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Abstract: 

 

This dissertation includes three studies, all focusing on utilizing Big Data and statistical 

methods for improving one of the most important aspects of health care, namely drug 

safety. In these studies we develop data analytics methodologies to inspect, clean, and 

model data with the aim of fulfilling the three main goals of drug safety; detection, 

understanding, and prediction of adverse drug effects. 

In the first study, we develop a methodology by combining both analytics and statistical 

methods with the aim of detecting associations between drugs and adverse events through 

historical patients’ records. Particularly we show applicability of the developed 

methodology by focusing on investigating potential confounding role of common 

diabetes drugs on developing acute renal failure in diabetic patients. While traditional 

methods of signal detection mostly consider one drug and one adverse event at a time for 

investigation, our proposed methodology takes into account the effect of drug-drug 

interactions by identifying groups of drugs frequently prescribed together. 

In the second study, two independent methodologies are developed to investigate the role 

of prescription sequence factor on the likelihood of developing adverse events. In fact, 

this study focuses on using data analytics for understanding drug-event associations. Our 

analyses on the historical medication records of a group of diabetic patients using the 

proposed approaches revealed that the sequence in which the drugs are prescribed, and 

administered, significantly do matter in the development of adverse events associated 

with those drugs. 

The third study uses a chronological approach to develop a network of approved drugs 

and their known adverse events. It then utilizes a set of network metrics, both similarity- 

and centrality-based, to build and train machine learning predictive models and predict 

the likely adverse events for the newly discovered drugs before their approval and 

introduction to the market. For this purpose, data of known drug-event associations from 

a large biomedical publication database (i.e., PubMed) is employed to construct the 

network. The results indicate significant improvements in terms of accuracy of prediction 

of drug-evet associations compared with similar approaches.
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CHAPTER I 

 

 

INTRODUCTION 

 

Today every drug goes through a long journey which ,on average, takes 10-15 years (Iizuka, 2007) 

from the first day it is discovered until its approval by healthcare authorities and introduction to the 

market. This involves numerous clinical trials aiming at ensuring efficacy and safety of the drug. 

In other words, the clinical trials are meant to ensure that, first, a given drug efficiently functions 

as it is intended to treat disease(s), and second, it does not cause any serious side effects to the 

patients. 

Pharmacovigilance, also referred to as drug safety surveillance, has been defined as the science and 

activities relating to the detection, assessment, understanding, prediction, and prevention of adverse 

effects or any drug problem (Arthur et al., 2002). In the pharmacovigilance terminology, Adverse 

Drug Events (ADE) is a general term that refers to any injury caused by a medication. This injury 

can be an unintended effect of the recommended (i.e. prescribed or labeled) usage of a drug, the 

off-label usage of a drug, or a medication error (Karimi, Wang, Metke-Jimenez, Gaire, & Paris, 

2015). Adverse Drug Reactions (ADR), on the other hand, is a more specific term that only refers 

to those injuries directly caused by proper usage of medication, and not medication errors (Karimi 

et al., 2015).
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Pharmacovigilance activities are deemed to be important from both health and business perspectives. 

It is reported that ADEs in each year cause more than 2 million injuries, hospitalizations, and deaths 

only in the United States (Lazarou, Pomeranz, & Corey, 1998) that incur more than 75 billion dollars 

to the patients, healthcare system, and insurance agencies (Ahmad, 2003). 

1.1. PRE-APPROVAL PHARMACOVIGILANCE 

Although pharmacovigilance activities for any drug begin a long time before introducing it to the 

market through numerous pre-approval clinical trials, such efforts are typically too limited to identify 

all the potential ADEs that may occur. First, they are often short in time and involve a limited sample 

size (Zeng, Kogan, Ash, Greenes, & Boxwala, 2002). Moreover, they do not fully represent the target 

population of the drug as they may exclude patients who receive other medications, focus on a particular 

age group (e.g. elderly) of patients, and those who have complicated medical conditions (Karimi et al., 

2015). Also as Stephens and Talbot (1985) noted, clinical trials may not detect ADEs with very low 

incident rates.  

1.2. POST-APPROVAL PHARMACOVIGILANCE 

Due to the mentioned points in the previous section, post-approval ADEs have always been a major 

global health concern since a considerable proportion of ADEs remain to be revealed in the post-

approval stage of the drugs’ lifetime. In some cases, those unrevealed ADEs in the pre-approval stage 

have even caused thousands of deaths; A classic example of such cases is Rofecoxib; an NSAID 

approved in 1999 that became highly welcomed by the physicians in a short time. The drug was 

originally aimed to treat acute pains and Osteoarthritis, but after a while turned out to cause heart attacks 

in more than 100,000 patients and ended up being withdrawn by the FDA in 2004. 

Unlike pre-approval stage which is highly experiment-based, post-approval pharmacovigilance is 

highly driven by historical data analysis. Given the critical importance of post-approval 

pharmacovigilance from both healthcare and business perspectives, and in response to the challenge 
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posed by large quantities and complexities of data sources that needed to be examined, various data 

mining algorithms have been developed in the recent decades to bring about improvement in drug safety 

surveillance. Researchers have used various approaches, all with a heavy reliance on information 

systems for collection, manipulation, and analysis of data. Four main types of data source have been 

identified in the literature to be used in ADE studies. The following four sub-sections introduce these 

resources and mention prior research conducted using each. 

1.2.1. SPONTANEOUS REPORTING SYSTEMS 

As an effort to rapidly detect and prevent ADEs, many countries and international organizations have 

run Spontaneous Reporting Systems (SRSs), systems designed to allow patients and professionals to 

submit their reports of suspected ADEs. This includes the World Health Organization’s (WHO) 

Individual Case Safety Reports (ICSR) database, the TGA Adverse Drug Reaction System (ADRS) in 

Australia, the yellow card system of Medicines and Healthcare products Regulatory Agency (MHRA) 

in the UK, and the FDA Adverse Event Reporting System (FAERS) in the US (Karimi et al., 2015). 

Although SRSs have been the main source to detect likely ADE cases for years and multiple studies 

were conducted based on them,(Cai et al., 2017; DuMouchel, 1999; Lin, Xiao, Huang, Chiu, & Soo, 

2010; van Puijenbroek et al., 2002) they still have several limitations such as over-reporting, missing 

and incomplete data, latency, duplicated reporting and voluntary submission (Harpaz et al., 2013). Due 

to voluntary submission, for instance, it is estimated that these systems in the US and UK reflect less 

than 10% of the ADE occurrences.(Inman & Pearce, 1993; Yang, Jiang, Yang, & Tang, 2012) Such 

shortcomings made pharmacovigilance practitioners shift their focus towards resources that are more 

efficient for post-marketing drug surveillance. 

1.2.2. ELECTRONIC HEALTH RECORDS (EHR) 

In the past decade and along with extensive adoption of information systems and technologies in the 

healthcare industry, Electronic Health Records (EHR) have been widely used in this industry to help 
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practitioners in the collection, storage, and tracking patients' information. The vast amount of data 

collected by EHRs along with their increasing availability have made them interesting resources for 

pharmacovigilance researchers and enabled them to detect ADE signals1 closer to real-time (Trifirò et 

al., 2009). Although EHR data is generally more complete than SRSs reports and several studies have 

been conducted recently using EHRs (Friedman, 2009; Haerian et al., 2012; Harpaz et al., 2012; 

Harpaz, Haerian, Chase, & Friedman, 2010), yet using them for ADE studies involve challenges like 

complex data preprocessing requirements and various data documentation styles across different 

providers (Harpaz et al., 2013). 

1.2.3. SOCIAL MEDIA 

In the recent years, social media has also been considered as a key data source for collecting drugs’ 

post-marketing feedbacks by multiple researchers (Hoang et al., 2016; J. Liu, Zhao, & Zhang, 2016; X. 

Liu & Chen, 2013; Nikfarjam, Sarker, O’Connor, Ginn, & Gonzalez, 2015a; O’Connor et al., 2014). A 

Pew internet research by Fox and Jones(2009) found that 61% of Americans look for health information 

online. This is normally done either through healthcare online forums such as ‘DailyStrength’ and 

‘PatientsLikeMe’; or through social networks like Facebook and Twitter. Through the social media, 

people talk about their concerns, seek advice about their health issues, and discuss their medical 

experiences. Such information, although noisy, is likely to appear there long before it is reported to any 

SRS or recorded in any EHR (Benton et al., 2011; Leaman et al., 2010). A novel stream of research 

using Twitter data focuses on automatic detection of ADEs by constant monitoring of tweets posted by 

patients using text-mining approaches. Sarker et al. (2015) have done a comprehensive review of the 

studies conducted in this area.  

                                                      
1 Signal is defined by the World Health Organization (WHO) as information on a possible causal relationship 

between a drug and an adverse event, which is unknown or incompletely documented (Trifirò et al., 2009).  
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1.2.4. BIOMEDICAL LITERATURE 

Recently, researchers have realized biomedical literature as well as chemical and biological databases 

as feature-rich sources for pharmacovigilance studies. Databases such as PubMed, PubChem, KEGG, 

and DrugBank are rich sources of information about drugs, their chemical and biological 

characteristics, and their identified ADEs. Several studies have been done by employing data- and text-

mining techniques on data from these resources(Avillach et al., 2013; Shetty & Dalal, 2011) or even 

by combining them with other mentioned resources(Duke et al., 2012) to detect or predict ADEs. 

1.3. CLASSIFICATION OF PHARMACOVIGILANCE STUDIES 

The type of data source we use for a study determines the class of data mining algorithms that can be 

applied. The following sections discuss various types of data mining approaches used in the 

pharmacovigilance literature. 

1.3.1. METHODS FOR ASSOCIATION DETECTION AND UNDERSTANDING 

The main class of data mining approaches widely used in pharmacovigilance research are those 

designed to detect meaningful association (i.e. signal) for large sets of drug-event pairs with the aim of 

identifying and prioritizing risk signals. Of course, the identified signals should then be investigated 

more carefully to verify the causality between drug and event. This approach is especially applied 

widely to the SRS data. For example FDA actively uses a data mining engine to compute signal scores 

indicating statistical associations for millions of drug-event combinations in the AERS (Harpaz et al., 

2013). Such DM algorithms are in fact an extension of the Disproportionality Analysis (DPA) methods 

that, for years, were the main statistical methods to discover drug-event associations based on frequency 

analysis of 2x2 contingency tables (Bate & Evans, 2009). Given that EHR data, as opposed to SRS, 

involves information on both ADE and non-ADE cases as well as temporal patients information, 

modified versions of DPA are typically used to analyzed their data. For instance Schuemie (2011) 

proposed a DPA-based longitudinal approach to detect ADE signals in the EHR data to take into 
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account the effect of “length of exposure to a drug” on potential adverse events. However, unlike DPA 

methods which are only able to detect associations involving one drug and one event, DM-based 

approaches are capable to handle more complex situations such as drug-drug interactions, drug-induced 

syndromes, and confounding phenomena (Harpaz et al., 2013). 

Apart from DPA extensions, the literature also involves studies that employed methods based on 

logistic regression and unsupervised machine-learning methods for the same purposes.  

Logistic regression-based approaches are especially handy when the goal is to handle multiple potential 

confounding factors2. While the traditional approach to control for confounders is stratification, that 

approach is not very effective in presence of too many confounders. Jewel (2003) argues that in such 

cases a more appropriate approach to handle confounding is to incorporate all potential confounders as 

covariates in a logistic regression model. Nevertheless, even the original logistic regression approach 

is limited in terms of the number of covariates that can handle. Some newer extensions of logistic 

regression, namely Bayesian Logistic Regression (BLR) models are even capable to handle millions of 

covariates in the model. Such models have been used in a number of studies such as (Caster, Norén, 

Madigan, & Bate, 2010) to detect ADE signals from the WHO spontaneous reporting system data 

controlling for too many confounding factors. 

Unsupervised machine-learning approaches are another class of DM algorithms that are used for signal 

detection. Many studies have used association rule mining to discover multi-item ADE associations 

(Harpaz, Chase, & Friedman, 2010; Ji et al., 2011; Reps, Aickelin, & Hubbard, 2016). Nevertheless, 

these methods typically require substantial computing resources which has limited their application in 

the past. Clustering methods have also been used in a number of pharmacovigilance studies, primarily 

as an exploratory tool with the aim of summarizing the complex structures in a macroscopic manner. 

                                                      
2 A confounder by definition is an extraneous variable that mediates an association between two other variables 

(i.e. drug and event). (Harpaz et al., 2013) 
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For example, He et al (2004) applied a KNN clustering algorithm to the drug dispensation sequence 

data from patients with the disease Angioedema to discover potential relationships between drugs and 

resulting hospital admissions due to adverse events. 

Network analysis is another approach that researchers have recently started to use, mostly to discover 

interesting multidimensional patterns of ADEs. Applying a network approach to the FDA’s 

spontaneous reporting database, for instance, Ball et al (2011a) revealed that the vaccine HPV4 is 

associated with syncope and seizures in adolescents.  

Given the fact that EHR data contains information about both ADE and non-ADE groups of patients, a 

popular class of approaches applied to such data are those based on comparison of patterns and 

frequencies across these groups. That involves studies which employ cohort designs, case-control 

designs, or self-controlled designs to compare the two groups. In the cohort design studies, the idea is 

that the patterns of ADE occurrence over time must be different among patients who were exposed to 

a suspicious drug and those who were not; if so, it is likely to say that there is an association between 

the drug and the event of interest. On the case-control designs, on the other hand, comparison is made 

between patients who experienced a particular adverse event and those who did not. Different patterns 

of drug taking between them, then implies likely association. In the self-controlled design, each patient 

who has experienced the ADE, is treated as both the case and control subject in the study (i.e. during 

the drug exposure vs non-exposure periods) and the patterns of ADE across the two periods are 

compared against each other. 

Apart from the medication information, electronic medical records also contain a variety of other 

structured and unstructured data that have been used in the pharmacovigilance research to detect ADE 

signals. Park et al (2011) for instance used lab reports in an EHR database to identify abnormal lab 

results and compare their patterns before and after the use of a medication.  



7 

 

1.3.2. METHODS FOR PREDICTING ASSOCIATIONS 

Even though most of the research conducted based on SRS and EHR data are focused on detecting 

signals of associations between drugs and adverse events (either directly or due to interactions) as well 

as understanding the factors moderating them, recently emergence of some new data sources (such as 

chemical and biological information of drugs, biomedical literature, patients’ online forums, and social 

networks) has led to efforts to predict ADEs at the early stages of drug’s lifecycle and before it affects 

too many people.  

Quantitative Structure-Activity Relationship (QSAR) is a regression-based method widely used in the 

chemical and biological sciences that primarily aims at predicting biological activity of chemicals (i.e. 

the response) based on their chemical and molecular structure. Relying on QSAR, and using historical 

causal drug-event associations, some research is conducted to identify chemical properties of molecules 

that may correlate with ADEs and thereby to predict potential ADEs of new drugs on the basis of their 

chemical properties (Matthews et al., 2009; Pouliot, Chiang, & Butte, 2011). Such QSAR models are 

now being used internally by the FDA to provide decision support information for a variety of purposes 

(Harpaz et al., 2013). 

In another group of studies, text-mining techniques have been applied to the unstructured data collected 

from biomedical literature (e.g. Shetty & Dalal, 2011) as well as patients’ online communities and 

social networks (e.g. Leaman et al., 2010) with the aim of identifying drugs’ potential adverse events 

earlier than they are reported to the spontaneous reporting systems. Some prominent ADE cases such 

as the Rofecoxib case have been used in these studies as benchmark to show how the prediction methods 

were able to predict that case much earlier than it causes more than 100,000 myocardial infarctions and 

collected from market due to numerous reports filed for it to the FDA’s SAERS in 2004. 

Another approach used in the literature to predict ADEs is network analysis. Cami et al (2011) used 

historical drug-event associations to construct a network having both drugs and events as nodes and 
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their associations represented by edges. They used topological network measures along with drugs’ 

molecular descriptors to train a logistic regression model to predict the likelihood of existence of an 

edge (i.e. association) for each drug-event pair.   

Combining canonical correlation analysis and network-based diffusion, Atias and Sharan (2011) 

proposed a novel prediction approach and applied that to a public database of drug side effects called 

SIDER, to predict ADEs of the new drugs. They validated their model by testing it on a set of 692 drugs 

with known side effects and showed that for 34% of the drugs the top scoring side effect identified by 

the algorithm matches a known side effect of the drug. 

1.4. AN OVERVIEW OF THE CURRENT WORK 

The present dissertation work involves three independent studies. To highlight the role of various 

information systems as well as data analysis methods in pharmacovigilance, in these studies multiple 

data sources, each relied on an IS artifact, have been utilized and a handful of data mining and statistical 

methods has been used to analyze that data with the aim of improving drug safety. 

 In terms of approach and data source, the first study aims at detecting ADE signals by applying data 

mining and statistical methods to EHR transactional data. Specifically, the goal of the first study is to 

investigate potential adverse reactions of common diabetic drugs in developing acute renal failure. 

The second study employs data mining and statistical techniques along with EHR data with the aim of 

understanding drug-ADE associations. The goal in that study is to investigate the role of prescription 

sequence factor in changing the likelihood of development of adverse events for the already known 

drug-ADE associations. As a case study, we have focused on acute renal failure as a common and high-

risk adverse event to address the research question of the second study. 

The third essay deals with another aspect of pharmacovigilance studies, namely ADE prediction. In that 

study a chronological network approach along with multiple machine learning techniques have been 
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employed with the aim of identifying similarities among the already-approved drugs and the new drugs 

and  then using those similarities to predict potential ADEs of new drugs before their approval. To this 

end, we have used reported drug-ADE associations mentioned in the biomedical literature (MEDLINE 

database) as the main data source and have enriched that with data on the target proteins of drugs in the 

human body (i.e. a biological property of the drugs). 

Overall, in the three studies conducted, we have tried to highlight the potential of using IS artifacts (i.e. 

databases and computer-based data analysis techniques) to contribute to various aspects of drug safety 

(i.e. detection, understanding, and prediction of signals). 

The three essays are presented in chapters 2, 3, and 4, respectively. Also, the last chapter contains 

summary and conclusion.
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CHAPTER II 

 

 

ESSAY I: THE CONFOUNDING ROLE OF COMMON DIABETES MEDICATIONS 

IN DEVELOPING ACUTE RENAL FAILURE: A DATA MINING APPROACH WITH 

EMPHASIS ON DRUG-DRUG INTERACTIONS 
 

ABSTRACT 

Longstanding diabetes mellitus is today known as the primary reason for kidney failure in the 

patients having that condition. While the prior research has studied the confounding role of some 

frequently prescribed diabetes medications in developing acute renal failure, some rarely 

prescribed medications are still under-studied in this regard. In addition, even for those drugs 

studied in the past, inconsistent findings have been reported. In the present study, by extending a 

data mining framework from the prior research and equipping that with some standard statistical 

metric from the medical literature we investigate the general confounding role of the common 

diabetes medications in developing acute renal failure in a large group of patients with diabetes 

mellitus (Type II). In addition, we assess the stability of the identified confounding roles by 

taking into account the potential drug-drug interactions between those diabetes medications with 

a group of drugs already known to have negative effect on the kidney function. Our results 

suggest the general dominant confounding role for each of the diabetes medications, but also 

suggests that these roles are unstable across various prescription combinations due to potential 
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drug-drug interactions, thereby provide an explanation for the inconsistent findings in the 

literature. 

Keywords: Adverse Drug Reactions; Itemset Mining; Diabetes; Acute Renal Failure; Drug-Drug 

Interactions 
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2.1. INTRODUCTION  

Today almost every drug produced and marketed by pharmaceutical companies has a list of likely 

side effects printed on its label to warn patients about possible harms they may undergo by taking 

it. Such known side effects are usually the result of several years of research and clinical trials 

conducted on the drug by the manufacturer after discovery and before introducing it to the 

market. 

In the pharmacovigilance3 terminology, Adverse Drug Event (ADE) is a general term that 

refers to any injury caused by a medication. This injury can be an unintended effect of the 

recommended (i.e. prescribed or labeled) usage of a drug, the off-label usage of a drug, or a 

medication error (Karimi et al., 2015). Adverse Drug Reactions (ADR) are a subset of ADEs 

referring to an unexpected harm caused by the normal use of medication at the normal dosage 

(Karimi et al., 2015). Therefore, ADRs does not have to do with non-prescribed or off-label usage 

of a drug or medication errors. In the United States, according to the Office of Disease Prevention 

and Health Promotion (ODPHP), ADRs account for about 2 million hospital stays as well as 3.5 

million physician office visits in each year4. Also, the cost incurred by each ADR case in 

community hospitals in the United States is estimated at around $3,000 (Classen, Pestotnik, 

Evans, Lloyd, & Burke, 1997; Hug, Keohane, Seger, Yoon, & Bates, 2012).  

Such considerable costs to the patients, insurance agencies, and the healthcare industry 

have caused researchers to seek effective ways for detection, prediction, and prevention of ADRs 

during the past years. The development of Electronic Health Records (EHR) systems in the past 

decade has provided pharmacovigilance researchers with great opportunities to detect, predict, 

and understand adverse drug reactions by analyzing real medical transactions. 

                                                      
3 Pharmacovigilance (a.k.a. drug safety surveillance) is a field of science that tries to detect, assess, 

understand, and prevent harms and injuries caused by medications in all stages of drugs’ lifetime (i.e. 

discovery, clinical trials, pre-marketing, and post-marketing). (World Health Organization) 
4 https://health.gov/hcq/ade.asp  

https://health.gov/hcq/ade.asp
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Acute Renal Failure is one of the most common ADRs due to taking medications 

identified in the literature (Trifirò et al., 2009). The literature has mentioned several drugs with 

renal failure as one of their main side effects (Ashley, 2018; Cavalieri et al., 2018; Härmark, Van 

Der Wiel, De Groot, & Van Grootheest, 2007; Perazella, 2003; Singh, Ganguli, & Prakash, 

2003). Also, diabetes mellitus is known as the leading cause of chronic and end-stage kidney 

disease as Loh and Cohen (2009) and Afkarian and colleagues (2016) note that diabetes mellitus 

accounts for most of the cases of kidney disease in the United States and other developed 

countries. Whereas common diabetes medications are not known as major causes of renal failure 

in the literature, there are studies which suggest some confounding roles for these medications in 

increasing or decreasing the chances of renal failure development. However, those analyses are 

mostly focused on frequently prescribed diabetes medications (e.g., insulin and metformin); 

moreover, in some cases, inconsistent confounding roles have been suggested for the same drug 

by different researchers.  

Although various data-driven methods such as disproportionality analysis (Baksh, 

McAdams‐DeMarco, Segal, & Alexander, 2018; Cohen, Houdeau, & Khromava, 2018; Trippe, 

Brendani, Meier, & Lewis, 2017), text analysis (Harpaz et al., 2013; Nikfarjam et al., 2015a), and 

network analysis (Cami et al., 2011; Davazdahemami & Delen, 2018) are proposed in the 

literature to identify drug’s potential adverse events, little research has been done on the potential 

confounding role of drugs in development of adverse events in the presence of other drugs. In 

fact, the drug-ADR associations are mostly studied in isolation, whereas prior research suggests 

that unintended drug-drug interactions (DDIs) may help developing an adverse event in these 

patients.  

Almost all the DDI studies in the literature involve investigation of potential reactions 

between pairs of drugs whereas many interactions might be the result of taking three or more 

drugs in a time period. In the present study, we extend the framework proposed by Reps et al. 
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(2016) and apply it to the prescription records of a large set of diabetic patients to: 1) investigate 

the general confounding role of common diabetes medications, including those infrequently 

prescribed drugs, controlling for the effect of kidney-damaging drugs; and 2) assess the stability 

of those confounding roles across various prescription combinations of the same drug (i.e., 

assessing the potential DDIs) with the aim of explaining inconsistent confounding roles reported 

in the prior studies. 

The remainder of the paper is organized as follows. In section 2 through a review of the 

literature, we discuss the pre- and post-approval ADR research as well as various approaches 

employed in prior research for this purpose. Finally, we explain the research goals in the last part 

of that section. Following that, in section 3 we elaborate the proposed approach as well as the 

settings of the case study conducted to showcase that. Next, the results are presented (section 4) 

followed by a discussion of theoretical and empirical implications in section 5.  

2.2. LITERATURE REVIEW 

2.2.1. PRE- AND POST-APPROVAL ADR RESEARCH 

It takes ten to fifteen years, on average, for a new drug to pass through the required clinical trials, 

get approved, and be introduced to the market (Iizuka, 2007). However, even after this long 

process, it is unlikely that all the risks associated with taking a drug have been identified. It is 

particularly due to limitations involved in lab experiments. They are often conducted over short 

timeframes and involve only a limited sample size. In addition, they are focused only on a 

particular group and usually exclude patients with complicated medical conditions (Karimi et al., 

2015; Zeng et al., 2002). Moreover, these trials may not detect drug reactions with very low 

incidence rates (Stephens & Talbot, 1985). Due to these shortcomings, the side effects of a 

considerable number of drugs are often only revealed in the post-approval stage.  



15 

 

As a post-approval effort to rapidly detect and take appropriate action to ADRs, many countries 

and healthcare organizations have run Spontaneous Adverse Drug Reporting Systems (SAERSs); 

information systems designed to allow patients and professionals to submit their reports of 

suspected adverse drug events. Some of the examples of such systems are the yellow card system 

of Medicines and Healthcare products Regulatory Agency (MHRA) in the United Kingdom, and 

the FDA Adverse Event Reporting System (FAERS) in the United States (Karimi et al., 2015).  

Although spontaneous reporting systems have been the main source to detect likely ADR cases 

for years, they still have several limitations such as over-reporting of highly common ADRs, 

missing and incomplete data, duplicated reporting and voluntary submission (Harpaz et al., 2013). 

Due to the voluntary submission of the reports, for instance, it is estimated that these systems in 

the US and UK reflect less than 10% of the adverse effect occurrences (Inman & Pearce, 1993; 

Yang et al., 2012). Such shortcomings led pharmacovigilance practitioners to look for resources 

that are more efficient for post-approval drug surveillance. 

In recent years, Electronic Health Records (EHR) have been widely used in the healthcare 

industry to help practitioners in collection, storage, and tracking patients' information and their 

treatment progress. The vast amount of data collected by EHRs as well as their increasing 

availability of low-cost EHR platforms to the healthcare providers have made them interesting 

resources for pharmacovigilance researchers and presented opportunities to investigate and detect 

ADR signals5 closer to real-time (Trifirò et al., 2009). Several data mining approaches have been 

proposed and applied by data scientists to EHR data in the past few years (Bao, Kuang, Peissig, 

Page, & Willett, 2017; Friedman, 2009; Polimeni et al., 2009; Santiso, Casillas, & Pérez, 2018; 

Trifirò et al., 2009). Despite utilizing EHR data for pharmacovigilance purposes have gained 

                                                      
5 In pharmacovigilance, a signal is defined by the WHO as information on a possible causal relationship 

between an adverse event and a drug, which is unknown or incompletely documented (Trifirò et al., 2009). 
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much interest from European and Australian researchers, there is still a lack of sufficient research 

by the US academics and practitioners on the EHR data from the US healthcare market. Even 

though EHR data is generally more complete than data collected by spontaneous reporting 

systems, yet using this data for detection and prediction of ADR cases involves challenges such 

as complex data preprocessing requirements and various data documentation styles across 

different healthcare organizations (Harpaz et al., 2013).  

Social media has also been considered as a key data source for monitoring drugs’ post-marketing 

feedbacks in the recent few years. This is normally done either through healthcare online forums 

such as ‘Ask a patient’, ‘Dailystrength’, and ‘PatientsLikeMe’ (Karimi, Kim, & Cavedon, 2011; 

Leaman et al., 2010; X. Liu & Chen, 2013); or through social networks like Facebook and Twitter 

and by applying text-mining and sentiment analysis methods (Ginn et al., 2014; Nguyen et al., 

2017; Prier, Smith, Giraud-Carrier, & Hanson, 2011). 

2.2.2. TAXONOMY OF ADR STUDIES 

In terms of research goals, pharmacovigilance studies can be classified into three categories, 

namely detection, prediction, and understanding studies (Davazdahemami & Delen, 2018).  

Detection studies mainly aim at identifying existing associations (not necessarily causal) 

between drugs and potential adverse reactions, often by analyzing historical usage data obtained 

from various resources. Of course, additional clinical trials are needed to assess and verify the 

causality of associations detected by this type of ADR studies, however, it is still valuable to 

identify potential ADR that might be caused by a medication and focus the expensive and time 

consuming clinical trial activities on them.  

Prediction studies are those that utilize information about already known drug-ADR 

associations to predict possible ADRs for the newly discovered as well as existing drugs. While 

detecting and predicting potential associations is a critical task, it is clear that such associations 
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do not hold all the time and in case of every patient. That is why, for instance, that a particular 

patient might experience a side effect of a given drug, while that drug may not have any adverse 

effect in another patient. Hence, it is crucial to investigate and understand the mechanism through 

which drugs develop side effects in the patients by identifying factors that either intensify or 

mitigate the strength of a drug-ADR association. This is, in fact, the goal of the understanding 

group of pharmacovigilance studies. 

Many studies have been done in the past with the aim of detecting ADR signals for 

various drugs. In terms of methodology, some of them (Cai et al., 2017; van Puijenbroek et al., 

2002) have used traditional statistical methods for this purpose, whereas many other studies 

(Friedman, 2009; Harpaz et al., 2013; Harpaz, Haerian, et al., 2010; X. Liu & Chen, 2013; 

Nikfarjam et al., 2015a; Reps et al., 2016; Trifirò et al., 2009) have employed data mining and 

analytics techniques to detect ADR signals. Association rule mining techniques have been shown 

in prior research to be highly efficient in extracting patterns from healthcare data (Borah & Nath, 

2018; Harpaz, Chase, et al., 2010; Kuo, Lin, & Shih, 2007; W. H. Lee, Wang, & Chen, 2017; 

Nahar, Imam, Tickle, & Chen, 2013; Piri, Delen, Liu, & Paiva, 2018). Also in terms of data, 

various resources have been used in the past ADR detection studies including SAERSs (Cai et al., 

2017; DuMouchel, 1999; Harpaz et al., 2013; van Puijenbroek et al., 2002), EHRs (Casillas, 

Pérez, Oronoz, Gojenola, & Santiso, 2016; Friedman, 2009; Haerian et al., 2012; Harpaz, 

Haerian, et al., 2010; Reps et al., 2016; Trifirò et al., 2009), and social media (Hoang et al., 2016; 

J. Liu et al., 2016; X. Liu & Chen, 2013; Nikfarjam et al., 2015a). 

While most of the prior ADR detection studies are focused on identifying associations 

between drug-ADR pairs, many ADRs are actually the outcome of drug-drug interactions (DDIs) 

among two or more drugs that are prescribed and administered together in a short time window. 

Compared to the regular ADR detection studies, little research has been done on identifying such 
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DDIs, especially for studying DDIs involving more than two drugs and their potential role in 

developing ADRs. 

2.2.3. RESEARCH GOALS 

Reps et al.(2016) proposed a framework for refining ADR signals including sets of drugs 

obtained via longitudinal observational (EHR) data. In the present study, we extend their 

framework by adding extra assumptions and combining it with some standardized statistical 

metrics and apply that to the prescription records of a group of diabetic patients with the aim of 

identifying the general confounding roles of common diabetes medications in developing renal 

failure. In addition, we assess the stability of their roles across various prescription combinations 

to highlight their potential interactions with other relevant drugs, which leads them to act in an 

unexpected way with respect to developing renal failure.  

The proposed framework in the current study differs from that of Reps et al. in two 

specific aspects; first, unlike their approach which relies on the “lift” measure to identify frequent 

itemsets that are more frequent among case patients than among control patients, we use a 

statistical metric for comparing case and control patients and rely on statistical significance of 

difference for judging about the confounding effect. Second, in our proposed approach the focus 

is on identifying the confounding role of single drugs by taking into account their potential 

interaction with other drugs, as opposed to Reps et al. that mainly investigate the confounding 

effect of the whole itemset.  

In fact, our study is an event-based type of data mining analysis as defined by Trifirò et 

al.(2009), in which the focus is on one or a set of specific events (i.e., renal failure) for their 

association with possible drugs that may cause them. There is an event-based stream of research 

focused on investigating the drugs associated with kidney diseases in general and acute renal 

failure in particular (Cavalieri et al., 2018; Coca & Perazella, 2002; Heerspink et al., 2017; J. 
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Huang, 2018; Izzedine, Launay-Vacher, & Deray, 2005; Kimura et al., 2017; Markowitz & 

Perazella, 2005; Naughton, 2008; Perazella, 2003; Singh et al., 2003). Loh and colleagues (2009) 

mention top ten categories of medications that cause kidney damage involving antibiotics, 

analgesics, COX-2 inhibitors, proton pump inhibitors, antiviral drugs, high blood pressure drugs, 

rheumatoid arthritis drugs, lithium, anticonvulsants, and chemotherapy drugs. The same set of 

drugs is mentioned, more or less, in the other related studies as well. Moreover, it is widely 

discussed in the medical literature that diabetes is the leading cause of renal failure so that 

diabetic nephropathy (a.k.a. diabetic kidney disease) is today well known as a progressive kidney 

disease due to longstanding diabetes type II (Afkarian et al., 2016; Loh & Cohen, 2009). The 

mechanism through which diabetes leads to the development of diabetic nephropathy is studied 

by several researchers (Fujita et al., 2014; Lehmann & Schleicher, 2000; Sun, Su, Li, & Wang, 

2013). Most of these studies highlight the role of high blood sugar levels as well as high blood 

pressure in damaging capillaries in the kidneys glomeruli. Given that, the general expectation 

from common diabetes drugs should be to attenuate damages to kidney through balancing the 

blood sugar, thereby decreasing the likelihood of developing acute renal failure. Prior research 

has investigated the confounding role of some of the frequently prescribed diabetes medications 

and reported inconsistent effects. For instance, while Fatourechi et al. (2009) mention a positive 

confounding effect for insulin therapy, Thomas et al. (2007) suggest an association between 

insulin therapy and reduced incidents of renal failure. In addition, infrequently prescribed 

diabetes medications rarely were studied for their potential confounding roles in developing renal 

failure. 

We apply an extended version of the Reps et al. framework to the longitudinal 

prescription records of a large group of diabetic patients to investigate the confounding (either 

attenuating or intensifying) role of common diabetic medications (including those infrequently 

prescribed ones) in those patients. Furthermore, we investigate whether those confounding roles 
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are stable across various prescription combinations or they might change due to potential drug-

drug interactions, thereby trying to explain inconsistent findings reported in prior research. 

Therefore, our research question is “How are the confounding roles of common diabetes 

medications in developing acute renal failure in diabetic patients? Are these roles stable for each 

drug across various prescription combinations?” 

2.3. MATERIALS AND METHODS 

2.3.1. MATERIALS 

In order to address the research question, we obtained data from a longitudinal observational 

electronic health records database, namely the Cerner HealthFacts data warehouse 6 

(http://www.cerner.com). Cerner HealthFacts is the most comprehensive relational database in the 

U.S. and contains complete medical records of more than 63 million unique patients across the 

country. The database contains time-stamped entries of patients’ visits, physicians’ diagnoses, and 

prescribed drugs (among other patient-event specific characteristics). Prescription and diagnosis 

records of adult patients (18 or older) diagnosed with diabetes mellitus (ICD9- 250) for the first 

time during the 4-year period of study (i.e., 2012-2015) were extracted for analysis. The initial data 

involved 377,910 unique patients. Since the focus of our study was on diabetic drugs as well as 

kidney-damaging (KD) drugs, we then filtered the prescription records to keep only these types of 

drugs for analyses. 

2.3.2. METHOD 

A case-control design was employed to conduct the analyses. In this design, the case group were 

those diabetic patients who developed acute renal failure (ICD9- 580) during the study period, 

                                                      
6 Cerner is not a publicly available data source, however, the authors had access to that via their institution, 

to which the data warehouse is donated for the research purposes.  

http://www.cerner.com/
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and the control group involved those diabetic patients who were not diagnosed with renal failure 

by the end of the study period. 

For each patient identified as a case subject, we considered two index dates; 1) the date 

he or she was diagnosed with diabetes mellitus for the first time, and 2) the date the patient was 

diagnosed with renal failure for the first time. Two subjects were matched as the control to each 

case-patient by matching on their age, race, gender, comorbidities and the first index date (i.e., 

the date he or she was first diagnosed with diabetes mellitus). Moreover, the second index date 

for each control is the same as its matching case’s second index date. Matching two controls for 

each case-patient makes the sample more representative of the population (Reps et al., 2016). An 

innovative method was used to match the controls to each case patient, in which we coded each 

patient profile using an ten-character string including two characters for age, one character for 

gender (male=1, female=2), one character for race (Caucasian=1, African-American=2, 

Hispanic=3,...), two character for comorbidities, and four characters for a numeric transformation 

of the first index date (indicating the number of days passed since January 1, 2000). We then used 

a simple SQL query using the coded patients profile to find all the matches from the potential 

control patients to each subject in the case group and randomly selected two of them for each case 

subject. Since there were less than two matches for some case subject profiles, we re-coded the 

profiles for that particular patients and replaced the four-digit index date with a three-digit one 

representing the number of weeks passed since January 1, 2000 and ran the queries again. There 

were also some cases for which we used the month of the index date to find a matching. 

However, fortunately, there was no problem with regard to finding matches in terms of any of the 

other factors thanking the large initial dataset employed.    
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Table 2.1. Profile of D1 and D2 databases 

Gender Race Age Comorbidities 

Male  55.76% 

Female 44.24% 

Caucasian  47.21% 

African-American  41.22% 

Native American  2.66% 

Hispanic  2.61% 

Asian  1.04% 

Other  5.26% 

Mean   40.77 

StDev   7.51 

Mean   5.38 

StDev   2.15 

 

In the next step, two databases were created. D1 which involved the prescription records 

pertaining to the last 10 visits prior to the second index date of patients in the case-group 

(including 1,294 patients); and D2 containing the same information for their corresponding 

control patients (2,588 patients). In order to construct the databases, if a drug was prescribed two 

or more consecutive times, we only kept the earliest prescription. Also, all the medications 

prescribed in a single visit were given the same sequence label. Given these assumptions, we 

came up with 18,562 and 22,388 prescription records for the case and control patients, 

respectively. Table 2.1 demonstrates the profile of the two databases in terms of the factors the 

patients were matched on. 

To investigate the potential confounding role of diabetic drugs we then applied frequent 

itemset mining, using the association rule mining pre-defined procedure in SAS Enterprise Miner, 

to both D1 and D2 to identify frequent sets of drugs along with their support (i.e. the proportion 

of transactions in the database that contain that set of drugs). Frequent itemset mining is a branch 

of frequent pattern mining in which the focus is on identifying sets of items within a transactional 

database that appear sufficiently often in the whole database. Therefore, a support threshold 

should be determined by the user to specify for the algorithm as to "how often" do we consider 

"sufficiently often". One of the popular algorithms for extracting frequent itemsets from a 
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transactional database, used as the main algorithm in the SAS Enterprise Miner platform, is the 

Apriori algorithm proposed by Agarwal and Srikant (1994). The algorithm begins by identifying 

frequent single items in a transactional database, and then in each subsequent iteration generates 

candidate itemsets of size n from the itemsets of size n-1 and then prunes the infrequent 

candidates with regard to the given support threshold. Even though recently multiple innovative 

algorithms and metrics have been proposed for effective association rule mining under special 

circumstances or with different approaches such as incomplete evidence (Galárraga, Teflioudi, 

Hose, & Suchanek, 2013), in the presence of constraints (Baralis, Cagliero, Cerquitelli, & Garza, 

2012), identifying rare rules (Piri et al., 2018), using utility-based (as opposed to frequency-

based) mining (D. Lee, Park, & Moon, 2013), and taking into account the weight of items in the 

rule mining (Vo, Coenen, & Le, 2013), yet Apriori is known as an effective generic association 

rule mining algorithm.  

In order to find more relevant itemsets, we limited the maximum size of itemsets to 5 and 

the minimum support threshold to 0.5% in both data sets. The reason we limited the maximum 

size of itemsets to 5 is that the average number of transactions (i.e., distinct medications 

prescribed) for the patients in the control group was 5.10 with a median of 5; therefore 

considering itemsets including less than 5 drugs would result in excluding half of the control 

patients (probably the healthier half) from the analyses and would make the results biased. In 

addition, given the total number of patients in the case and control groups, considering a support 

threshold less than 0.5% technically was pointless, since it would result in very small frequencies 

and the corresponding itemset most probably would not suggest any statistically significant 

results. It should be noted that we did not take into account the sequence in which the drugs were 

administered (i.e., a non-sequential itemset mining analysis was done). Hence, for instance two 

itemsets like {a,b,c} and {c,a,b} were considered equivalent in calculating supports. 
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At the end of this process, we come up with a list of itemsets for each group of patients 

along with their support in their corresponding databases. At this stage, the itemsets containing 

both types of drugs of interest (i.e. diabetic and KD) were identified to focus on. We call them 

Combined Sets (CS) from now on. For each itemset in the CS, we then find matches from 

itemsets including all its KD drugs, but no diabetic drugs. We call this second group Pure Sets 

(PS). Hence, for each itemset in the CS, there are one or more matches in the PS. For example, if  

M={acetaminophen, vancomycin, insulin} is a frequent itemset identified as CS, its matching set 

in the PS would be M’={acetaminophen, vancomycin} which only involves drugs from KD 

category (note that M’⸦ M). The CS and PS itemsets were identified in both case and control 

patients. 

In the medical literature, Relative Risk (RR) is a measure used to indicate the risk of 

developing disease given exposure to its causes (Altman, 1990). Suppose that we expose the case 

group to a particular factor while keeping the control group unexposed. If we record the number 

of bad and good outcomes in each group (let’s call them a and b for the case and c and d for the 

control group respectively), the RR then would be: 

𝑅𝑅 =
𝑎

(𝑎+𝑏)⁄

𝑐
(𝑐+𝑑)⁄

                                                             (Eq.1) 

With the standard error of the log RR being: 

𝑆𝐸{ln(𝑅𝑅)} =  √
1

𝑎
+  

1

𝑐
−  

1

𝑎+𝑏
− 

1

𝑐+𝑑
                                     (Eq.2) 

In this study, since the outcome of interest (i.e. renal failure) was an ADR, and the goal 

was to identify the potential confounding effect of diabetic drugs, then each diabetic drug was 

considered as a potential cause for the outcome. Let us consider the case group in our study first. 

If we call the number of patients having a particular CS itemset (Ics) in their prescription records 
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“a”, and the number of case patients having the PS itemset (Ips) corresponding to Ics (note that 

𝐼𝑝𝑠 ⸦ 𝐼𝑐𝑠), "b", then 
𝑎

𝑎+𝑏
 would represent the ratio of case patients who were exposed to the 

diabetic drug involved in Ics (i.e., Ics-Ips) to the case patients who have taken both diabetic and 

kidney damaging drugs involved in Ics . Similarly, 
𝑐

𝑐+𝑑
 can be interpreted as the same ratio in the 

control group of patients. Therefore, we argue that if this ratio for the case patients is significantly 

greater than for the control patients, it suggests that controlling for a particular PS itemset (Ips), 

prescribing a particular diabetic drug (i.e. Ics - Ips) generally increases the risk of renal failure (i.e. 

positive confounder). Conversely, if this ratio for the case patients is significantly smaller than 

that for the control patients, it suggests the corresponding diabetic drug is a negative confounder 

in developing renal failure. Finally, if the ratios are not different across two groups it suggests 

that the corresponding diabetic drug has no confounding role in developing renal failure. To make 

the risk ratio equation more meaningful for our particular purpose, we call it the confounding 

coefficient (CC) from this point on and we attribute it to the specific diabetic medication that 

exists in Ics but not in Ips. In short, if: 

𝐶𝐶𝑑𝑟𝑢𝑔𝑋 =
𝑎

(𝑎+𝑏)⁄

𝑐
(𝑐+𝑑)⁄

                                                         (Eq.3) 

for a specific diabetic drug “X” is significantly (i.e., p-value<0.05) greater than 1, it suggests that 

the diabetic drug X is a positive confounder of the ADR (i.e., increases the risk of renal failure), 

since it is taken by the case patients significantly more than the control patients. Similarly, if 

CCdrugX is significantly (i.e., p-value<0.05) less than 1, it suggests that drug X is a negative 

confounder of the ADR (i.e., decreases the risk of renal failure) since it is taken by the case 

patients significantly less than by the control patients. In addition, a non-significant CC (i.e., p-

value>0.05) suggests no confounding role for the corresponding drug. Moreover, the 
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larger/smaller significant CC values suggest a potentially stronger positive/negative confounding 

effect. 

Table 2.2. A numerical example of the proposed method 

Ics Case Ctrl Ips Case Ctrl CCdrg050 p-value 

a c b d 

{drg050,drg230, drg344} 39 57 {drg230,drg344} 0 12 1.20 0.0005 

 

Table 2.2 indicates an example. Suppose that drg050 is a diabetic drug and drg230 and 

drg344 are two kidney-damaging drugs. The combined itemset including these drugs (𝐼𝑐𝑠) is 

identified as a frequent itemset. Excluding drg050, the diabetic drug, from this itemset we get an 

itemset purely including kidney-damaging drugs (i.e. 𝐼𝑝𝑠). Suppose that 39 case patients had all 

the three drugs in their prescription records (i.e., a=39). Also that the number of case patients 

having only the two kidney-damaging drugs but not the diabetic drug in their records was 0 (i.e., 

b=0). Similarly, suppose that these numbers in the control group are c=57 and d=12. The 

Confounding Coefficient (CC) corresponding to the drug drg050 then would be: 

𝐶𝐶𝑑𝑟𝑔050 =
39

(39+0)⁄

57
(57+12)⁄

= 1.20                (Eq.4) 

with a p-value=0.0005. It suggests that the diabetic drug, drg050, is a positive confounder that, if 

prescribed along with drg230 and drg344, can increase to the risk of developing renal failure 

mainly caused by the other two drugs. 

Similar analyses were performed for all the identified frequent combined sets of drugs and their 

corresponding pure sets in both case and control groups of patients and the confounding 

coefficients were calculated multiple times for each common diabetic drug. The results were then 

integrated, as reported in section 4. Figure 2.1.  illustrates the method and procedures in a 

workflow-type graphical depiction. 
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Figure 2.1. A graphical depiction of the data preprocessing and method development 

procedures   
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2.4. RESULTS 

To conduct this research, we particularly focused on 23 common diabetic as well as 43 kidney-

damaging medications that were prescribed at least once for a patient in our initial data set. 

However, after identifying the case and control groups the numbers decreased to 16 and 31 

respectively, as some drugs were not prescribed for the patients in these groups at all. 

Applying frequent itemset mining to the prescription records of the case and control 

groups, more than 5,000 frequent itemsets (not necessarily unique) were identified using SAS 

Enterprise Miner. As noted before, we limited our rule extraction procedure to find itemsets 

including up to 5 drugs with a minimum support of 0.5% across the whole data set. We then 

filtered the frequent itemsets to include only the itemsets involving at least one drug of each type. 

This resulted in 246 unique frequent itemsets, which were, in fact, our Combined Sets (CS) of 

drugs discussed in the method section. Then for each of the CS itemsets, a subset containing only 

their corresponding kidney-damaging drugs was created; in our method terminology, we called 

these subsets the Pure Sets (PS). In the next step for each CS itemset and its corresponding PS, 

using the frequency of their incidence within the case and control patients’ prescription records, 

we calculated the CC associated with the diabetic drug involved in each CS itemset. 

Table 2.3 demonstrates a sample of 10 frequent itemsets along with their corresponding 

CC calculations. 
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Table 2.3. A sample of frequent itemsets and CC calculations 

Ics Case Ctrl Ips Case Ctrl CC p-value 

a c b d 

{insulin & acetaminophen & 

pantoprazole & aspirin} 
173 107 {acetaminophen & 

pantoprazole & aspirin} 
3 6 1.03 0.126 

{insulin & acetaminophen & 

ketorolac & aspirin} 

76 69 {acetaminophen & 

ketorolac & aspirin} 

1 11 1.14 0.004 

{pantoprazole & insulin & 

ketorolac & aspirin} 

46 36 {pantoprazole & ketorolac 

& aspirin} 

0 6 1.16 0.141 

{ketorolac & insulin & 

ibuprofen & acetaminophen} 

39 57 {ketorolac & ibuprofen & 

acetaminophen} 

0 12 1.20 0.0005 

{pantoprazole & metformin & 

acetaminophen} 

38 64 {pantoprazole & 

acetaminophen} 

330 208 0.44 0.0001 

{ketorolac & aspirin & 

metformin & acetaminophen} 

19 33 {ketorolac & aspirin & 

acetaminophen} 

58 47 0.60 0.032 

{insulin & ciprofloxacin & 

esomeprazole} 

24 16  {ciprofloxacin & 

esomeprazole} 

1 0 0.96 0.317 

{sitagliptin & acetaminophen & 

esomeprazole} 

9 10 {acetaminophen & 

esomeprazole} 

35 106 2.37 0.042 

{glyburide & aspirin & 

acetaminophen} 

10 0 {acetaminophen & aspirin} 352 326 18.91 0.042 

 

Table 2.4 shows a summary of results for the diabetes medications emerged in the 

frequent itemsets. As shown, from 16 common diabetic drugs involved in the case and control 

patients’ records, only nine emerged in frequent itemsets. For each of them, the table indicates the 

number of times they were present in distinct frequent itemsets as well as the number of times 

they were recognized as a significant (either positive or negative) confounder (using a 0.05 

significance level). For instance, for insulin (and its variations such as insulin aspart, insulin 

glargine, etc.), the results show that due to high frequency of its prescription for diabetic patients, 

it was present in 94 out of 246 identified frequent itemsets; from which, our analysis showed that 

in 53 itemsets insulin plays a significant confounding role. That is its corresponding confounding 
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coefficient (CC) was significantly different from 1. Among those significant cases, it was 

revealed that in 48 cases (90.6%) insulin plays a positive confounding role (i.e. CC>1). This 

suggests that controlling for the KD drugs present in each itemset, diabetic patients who 

experienced renal failure during the study period (i.e., case group) had been prescribed insulin 

significantly more frequently than those in the control group who did not experience the adverse 

outcome. Overall, it suggests that generally, insulin plays a positive confounding role in the 

development of renal failure in diabetic patients. As shown in Table 2.4, from the 9 drugs 

analyzed, only Metformin, Linagliptin, and Pioglitazone showed a generally negative 

confounding behavior and other diabetic medications exhibited a positive role in confounding the 

issue. 

Table 2.4. Common Diabetic Medications and their potential confounding roles 

Drug 

(generic 

name) 

Total # of 

itemsets 

emerged in 

# identified 

as significant 

confounder 

# identified 

as positive 

confounder 

(%) 

# identified 

as negative 

confounder 

(%) 

Average 

CC 

Max 

CC 

Min 

CC 

Conclusion 

Insulin 94 53 48 (90.6%) 5 (9.4%) 1.10 1.23 0.91 Pos. conf. 

Metformin 52 38 0 (0%) 38 (100%) 0.52 0.71 0.26 Neg. conf. 

Glipizide 21 14 14 (100%) 0 (0%) 2.12 2.73 1.81 Pos. conf. 

Sitagliptin 18 11 9 (81.8%) 2 (18.2%) 4.38 6.15 0.93 Pos. conf. 

Glimepiride 18 8 8 (100%) 0 (0%) 3.61 5.61 2.10 Pos. conf. 

Glyburide 13 7 7 (100%) 0 (0%) 14.36 18.91 12.11 Pos. conf. 

Acarbose 11 7 6 (85.7%) 1 (14.3%) 3.09 3.76 0.97 Pos. conf. 

Linagliptin 11 6* 1 (16.6%) 5 (83.3%) 0.71 1.09 0.57 Neg. conf. 

Pioglitazone 8 4* 0 (0%) 4 (100%) 0.82 0.86 0.76 Neg. conf. 

* For these cases, significance was assessed at 0.1 level due to the scarcity of them among records. 

 

In order to make sure that the 0.5% support threshold used to identify the frequent 

itemsets was a proper choice, we looked into the number of frequent itemsets identified (for 
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insulin and metformin) as well as those in which the focal diabetes drug turned out as a 

significant confounder, considering four different thresholds ranging from 0.2% through 1.5% 

(see Figure 2.2). As shown in Figure 2.2 while in case of each drug both numbers increase by 

decreasing the support threshold, the gap between the two lines is considerable going from a 

0.5% down to 0.2% threshold. This actually happens since itemsets with a support less than 0.5% 

are such infrequent that using their frequencies in calculating the CC index for the corresponding 

diabetes drug does not result in a CC significantly different from 1. Overall, this confirms that 

0.5% seems to be a reasonable choice for support threshold, because thresholds lower than that 

technically does not provide us with considerably more information with regard to the 

confounding roles.  

  

Figure 2.2. Evaluating different support thresholds for identifying frequent 

itemsets 

Even though our analyses identified the dominant type of confounding role for each 

diabetic drug mentioned in Table 2.4, the results in this table also suggest that these confounding 

roles are not stable since for most of these diabetic drugs there exist frequent itemsets indicating 

significant confounding coefficients in the opposite direction as well. For instance, although 

insulin was said to be a generally positive confounder, our results indicate there were five 

instances (i.e., 9.4% of itemsets) in which a significant negative confounding role in developing 
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acute renal failure has been identified. In addition, this drug has not shown any significant 

confounding role at all in around 44% of the frequent itemsets in which it emerged. This suggests 

a very important point; that while insulin generally contributes to the development of acute renal 

failure, its confounding role varies depending on its potential interaction with other drugs 

administered to the patient. Table 2.5 indicates the five itemsets for which insulin turned out as a 

significant negative confounder. Our further investigation revealed that ciprofloxacin and 

sulfamethoxazole-trimethoprim, the two kidney-damaging drugs that are present along with 

insulin in these itemsets are not present in any of the itemsets that show a significant positive 

confounding role for insulin. This may suggest DDIs between these drugs leading to lower 

chances of developing renal failure. 

Table 0.5. Itemsets indicating a negative confounding role for insulin 

Itemset CCinsulin p-value 

{sulfamethoxazole-trimethoprim & insulin & aspirin & acetaminophen} 0.93 0.031 

{sulfamethoxazole-trimethoprim & insulin & aspirin & acetaminophen} 0.93 0.015 

{vancomycin & acetaminophen & sulfamethoxazole-trimethoprim & insulin} 0.91 0.019 

{aspirin & insulin & ciprofloxacin} 0.96 0.038 

{insulin & ciprofloxacin & acetaminophen & esomeprazole} 0.95 0.025 

Additionally, looking into the magnitude of average CC values for the diabetic drugs in 

Table 2.5, it suggests that Glyburide has the strongest positive effect (avg CC= 14.36) on 

increasing the likelihood of renal failure in diabetic patients, followed by Sitagliptin (avg 

CC=4.38). On the other hand, the average CC values for Metformin (0.52) and Linagliptin (0.71) 

implies that these two common diabetic drugs have the most negative confounding effect on the 

development of renal failure in these patients.  
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2.5. DISCUSSION AND CONCLUSIONS 

We extended an existing data mining framework in a case-control setting to investigate the 

potential confounding role of drugs with regard to a given adverse event. The extended 

framework was applied to the prescription records of a group of diabetic patients to investigate 

the potential confounding role of common diabetes medications (as well as its stability across 

various prescription combinations) in the development of acute renal failure (as the adverse event 

of interest in this study).  

The results indicate statistically significant differences between the prescription records 

of the case and control groups with regard to several common diabetic medications. Particularly, 

for the two most common medications for diabetes Type II patients (i.e. insulin and metformin), 

the results suggest potential generally positive and negative confounding roles for them, 

respectively. That is, controlling for the drugs already known to be associated with renal failure, 

the proportion of case patients prescribed with insulin was significantly higher than control 

patients. Similarly, the proportion of case patients prescribed with metformin was significantly 

lower than those in the control group.  

While insulin therapy is today a popular treatment among diabetic Type II patients due to 

its effectiveness in quickly reducing blood glucose level and positive effects on appetite and 

letting them have a more regular life, prior research have shown that uncontrolled insulin 

injection leads to resistance of the body to insulin and ultimately affects kidney due to 

hypoglycemia resulted (Fatourechi et al., 2009; Iglesias & Diez, 2008). Metformin then can 

function as a complementary agent to increase the sensitivity of the body to insulin and make a 

balance in such situations. Also, prior research (Berhanu, Perez, & Yu, 2007; von Websky, 

Reichetzeder, & Hocher, 2013; Yamanouchi, 2010) suggests that adding linagliptin or 

pioglitazone to insulin therapy can prevent hypoglycemia due to the accumulation of insulin. Our 
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results confirm such roles for metformin, linagliptin, and pioglitazone as they came out as 

negative confounding factors with regard to kidney failure. This actually provides support for the 

validity of the results obtained by our proposed approach.  

While the confounding roles of insulin and metformin have been studied in the prior 

research, the findings in those studies are somewhat inconsistent. For instance, Thomas et al. 

(2007) suggest that intensive insulin therapy in critically ill adult patients is associated with 

reduced incidences of acute renal failure. Also, Hsu et al. (2017) have reported that metformin 

may have an adverse effect in the renal function in patients with diabetes Type II. Our results 

provide an explanation for such inconsistencies by highlighting the role of potential drug-drug 

interactions that may lead a drug to act in an unexpected way with regard to an adverse event. 

Moreover, this study provides insights with regard to the general confounding effects of some 

diabetes medications that are under-studied in the literature, due to their lower prescription 

frequency by the practitioners. 

Of course, the present study is essentially a signal detection study and does not imply any 

causal relationship between the drugs and the ADR under study. This can be considered as the 

first step in a regular drug safety research which should be followed by assessments from a 

biological and clinical perspective and in-depth investigation to confirm or reject signals using 

expert opinions and randomized controlled trials (Shetty & Dalal, 2011). Future research may 

also validate and extend our approach by employing it for studying confounders of other common 

ADRs. 

Another contribution of this study is expanding a method originally proposed by Reps et 

al. (2016) for identification of drug-drug interactions (DDIs) involving more than two drugs. 

While there has been a huge amount of research on detecting DDIs involving pairs of drugs, in 

practice a typical patient might be prescribed with several drugs in each visit. Hence, taking into 
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account larger sets of drugs can help to reveal more reliable signals than when only two drugs are 

analyzed at a time. Again, further research should be conducted in order to assess and confirm the 

detected DDIs from the biological and clinical points of view.  

In short, our results indicate that while a general, either positive or negative, confounding 

role can be attributed to each of the common diabetic medications that holds in most of the 

prescription combinations, however, these confounding roles are not stable across various 

prescription combinations and taking into account drug-drug interactions sometimes a significant 

positive confounder may act as a negative one, or vice versa. This actually explains the 

inconsistent confounding roles reported in the literature and highlights the importance of 

considering DDIs in determining the outcome of a drug prescription.  

Of course, this research involves some limitations. Even though we controlled for the 

total number of comorbidities as a measure of general wellness, we did not control for the 

specific comorbidities between case and control groups as it would have significantly reduced the 

sample size and the power of analysis. In fact, we assumed that controlling for the age, gender, 

total number of comorbidities and the time of being diagnosed with diabetes, we can expect the 

same level of health between case and control patients regardless of their specific diseases. In 

addition, assuming that frequency of prescription of a drug has a strong correlation with the 

number of doses taken and given that this frequency leads to the emergence of the drug in the 

frequent itemsets, we also did not control for the doses of medications. These issues can be 

addressed in a randomized controlled trial study aimed at confirming the validity of signals 

detected here. So future research may expand the proposed approach by employing a larger data 

set (i.e., a wider study period) which allows for controlling the effect of specific diseases as well. 

This can be done by including diseases as items, just like the drugs, in the itemset mining 

analyses. 
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CHAPTER III 

 

 

ESSAY II: EXAMINING THE EFFECT OF PRESCRIPTION SEQUENCE ON DEVELOPING 

ADVERSE DRUG REACTIONS: THE CASE OF RENAL FAILURE IN DIABETIC 

PATIENTS 
 

ABSTRACT 

Objectives: While the effect of medications in development of Adverse Drug Reactions (ADRs) have been 

widely studied in the past, the literature lacks sufficient coverage in investigating whether the sequence in 

which [ADR-prone] drugs are prescribed (and administered) can increase the chances of ADR 

development. The present study investigates this potential effect by applying emergent sequential pattern 

mining techniques to electronic health records. 

Materials and Methods: Using longitudinal medication and diagnosis records from more than 377,000 

diabetic patients, in this study, we assessed the possible effect of prescription sequences in developing acute 

renal failure as a prevalent ADR among this group of patients. Relying on emergent sequential pattern 

mining, two statistical case-control approaches were designed and employed for this purpose. 

Results: The results taken from the two employed approaches (i.e. 76.7% total agreement and 68.4% 

agreement on the existence of some significant effect) provide evidence for the potential effect of 
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prescription sequence on ADRs development evidenced by the discovery that certain sequential patterns 

occurred more frequently in one group of patients than the other. 

Conclusion: Given the significant effects shown by our data analyses, we believe that design and 

implementation of automated clinical decision support systems to constantly monitor patients’ medication 

transactions (and the sequence in which they are administered) and make appropriate alerts to prevent 

certain possible ADRs, may decrease ADR occurrences and save lives and money. 

Keywords: Adverse Drug Events; Adverse Drug Reactions; Prescriptions Sequence; Emergent Pattern 

Mining; Electronic Health Records. 
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3.1. INTRODUCTION 

Today every drug produced and marketed by pharmaceutical companies has a list of likely side effects 

printed on its label to warn patients about possible harms they may undergo by taking it. Such known side 

effects are usually the result of several years of research and clinical trials conducted on the drug by the 

manufacturer after discovery and before introducing it to the market. 

There are, however, some limitations involved in these clinical trials. They are often conducted 

over short timeframes and involve only a limited sample size. Therefore, the sample may not fully 

represent the population of consumers and may exclude patients who receive other medications. In 

addition, they are focused only on a particular group and usually exclude patients with complicated 

medical conditions (Karimi et al., 2015; Zeng et al., 2002). Moreover, these trials may not detect drug 

reactions with very low incident rates (Stephens & Talbot, 1985). Due to these shortcomings, the side 

effects of a considerable number of drugs are often only revealed in the post-marketing stage.  

In pharmacovigilance7 terminology, Adverse Drug Event (ADE) is a general term that refers to 

any injury caused by a medication. This injury can be an unintended effect of the recommended (i.e. 

prescribed or labeled) usage of a drug, the off-label use of a drug, or a medication error (Karimi et al., 

2015). Adverse Drug Reactions (ADRs) are a subset of ADEs referring to an unexpected harm caused by 

the normal use of medication at the normal dosage (Karimi et al., 2015). Therefore, ADRs do not have to 

be related to the non-prescribed or off-label usage of a drug or medication errors; instead, they are 

generally the result of unexpected drug-event or drug-drug interactions. ADRs are reported by Australian 

Commission on Safety and Quality in Healthcare (ACSQHC, 2012) to cause about 400,000 visits to 

general practitioners and about 190,000 visits to hospitals in each year in Australia with a population of 

                                                      
7 Pharmacovigilance (a.k.a. drug safety surveillance) is a field of science that tries to detect, assess, understand, and 

prevent harms and injuries caused by medications in all stages of drugs’ lifetime (i.e. discovery, clinical trials, pre-

marketing, and post-marketing). (World Health Organization) 
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only 23 million people. Also, the cost incurred by each ADR case in community hospitals in the United 

States is estimated at $3,000 (Classen et al., 1997; Hug et al., 2012). 

Such considerable costs to patients, insurance agencies, and the healthcare industry have caused 

researchers to seek effective ways for detection, prediction, and prevention of ADRs during the past 

years. Multiple approaches are employed for this purpose and information systems (IS) have been playing 

a key role in almost all of them so that the main three ones, namely Spontaneous Adverse Drug Reporting 

Systems (SAERS), analysis of Electronic Health Records (EHR), and analyzing Social Media feedbacks 

are all heavily relied on information systems. 

An important potential factor in the occurrence of adverse drug reactions is the sequence by 

which the drugs are administered. Although this potential factor is mentioned in prior research to be more 

investigated (Egger, Drewe, & Schlienger, 2003), to the best of our knowledge, no prior research has 

empirically investigated the effect of this factor on the likelihood of ADR development. Hence, the main 

aim of our study is to investigate the potential effect of the prescription sequence on the development of 

adverse drug reactions. One of the five most common ADRs identified in the literature is acute renal 

failure8 (Trifirò et al., 2009). The literature has identified several drugs with renal failure as one of their 

side effects (Härmark et al., 2007; Perazella, 2003; Perneger, Whelton, & Klag, 1994; Singh et al., 2003). 

Due to its importance and high potential risk, in this study we specifically focus on this particular ADR 

and investigate the possible effect of the prescription sequence of its corresponding causes on the 

likelihood of its development. 

To this end, we develop two independent approaches both using a case-control study design. 

First, a sequential emergent pattern mining approach is developed to compare the sequential prescription 

patterns between the case (those patients who developed a specific ADR) and control patients (those 

patients, matched to the case patients on various factors, who did not develop the ADR) with the aim of 

                                                      
8 The other top common ADRs include bullous eruptions, anaphylactic shock, acute myocardial infarction, and 

rhabdomyolysis. 
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identifying whether different sequential patterns of the same frequent set of drugs have different effects 

on the likelihood of developing the ADR. Second, we compared the rank order of various sequential 

patterns of each frequent set of drugs (identified using a frequent itemset mining algorithm) by the means 

of the Spearman rank order correlation to specify whether for each non-sequential frequent set of drugs, 

the frequency of sequential patterns is significantly different among the case and control patients. 

The remainder of this paper is organized as follows. In section 2, through a review of the 

literature, we discuss the role of IS in ADE detection, prediction, and understanding research as well as 

various approaches employed in prior research for this purpose. Next, in section 3, the research question 

will be explained in more details. Following that, in section 4, we introduce the data set and the data 

preparation processes used to investigate the research question. Also, the method of analysis is explained 

in the same section and it is followed by the results (section 5) and discussion (section 6) of theoretical 

and empirical implications. 

3.2. LITERATURE REVIEW 

It takes ten to fifteen years, on average, for a new drug to pass through the required clinical trials, get 

approved, and be introduced to the market (Iizuka, 2007). However, even after this long process it is 

unlikely that all the risks associated with taking a drug have been identified. It is particularly due to 

limitations involved in lab experiments. They are often short time experiments and involve just a limited 

sample size (Zeng et al., 2002); the samples do not fully represent the target population of the drug as 

may be focused on particular groups and exclude others (Karimi et al., 2015); and the reactions with very 

low incidence rates are hard to detect through clinical trials (Stephens & Talbot, 1985).  

These shortcomings have caused a considerable number of potential drug-drug and drug-event 

interactions to remain undetected and it calls for additional investigations in the post-marketing stage of 

drugs’ lifecycle. 
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Adverse Drug Events is the general term in the Drug Safety Surveillance domain that refers to 

any injuries caused by a medication. An ADE can be described along several dimensions like the severity 

of its consequences, the stage of the medical use process in which it occurred, and the type of cause (e.g. 

medication error, wrong dosage, reaction with other drugs, etc.) (Riccioli, Leroy, & Pelayo, 2009). Since 

ADE by definition includes every kind of injuries (i.e. either due to a normal or abnormal usage of 

medications), a more specific definition is proposed in the literature for injuries specifically caused by 

normal use of medications at the normal, prescribed dosage. These type of unexpected causes are referred 

to as Adverse Drug Reactions (ADR) in pharmacovigilance terminology (Karimi et al., 2015; Nikfarjam 

et al., 2015a).  

Due to considerable costs and damages incurred by ADRs to the patients, insurance agencies, and 

healthcare providers, there has been a stream of research on detection, prediction, and understanding of 

this phenomenon in multiple disciplines including medicine, economics, and IS. The researchers in this 

area have employed various approaches, but what is shared among them is their heavy reliance on 

information systems for collection, extraction, and analysis of data required for detection and prediction 

of ADRs.  

As an effort to rapidly detect and take appropriate action to ADRs, many countries and 

organizations have run Spontaneous Adverse Drug Reporting Systems (SAERSs); information systems 

designed to allow patients and professionals to submit their reports of suspected adverse drug events. 

Some of the examples of such systems are the World Health Organization’s (WHO) Individual Case 

Safety Reports (ICSR) database, the Therapeutic Goods Administration’s (TGA) Adverse Drug Reaction 

System (ADRS) in Australia, the yellow card system of Medicines and Healthcare products Regulatory 

Agency (MHRA) in the United Kingdom, and the FDA Adverse Event Reporting System (FAERS) in the 

United States (Karimi et al., 2015).  
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Although spontaneous reporting systems have been the main source to detect likely ADR cases 

for years, they still have several limitations such as over-reporting of highly common ADRs, missing and 

incomplete data, duplicated reporting and voluntary submission (Harpaz et al., 2013). Due to voluntary 

submission of the reports, for instance, it is estimated that these systems in the US and UK reflect less 

than 10% of the adverse effect occurrences (Inman & Pearce, 1993; Yang et al., 2012). Such 

shortcomings led pharmacovigilance practitioners to look for resources that are more efficient for post-

marketing drug surveillance. 

In recent years, Electronic Health Records (EHR) have been widely used in the healthcare 

industry to help practitioners in the collection, storage, and tracking patients' information and their 

treatment progress. The vast amount of data collected by EHRs as well as their increasing availability 

have made them interesting resources for pharmacovigilance researchers and presented opportunities to 

investigate and detect ADR signals9 closer to real-time (Trifirò et al., 2009). Several data mining 

approaches have been proposed and applied by data scientists on EHR data in the past few years. Despite 

utilizing EHR data for pharmacovigilance purposes have gained much interest from European and 

Australian researchers, there is still a lack of sufficient research by the US academics and practitioners on 

the EHR data from the US healthcare market. Even though EHR data is generally more complete than 

data collected by spontaneous reporting systems, yet using EHR data for detection and prediction of ADR 

cases involves challenges such as complex data preprocessing requirements and various data 

documentation styles across different healthcare organizations (Harpaz et al., 2013).  

Social media has also been considered as a key data source for monitoring drugs’ post-marketing 

feedbacks in the recent few years by many researchers. A Pew internet research by Fox and Jones (2009) 

found that 61% of American adults look for health information (i.e. about specific diseases and 

treatments) online. This is normally done either through healthcare online forums such as ‘Ask a patient’, 

                                                      
9 In pharmacovigilance, a signal is defined by the WHO as information on a possible causal relationship between an 

adverse event and a drug, which is unknown or incompletely documented (Trifirò et al., 2009). 
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‘Dailystrength’, ‘Yahoo health and wellness’, and ‘PatientsLikeMe'; or through social networks like 

Facebook and Twitter. Through social media, people talk about their concerns, seek advice about their 

diseases and health issues, and discuss their experiences with the medications they take. Such 

information, although noisy, is likely to appear there long before it is reported to any SAERS or detected 

via EHRs. Most of the time, the topics discussed by patients in social media are the ones which they are 

reluctant to discuss with their doctor, especially those prescribed for serious conditions like cancer, where 

the patient can experience high levels of anxiety due to the long-term exposure to the drugs (Benton et al., 

2011; Leaman et al., 2010).  

Due to these facts, many researchers have started to use social media for ADR detection and 

prediction purposes. Particularly Twitter as an open-access social network is used in several drug 

surveillance studies and several text-mining and sentiment analysis approaches were developed to identify 

patterns and signals of drug-event relationships (Bian, Topaloglu, & Yu, n.d., 2012; Culotta, 2010; Ginn 

et al., 2014; Nguyen et al., 2017; Prier et al., 2011). Apart from tweets, some researchers have also 

analyzed people’s comments in public healthcare forums mentioned above for the same purpose (Karimi 

et al., 2011; Leaman et al., 2010; X. Liu & Chen, 2013). Yet it seems that this field of research is still in 

its infancy period and calls for a lot more work. 

3.3. RESEARCH QUESTION 

In terms of the research goals, pharmacovigilance studies can be classified into three categories, namely 

detection, prediction, and understanding studies (Davazdahemami & Delen, 2018). Detection studies 

mainly aim at detecting existing associations (i.e., signals) between drugs and potential adverse reactions, 

often by analyzing historical usage data obtained from various resources. Prediction studies are those that 

utilize information about already known drug-ADR associations to predict possible ADRs for newly 

discovered as well as existing drugs. While detecting and predicting potential associations is a critical 

task, it is clear that such associations do not hold all the time and in the case of every patient. That is why, 

for instance, a particular patient might experience a side effect of a given drug, while that drug may not 



44 

 

have any adverse effect in another patient. Hence, it is crucial to investigate and understand the 

mechanism through which drugs develop side effects in the patients by identifying factors that either 

intensify or mitigate the strength of a drug-ADR association. This is, in fact, the goal of the understanding 

group of pharmacovigilance studies. 

Prescription sequence, the sequence by which the drugs are prescribed and administered, is one of 

the factors that is suggested in the literature (Egger et al., 2003) to be investigated for its potential effect 

on the likelihood of ADRs development. To the best of our knowledge, no prior study has empirically 

investigated this potential effect, though. Hence, the research question we address in this study is: 

RQ: Does the sequence of drug prescription (and consequently drug administration) have any 

effect on the development of adverse drug reactions? 

3.4. MATERIALS AND METHOD 

3.4.1. MATERIALS 

In order to address the research question, we used a longitudinal observational electronic health records 

database, namely the Cerner HealthFacts data warehouse (http://www.cerner.com). Cerner HealthFacts 

data warehouse is the most comprehensive relational database in the US containing complete medical 

records of more than 63 million unique patients across the country. Cerner HealthFacts data warehouse 

contains time-stamped entries of patients’ visits, physicians’ diagnoses, lab tests, procedures, and 

prescribed drugs for both primary and secondary care visits. Prescription and diagnosis records of adult 

patients (18 or older) diagnosed with diabetes mellitus (ICD9- 250) for the first time during the 4-year 

period of 2012-2015 were extracted for analysis. The reason we limited our dataset to only diabetic 

patients was first to make the data more homogenous; and second the high rate of development of acute 

renal failure in this group of patients. The initial data involved prescription and visiting records of 

377,910 unique patients.  

http://www.cerner.com/
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There is an event-based stream of research focused on investigating the drugs associated with 

kidney diseases in general, and acute renal failure in particular (Coca & Perazella, 2002; Davazdahemami 

& Delen, 2019; Izzedine et al., 2005; Markowitz & Perazella, 2005; Naughton, 2008; Perazella, 2003; 

Singh et al., 2003). Loh and colleagues (2009) mention top ten categories of medications that cause 

kidney damage involving antibiotics, analgesics, COX-2 inhibitors, proton pump inhibitors, antiviral 

drugs, high blood pressure drugs, rheumatoid arthritis drugs, lithium, anticonvulsants, and chemotherapy 

drugs. The same set of drugs is mentioned, more or less, in other related studies as well. Since the focus 

of our study was on the drugs previously revealed to cause damages to the kidney, we focused on a set of 

43 kidney-damaging medications from the top ten categories of drugs mentioned in the literature, and 

filtered the prescription records to retain only these class of drugs for analysis.  

3.4.2. METHOD 

In order to address the research question, we employed a case-control study design. In this design, the case 

group were those diabetic patients who developed acute renal failure (ICD9- 580) during the study period, 

and the control group involved those diabetic patients who were not diagnosed with renal failure by the end 

of study period. 

Emergent pattern mining is a type of association rule mining that is used to detect differences 

between databases. The goal of emergent pattern mining is to find itemsets that are more frequent in one 

database (i.e. the case group in our study) compared to another (i.e. the control group). 

For each patient identified as a case subject, we considered two index dates; 1) the date he or she 

was diagnosed with diabetes mellitus for the first time, and 2) the date the patient was diagnosed with renal 

failure for the first time. Two subjects were matched as control to each case-patient by matching on their 

age, race, gender, comorbidities and the first index date10. Moreover, the second index date for each control 

                                                      
10 In case we couldn’t match the controls who were diagnosed with diabetes on the same month and year, we 

searched through patients diagnosed in the months before or after the case’s first index date to find a match. 
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is the same as its matching case's second index date. Matching two controls for each case-patient makes the 

sample more representative of the population and leads to more accurate approximations of the support, as 

a measure of prevalence of drugs in the patients’ prescription records (Reps et al., 2016); it also does not 

cause any issues in comparison of the two groups as the comparison criterion is the support, which is a 

percentage in nature. The emergent pattern mining will find sets of drugs that are prescribed more often 

prior to the second index date for the case subjects compared to the controls. 

In short, two databases were created. D1 involves the prescription records pertaining to the last 10 

visits prior to the second index date of patients in the case group (including 1,294 patients) whereas D2 

contains the same information for their corresponding control patients (2,588 patients).  

To investigate the potential effect of prescription sequence, we then applied frequent itemset 

mining to both D1 and D2 to identify both sequential and non-sequential frequent sets of drugs along with 

their support. Suppose Ins is an itemset (containing k distinct items) identified as frequent in a database. 

Consider Ins a non-sequential itemset in that the sequence of items (i.e. the sequence of drug 

prescription/administration) is not accounted for. Taking into account the sequence of items, then k! 

itemsets can be driven from Ins each with a unique sequence of items (i.e. sequential itemsets Is1, Is2, Is3, ..., 

Isk!). The non-sequential itemset Ins as well as all its corresponding sequential sets, each would have a 

support index indicating the proportion (and the number) of transactions (i.e. patients) involving them in 

each database. Given these notations, the two approaches we used to investigate the effect of drug taking 

sequence follow. 

The first approach is based on the Relative Risk notion. In the medical literature, Relative Risk 

(RR) is a measure used to indicate the risk of developing disease given exposure to its causes (Altman, 

1990). Suppose that we expose the case group to a particular factor while keeping the control group 

unexposed. If we record the number of bad and good outcomes in each group (let’s call them a and b for 

the case and c and d for the control group respectively), the RR then would be: 



47 

 

𝑅𝑅 =

𝑎
(𝑎 + 𝑏)⁄

𝑐
(𝑐 + 𝑑)⁄

                                                             (𝐸𝑞. 1) 
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                                     (𝐸𝑞. 2) 

In this study, our goal is to evaluate the confounding role of the sequence factor. For a non-

sequential itemset (Ins), if a and c represent the number of its incidents within the case and control databases 

respectively; also b and d represent the number of case and control patients not having the itemset in their 

records, then Equation 1 would represent the relative risk associated with the itemset Ins. Therefore an RR 

greater than one would suggest that the itemset Ins is relatively more frequent in case patients than it is in 

control patients. Then it can be expected that someone having that itemset in his or her prescription records 

experience the negative outcome (i.e. ADR) more likely than someone who does not have it. The RR can 

be calculated for each of the possible sequential itemsets in a similar way. Having relative risk values for 

the non-sequential as well as the corresponding sequential itemsets, we argue that any inconsistency in 

these values implies the potential effect of the sequence factor. By inconsistency, we mean situations in 

which either one or more of the following conditions hold: 

1- The RR associated with a non-sequential itemset is significant whereas at least one 

of the corresponding sequential itemsets have non-significant RR value or vice versa. 

2- The RR associated with the non-sequential itemset is significant and greater than 

one (suggesting a positive confounding role for that itemset) whereas some of the corresponding 

sequential itemsets have significant values of RR that is less than one (suggesting a negative 

confounding role for that itemset).  
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3- The RR measures associated with both the non-sequential and sequential itemsets 

are significant and greater (less) than one, but they considerably differ in terms of magnitude. We 

considered a minimum difference of 0.5 in the magnitude of RR as the threshold as it suggests that 

the incidence of the corresponding sequential pattern is 50% more (or less) frequent than the non-

sequential pattern in the case patients compared with controls.  

We consider these conditions as inconsistency because they imply that patients experiencing the 

same set of drugs can have different likelihoods of experiencing the negative outcome depending on the 

sequence by which those drugs are prescribed/administered.  

Table 3.1 indicates an example to clarify this approach. It is shown that the relative risk when the 

sequence is not taken into account (i.e. RRns) is significantly greater than 1 whereas accounting for the 

sequences only the last three itemsets involve a significant relative risk. That is, administering the same 

drugs in some particular sequences poses a higher risk of developing the negative reaction than other 

sequences. 

The second approach relies on comparing the patterns of incidence of sequential itemsets across 

patient groups. Here the idea is that if the sequence of drug prescription has nothing to do with the likelihood 

of the negative outcome, then we should anticipate observing roughly the same pattern of incidence for 

sequential itemsets across the case and control groups. To compare these patterns, we first sort the 

sequential itemsets, separately in the case and control groups, according to their support in the 

corresponding databases and accordingly give a rank order to each itemset in each group. We then apply 

Spearman Rank Order Correlation to their ranks. A small, non-significant, or negatively significant 

correlation coefficient between the rank orders suggests that the pattern of incidence of the itemsets is 

different across the two groups of patients. In other words, some particular prescription sequences that are 

highly frequent among case patients are not so among the control group and vice versa.   
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An example is shown in Table 3.2. In this case, the rank order correlation for different sequences 

of an itemset in the case and control groups is non-significant. It suggests that the case and control patients 

have experienced different sequential patterns of the same itemset. It can also be realized by looking at the 

ranks of itemsets in the groups. For instance, sequential itemset {drg303, drg101, drg202} which is the 

most frequent pattern among case patients (i.e. rank=1), is the second least frequent pattern among control 

patients.  

Figure 3.1 indicates a summary of the methods and procedures. 



50 

 

Table 3.1. Example of the First Approach 

Non-sequential Case Control RRns 

(p-value) 

Sequential Case Control RRs  

(p-value) Ins a b c d Is a’ b’ c’ d’ 

{drg101,drg202,drg303} 91 1001 88 1462 
1.468 

(0.008) 

{drg101,drg202,drg303} 41 1051 46 1504 1.265 (0.2650) 

{drg101,drg303,drg202} 37 1055 37 1513 1.419 (0.1260) 

{drg202,drg101,drg303} 42 1050 41 1509 1.454 (0.0830) 

{drg202,drg303,drg101} 45 1047 26 1524 2.457 (0.0002) 

{drg303,drg101,drg202} 50 1042 30 1520 2.366 (0.0002) 

{drg303,drg202,drg101} 49 1043 37 1513 1.880 (0.0030) 

 

Table 3.2. Example of the Second Approach 

Itemset Case Control Spearman Rank Order 

Correlation 
Support (%) Rank Support (%) Rank 

{drg101,drg202,drg303} 3.755 5 2.968 1 

-0.55 

(p=0.257) 

{drg101,drg303,drg202} 3.388 6 2.387 3 

{drg202,drg101,drg303} 3.846 4 2.645 2 

{drg202,drg303,drg101} 4.120 3 1.677 6 

{drg303,drg101,drg202} 4.579 1 1.935 5 

{drg303,drg202,drg101} 4.487 2 2.387 3 
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Figure 3.1. Summary of Methods and Procedures for Data Preparation and Analysis 
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3.5. RESULTS 

Two data sets including prescription records of 1,294 case patients and 2,588 control patients 

were analyzed using the two developed approaches described.  Table 3. indicates the age, race, 

gender, and comorbidities in the cohorts. It should be noted that since the patients in the two 

groups were matched on all these four factors, the profile shown in this table is indicative of both 

case and control cohorts of patients.  

Table 3.3. The cohorts profile 

Gender Race Age Comorbidities 

Male  55.76% 

Female 44.24% 

Caucasian  47.21% 

African-American  41.22% 

Native American  2.66% 

Hispanic  2.61% 

Asian  1.04% 

Other  5.26% 

Mean   40.77 

StDev   7.51 

Mean   5.38 

StDev   2.15 

 

To conduct this research, we particularly focused on 43 kidney-damaging medications 

from the top ten categories of drugs mentioned in the literature that were prescribed at least once 

for a patient in our initial data set. However, after identifying the case and control groups that 

number decreased to 31 as some drugs were not prescribed even once for the patients in our data 

set. Additionally, since the study was focused on diabetic patients we also controlled for 16 

common medications that are frequently prescribed for those patients. That is, the identified 

frequent itemsets were filtered to only include known kidney-damaging and diabetic medications. 

The list of all medications included in the analyses is provided in Appendix 1.  

Also, Table 3. represents the top ten frequent medications in each group of patients along 

with their relative frequency. As shown, excluding the top four drugs, the frequency patterns of 
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prescriptions are different among the case and control patients so that, for instance, tacrolimus is 

among the top ten for the case group while it is ranked 15th in the control group. 

For each patient in either group, we then extracted all the prescriptions records of the 47 

medications of interest related to the last ten visits prior to the second index date of that patient. 

Each medication in the data set was labeled with a sequence number indicating the chronological 

sequence of visit/prescription. Therefore, if two drugs were prescribed in the same visit, they both 

had the same sequence label in the data set; also, In case a particular drug was prescribed in two 

or more subsequent visits, we considered the earliest visit for its sequence label. 

Table 3.4. Top frequent medication and their frequencies 

Drug Generic Name Type Rank 

(Case) 

Freq 
(Case) 

Relative 

Freq. 

(Case) 

Rank 

(Ctrl) 

Freq 
(Ctrl) 

Relative 

Freq. 

(Ctrl) 

insulin (variations) Diabetic 1 9399 35.92 1 8259 34.76 

acetaminophen KD 2 4479 17.12 2 3936 16.57 

aspirin KD 3 2757 10.54 3 2229 9.38 

pantoprazole KD 4 2706 10.34 4 1839 7.74 

vancomycin KD 5 1071 4.09 8 765 3.22 

ketorolac KD 6 948 3.62 6 1272 5.35 

esomeprazole KD 7 777 2.97 9 528 2.22 

metformin Diabetic 8 513 1.96 5 1599 6.73 

tacrolimus KD 9 513 1.96 15 150 0.63 

ciprofloxacin KD 10 501 1.91 11 321 1.35 

Ibuprofen KD 11 498 1.90 7 1107 4.66 

glipizide Diabetic 12 309 1.18 10 381 1.60 

 

First, applying frequent itemset mining to the prescription records of the case and control 

groups, more than 5,000 frequent itemsets (not necessarily unique) were identified using the 

association rule mining predefined procedure (with non-sequential settings) in SAS Enterprise 

Miner. We limited our rule extraction procedure to only find itemsets involving up to 4 drugs 

with a minimum support of 0.5%. This resulted in 193 unique non-sequential frequent itemsets of 

size 4 or less. The reason we limited the size of itemsets to 4 was that for each non-sequential 
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itemset of size k we had to identify the k! sequential sets corresponding to that; hence an itemset 

of 5 would require us to identify 5!=120 sequential itemsets along with their supports whereas 

due to sample limitations most of those sequential patterns had not emerged in the prescription 

records whatsoever.  

Table 3.5. Top frequent co-occurrences of drugs 

Size Itemset Support 

(Case) 

Rank 

(Case) 

Support 

(Ctrl) 

Rank 

(Ctrl) 

2 

{acetaminophen, insulin} 68.31 1 38.06 2 

{pantoprazole, insulin} 42.14 2 32.64 5 

{aspirin, insulin} 41.39 3 36.78 3 

{acetaminophen, pantoprazole} 33.70 4 35.10 4 

{aspirin, acetaminophen} 33.15 5 42.06 1 

{aspirin, pantoprazole} 19.96 6 19.22 9 

{ketorolac, insulin} 19.14 7 11.35 8 

{vancomycin, insulin} 17.31 8 9.61 9 

{ketorolac, acetaminophen} 16.12 9 13.29 6 

{ketorolac, insulin} 16.12 9 11.35 8 

{acetaminophen, vancomycin} 14.29 10 8.71 10 

{esomeprazole, insulin} 12.36 11 4.71 11 

{ibuprofen, acetaminophen} 9.34 16 13.03 7 

3 

{insulin, acetaminophen, pantoprazole} 32.97 1 16.32 2 

{insulin, aspirin, acetaminophen} 32.33 2 19.03 1 

{insulin, aspirin, pantoprazole} 19.41 3 8.84 6 

{pantoprazole, aspirin, acetaminophen} 16.12 4 7.29 10 

{acetaminophen, ketorolac, insulin} 15.75 5 11.35 4 

{vancomycin, insulin, acetaminophen} 13.92 6 8.13 7 
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{pantoprazole, ketorolac, insulin} 10.35 7 5.41 15 

{insulin, acetaminophen, esomeprazole} 9.52 8 4.71 19 

{insulin, acetaminophen, ibuprofen} 9.16 9 11.03 5 

{vancomycin, pantoprazole, insulin} 8.97 10 <0.5 NA* 

{acetaminophen, metformin, insulin} 7.69 18 13.16 3 

{aspirin, metformin, insulin} 4.58 27 7.74 8 

{aspirin, metformin, acetaminophen} 4.03 32 7.48 9 

*This itemset was not detected as a frequent one in the control group due to a support lower than the 

specified minimum of 0.5%. 

Table 3.5 contains the top ten non-sequential sets of medications (size 2 and 3) co-

occurred in the prescription records of the case and control groups along with their support within 

each data set. Again, there are remarkable differences in the frequency patterns as, for instance, 

while the set including aspirin and acetaminophen is the most frequent set (of size 2) in the 

prescriptions of the control group, it is ranked 5th among the itemsets corresponding to the case 

group. Similarly, whereas the set including vancomycin, pantoprazole, and insulin is among the 

top ten frequent sets (of size 3) in the case group, it was not even detected as frequent for the 

control group (given the minimum support threshold of 0.5%). These examples demonstrate 

considerable differences in the patterns of prescriptions between the two groups under study.  

The table indicates that while metformin was not within any of the top itemsets of size 2 

for either group, it was included in three of the top itemsets of size 3 (ranked 3rd, 8th , and 9th ) in 

the control group. From a clinical viewpoint, this fact suggests that probably metformin has to do 

with lowering the chances of developing renal failure in diabetic patients, since it was more 

frequently prescribed for patients in the control group, who ultimately did no develop renal 

failure during the study period. This confirms findings from prior research regarding metformin 

and its role in developing renal failure (Davazdahemami & Delen, 2019; von Websky et al., 2013; 

Yamanouchi, 2010). In addition, the relatively higher support (and rank) of itemsets including 
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insulin and/or pantoprazole in the case group suggests a potential enhancing role for these 

medications with regard to the risk of renal failure. For insulin, such a risk-enhancing role has 

been discussed in prior medical studies (Davazdahemami & Delen, 2019; Fatourechi et al., 2009). 

Of course, scrutinizing differences between these prescription patterns in more detail could 

provide us with more clinical insights regarding the role of diabetes and KD drugs in separation 

or together, in developing renal failure in diabetic patients. Nevertheless such a discussion is 

beyond the scope of the present study; in addition confirming each of those signals require a vast 

investigation of the medical literature and possibly conducting randomized clinical trials. 

At the next step, running the association rule mining procedure with a sequential rule 

setting in SAS Enterprise Miner, we obtained the frequency of incidence for the sequential 

itemsets, corresponding to the non-sequential sets identified earlier, across the case and control 

patients.  

Based on the frequency of each sequential itemset, we also ranked them in a descending 

order in both case and control databases. The frequency, as well as rank orders, were then used in 

the calculation of relative risk (RR) as well as the Spearman's rank order correlation (i.e. the two 

approaches explained in the methods section), respectively, for each of the 193 unique non-

sequential frequent itemsets. Finally, we applied the rules discussed in the methods section to 

determine whether in each case there is a considerable inconsistency between sequential and non-

sequential patterns across the two groups of patients.  

Table 3.6 illustrates a summary of our analyses using the two approaches. As shown, 

based on the RR criterion, we found that in 165 out of 193 itemsets (i.e. 85.5%) at least one of the 

three conditions for the significance of sequence effect was present. Also using the Spearman’s 

rank correlation, in 144 (74.6%) of the itemsets a considerable effect for the sequence of 

prescription was inferable. Interestingly, there were only 16 (8.3%) of cases in which none of the 
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approaches find enough evidence for the influence of prescription sequence in developing the 

adverse outcome. 

The table also shows the number of itemsets in which the conclusion about the influence 

of sequence was consistent or inconsistent. To test how the two approaches were consistent in 

terms of their conclusions, we conducted a chi-square test of independence on this 2x2 crosstab 

(i.e. Table 3.6). The outcome provides support for the consistency of the approaches (χ2 = 17.43, 

p<0.001).  

Table 3.6. Results 

RR                    
Influential Not influential Subtotal 

Influential 132 33 165 

Not influential 12 16 28 

Subtotal 144 39 193 

  

Overall, the results indicate that with respect to 68.4% of itemsets, both approaches 

agreed upon the existence of some significant effects that can be attributed to the sequence by 

which the medications were prescribed. Moreover, in 91.7% of itemsets, at least one of the two 

approaches revealed such an effect. 

3.6. DISCUSSION 

In this study, we investigated the potential effect of prescription sequence in the development of 

adverse drug events. While such potential effect had been mentioned in the literature, it was not 

empirically investigated prior to this study. To this end, using longitudinal transactional data 

obtained from the Cerner HealthFacts data warehouse and employing two independent 

approaches, we looked into the effect of the prescription sequence of 31 known kidney-damaging 

drugs on the development of acute renal failure in diabetic patients.  

Correlation 
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The results from each approach suggest a significant effect that can be attributed to the 

sequence by which the drugs were prescribed along the patients’ timeline. Moreover, it was 

shown that both approaches used to assess this effect are significantly in accordance with one 

another whereas they were designed independently and using different criteria. This suggests 

additional proof for the existence of such an effect. In fact, the two proposed approaches are the 

main theoretical contribution of the present study. Future research may employ the proposed 

approaches to assess similar sequential effects in other medical contexts. 

Also from an empirical viewpoint, we believe that the fact that sequence of prescriptions 

may result in developing adverse drug effects and intensify their probability suggests designing 

and implementing of new clinical decision support systems to help physicians in their 

prescription decisions by taking into account the patients' historical transactions and provide them 

with appropriate alerts to prevent possible ADRs.     

While we believe that our results strongly suggest a nontrivial effect attributable to the 

prescription sequence, yet of course we agree that our study involves some limitations. 

Particularly, even though we limited our sample to diabetic patients and controlled for their 

demographics, diabetes history, and common diabetic medications, still some important factors 

were not controlled due to sample limitations. Of the highest importance was the effect of 

patients' exact comorbidities that we did not control for in this study because doing such would 

greatly affect our sample size. It was not easy to find a control match for each case patient with 

exactly the same comorbidities. Hence, we limited this control to only a major disease which is 

highly prevalent among Americans (i.e., diabetes) and also controlled for the total number of 

comorbidities as a general measure of patients’ wellness. We also simply assumed that by 

controlling for age and other demographics we are also partly controlling for other particular 

comorbidities that might be attributable to aging. Future research may employ larger samples and 
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fully control for the effect of comorbidities. A larger sample also provides the possibility to 

include itemsets involving more than four drugs. 

It should be noted here that while the two independently designed approaches in this 

study consistently and strongly suggest a significant association between prescription sequences 

and ADR development, yet this association is not necessarily causal. In other words, our results 

provide a strong signal for the pharmacovigilance researchers to take the prescription sequence 

factor more seriously in their analyses and also justify conducting further studies in a more 

controlled environment to assess the causality of the detected association. 

In this study, we assumed that all the medications prescribed by doctors were 

administered by the patients until it was discontinued by their doctor again. In fact, it was not 

practically possible to monitor whether every drug had been administered as recommended. 

However, we believe that it is reasonably realistic to assume that medications prescribed in a 

particular visit were taken before those prescribed in the subsequent visit. Accordingly, instead of 

taking into account prescription timestamps we considered the timestamps of doctor visits as the 

base for sequence analysis. In other words, medications prescribed within the same visit were 

given the same sequence order, which was different from sequences of medications prescribed in 

the previous or subsequent visits. Future research may possibly address this limitation by using 

another source of data in which medication administrations were monitored. Finally, future 

research may improve the proposed approaches by taking into account the effect of drug dosages 

prescribed for the patients. 

In conclusion, it should be said that even though the present study is not perfect (makes 

certain assumptions and involves some limitations), because of the size and richness of the data 

used and the methods and measurement metrics developed and administered, its promising results 

might be considered as a promising baseline for deeper investigations on the effect of prescription 
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sequence as it possibly can prevent development of ADRs in millions of patients, improving their 

lives and wellbeing, and saving considerable amounts of money for them as well as for the 

Government, caregivers, and insurance agencies.
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CHAPTER IV 

 

 

ESSAY III: A CHRONOLOGICAL PHARMACOVIGILANCE NETWORK 

ANALYTICS APPROACH FOR PREDICTING ADVERSE DRUG EVENTS 
 

ABSTRACT 

Objectives: This study extends prior research by combining a chronological pharmacovigilance 

network approach with machine-learning techniques to predict adverse drug events (ADEs) based 

on the drugs’ similarities in terms of the proteins they target in the human body. The focus of this 

research, though, is particularly centered on predicting the drug-ADE associations for a set of eight 

common and high-risk ADEs. 

Materials and methods: A large collection of annotated MEDLINE biomedical articles were used 

to construct a drug-ADE network, and the network was further equipped with information about 

drugs' target proteins. Several network metrics were extracted and used as predictors in machine-

learning algorithms to predict the existence of network edges (i.e., associations or relationships).  

Results: Gradient boosted trees (GBT) as an ensemble machine-learning algorithm outperformed 

other prediction methods in identifying the drug-ADE associations with an overall accuracy of 

92.8% on the validation sample. The prediction model was able to predict drug-ADE associations, 

on average, 3.84 years earlier than they were actually mentioned in the biomedical literature. 
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Conclusion: While network analysis and machine-learning techniques were used in separation in prior 

ADE studies, our results showed that they, in combination with each other, can boost the power of one 

another, and predict better. Moreover, our results highlight the superior capability of ensemble type 

machine-learning methods in capturing drug-ADE patterns compared to the regular (i.e., singular), 

machine-learning algorithms. 

Keywords: Adverse Drug Events, Network Analysis, Machine Learning, Prediction, Target Proteins, 

Ensemble Models. 
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4.1. INTRODUCTION 

Today every new drug to be approved by the healthcare authorities and marketed by pharmaceutical 

companies has to pass through numerous clinical trials, which on average take 10-15 years.(Iizuka, 2007)  

These clinical trials mainly aim at ensuring efficacy and safety of the drug. A considerable number of drugs 

fail to get US Food and Drug Administration (FDA) approval due to the potential threats their usage involve 

even though they might show effectiveness with regard to treating some specific diseases.(Trame, Biliouris, 

Lesko, & Mettetal, 2016) Nevertheless, even such tough regulations and approval procedures do not 100% 

guarantee the safety of a drug since those trials themselves involve several limitations and may fail to 

capture some potential, in some cases serious, safety issues (Karimi et al., 2015; Zeng et al., 2002).  

A classic example of such cases is Rofecoxib; an NSAID approved in 1999 that became highly 

welcomed by the physicians in a short time. The drug was originally aimed to treat acute pains and 

Osteoarthritis, but after a while turned out to cause heart attacks in more than 100,000 patients and ended 

up being withdrawn by the FDA in 2004. During that time, apart from the lives threatened, this possibly 

avoidable problem also imposed huge losses to pharmaceutical and insurance companies. 

Pharmacovigilance (a.k.a. drug safety surveillance) is a field of science that monitors the drugs 

during their lifecycle to detect, assess, and understand their potential adverse effects and prevent harms and 

injuries caused thereof. Although pharmacovigilance activities begin early after drug discovery, its role 

becomes more critical after drug approval, when humans start to take it. 

In pharmacovigilance terminology, an Adverse Drug Event (ADE) refers to any injury occurred to 

a patient caused by administering a drug. It should be noted that there is still no consensus on this 

terminology across pharmacovigilance and pharmacoepidemiology studies. Some studies(Nikfarjam, 

Sarker, O’Connor, Ginn, & Gonzalez, 2015b; Reps et al., 2016; Trame et al., 2016; Zeng et al., 2002) define 

ADE as any injury which not necessarily has a causal relationship with the drug (e.g., injuries due to human 

errors) and therefore use the more specific term Adverse Drug Reaction (ADR) to refer to the injuries 
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directly caused by the drug. However, in the present study, we stick with the term ADE while we emphasize 

that by ADE we mean a drug-induced (i.e. causally related) injury in patients. It is estimated that in the 

United States, each ADE case in community hospitals on average costs $3,000 (Karimi et al., 2015; Zeng 

et al., 2002). Also, ADEs are reported by the Australian Commission on Safety and Quality in HealthCare 

(ACSQHC) to cause about 400,000 admissions to general practitioners in Australia with a population of 

only 23 million.(Karimi et al., 2015) 

Given the great potential health and financial threats mentioned, and considering the fact that today 

the trend is toward faster approval processes and smaller clinical trials, especially in oncology and rare 

diseases(Trame et al., 2016), a great amount of research has been done in the past decade to find faster and 

more effective ways to detect, predict, understand, and prevent ADEs before they affect too many (or ideally 

any) people. 

In this study, we extend the extant literature on ADE prediction by proposing a chronological 

network analytics approach that can help pharmacovigilance practitioners to save lots of time, money, and 

more importantly, lives by enabling them to predict potential ADEs prior to drugs approval. The proposed 

approach uses historical information of known drug-ADE relationships in addition to similarities between 

new and approved drugs, in terms of the proteins they target in human bodies, and tries to predict potential 

ADEs. 

The remainder of this article is organized as follows; the following section reviews the extant 

literature on detection, prediction, and understanding of ADEs and states the research goals. Then, we 

explain the materials and methods used to conduct the study followed by the results. Finally, we discuss 

the contributions of our study and conclude with a few potential future research directions. 
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4.2. BACKGROUND 

4.2.1. RESOURCES FOR ADE STUDIES 

Before discussing different approaches used in prior ADE studies, in this section, we discuss various data 

sources used by researchers to conduct those studies. Four main types of data source have been identified 

in the literature. The following four sub-sections introduce these resources and mention prior research 

conducted using each. 

4.2.1.1. Spontaneous Reporting Systems 

As an effort to rapidly detect and prevent ADEs in the post-marketing phase, many countries and 

international organizations have run Spontaneous Reporting Systems (SRSs); systems designed to allow 

patients and professionals to submit their reports of suspected ADEs. This includes the World Health 

Organization’s (WHO) Individual Case Safety Reports (ICSR) database, the yellow card system of 

Medicines and Healthcare products Regulatory Agency (MHRA) in the UK, and the FDA Adverse Event 

Reporting System (FAERS) in the US.(Karimi et al., 2015) Although SRSs were the main source for ADE 

studies for several years, their limitations such as over-reporting and voluntary submissions(Harpaz et al., 

2013; Karimi et al., 2015) made pharmacovigilance practitioners look for more efficient alternatives.  

4.2.1.2. Electronic Health Records 

During the past decade, Electronic Health Records (EHR) have been widely used in the healthcare industry 

to help practitioners in the collection, storage, and tracking patients' information. The vast amount of data 

collected by EHRs along with their increasing availability have made them interesting resources for 

pharmacovigilance researchers and enabled them to detect ADE signals closer to real-time.(Trifirò et al., 

2009) Yet, using EHR data involves challenges like complex data preprocessing requirements and multiple 

standards across different databases(Harpaz et al., 2013). 
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4.2.1.3. Social Media 

 Recently social media has been introduced as a novel resource for conducting ADE as well as other 

healthcare studies. Virtual communities such as health forums (e.g., DailyStrength and PatientsLikeMe) 

and social networks (e.g., Twitter and Facebook) are places where people discuss their daily health-related 

experiences and concerns. Such information, although noisy, is likely to appear there long before it is 

reported to any SRS or recorded in any EHR(Benton et al., 2011; Leaman et al., 2010) and this has made 

social media a precious resource for early detection of ADEs. 

4.2.1.4. Biomedical Literature 

Recently, researchers have realized biomedical literature as well as chemical and biological databases as 

feature-rich sources for ADE studies. Databases such as PubMed, PubChem, KEGG, and DrugBank are 

rich sources of information about drugs, their chemical and biological characteristics, and their identified 

ADEs. 

4.2.2. ADE STUDIES: DETECTION, PREDICTION, AND UNDERSTANDING 

Due to considerable potential costs and damages of ADEs, in the past decades, there has been a great deal 

of research on this issue in many disciplines including pharmacology, economics, and information systems. 

While the ultimate goal of all of these studies is to identify drugs’ potential ADEs and prevent losses of 

lives and money thereof, they pursue different tools and strategies to achieve that goal. We believe that 

ADE studies can be classified into three distinct categories, namely detection, prediction, and 

understanding.  

Detection studies are the largest group of ADE research works focused on finding new and 

undetected ADE signals (i.e., associations, not necessarily causal) between the existent drugs (already in 

the market) and adverse events. The signals detected by these studies need to be assessed and verified by 

clinical trials. ADE detection studies heavily rely on applying statistical (Cai et al., 2017; van Puijenbroek 

et al., 2002) or data mining (Friedman, 2009; Harpaz et al., 2013; Harpaz, Chase, et al., 2010; X. Liu & 
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Chen, 2013; Nikfarjam et al., 2015b; Reps et al., 2016; Trifirò et al., 2009; Yang et al., 2012) methods and 

quasi-experimental settings to the historical data from SRSs (Cai et al., 2017; DuMouchel, 1999; Harpaz et 

al., 2013; van Puijenbroek et al., 2002), EHRs (Friedman, 2009; Haerian et al., 2012; Harpaz, Chase, et al., 

2010; Reps et al., 2016; Trifirò et al., 2009), or social media(Hoang et al., 2016; J. Liu et al., 2016; X. Liu 

& Chen, 2013; Nikfarjam et al., 2015b; Yang et al., 2012) to extract signals from them. 

In the ADE prediction studies, on the other hand, instead of detecting signals for the existent drugs 

using collected data from their past usage experiences, the focus is on creating signals for the new drugs 

before they cause any adverse events to the patients. The strategy in this group of studies is mainly to find 

similarities between the existent and the new drugs and thereby to predict ADEs for the new drugs given 

the already known relationships between their similar existent drugs with the corresponding ADEs. The 

statistical regression-based methods(Atias & Sharan, 2011; Cami et al., 2011) as well as machine learning 

techniques(L.-C. Huang, Wu, & Chen, 2011; L. Huang, Wu, & Chen, 2013; M. Liu et al., 2012) are the 

dominant methods used by the researchers for this purpose. Also in terms of data sources, prediction studies 

heavily rely on the biomedical literature as well as drug databases including chemical, physical, and 

biological information of drugs since such resources enable them to identify drug similarities. Just like ADE 

detection studies, this group of studies also serve as a signal detector, but the difference is they capture 

signals for new drugs as well.  

The last group of ADE studies in our taxonomy is those focusing on verifying ADE signals and 

understanding the mechanism through which the drug causes the ADE. Pharmacoepidemiology and 

pharmacometrics studies fall into this group as they use mathematical and parametric models of biology, 

pharmacology, and physiology to clarify and understand mechanisms of both beneficial and adverse 

molecular interactions.(Trame et al., 2016) Several different types of models have been used by the 

researchers in this group, among which Pharmakokinetics and Pharmacodynamics (Albrecht et al., 2017; 

Chiang et al., 2018; Lazaar et al., 2016; Vazzana et al., 2015; Wedemeyer & Blume, 2014) are the most 

popular modeling approaches. The former focuses on modeling how the organism affects the drug, whereas 
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the focus in the latter is on studying the effect of the drug on the organism; so the researchers usually employ 

them together, as the complement to each other to determine optimal dosing as well as the beneficial and 

adverse effect of drugs. In terms of data sources, this group of studies mostly rely on drug databases and 

EHR historical transactions.  

4.2.3. NETWORK ANALYSIS AND PHARMACOVIGILANCE 

Although Network Analysis (NA) have been widely used in many areas of science including sociology, 

communication, biology, economics, and computer science starting from a few decades ago, its application 

in pharmacovigilance studies is hardly older than 10 years. The main reason for that could be the lack of 

appropriate information systems and infrastructures for collecting the data required for constructing 

networks in large scale before the early 2000s. 

Networks have been used in pharmacovigilance research with a variety of data sources and for 

different purposes (not limited to ADE prediction, which is the case in our study). Some researchers, 

including Ball et al.(Ball & Botsis, 2011b) and Botsis et al.(Botsis & Ball, 2011) used network 

representations of vaccines and their reported ADEs in the FDA’s VAERS to identify the frequent patterns 

of interactions. Also Zhang et al.(Zhang, Tao, He, Kanjamala, & Liu, 2013) showed that patterns identified 

in vaccine-vaccine networks can contribute to the vaccine ontology knowledge base. A recent study by Kim 

et al.(Kim et al., 2018) on hospitalized patients with hematologic malignancies revealed that network 

centrality metrics can be used to identify the most important causes for drug-related problems (DRPs) by 

constructing a cause-DRP network using ward pharmacists’ documentations in hospital settings. 

Apart from the mentioned studies that have used descriptive and qualitative techniques to extract 

information/knowledge from networks, there are also a few studies focused on using networks of drugs and 

ADEs for predicting their associations. For instance, Atias and Sharan(Atias & Sharan, 2011) and Cami et 

al.(Cami et al., 2011) in their studies used a diffusion process and a logistic regression model, respectively, 

with NA to make ADE predictions. Nevertheless, to the best of our knowledge, NA has not been combined 
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with ML methods in the literature so far for the prediction purposes and the present study is the first one to 

do so.  

4.2.4. RESEARCH GOALS 

While statistical and machine-learning techniques have been widely used with various data sources for 

pharmacovigilance prediction purposes (Bender et al., 2007; Hammann, Gutmann, Vogt, Helma, & Drewe, 

2010; L.-C. Huang et al., 2011; LaBute et al., 2014; J. Liu et al., 2016; Pouliot et al., 2011), we found only 

a few studies that have utilized the incredible potential of network analysis approaches to explore drug-

ADE associations. Specifically, Atias and Sharan(Atias & Sharan, 2011) applied a network-based diffusion 

process to predict drugs’ ADEs. Also, in a later study, Cami et al.(Cami et al., 2011) employed logistic 

regression (LR) technique in a network approach using data from biomedical literature and chemical 

databases to predict drug-ADE associations. 

We extend the ADE prediction research by employing a Chronological Pharmacovigilance 

Network (CPN) along with machine-learning techniques to predict drugs’ ADEs. For this purpose, we use 

biomedical literature citations as the main source of data for extracting previously identified drug-ADE 

associations. Additionally, we incorporate information about the target proteins of drugs into our network 

structure to make it more informative for training machine-learning algorithms.  

A target protein is a chemically definable molecular structure that will undergo a specific 

interaction with chemicals that we call drugs because they are administered to treat or diagnose a 

disease(Imming, Sinning, & Meyer, 2006). In other words, drugs act by binding to specific target proteins 

and changing their biochemical or biophysical activities to treat their indicated diseases.(Yildirim, Goh, 

Cusick, Barabási, & Vidal, 2007) Given that, we argue that knowledge about the similarity of drugs, in 

terms of the proteins they target, can contribute to the quality of ADE predictions. Moreover, we believe 

that complexity of drug-ADE relationships is so much that machine-learning algorithms, and especially 

ensemble models are more efficient than statistical-based methods (e.g., LR) in capturing that.  
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4.3. MATERIALS AND METHODS 

4.3.1. MATERIALS 

We integrated data from two sources, namely, National Library of Medicine’s (NLM) MEDLINE and the 

DrugBank’s database of drug-target proteins, in order to operationalize our approach towards modeling of 

the CPN. MEDLINE, a subset of PubMed database, is a bibliographic database of biomedical information 

from multiple disciplines that includes more than 29M citations started from 1946. What sets MEDLINE 

apart from the rest of PubMed is the added-value of using the NLM controlled vocabulary, Medical Subject 

Headings (MeSH), for indexing, cataloging, and searching for biomedical documents. Also, DrugBank is a 

freely accessible online drug database including biological, chemical, and genetic information of 10,986 

approved and experimental drugs.    

First, we selected a sample of eight common and high-risk ADEs reported in the literature(Trifirò 

et al., 2009) (Acute renal failure, Myocardial infarction, Leukopenia, Agranulocytosis, Rhabdomyolysis,  

Neutropenia, Thrombocytopenia, and Anemia) and collected all MEDLINE articles mentioning at least one 

of them as the ADE identified in the article. To this end, we used a search strategy based on NLM’s MeSH 

thesaurus (see the appendix 2). NLM indexers select the most appropriate MeSH indexes to resume the full 

content of an article after reading the full text.(Avillach et al., 2013)  

The initially downloaded dataset involved 10,890 unique publications mentioning associations 

among 657 drugs with 769 ADEs. However, considering only drugs approved by the FDA by December 

2017, we ended up with a dataset including 9,672 publications, 582 drugs, and 732 ADEs.  

Second, we used DrugBank(Wishart et al., 2006) database to extract target proteins associated with 

each FDA-approved drug. While most drugs target only a few proteins in the human body, some have many 

targets.(Yildirim et al., 2007) In addition to the 582 drugs in initial dataset, we included information about 

217 other drugs having at least one common target with one of those 582 drugs. Therefore, the integrated 

dataset used in the study involved 799 approved drugs and 732 ADEs. The publication years as well as the 
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drugs approval dates were also imported into our data to be used in constructing training and validation 

datasets for the model building stage. All of the drugs and ADEs were then mapped to their unique terms 

from the NLM’s Unified Medical Language System (UMLS) for consistency. 

4.3.2. METHOD 

4.3.2.1. Network Construction 

A chronological approach was employed to construct drug-drug and drug-ADE relationships in the 

network. The ultimate goal in pharmacovigilance is to identify as many as possible ADEs in the pre-

marketing phase. Hence, in order to have a valid prediction model, one is only allowed to use drugs 

information as well as the known drug-ADE associations that are available prior to the time of the drug 

approval. Given this idea and using the dates of publications and drug approvals, we used all of the 

information available prior to 2001, to predict drug-ADE associations for the drugs marketed during 2001-

2017.  

First, a network was constructed in which both drugs and ADEs were considered as vertices. An 

undirected edge was created between two drugs if they had at least one common target protein. Additionally, 

a drug was connected to an ADE in the network if there was at least one PubMed article published before 

2001 mentioning such association. The network involved all of the 799 drug vertices (regardless of their 

approval dates) and 10,094 drug-drug edges indicating common target proteins, as well as 5,264 drug-ADE 

edges representing pre-2001 identified associations. We kept aside drug-ADE relationships recognized (for 

the first time) during 2001-2017 to validate our prediction model since they were unknown at the time of 

prediction (i.e., beginning of 2001). Figure 4.1 provides a visualization of the network created. 
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Figure 4.1. The Drug-ADE network created by Cytoscape v3.6. Triangle (blue) nodes represent drugs and circular (orange) nodes represent 

ADEs. Yellow links between drugs indicate the existence of at least one common target protein by the drugs connected. Also, gray links 

between drugs and ADEs indicate an association mentioned in at least one PubMed article for the corresponding drug and ADE. 
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4.3.2.2. Network Metrics 

Drug-ADE links were considered as the unit of analysis in this study. Since the focus of our study 

was on a set of eight common and critical ADEs, we created our dataset by considering all possible 

combinations of the 799 drugs with those ADEs (i.e., 6,392 records). Once the network was 

constructed, we extracted seven similarity- as well as three centrality-based metrics for each record 

to be used as link predictors. The metrics had been proposed in the network analysis literature for 

link prediction purposes(Cami et al., 2011; Liben-Nowell & Kleinberg, 2007; Zhou, Lü, & Zhang, 

2009).  

The three centrality-based metrics we used were the absolute difference, product, and sum 

of degree centralities of corresponding drug and ADE vertices involved in each link. All of these 

metrics were used in similar studies (Cami et al., 2011; Liben-Nowell & Kleinberg, 2007) to 

capture assortativity11 (absolute difference and ratio) and preferential attachment12 (sum and 

product). 

Table 4.1 indicates the similarity-based predictors extracted from the network along with 

their definitions. While all of the similarity metrics are defined based on the notion of commonality 

of neighborhoods between the two nodes of interest, each reflects a different aspect of similarity. 

In these definitions, Γ(i) and Di denote the set of neighbors and degree of node i, respectively. Also, 

d and a were used to denote drug and ADE, respectively. Therefore, 𝛤(𝑑) ∩ 𝛤(𝑎) refers to the set 

of common neighbors of a drug and an ADE; similarly, 𝛤(𝑑) ∪ 𝛤(𝑎) refers to the set of all of their 

neighbors.  

                                                      
11 Assortativity is defined as the extent to which highly central drugs tend to connect more frequently to 

highly- or low-central ADEs.(Cami et al., 2011) 
12 Preferential attachment denotes that the probability that a new edge has a specific node x as an endpoint, 

is proportional to the current number of neighbors of x.(Liben-Nowell & Kleinberg, 2007) 
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The network metrics were obtained with the help of the igraph package in R; a 

comprehensive package for network analysis. 

Table 4.1. Similarity Metrics and their Formulaic Definitions 

Similarity Index Definition/Formula 

Jaccard coefficient(Jaccard, 1912) |𝛤(𝑑) ∩ 𝛤(𝑎)|

|𝛤(𝑑) ∪ 𝛤(𝑎)|
 

Dice index(Dice, 1945) 2 × |𝛤(𝑑) ∩ 𝛤(𝑎)|

𝐷𝑑 + 𝐷𝑎
 

Adamic/Adar index(Adamic & Adar, 2003) 
∑

1

log|𝛤(𝑧)|𝑧 𝜖𝛤(𝑑)∩𝛤(𝑎) 
 

Simpson index(Simpson, 1960) |𝛤(𝑑) ∩ 𝛤(𝑎)|

𝑀𝑖𝑛(𝐷𝑑, 𝐷𝑎)
 

Geometric index(Bass et al., 2013) |𝛤(𝑑) ∩ 𝛤(𝑎)|2

𝐷𝑑 × 𝐷𝑎
 

 

Apart from the five mentioned standard similarity metrics, we also incorporated two 

derived similarity metrics for each drug-ADE pair. First, for each drug-ADE pair, we calculated 

the average Jaccard similarity of the corresponding drug with all of the drugs connected to the 

ADE. To calculate this variable we constructed and used a network including only the drugs (and 

no ADEs) and extracted Jaccard similarities of each drug with all of those connected drugs. We 

believe that such a variable reflects how a new drug is chemically similar to drugs in general and 

therefore might cause the same ADE as they do. Based on the same logic and in a similar manner, 

for each drug-ADE pair in our dataset, we also incorporated average distance from the 

corresponding drug to all of the drugs connected to the ADE (i.e., the second derived variable). 

While the first derived variable captures general similarity of each drug with the connected drugs 

based on their direct neighborhoods, the second one takes into account the indirect links as well. 
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In the end, a binary target variable was created for each drug-ADE pair to indicate whether 

that association actually exists according to the MEDLINE citations. 

4.3.2.3. Training and Validation Data 

Once we formed the dataset using the network, we applied the following rules to divide the dataset 

into training and validation subsets to train the prediction models and test their efficiency.  

Drug-ADE pairs that were actually discovered after 2001, regardless of the drug approval 

year, placed into the validation dataset. All of the remaining pairs including drugs approved after 

2001 were also added to the validation set. All other pairs were classified as the training dataset. 

Applying these rules, we ended up with a training dataset containing 5,357 records with 1,087 (i.e., 

20.3%) positive responses (target=1). Also, the validation set contained 1,035 records with a 

response rate of 14.6% (i.e., 151 positives). 

4.3.2.4. Prediction Model 

We used the training dataset to train and build our prediction models. Four different classification 

algorithms were employed, namely Artificial Neural Network (ANN), Gradient Boosted Trees 

(GBT), Random Forests (RF), and Logistic Regression (LR).  

Due to the unbalanced proportion of positive and negative responses in training data, the 

Synthetic Minority Oversampling Technique (SMOTE)(Chawla, Bowyer, Hall, & Kegelmeyer, 

2002) was applied to make a balanced training (model building dataset), henceforth avoid biases in 

the training of the models. The KNIME analytics platform version 3.5.1 (a free and open source 

analytics software platform) was used to build the classification models. Figure 4.2 shows a flow-

chart like graphical depiction of the data preparation and model building methods and procedures. 
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Figure 4.2. A flow-chart like graphical depiction of the methods and procedures 
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4.4. RESULTS 

4.4.1. MODELS ACCURACY 

Table 4.2 shows the prediction results of the best models of each algorithm on the validation data. 

As shown, RF and GBT, the two ensemble-type of algorithms provided more accurate results than 

ANN and LR13. Also overall, GBT turned out to be the best model among all with an overall 

accuracy of 92.8% and the ability to correctly predict 72.8% of real drug-ADE associations in the 

validation data (i.e., sensitivity). It suggests that given historical information about drug-ADE 

associations as well the target proteins of drugs, our best model was able to predict 110/151 (i.e., 

72.8%) of drug-ADE associations that were actually discovered during a 17-year period after 

building the prediction network. In addition, the Positive Predictive Value (PPV) for the GBT 

model indicates that out of 143 pairs predicted as associations by this model, 110 (i.e. 76.9%) were 

real associations reported in the MEDLINE. Also overall, the PPV values highlight the superiority 

of the two ensemble models over the individual models (i.e., ANN and LR) in which only around 

half of the positive predictions were correct. 

Table 4.2. Prediction Models' Accuracy Statistics 

Model Accuracy Sensitivity PPV AUROC 

ANN 85.5% 65.6% 50.3% 0.868 

RF 92.1% 64.9% 77.2% 0.893 

GBT 92.8% 72.8% 76.9% 0.916 

LR 85.7% 56.3% 50.9% 0.793 

 

                                                      
13 The parameter settings for the best models in KNIME were as follows: 

- RF: Split criterion: Gini index; Number of models: 400; no limit on the Tree Depth and Node 

Size. 

- ANN: Number of hidden layers: 2; Number of neurons per layer: 5; Maximum number of 

iterations: 60. 

- GBT: Number of model: 300; Learning rate: 0.3; Tree depth limit: 4; No attribute sampling.  
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In the only similar study we are aware of in the literature, conducted by Cami et al.,(Cami 

et al., 2011) historical drug-ADE associations along with drugs’ taxonomical and intrinsic 

properties (e.g., molecular weight, atom count, and so on) from pre-2005 years were used in 

multiple LR models to predict associations identified during 2005-2010. Comparing to their best 

model (AUROC=0.869), two of our prediction models (RF and GBT) provide superior results 

while prediction power of our ANN model is also comparable to theirs.  

Our further investigation revealed that from the 110 true positive predictions made by the 

GBT model, 29 were related to post-2001 marketed drugs, which, given 42 actual positive 

associations, means a 69% true positive rate for these new drugs. The true positive rate for older 

drugs was 74.3% (i.e., 81/109 actual associations). Moreover, it turned out that out of 143 positive 

predictions, 102 were related to pre-2001 marketed drugs, which (given that 81 of the true positive 

cases were pre-2001 marketed drugs) suggests a PPV of 79.4% (81/102) for this group. Also, 41 

positive predictions were related to post-2001 marketed drugs resulted in a PPV of 70.7% (i.e. 

29/41). These statistics seem reasonable given the higher number of historical publications about 

these drugs that makes the model better trained for classifying their associations.  

Furthermore, in terms of sensitivity, our approach outperforms Cami et al.’s, where their 

best-reported model had a sensitivity of 61.2% compared to 72.8% of our model. While this 

difference might be argued to be due to the narrower focus of our study (i.e., including 8 ADEs), 

we believe it mostly has to do with the more informative nature of the network we used to train our 

models as well as the ability of machine-learning techniques to capture complex/non-linear 

relationships compared to statistical methods like LR. As Table 4.2 shows, our LR model did not 

perform as good as the other three machine-learning methods. Nevertheless, it is still comparable 

and complementary to the models provided by Cami et al.(Cami et al., 2011) Even comparing our 

results to those of the studies that have employed machine-learning techniques (mostly using drugs’ 

structural variables as predictors) with a non-network approach(L.-C. Huang et al., 2011; L. Huang 
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et al., 2013; M. Liu et al., 2012), our approach outperforms theirs in terms of most of the accuracy 

statistics. Table 4.3 indicates that especially in terms of sensitivity and PPV, using an ensemble 

machine-learning model along with the network approach has significantly improved ADE 

predictions. 

Table 4.3. Comparison of model results with the best results reported by similar studies 

Article Network 

approach 

Model Chem. Bio. Other Acc Sens PPV AUROC 

Liu et al. (M. 

Liu et al., 2012) 

No SVM Yes Yes Yes 0.967 0.631 0.662 0.952 

Huang et al.(L. 

Huang et al., 

2013) 

No SVM Yes Yes No NR NR NR 0.760 

Cami et 

al.(Cami et al., 

2011) 

Yes LR Yes No Yes NR 0.608 NR 0.869 

Huang et al.(L.-

C. Huang et al., 

2011) 

No SVM No Yes No 0.675 0.632 NR 0.771 

Present study Yes GBT No Yes No 0.928 0.728 0.769 0.916 

*Chem. indicates whether chemical features of drugs are used for ADE prediction.*Bio. Indicates whether 

biological features of drugs are used for ADE prediction.*Other indicates whether other features (e.g. 

taxonomical, phenotypical, etc.) of drugs are used for ADE prediction. 

 

4.4.2. VARIABLES IMPORTANCE 

Having the superior prediction model identified, we further investigated how each of the predictors 

contributed to the model accuracy. To this end, we dropped predictor variables one at a time from 

our data and ran the best prediction model. Each time we recorded model’s AUROC to be compared 

to that of the original model. Table 4.4 indicates the amount of decrease in AUROC after dropping 

each predictor along with the relative importance of variables based on normalized AUROC 

differences. 
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Table 4.4.  Variable Importance Statistics 

Dropped Variable New AUROC AUROC_diff 
Relative 

Importance 

Degree_product 0.86 0.056 1 

Degree_ratio 0.864 0.052 0.875 

Degree_sum 0.872 0.045 0.656 

Geometric index 0.884 0.032 0.250 

Avg_Jacc_connected 0.885 0.031 0.219 

Adamic/Adar index 0.887 0.029 0.156 

Simpson index 0.887 0.029 0.156 

Dice index 0.888 0.028 0.125 

Jaccard index 0.889 0.027 0.094 

Avg_dist_connected 0.891 0.025 0.031 

Abs_degree_diff 0.892 0.024 0 

 

As shown in this table Degree_product, Degree_ratio, and Degree_sum representing 

preferential attachment as well as assortativity of drug-ADE pairs turned out to have the highest 

contribution to the predictive power of the best (i.e., GBT) model. It suggests that our centrality-

based predictors generally played a more important role than similarity-based metrics. Of the three 

top predictors, two of them (Degree_product and Degree_sum) were also among the top three in 

the study performed by Cami et al..(Cami et al., 2011) Degree_product was also identified as a 

strong predictor in the work conducted by Liben-Nowell & Kleinberg.(Liben-Nowell & Kleinberg, 

2007) Interestingly, the results show that one of the derived variables, namely 

Avg_Jacc_connected, was the fifth most important predictor with a relative importance of around 

22%. Also consistent with prior research,(Cami et al., 2011) Abs_degree_diff was the least 

important predictor of network links. 
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Finally, by investigating our true positive predictions and considering the actual years that 

corresponding drug-ADE associations were identified for the first time, we realized that, on 

average, our model was able to predict ADEs 3.84 years (SD=1.97 years) before they were 

mentioned in PubMed articles.  Table 4.5 indicates a summary of associations predicted by the 

model for the eight ADEs of interest along with the top associated drug predicted for each. The 

“average probability” column in this table shows the average across all the real associations, not 

just those that correctly predicted. The results show that disregarding a few exceptions, the model 

performance in predicting associations across the ADEs of interest was roughly the same. This 

suggests generalizability of the proposed approach as it has performed equally well with regard to 

various ADEs. 

Table 4.5. Summary of Predicted Associations by ADE 

ADE Real 

Associations 

Predicted 

Associations 

Average 

Time 

Saving  

Average 

Probability 

Top Associated 

Drug 

Acute Renal Failure 32 26 (81%) 3.62 0.7655 Ceftazidime (2)* 

Agranulocytosis 12 10 (83%) 5.70 0.8293 Albendazole (6) 

Anemia 9 6 (67%) 2.67 0.7277 Ribavirin (3) 

Leukopenia 4 4 (100%) 3 0.9436 Dexamethasone (1) 

Myocardial Infarction 27 18 (67%) 3.72 0.7035 Doxazosin (5) 

Neutropenia 17 12 (71%) 3.83 0.7739 Flucytosine (2) 
Rhabdomyolysis 40 27 (68%) 3.92 0.6910 Doxylamine (0) 

Thrombocytopenia 10 7 (70%) 3.50 0.7517 Tamoxifen (0) 

*The numbers in front of drug names in the last column indicate the number of years the model predicted 

their associations with the corresponding ADE earlier than it was published in PubMed. 
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4.4.3. ANALYSIS OF PREDICTION ERRORS 

Even though our prediction model performed well in terms of common accuracy metrics, it is 

always insightful to qualitatively analyze the cases that a model fails to accurately predict. Such an 

undertaking may involve both the drug-ADE pairs that were predicted to be associated while they 

actually were not (i.e., the false positive cases) and the drug-ADE pairs that were actually associated 

whereas the model failed to predict their association correctly (i.e., the false negative cases). 

We found 41 false negative predictions made by the model. Our further investigation 

revealed that 20 (i.e., around half) of them are related to the drugs approved after 2008. More 

specifically, we realized that six drugs, all approved after 2008, account for 17 (i.e., 41%) of false 

negative predictions. We then looked into the known associated ADEs, other than the eight ADEs 

of interest, for each of those six drugs before 2001 (i.e., when they were experimental drugs yet) 

which were used to train the prediction model. We found out that, compared to average (i.e., 6.58), 

the number of known associations for most of those six drugs was considerably low with only one 

having more than 5 known ADEs. Given these findings, we believe that one main reason for the 

model making those false negative predictions could be the relatively low number of known ADE 

associations (i.e., network edges) involving those drugs in the training dataset. Since we only used 

network metrics as the predictor variables, such lack of sufficient drug-ADE edges may possibly 

affect all of the predictor variables related to the corresponding drugs. Of course, one way to address 

this issue is to change the cutoff point for data partitioning (which is currently 2001) so that our 

training data include more of the known MEDLINE citations involving the drugs approved more 

recently. In the present study, however, changes in the cutoff year considerably affect the size of 

validation dataset14, which could jeopardize the validity of the prediction model. 

                                                      
14. For instance, we changed the cutoff year to 2003 and we ended up with only 732 records (i.e. a decrease 

of 303 records) in the validation dataset. 
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Our predictions also involved 33 false positive cases. Again, to further investigate the 

potential causes for those classification errors we looked into the specific drugs and ADEs involved. 

We realized that around 61% (i.e., 20) of these cases were related to the relatively older drugs, 

approved in early 90’s or even earlier. For such drugs, due to numerous biomedical studies 

conducted on them over time, the number of known ADE associations and consequently their 

degree centrality in the network tend to be higher than newer drugs. This directly inflates the 

centrality-based predictors of drug-ADE pairs, namely degree_ratio, degree_sum, and 

degree_product. Moreover, it was shown that these were the top three influential predictors of 

network links in our study. Table 4.6 compares the values of these three predictors, on average, for 

the false positive versus true positive as well as true negative cases. Clearly, the predictor values in 

false positive cases are far from those of the true negative cases and are very close to the cases 

correctly predicted as positive. 

Table 4.6. Comparing Top Predictors’ Values in False Positive, True Positive, and False 

Negative Predictions 

Predictor False Positives True Positives True Negatives 

Degree_Sum 234.82 237.55 203.05 

Degree_Product 7131.76 7615.02 3344.65 

Degree_Ratio 0.21 0.23 0.11 

 

Overall, our findings suggest that for older drugs the centrality-based predictor values are 

overly inflated, due to the higher number of citations involving in them, that other predictor 

variables cannot help the model to discern those cases from actual/real positive cases. Hence, 

probably incorporating some other network-independent informative covariates suggested in the 

literature (e.g., molecular or chemical features of drugs) can address this issue to some extent and 

help the model to better differentiate between positive and negative cases. 
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4.5. DISCUSSION AND CONCLUSION 

In this study, we proposed a new approach to predict ADEs by constructing drug-ADE networks, 

using biomedical citations as well as drugs target proteins information, and then employing network 

metrics as predictors of associations in machine-learning algorithms. 

While both NA approaches and ML techniques had been employed in the past separately, 

to the best of our knowledge, the present study is the first one, which employs ML along with an 

NA approach together in a single study. The promising results we obtained suggest that combining 

these two powerful tools can enhance the results we may get from each in separation. Our proposed 

approach outperformed the prior studies (see Table 4.) while the number of predictor variables used 

in this study is relatively lower than that of the similar studies. 

We believe that part of these superior results owes to the incredible power of ensemble 

machine-learning algorithms. As shown in our results, the two ensemble algorithms (i.e., RF and 

GBT) considerably outperformed the other two approaches. That is simply because of the higher 

power of ensemble algorithms in capturing sophisticated patterns in the data. While statistical and 

regular machine-learning techniques train a single model (either linear or non-linear) to reflect the 

relationship between the variables, ensemble algorithms sample the data hundreds of times and use 

those samples to build hundreds of prediction models. Then to predict a new case they vote from 

the created models to specify the final prediction. This way, instead of a single model, which is 

subject to sample randomization errors, many models are employed to yield predictions. 

The results also suggest that assortativity and preferential attachment (i.e., centrality-based 

metrics) are better predictors of network edges than similarity-based metrics (e.g., Jaccard 

coefficient). This is in line with the results from Cami et al.(Cami et al., 2011) and Liben-Nowell 

& Kleinberg(Liben-Nowell & Kleinberg, 2007). Additionally, we introduced two derived 

similarity-based network metrics, namely Avg_Jacc_connected and Avg_Distance_connected, for 



85 

 

predicting network edges, and it turned out that the former is among the top five most important 

predictors. In terms of relative importance, Table 4. shows that this derived variable has contributed 

to the quality of model around 50% more than the Adamic/Adar index and around 100% more than 

Jaccard index, two popular similarity-based metrics. It suggests that considering the similarity of a 

drug with the drugs already associated with an ADE provides more useful information in predicting 

drug-ADE associations, than considering the similarity of that drug with the ADE itself. 

Although the present study is particularly focused on eight highly common and risky 

ADEs, we argue that the high accuracy of our predictions has nothing to do with that matter because 

we did not incorporate any information about the ADEs or their relationships in building our 

prediction models. All of the information used to train our prediction models were historical drug-

ADE associations as well as drug-target proteins. Hence, we believe that replicating our approach 

on a larger scale and with a higher number of ADEs would result in the same quality results, if not 

better. 

Another limitation of this study is that it does not account for the strength of drug-ADE 

associations in the construction of the network. In network analysis, using the strengths of 

associations as the linkage weights and extracting weighted metrics is a popular and informative 

approach provided that the weights are assigned to the links in a meaningful way. Considering the 

frequency of citations mentioning a given association as the strength of that association is not a 

decent and even meaningful way for weighing the network edges because this frequency does not 

necessarily reflect the strength of association and might very well be, for instance, due to the high 

amount of risk involved in the corresponding ADE. Therefore, in this study, we used an unweighted 

network for the analysis. Future research could extend our approach by developing a way to score 

drug-ADE associations and use weighted network metrics in building the prediction models.  
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While our best model performed well in terms of sensitivity, it still made 33 false positive 

and 41 false negative predictions. Even though we analyzed some potential reasons for these 

prediction errors, we suspect that a portion of the false positive cases, especially those involved 

recently approved drugs, might be actually real drug-ADE associations that have not yet been 

studied and mentioned in biomedical citations. This could be also the case with all the other ADE 

prediction studies where the models yield a considerable number of false positives. Future research 

may focus on such cases resulted from ADE predictions and try to investigate them using clinical 

trials or by analyzing patients transactions from EHR data using methods like prescription sequence 

symmetry analysis(Pratt et al., 2015; Tsiropoulos, Andersen, & Hallas, 2009). 

Given the relatively high accuracy of predictions resulted from employing network 

approach, both in this study and the other few similar works, we strongly encourage future 

researchers to utilize the incredible power of networks for prediction purposes in 

pharmacovigilance. Especially, we believe that incorporating more data sources to construct more 

informative training networks can lead to even better predictions in the future. Specifically, 

chemical, physical, and molecular features of drugs (e.g., molecular weight, heavy atom count, 

melting point, etc.) can be added to the model as covariates to enhance its prediction power. We 

believe that one big methodological advantage of our study is producing quality results using a 

considerably lower number of predictors than prior studies (Atias & Sharan, 2011; Cami et al., 

2011; L.-C. Huang et al., 2011; M. Liu et al., 2012) and relying mostly on the power of networks 

and ensemble ML algorithms to identify patterns. Nevertheless, as discussed in the Results section, 

incorporating some additional covariates can potentially improve the model while maintaining its 

simplicity. Databases such as DrugBank and PubChem are freely accessible and rich sources of 

information about drugs that can be used for this purpose. 

We used the biomedical literature citations as the only resource for the known drug-ADE 

associations in constructing the network. There are, however, some other resources such as the side 
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effect resource (SIDER) database (http://www.sideeffects.embl.de) or some commercial databases 

like Lexicomp (http://www.lexi.com) that can be used for this purpose as well. Future research may 

extend our approach by incorporating multiple resources to add as many as possible drug-ADE 

links to the network since doing so can enhance the information extend of the network and 

potentially improves the quality and accuracy of the predictions. 

Similarly, with regard to the drug targets, we only used a single source (i.e. DrugBank) for 

this purpose. Even though it was suggested in prior research(Barneh, Jafari, & Mirzaie, 2015) that 

network-based organization of DrugBank data, particularly the drug similarity network (DSN), can 

potentially contribute to the prediction of side effects, and we showed that in this study, yet it 

involves some potential limitations. DrugBank is primarily focused on labeling targets from a 

pharmacokinetic point of view and possibly includes some determinants of drug disposition labeled 

as drug targets. We are not sure, though, whether the existence of such instances has improved or 

limited our model performance since on one hand, they may make the DSN more information-rich, 

but on the other hand, the nature of drug similarities may not be the same across the network.  

Finally, we believe that the chronological settings used in the present study to construct a 

drug-ADE network based on the chronological drug approvals and known ADE associations may 

be extended by future researchers to conduct a longitudinal study by constructing multiple drug-

ADE networks at different time points and show that evolution of this network over time enriches 

its informativeness and yields better predictions both in general and with regard to specific 

associations.

http://www.sideeffects.embl.de/
http://www.lexi.com/


88 

 

CHAPTER V 
 

 

SUMMARY AND CONCLUSION 
 

 

With advances in computer science and data science in the past few decades and given the huge 

amount of data being accumulated every day on the health care data repositories, computer-based 

data analytics approaches have been widely developed and applied with the aim of improving 

health care processes.  

One of the areas of health care which has been benefited from such efforts is drug safety. 

Traditionally, a newly discovered drug had to pass through decades of randomized clinical trials 

before being approved by the health care authorities and provided to the market. That was 

basically due to great deal of uncertainty with regard to the various types of risks posed by 

administering the drug to the real patients. Data analytics and statistical methods have 

significantly contributed to drug safety by reducing such risks of uncertainty through analyzing 

data from historical medication usage as well as chemical structures and biomedical 

characteristics of drugs. These efforts has led to more timely detection, more accurate prediction, 

and more effective prevention of drugs’ adverse events.
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5.1. CONTRIBUTIONS 

In the first essay, an analytics approach has been extended with the aim of taking into account 

drug-drug interactions in determining the confounding role of particular medications with regard 

to developing an adverse event. While each medication, in isolation, may lead to various adverse 

events in a patient, in a real world patients are usually being prescribed with multiple medications 

either for a single condition or for multiple conditions diagnosed. So the question is how taking 

other drugs may intensify or mitigate the already identified effect of a given drug in developing 

its corresponding adverse events? In other words, how can we realize the confounding role of a 

given drug with regard to a known and established drug-ADE relationship. By extending an 

emergent pattern mining method and applying it to the real prescription records of more than 

370,000 diabetic patients, in the first study we examined such confounding roles for a group of 

common diabetic medications on the adverse effect of a group of drugs known to cause acute 

kidney failure. The results explain the contradictory roles reported in the medical literature for the 

confounding role of common diabetic medications in absence of other potentially relevant 

medications. 

The second essay provides two independent approaches to examine the effect of prescription 

sequence on the likelihood of developing adverse drug events. While the sequence by which a 

given set of drugs are administered was suggested in the literature as a potential factor in 

developing adverse events, this effect was not empirically examined in the past. The two designed 

data analytic approaches were applied to the prescription records of a large group of diabetic 

patients to examine the effect of sequence on developing acute renal failure, as a common adverse 

event among this type of patients. The results obtained from the two independent approaches 

consistently revealed a significant effect on the likelihood of developing renal failure, which was 

attributable to the drugs’ prescription sequence. 
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In the third essay, two freely accessible feature-rich data sources, namely MEDLINE and 

DrugBank, were employed to construct a network of drugs and their associate adverse events 

already mentioned in the biomedical literature. The idea in this study was to use the known drug-

ADE associations as well as similarities between the newly discovered drugs with already-

marketed drugs in terms of their target proteins in the human body to predict potential ADEs of 

the new drugs. Our results showed that employing network metrics as the predictors of drugs’ 

ADE along with using advanced ensemble machine learning algorithms can significantly improve 

the accuracy of ADE predictions. 

5.2. ASSUMPTIONS AND LIMITATIONS 

The present work involves several limitations as discussed below. 

In the first and second study, even though we limited our sample to diabetic patients and 

controlled for their demographics, diabetes history, and common diabetic medications, still some 

important factors were not controlled due to sample limitations. Of the highest importance was 

the effect of patients' exact comorbidities that we did not control for in these two study because 

doing such would greatly affect our sample size. It was not easy to find a control match for each 

case patient with exactly the same comorbidities. Hence, we limited this control to only a major 

disease which is highly prevalent among Americans (i.e., diabetes) and also controlled for the 

total number of comorbidities as a general measure of patients’ wellness. We also implicitly 

assumed that by controlling for age and other demographics we are also partly controlling for 

other particular comorbidities that might be attributable to aging. 

In the same studies we assumed that all the medications prescribed by doctors were administered 

by the patients until it was discontinued by their doctor again. In fact, it was not practically 

possible to monitor whether every drug had been administered as recommended. However, we 

believe that it is reasonably realistic to assume that medications prescribed in a particular visit 
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were taken before those prescribed in the subsequent visit. Accordingly, instead of taking into 

account prescription timestamps we considered the timestamps of doctor visits as the base for 

sequence analysis in the second essay.  

Moreover, a limitation in the third study is that it does not account for the strength of drug-ADE 

associations in the construction of the network. In network analysis, using the strengths of 

associations as the linkage weights and extracting weighted metrics is a popular and informative 

approach provided that the weights are assigned to the links in a meaningful way. Then future 

research could extend our approach by developing a way to score drug-ADE associations and use 

weighted network metrics in building the prediction models. Additionally, with regard to the drug 

targets, we only used a single source (i.e. DrugBank) for this purpose. Even though it was suggested 

in prior research (Barneh et al., 2015) that network-based organization of DrugBank data, 

particularly the drug similarity network (DSN), can potentially contribute to the prediction of side 

effects, and we showed that in the third study, yet it involves some potential limitations. DrugBank 

is primarily focused on labeling targets from a pharmacokinetic point of view and possibly includes 

some determinants of drug disposition labeled as drug targets. We are not sure, though, whether 

the existence of such instances has improved or limited our model performance since on one hand, 

they may make the DSN more information-rich, but on the other hand, the nature of drug 

similarities may not be the same across the network.  

5.3. FUTURE RESEARCH DIRECTIONS 

This work leads to several areas of future research in drug safety as discussed next. 

a) Studying the confounders of high-risk adverse events: as discussed in the first study, 

acute renal failure was studied as the case in that work because it was identified as a 

high-risk ADR in the medical literature, that can lead to death in case of occurrence. 

There are, however, several other high-risk ADRs (e.g., myocardial infarction) common 
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among different groups of patients that need to be studied in terms of their associated 

drugs and the confounding role of other relevant drugs in decreasing or increasing the 

likelihood of developing them. Also future research may expand the proposed approach 

in the first study by employing larger data set (involving a wider time window) which 

allows for controlling the effect of specific diseases (as opposed to controlling only for 

the total comorbidities) as well. 

b) Designing an automated decision support system to monitor prescription sequences: as 

discussed in the second study, the sequence by which medications are administered can 

play a significant role in developing ADRs. Future research may employ large sets of 

historical prescription records to identify the sequential patterns leading to each given 

ADR and then use those identified patterns to design a clinical decision support system. 

Such a system can monitor the prescription records of each particular patient and provide  

the physicians with appropriate alerts when there is some intensified risk of developing a 

high-risk ADR involved, due to prescribing drugs in certain sequences. 

c) Using network analytics and ensemble machine learning to improve ADR predictions: in 

the  third study it was shown that how employing network metrics along with ensemble 

machine learning algorithms can help in identifying  sophisticated patterns within drug-

ADR associations and apply them effectively in predicting potential ADRs for newly 

discovered drugs. Future research may extend this idea by constructing more feature-rich 

networks of drugs and ADRs and extracting and developing new network metrics to be 

used as predictors of ADRs. In addition, with recent advances in computer hardware and 

provision of infrastructures for conducting deep learning analyses, future research may 

employ data sets including a large number of chemical, biomedical, and physical features 

of the drugs with the aim of predicting their exact ADRs. 
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APPENDICES 
 

 

 

APPENDIX 1 

The list of kidney-damaging (KD) as well as common diabetic medications included in the study 

follows. 

GENERIC_NAME Type GENERIC_NAME Type GENERIC_NAME Type 

acetaminophen KD bevacizumab KD insulin (variations) Diabetic 

aspirin KD indomethacin KD metformin Diabetic 

pantoprazole KD hydroxychloroquine KD glipizide Diabetic 

vancomycin KD pamidronate KD sitagliptin Diabetic 

ketorolac KD doxycycline KD glyburide Diabetic 

esomeprazole KD azithromycin KD glimepiride Diabetic 

tacrolimus KD clindamycin KD pioglitazone Diabetic 

ciprofloxacin KD tenofovir KD linagliptin Diabetic 

ibuprofen KD ketoprofen KD repaglinide Diabetic 

sulfamethoxazole-

trimethoprim 

KD mitomycin KD saxagliptin Diabetic 

omeprazole KD sulindac KD acarbose Diabetic 

lansoprazole KD captopril KD liraglutide Diabetic 

cyclosporine KD   nateglinide Diabetic 

phenytoin KD   canagliflozin Diabetic 

cephalexin KD   exenatide Diabetic 

acyclovir KD   bromocriptine Diabetic 

naproxen KD   saxagliptin Diabetic 

diclofenac KD   acarbose Diabetic 

celecoxib KD   liraglutide Diabetic 
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APPENDIX 2 

 

This appendix describes the search strategy used for extracting data from the National Library of 

Medicine’s (NLM) MEDLINE database of biomedical citations. MEDLINE is a subset of PubMed 

database and includes more than 26 million biomedical citations started from 1946 onward. Each 

article is carefully read and annotated by a group of trained indexers using a vocabulary system 

called Medical Subject Headings (MeSH). The MeSH thesaurus is a controlled vocabulary system 

produced by NLM to be used for indexing, cataloging, and searching for biomedical citations and 

health-related documents. After carefully reading an article, the NLM indexing experts select the 

most appropriate descriptors and subheadings (a.k.a. qualifiers) that best describe the content.  

To extract required data for the present study we downloaded all the MEDLINE citations from 

PubMed (https://www.ncbi.nlm.nih.gov/pubmed) with the “AE” MeSH subheading, which is used 

to indicate mentions of Adverse Effects, and containing at least one of the 8 high-risk ADEs of 

interest indexed as “Chemically induced”. These two MeSH indexes, together, specify the drug and 

the adverse event mentioned as an association in a given article. For instance, the combination of 

"acetaminophen/AE" and "Acute kidney failure/chemically induced" for a given article indicates 

https://www.ncbi.nlm.nih.gov/pubmed
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that a drug-ADE association suggesting the potential adverse effect of acetaminophen on 

developing kidney failure is mentioned in that study. 

The search was done multiple times, each time for one of the ADEs of interest; however, at the 

end, we removed duplicated citations from our records. For each article, the following information 

was collected: article PubMed ID (PMID), MeSH descriptors, subheadings, substances, and date 

of publication.  

Since drugs’ target protein and date of approval information were to be extracted from another 

resource (i.e., DrugBank), we then used the Unified Medical Language System (UMLS) to map the 

drug and ADE terms. UMLS is a biomedical terminology integration system handling more than 

150 terminologies including MeSH. It integrates various alternatives of the same biomedical 

concepts and assigns each concept a unique identifier (CUI) across the whole database. All the drug 

and ADE terms in the collected dataset were mapped to their corresponding UMLS terms and the 

CUI associated with each was queried and added to the dataset.  

The list of approved FDA drugs along with their target proteins was downloaded from DrugBank’s 

(https://www.drugbank.ca ) Therapeutic Target Database (TTD) ver. 6.1.01 and mapped to UMLS 

terms as well. Then the list was used to filter the articles collected from MEDLINE so that we only 

kept articles including approved drugs and put away studies focusing on experimental drugs or 

chemical compounds. 

Finally, drug-ADE pairs were created by matching mentions of the “AE” and “Chemically 

induced” tags in the same publications and the corresponding publication dates were assigned to 

the created pairs. Repeated pairs were then identified and redundancies were removed by 

maintaining only the earliest drug-ADE mention (based on dates). Also using the DrugBank data, 

drug-drug pairs were created by matching the drugs sharing at least one target protein. 

https://www.drugbank.ca/
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The created pairs were then used as the input to both Cytoscape v3.6.0 and the igraph package in 

R to create network visualization and metrics, respectively.
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