126 research outputs found

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    A Multi-task Learning Framework for Head Pose Estimation under Target Motion

    Get PDF
    Recently, head pose estimation (HPE) from low-resolution surveillance data has gained in importance. However, monocular and multi-view HPE approaches still work poorly under target motion, as facial appearance distorts owing to camera perspective and scale changes when a person moves around. To this end, we propose FEGA-MTL, a novel framework based on Multi-Task Learning (MTL) for classifying the head pose of a person who moves freely in an environment monitored by multiple, large field-of-view surveillance cameras. Upon partitioning the monitored scene into a dense uniform spatial grid, FEGA-MTL simultaneously clusters grid partitions into regions with similar facial appearance, while learning region-specific head pose classifiers. In the learning phase, guided by two graphs which a-priori model the similarity among (1) grid partitions based on camera geometry and (2) head pose classes, FEGA-MTL derives the optimal scene partitioning and associated pose classifiers. Upon determining the target's position using a person tracker at test time, the corresponding region-specific classifier is invoked for HPE. The FEGA-MTL framework naturally extends to a weakly supervised setting where the target's walking direction is employed as a proxy in lieu of head orientation. Experiments confirm that FEGA-MTL significantly outperforms competing single-task and multi-task learning methods in multi-view settings

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    Non-Rigid Structure from Motion

    Get PDF
    This thesis revisits a challenging classical problem in geometric computer vision known as "Non-Rigid Structure-from-Motion" (NRSfM). It is a well-known problem where the task is to recover the 3D shape and motion of a non-rigidly moving object from image data. A reliable solution to this problem is valuable in several industrial applications such as virtual reality, medical surgery, animation movies etc. Nevertheless, to date, there does not exist any algorithm that can solve NRSfM for all kinds of conceivable motion. As a result, additional constraints and assumptions are often employed to solve NRSfM. The task is challenging due to the inherent unconstrained nature of the problem itself as many 3D varying configurations can have similar image projections. The problem becomes even more challenging if the camera is moving along with the object. The thesis takes on a modern view to this challenging problem and proposes a few algorithms that have set a new performance benchmark to solve NRSfM. The thesis not only discusses the classical work in NRSfM but also proposes some powerful elementary modification to it. The foundation of this thesis surpass the traditional single object NRSFM and for the first time provides an effective formulation to realise multi-body NRSfM. Most techniques for NRSfM under factorisation can only handle sparse feature correspondences. These sparse features are then used to construct a scene using the organisation of points, lines, planes or other elementary geometric primitive. Nevertheless, sparse representation of the scene provides an incomplete information about the scene. This thesis goes from sparse NRSfM to dense NRSfM for a single object, and then slowly lifts the intuition to realise dense 3D reconstruction of the entire dynamic scene as a global as rigid as possible deformation problem. The core of this work goes beyond the traditional approach to deal with deformation. It shows that relative scales for multiple deforming objects can be recovered under some mild assumption about the scene. The work proposes a new approach for dense detailed 3D reconstruction of a complex dynamic scene from two perspective frames. Since the method does not need any depth information nor it assumes a template prior, or per-object segmentation, or knowledge about the rigidity of the dynamic scene, it is applicable to a wide range of scenarios including YouTube Videos. Lastly, this thesis provides a new way to perceive the depth of a dynamic scene which essentially trivialises the notion of motion estimation as a compulsory step to solve this problem. Conventional geometric methods to address depth estimation requires a reliable estimate of motion parameters for each moving object, which is difficult to obtain and validate. In contrast, this thesis introduces a new motion-free approach to estimate the dense depth map of a complex dynamic scene for successive/multiple frames. The work show that given per-pixel optical flow correspondences between two consecutive frames and the sparse depth prior for the reference frame, we can recover the dense depth map for the successive frames without solving for motion parameters. By assigning the locally rigid structure to the piece-wise planar approximation of a dynamic scene which transforms as rigid as possible over frames, we can bypass the motion estimation step. Experiments results and MATLAB codes on relevant examples are provided to validate the motion-free idea

    Fast Solvers and Simulation Data Compression Algorithms for Granular Media and Complex Fluid Flows

    Full text link
    Granular and particulate flows are common forms of materials used in various physical and industrial applications. For instance, we model the soil as a collection of rigid particles with frictional contact in soil-vehicle simulations, and we simulate bacterial colonies as active rigid particles immersed in a viscous fluid. Due to the complex interactions in-between the particles and/or the particles and the fluid, numerical simulations are often the only way to study these systems apart from typically expensive physical experiments. A standard method for simulating these systems is to apply simple physical laws to each of the particles using the discrete element method (DEM) and evolve the resulting multibody system in time. However, due to the sheer number of particles in even a moderate-scale real-world system, it quickly becomes expensive to timestep these systems unless we exploit fast algorithms and high-performance computing techniques. For instance, a big challenge in granular media simulations is resolving contact between the constituent particles. We use a cone-complementarity formulation of frictional contact to resolve collisions; this approach leads to a quadratic optimization problem whose solution gives us the contact forces between particles at each timestep. In this thesis, we introduce strategies for solving these optimization problems on distributed memory machines. In particular, by imposing a locality-preserving partitioning of the rigid bodies among the computing nodes, we minimize the communication cost and construct a scalable framework for collision detecting and resolution that can be easily scaled to handle hundreds of millions of particles. For robust and efficient simulation of axisymmetric particles in viscous fluids, we introduce a fast method for solving Stokes boundary integral equations (BIEs) on surfaces of revolution. By first transforming the Stokes integral kernels into a rotationally invariant form and then decoupling the transformed kernels using the Fourier series, we reduce the dimensionality of the problem. This approach improves the time complexity of the BIE solvers by an order of magnitude; additionally we can use high-order one-dimensional singular quadrature schemes to construct highly accurate solvers. Finally, coupling our solver framework with the fast multipole method, we construct a fast solver for simulating Stokes flow past a system of axisymmetric bodies. Combining this with our complementarity collision resolution framework, we have the potential to simulate dense particulate suspensions. Physics-based simulations similar to those described above generate large amounts of output data, often in the hundreds of gigabytes range. We introduce data compression techniques based on the tensor-train decomposition for DEM simulation outputs and demonstrate the high compressibility of these large datasets. This allows us to keep a reduced representation of simulated data for post-processing or use in learning tasks. Finally, due to the high cost of physics-based models and limited computational budget, we can typically run only a limited number of simulations when exploring a high-dimensional parameter space. Formally, this can be posed as a matrix/tensor completion problem, and Bayesian inference coupled with a linear factorization model is often used in this setup. We use Markov chain Monte Carlo (MCMC) methods to sample from the unnormalized posteriors in these inference problems. In this thesis, we explore the properties of the posterior in a simple low-rank matrix factorization setup and develop strategies to break its symmetries. This leads to better quality MCMC samples and lowers the reconstruction errors with various synthetic and real-world datasets.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169614/1/saibalde_1.pd

    Technology for large space systems: A bibliography with indexes (supplement 12)

    Get PDF
    A bibliography listing 516 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1, 1984 and December 31, 1984 is presented. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of Large Space System Technology. Subject matter is grouped according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Deep Learning based Vehicle Detection in Aerial Imagery

    Get PDF
    This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center
    • …
    corecore