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been positive [304]. However, researchers mainly compiled the education material in the 

PatCIS system manually after reading the EHRs. In this chapter we discuss the 

development of NoteAid, a system that automatically links EHR notes to patient 

education materials to assist their EHR note comprehension. 

Materials	  and	  Methods	  

NoteAid has two main components: A knowledge resource comprised of patient 

education materials and BioNLP approaches that link EHR notes to the knowledge 

resource. In the following, we first describe three knowledge resources. We then describe 

BioNLP approaches and conclude with an evaluation design. 

External	  Knowledge	  Resources	  

The Unified Medical Language System (UMLS) [305] is a rich biomedical knowledge 

resource; Metathesaurus (MT) is a large, multi-purpose, and multi-lingual thesaurus that 

contains millions of biomedical and health related concepts, their synonym names, and 

their relations, from over 150 vocabularies. UMLS makes available the lexical tool 

MetaMap [85], which maps text to UMLS concepts and semantic types. We use UMLS 

MT version 2011AB in our system. 

MedlinePlus [306] is a National Institutes of Health's Web site for patients and their 

families and friends. Medline Plus provides current and reliable information about over 

900 diseases, conditions and treatment to users in simple language. The links to various 

health topics are added daily and the content is reviewed once every six months. 
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Wikipedia (Wiki) is a collaborative, community developed web-based encyclopedia that 

has evolved to be an important medical resource for a wide spectrum of audiences 

including healthcare professionals [307]. Among online health information resources, 

Wiki has shown to be a prominent source, ranking among the first 10 results in 71-85% 

of search engines and keywords tested [308]. 

The	  NoteAid	  System	  

Our goal was to assist patients to understand the content of their EHR notes. For this 

purpose, we decided to link the complex medical concepts that appear in the text to 

simple consumer oriented definitions and explanations from external sources of 

information as described earlier. These definitions describe the complex medical 

concepts and jargon that appear in these EHR notes.  

 

Figure 16: Schematic representation of NoteAid system 

Figure 16 above shows the schematic representation of the NoteAid system. The system 

is comprised of two components. The first component is Concept Identifier (CI). CI 

processes input text and maps terms to the corresponding UMLS concepts. The second 

component is Definition Locator (DL). DL fetches definitions from UMLS, MedlinePlus 

and Wikipedia.  
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CI consists of three modules: Sentence Splitter, Concept Mapper, and Concept Filter. 

Sentence Splitter splits input text into individual sentences. Concept Mapper is built upon 

the Metamap tool [309] which identifies concepts and their UMLS semantic types. 

Concept Filter identifies clinical concepts by selecting the concepts that belong to the 

semantic types: Acquired Abnormality, Antibiotic, Cell or molecular Dysfunction, 

Clinical Attribute, Diagnostic Procedure, Disease or syndrome, Experimental model of 

disease, Finding, Laboratory procedure, Laboratory or Test result, Organ or Tissue 

function, Pathologic function, Physiologic function, Pharmacologic substance, Sign or 

symptom and Therapeutic or preventive procedure.  

After concepts are identified, DL retrieves definitions from UMLS, Medline Plus and 

Wikipedia using Definition Fetcher module. The UMLS MRDEF file contains definitions 

of 107,604 unique concepts. We parsed the Medline Plus content and extracted over 900 

health related topics and their summaries. We automatically extracted definitions from 

the summaries by using handcrafted rules. For Wiki, we made use of the web service 

WikiAPI to return a Wiki page given a query topic (concept). We filter the definition 

fetched by Wiki by adding a filter, which fetches a definition if the article is health-

related. Wiki assigns each article a set of categories, which are organized into a direct 

acyclic graph. We recognize an article as health-related if any of the assigned categories 

or the corresponding hierarchical categories belong to the following two terms: clinical 

and health. When an article page is returned, DL extracts the first three lines of the 

Wikipedia content. We found such a simple method works very well for extracting 

definitions from Wikipedia.  
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Evaluation	  Procedure	  and	  Metrics	  

To evaluate whether NoteAid improves EHR note comprehension, we evaluated four 

NoteAid implementations, namely: Medline Plus (linking EHR concepts to definitions in 

Medline Plus), UMLS (linking EHR concepts to their synonyms and definitions in the 

Unified Medical Language System), Wikipedia (Wiki, linking EHR concepts to health 

related articles in Wikipedia) and the hybrid system that integrates the three 

aforementioned implementations using de-identified EHR notes. We conducted two sets 

of evaluations described below. 

Subjects	  

With IRB approval, we recruited subjects from Amazon Mechanic Turk (AMT). We used 

AMT because the subjects have various background and qualifications, and therefore are 

representative in terms of health literacy. Many research studies use AMT for data 

collection and survey and have proven to be a reliable resource [303].  

Evaluation	  Data	  and	  Readability	  Score	  

We randomly selected 20 de-identified progress note reports (PGN) and 20 de-identified 

discharge summary reports (DS) from the Pittsburgh NLP repository [154], which 

contains a variety of de-identified clinical reports including discharge summaries and 

progress notes. We used the Flesch-Kincaid ease score and Flesch-Kincaid grade level 

[310] to score readability; the higher the Flesch Readability ease scores, the higher the 

readability. In contrast, a lower Flesch-Kincaid grade level indicates higher readability. 
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We conduct two different evaluations. The first evaluation used both DS and PGN and 

for second evaluation we used only PGNs. 

Evaluation	  Process	  

As mentioned above, we conducted two different evaluations. The first evaluation 

examines the self-reported comprehension score before and after applying the NoteAid 

system and the second evaluation examines the self reported comprehension of each 

implementation individually. For quality control, we gave each subject a question related 

to his/her evaluation data. The evaluation was hosted and stored on a local server. At the 

end of the evaluation, subjects received a code to confirm their participation in the study 

and receive payment for the task. Each subject spent 30-40 minutes to complete the entire 

evaluation.  

Evaluation One 

For each NoteAid implementation, we asked each subject to read each assigned EHR 

note before and after the NoteAid system and score his/her level of comprehension (on a 

scale of 1 to 5, with 1 the poorest and 5 the best comprehension). Each subject was asked 

to complete the evaluation of either 20 PGNs or 20 DSs. Each subject was given a link to 

a welcome page describing the study, followed by demographic information page, 

qualifying question page, pages containing EHR notes to evaluate, and finally the thank 

you page along with the validation code. 
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We recruited 64 subjects: 8 subjects for each of the 8 evaluation tasks (4 systems, 2 types 

of EHR notes). A total of 3 subjects did not complete the evaluations and 2 subjects 

withdrew from the study. Our results were based on the analyses of the evaluation of the 

remaining 59 subjects who completed their tasks. 

Evaluation Two 

We evaluate a total of five systems: the baseline system in which a clinical note is 

presented without a NoteAid implementation and four NoteAid implementations where a 

note is presented with different NoteAid implementations. We recruited 25 subjects, 5 

subjects for each of the 5 systems. Each subject was asked to evaluate 20 PGN notes. For 

each note (either the note alone or with a NoteAid implementation), we asked the subject 

to read and score his/her level of comprehension on a scale of 1 to 5. Each subject was 

given a link to a welcome page describing the study, followed by demographic 

information page, qualifying question page, pages containing EHR notes to evaluate and 

finally a thank-you page along with the validation code.  

Four subjects failed to complete the evaluations. Our results were based on the analyses 

of the evaluation of the remaining 21 subjects who completed their tasks.  

Evaluation	  Criteria	  

We report the average comprehension scores before and after each of the NoteAid 

implementations: MedlinePlus, UMLS, Wiki, and Hybrid. The non-parametric Wilcoxon 

signed-rank test was used to compare subjects’ scores on PGNs or DSs before and after 

each implementation.  
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In order to evaluate whether the comprehension scores represent readability, we report 

both Flesch readability ease score and Flesch-Kincaid grade level and calculate the non-

parametric Spearman correlation coefficient. We also show the scatter-plot of the 

comprehension scores before and after the NoteAid systems, between the two readability 

scores, and between the comprehension and the readability scores.  

Demographic	  Information	  of	  Subjects	  

Evaluation One 

Of the 59 subjects (23 female and 36 male) completed the evaluation. The number of 

Asian, White, African American and Alaskan Native was 34, 23, 1, and 1, respectively. 

Nearly 24% of all subjects reported having Hispanic or Latin ethnicity. The subjects of 

the study had a wide range of educational backgrounds. Twenty three (39%) of them had 

Bachelors degree, 15 (25.4%) of them had a Masters degree, 12 (20.3%) of them had an 

Associate degree and the remaining 9 (15.3%) had a high school diploma. 	  

Evaluation Two 

Twenty one subjects (9 female and 12 male) completed the evaluation. The number of 

White American (White), Asian, and Black American (Black) were 15, 4, and 2 

respectively. The subjects in the study had a wide range of educational (Edu) 

backgrounds. Six (28.57%) subjects had a Masters degree, 6 (28.57%) had Bachelors 

degree, 2 (9.52%) of them had an Associate degree and the remaining 7 (33.34%) 

subjects had a high school diploma.  
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Results	  

Table 31 shows the characteristics of the EHR note data used in the evaluation. The DS 

and PGN have an average Flesch Readability ease score of 38.5 and 43.9 and an average 

Flesch-Kincaid Grade Level of 8.8 and 9.76, respectively.  

Table 31:	  Statistics of NoteAid Evaluation Data	  

Type Discharge Summaries Progress Notes 
No. of Reports 20 20 

Total (Avg) # of 
sentences 355 (17.8) 473 (23.7) 

Total (Avg) # of 
Words 2362 (118) 4862 (243) 

Avg Flesch ease score 38.5 43.9 
Avg Flesch-Kincaid 

Grade Level 8.8 9.8 

Evaluation	  One 

Table 32 shows the average comprehension scores of the four NoteAid implementations 

(before and after each implementation). As shown in the table, all three NoteAid 

implementations except for MedlinePlus improve the comprehension in both DSs and 

PGNs. None of the improvement is statistically significant except for the Wiki 

implementation on PGNs. The Hybrid implementation has a p value of 0.06 for 

improvement on PGNs.  
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Table 32: Average standard deviation of comprehension values of four NoteAid 
implementations 

Discharge Summaries Progress Notes System 

Before After  Before  After  

MedlinePlus 3.52±0.73 3.49±0.87 3.18±0.38 2.86±0.55 

UMLS 3.80±0.16 3.81±0.48 3.75±0.55 4.01±0.86 

Wiki 3.57±0.68 4.14±0.49 3.45±0.55 4.53±0.71* 

Hybrid 3.86±0.69 4.02±0.73 3.40±0.55 4.54±0.53 

	  

Figure 17: Readability of Evaluation Data 
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Figure 17 shows the scatter plot of the Flesch-Kincaid Grade Level and the Flesch 

Readability ease score calculated from the 20 DSs and 20 PGNs we used for the 

evaluation. The Spearman rank correlation on Flesch-Kincaid Grade Level and the Flesch 

Readability ease score demonstrated the consistency of data (for PGN: rho = -0.807 p < 

0.05, for DS: rho =-0.970, p < 0.05). 

	  

Figure 18: Scatter Plot of the assigned score and Flesch-Kincaid Grade Level in the 
evaluation EHR notes 

Figure 18 shows the scatter plot of the Flesch-Kincaid Grade Level and text 

comprehension score after NoteAid system on DS reports. The data shows they had a 

Spearman rank correlation of -0.47, p < 0.05. This indicates a fair correlation between the 

score assigned score and the readability of the reports. 
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Table 33: Number of concepts that were linked to different knowledge resources by the 
NoteAid system 

System Discharge Summaries Progress Notes 

MedlinePlus 37 53 

UMLS 171 362 

Wiki 190 427 

Table 33 shows the total number of concepts that were recognized by three different 

NoteAid implementations on the 20 DSs and 20 PGNs. 

Evaluation	  Two	  

This evaluation was carried out only on the set of 20 PGNs. Table 34 below shows the 

average comprehension scores of PGNs without any NoteAid implementation and with 

each of the four NoteAid implementations. The average comprehension score of subjects 

and Flesch-Kincaid grade level had a spearman ranked correlation coefficient of rho =-

0.77 (p < 0.05).  

As shown in Table 34, all NoteAid implementations improved self-rated PGN note 

comprehension and the improvements were statistically significant (p < 0.05, the Mann-

Whitney-Wilcoxon test). The difference in comprehension scores between different 

NoteAid implementation was not statistically significant except for the difference 

between the MedlinePlus and the UMLS implementations (p < 0.05, the Mann-Whitney-

Wilcoxon test). Table 34 also shows the number of concepts identified by each of the 

NoteAid implementations.  
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Table 34: The average self-rated comprehension values (average ± std dev) and number 
of concepts identified by NoteAid implementations. (*p < 0.05) 

System Notes Alone Medline Plus UMLS Wiki Hybrid 
Score 2.95 ± 0.67 4.12* ±0.33 3.63* ± 0.57 3.85* ± 0.47 3.92* ± 0.40 
# conc NA 52 352 436 476 

	  

Figure 19: The average self-rated comprehension score for each note with different 
NoteAid implementations 

Figure 19 shows the average self-rated comprehension scores of all NoteAid 

implementations for every PGN note, and Figure 20 shows a scatter plot of the average 

self-rated comprehension scores with notes alone and notes with the MedlinePlus 

implementation. The results as shown in both figures demonstrate a strong and consistent 

improvement of self-rated comprehension scores with NoteAid implementations for 

every PGN note.  
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Figure 20: Scatter plot of average self-rated comprehension scores with notes alone and 
with the Medline Plus NoteAid implementation 

The Pearson coefficient values between the subject education level and comprehension 

scores are: Note Alone: 0.98, MedlinePlus: 0.31, UMLS: 0.71, Wiki: -0.47 and Hybrid: 

0.04. 

Discussion	  

According to the average Flesch-Kincaid Grade Level shown in Table 31, DSs are easier 

to comprehend than the PGNs, corresponding to a 8th and 9th grade education, 

respectively. Our results on evaluation one show that subject self-reported EHR note 

comprehension scores fall between 3 and 4 on a five-point scale. In contrast, all 59 of our 

subjects have a high school education and higher. The results suggest a gap between 

education level, readability and health literacy. The observation of such a literacy gap is 

consistent with other evaluation studies in health literacy [274]. As shown in Figure 18, 

our results show that text readability scores positively correlate with the comprehension 
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scores, suggesting that our subjects’ assignment of self-comprehension scoring is 

consistent with the readability assessment.   

Our results show that overall the NoteAid systems improve comprehension. Of all four 

systems, the Wiki implementation on PGNs has the highest performance and statistical 

significance in improving EHN comprehension. In contrast, the consumer-driven 

authoritative resources of the UMLS and the MedlinePlus implementations yield 

relatively less improvement in evaluation one. The non-significant improvement in the 

comprehension of DS could be due to the fact that DSs are easier to comprehend than the 

PGNs. The self-comprehension scores are higher in DSs than in PGNs and therefore the 

difference in improvement is smaller.  

Content coverage may partially explain performance differences among the three external 

resources. As shown in Table 33, EHR notes link to more Wikipedia definitions than to 

UMLS. MedlinePlus has the least number of definitions available. While Wikipedia 

incorporates over 4 million topics and articles written in English, the content of Medline 

Plus and UMLS are limited. For example, we found only 900 health topics in Medline 

Plus. As a result, the NoteAid system that links EHR notes to Wikipedia yields the best 

performance. 

An illustrative example is shown in the following EHR note:  

Example 1: Her cardiac index is 3.6. She is off of drips. We will start 

on baseline Coreg. history of diabetes on 80 of Lantus a day. Would try 

to wean her off of the insulin infusion to a low level of Lantus with a 
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sliding scale. No evidence of bleeding. Keep the chest tubes in place. 

We have started her Synthroid. From a respiratory standpoint, continue 

incentive spirometry, mobilization, and oral narcotics. 

In this EHR note, Wikipedia covers 6 concepts⎯“cardiac index,” “Coreg,” “diabetes,” 

“lantus,” “bleeding,” and “synthroid” and received an average comprehension score of 

4.3. In contrast, the UMLS covers three concepts⎯“bleeding,” “Synthroid,” and “oral 

narcotics” and received an average comprehension score of 4. Medline Plus covers only 

two concepts “diabetes” and “bleeding” and received the lowest average comprehension 

score of 2.5. 

Furthermore, we found that the Wikipedia content is easier to read than the UMLS or the 

Medline Plus content. An example is shown below.  

Example 2: The patient's bilirubin is 1.6. He is not coagulopathic.   

The definition of “coagulopathic” is complex in the UMLS: “Hemorrhagic and 

thrombotic disorders that occur as a consequence of abnormalities in blood coagulation 

due to a variety of factors such as COAGULATION PROTEIN DISORDERS; BLOOD 

PLATELET DISORDERS; BLOOD PROTEIN DISORDERS or nutritional conditions” 

which has a Flesch-Kincaid grade level of 24.  

In contrast, its Wikipedia definition - “Coagulopathy is a condition in which the blood’s 

ability to clot is impaired. This condition can cause prolonged or excessive bleeding, 

which may occur spontaneously or following an injury or medical and dental procedures. 

The normal clotting process depends on the interplay of various proteins in the blood,” ⎯ 



	  

	  

	  

163	  

has a Flesch-Kincaid grade level of 13 and is easier to comprehend than the UMLS 

definition.  

The evaluation one results show that the NoteAid system that integrates all three 

resources did not perform as well as the Wikipedia system, although the integration 

outperformed both the UMLS and the Medline Plus systems. This may be explained by 

the fact that the addition of less readable content from UMLS and MedlinePlus hurts 

performance.  

The results in evaluation two show that, when the clinical notes are presented alone, the 

self-rated comprehension scores are highly correlated (0.98 Pearson coefficient) with the 

education levels of the subjects. The results support the validity of self-rated 

comprehension scores. In contrast, the correlation results are mixed with different 

NoteAid implementations. While the UMLS has a correlation value of 0.71, the Medline 

Plus and Hybrid implementations decrease to 0.31 and 0.04. The Wiki implementation 

has a negative correlation: -0.47. Several factors may contribute to the results. First, the 

definition quality of the UMLS, Wiki, Medline Plus and Hybrid resources are not yet 

evaluated and it is unclear whether the definitions correctly represent the semantic 

meanings of the notes. Secondly, although providing definitions may help 

comprehension, providing too much or unnecessary information (such as Wiki) may hurt 

those who have a better education level. 

In future work, we need to conduct a comprehensive “think aloud” evaluation study to 

understand the behavior of users. We will also need to evaluate the quality of definitions 
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of different NoteAid implementations and patient comprehension by replacing complex 

medical jargon with its equivalent lexical lay term variants [311,312] in EHNs. 

The significant improvement of Medline Plus over the UMLS implementation in 

evaluation two may be attributed to the lower readability of content in UMLS. Although 

the improvement in comprehension of Wiki over Medline Plus implementation was not 

statistically significant, Wiki content may not be accurate as discussed earlier.  

The evaluation two results also show that all four NoteAid implementations improved 

EHR note self-rated comprehension significantly over Notes alone. The results are 

largely consistent with our evaluation one in which NoteAid implementations was 

evaluated in a before-and-after fashion but there are differences between the both the 

evaluation results. From evaluation one, we found that the Wikipedia implementation had 

the largest improvement and that the Medline Plus implementation decreased the self-

rated comprehension scores. Such discrepancy can be explained by the limitations of our 

study.   

Limitations,	  Conclusion	  and	  Future	  Work	  

First, we report subjects’ self-rated note comprehension but did not evaluate to what 

extent they accurately comprehended the note content. The evaluation one design may be 

a better model as we force a subject to read the EHR note prior to her/his exposure to the 

improved note (note+NoteAid). A randomized design, as we have done in evaluation 

two, may provide an evaluation subject little incentive for comprehending the note 
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content. In future work, we will test subjects’ comprehension based on content analyses 

of every clinical note. Furthermore, we will evaluate subjects’ health literacy [313].  

Secondly, the number of subjects in these studies is small. As a result, we can’t evaluate 

the impact of moderators. For example, the data size is not well rounded to conclude that 

the subjects’ education levels impact self-rated comprehension scores.  

Third, our NoteAid implementations link EHR notes to definitions only, not to other 

education materials that MedlinePlus additionally provides. Other limitations of the study 

include that lay people performed our evaluation but not patients who comprehend their 

own EHR notes. 

We have shown in this study the development of the NoteAid systems. We have 

evaluated four NoteAid implementations: linking EHR notes to MedlinePlus, the UMLS, 

Wikipedia, and Hybrid (all combined). Evaluation one results show that the system that 

links EHR notes to Wikipedia and the Hybrid system that links EHR notes to all three 

knowledge resources yield the best performance. Although Medline Plus and the UMLS 

are designed to facilitate consumer-oriented health information, they both need to 

improve their content coverage as well as readability. In contrast, Wikipedia has a 

broader coverage of health information as well as easy-to-read content.  Evaluation two 

shows that Medline Plus implementation demonstrated the highest improvement.  

In the future, we plan to access and improve the effectiveness of the concept filtering and 

coverage to improve the performance of the system. In addition, we hope to evaluate the 

quality of the definition provided by various educational resources and evaluate the 

system in a real health care setting, the next step towards building a clinical application.  
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	  Chapter	  7:	  Integrating	  Components	  into	  a	  Unified	  System	  	  

In previous chapters, we discussed the development of systems for adverse event and 

medication-related named entity recognition (component 1), inferring causality by 

automating Naranjo Causality Assessment Probability Scale (component 2), generation of 

figure evidence by extracting relevant figures from biomedical literature and 

summarizing them with a figure summarization system (component 3), and processing 

narrative text to identify complex medical jargon and provide definitions and 

explanations to better comprehend the text (component 4). The final goal of the study 

was the development of a user interface integrating all four components. The interface 

helps users to see the named entities recognized, connectives identified and the Naranjo 

Score calculated automatically. ADEView also allows the user to view figures related to 

the ADE and view the text processed by NoteAid to better comprehend the EMR notes.  

System	  Implemented	  

The final objective of this study is to combine these systems to develop a comprehensive 

application that would be made freely available online so that the general public can 

access and make use of this application. In this section, we describe the system developed 

for this dissertation – ADEtector. 

ADEtector	  

The ADEtector application integrates all the system components and provides a common 

way to see the output of all the systems implemented in this dissertation through 

ADEView. As described earlier, ADEView displays the output of four components: 
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Named Entity Recognizer, Causality Inference Engine, Figure Evidence Generator and 

NoteAid system.  Given an input report, the application processes the report and shows 

the output of each of component in individual tabs as shown in Figure 21 below. 

The Named Entity Recognizer identifies all the entities and the UI displays all the entities 

that appear in the text using techniques as discussed in Chapter 2. Each entity is 

highlighted in a different color to distinguish between various entities as shown in Figure 

21.  

	  

Figure 21: Screen shot of the ADEtector system showing the output of the named entity 
recognizer component. Each of the entities recognized is highlighted in different colors. 

We also display the output of a discourse connective identifier with sense detector, which 

is used as features for NER task and can be used for automation of remaining elements of 

Naranjo Scale. Figure 22 shows the output of the discourse connective identifier. The 

interface shows the connective as hyperlinked text and when the user hovers the mouse 

over it, the class-wise sense of the connective is shown. The second component Causality 

Inference Engine consists of automated Naranjo Causality Assessment Probability Scale, 

which calculates the score of an adverse event related to a drug. Figure 23 shows the 
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output of the Naranjo Scale. The tool identified “aspirin” caused “GI bleed” and assigned 

a score of 3 to it. 

	  

Figure 22: Screen shot of the ADEtector showing the output of the discourse connective 
identifier module. The interface shows the connective identified as hyperlinked text and 
when the user hovers the mouse over the text, a pop-up box shows the class-wise sense of 
the connective identified. 

	  

Figure 23: Screen shot of ADEtector showing the output of the Naranjo Causality 
Assessment Probability Scale. The tool identified GI bleed is related to aspirin and 
assigned a score of 3. 

The third component, Figure Evidence Generator, searches evidence for ADE detected, 

from the biomedical literature and then presents the user with figures along with their 
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summaries generated by the figure summarizer. Figure 24 below shows the screen shot of 

the output from the Figure Evidence Generator. It shows a grid of all the figures related 

to the ADE extracted from the biomedical literature. When a user clicks a figure, it shows 

the figure with its caption and summary along with other article-related information such 

as title, author information and abstract of the article as shown in Figure 25. 

	  

Figure 24: Screen shot of the ADEtector interface showing the figure evidence of the 
ADE that was detected by the previous components. The interface shows all the figures 
related to the ADE. When the user clicks on a figure, then the system shows the figure 
along with its summary. 



	  

	  

	  

170	  

	  

Figure 25: Screen shot of the interface showing the figure along with its caption, 
summary and other article information. 

The fourth and last component is NoteAid. This component identifies complex medical 

jargon in the text and provides explanations to them. Figure 26 below shows the interface 

with medical concepts identified as hyperlinked text. When the user hovers the mouse 

over the concept, the explanation of the concept appears in a pop-up box. The figure 

below shows the explanation of the concept “Paraplatin” in the pop-up box when the user 

hovers the mouse. 
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Figure 26: Screen shot of the ADEtector showing the output of the NoteAid component. 
The interface shows the medical concepts identified as hyperlinked text and when the 
user hovers the mouse over a concept, its explanation is shown. 

Conclusion	  and	  Possible	  Improvements	  	  

The ADEtector application integrates various components such as the named entity 

recognition, causality inference, figure evidence through summarization and noteaid 

components. We hypothesize that such a system will help researchers and regulatory 

agencies discover adverse events quickly and easily. It also helps physicians to explain 

ADEs to patients and improve patient-physician communication.  

There are several improvements that can be made so that these applications are more 

useful and attractive to researchers. For the Named Entity Recognizer, we could explore 

semi-supervised machine-learning approaches to further improve the performance of the 

system. Then we can normalize the identified entities to ontology. After normalizing, we 

can provide more information about the entity such as its synonyms and its position in the 

ontology to help researchers and regulatory agencies understand the ADE. 
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The Naranjo Score is currently shown as a table, and we can enhance the user experience 

by graphically linking the drug and the adverse event and showing the information about 

the ADE and the Naranjo Score on the link. 

The figure evidence component can be further improved by extracting words appearing in 

the figure itself as keywords. This requires the use of sophisticated optical character 

recognition (OCR) software because many figures have poor resolution and text can often 

appear mixed with the biological sample image. Future work should also focus on 

retrieving more relevant figure to the ADE.  

Currently, the NoteAid system only provides users with the definition, but we can further 

improve user experience by providing users with more useful information regarding the 

clinical concepts depending on the task, such as providing information about 

pharmaceutical properties of drugs and causes of adverse events to help researchers make 

better decisions regarding the ADE.  
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