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Non-Rigid Structure-from-Motion

Abstract

This thesis revisits a challenging classical problem in geometric computer vision known as
“Non-Rigid Structure-from-Motion” (NRSfM). It is a well-known problem where the task
is to recover the motion and 3D shape of a non-rigidly deforming object from image data.
A reliable solution to this problem is valuable in several industrial applications such as vir-
tual reality, medical surgery, movies etc. To date, there does not exist any algorithm that can
solve NRSfM for all kinds of conceivable motion. As a result, additional constraints and as-
sumptions are often employed to solve NRSfM. The task is challenging due to the inherent
unconstrained nature of the problem itself as many 3D varying configurations can have sim-
ilar image projections. The problem becomes even more challenging if the camera is moving
along with the object.

The thesis takes on amodern view to this challenging problem and proposes a few algorithms
that have set a new performance benchmark to solve NRSfM. The thesis not only discusses
the classical work in NRSfM but also proposes some powerful elementary modifications to
it. The foundation of this thesis surpass the traditional single objectNRSFMand for the first
time provides an effective formulation to realize multi-body NRSfM.

Most techniques for NRSfM under factorization can only handle sparse feature correspon-
dences. These sparse features are then used to construct the scene using organization of
points, lines, planes or other elementary geometric primitive. Nevertheless, sparse represen-
tation of the scene provides an incomplete information about the scene. This thesis goes
from sparse NRSfM to dense NRSfM for a single object, and then slowly lifts the intuition
to realize dense 3D reconstruction of the entire dynamic scene as a global as rigid as possible
deformation problem.

The core of this work goes beyond the traditional approach to deal with deformation. It
shows that relative scal for deforming objects under perspective projection can be recovered
under somemild assumption about the scene. The work proposes a new approach for dense
detailed 3D reconstruction of a complex dynamic scene from two perspective frames. Since
the method does not need any depth information nor it assumes a template prior, or per-
object segmentation, or knowledge about the rigidity of the dynamic scene, it is applicable to
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a wide range of scenarios.

Lastly, this thesis provides a new way to perceive the depth of a dynamic scene which essen-
tially trivializes the notion of motion estimation as a compulsory step to solve this problem.
Conventional geometric methods to address depth estimation requires a reliable estimate of
motion parameters for each moving object, which is difficult to obtain and validate. In con-
trast, this thesis introduces a newmotion-free approach to estimate the dense depthmap of a
complex dynamic scene for successive/multiple frames. The work show that given per-pixel
optical flow correspondences between two consecutive frames and the sparse depth prior for
the reference frame, we can recover the dense depth map for the successive frames without
solving for motion parameters. Experimental results andMATLAB codes on relevant exam-
ples are provided to validate the motion-free idea.
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1
Introduction

Contents
1.1 Structure from Motion . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Rigid Structure from Motion . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Non-Rigid Structure from Motion . . . . . . . . . . . . . . . . . . . 10

1.4 Prior-Free NRSFM Factorization: Modifications and Improvement . . 13

1.5 From single body to multi-body NRSFM. . . . . . . . . . . . . . . . 13

1.6 From Sparse NRSFM to Dense NRSFM . . . . . . . . . . . . . . . . 14

1.7 Dense monocular 3D reconstruction of a complex dynamic scene. . . . 14

1.8 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Structure from Motion

What Structure-from-Motion and why it’s so important? The problem of estimating three
dimensional structure of the scene from images when either the camera or the object or both
are in motion is known as Structure-from-Motion (SfM). This topic has been of interest to
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the researchers since the inception of computer vision field and is still an active field of re-
search [18, 107, 103]. Solving this inverse problem to infer the geometry of the scene from
images has alone taken more than three decades and still counting [18]. The main reason for
such gradual progress in this field is possibly due to the nature and setting of the problem
itself. Despite that, a lot of successful SfM algorithms has been proposed in the past which
works quite well under certain assumptions about the scene and motion. Having said that,
SfM for any general dynamic scene is still an open area for researchers to solve.

Solving SfM is important not only for machines but also for humans in resolving and under-
standing the extraordinary abilities of human perception. Solution to this problem can be of
paramount importance to medical surgery, street mapping, coal mining, space exploration,
scene understanding, autonomous driving and many more.

Due to its wide range of applications, this field has been the center of attention to researchers
from vision, robotics, medical etc. In the field of robotics, the core challenge is autonomous
navigation which requires reliable algorithms for obstacle avoidance, frontier detection, sen-
sor localization etc [161, 109, 111, 173]. For robots to emulate the human ability to localize and
understand the geometry of the environment, it needs structure or map of the scene. In a
similar way, medical researchers needs an accurate and precise understanding of the human
body parts from images for surgery or treatment. The success of all these applications to large
extent depends on the richness of information represented by the reconstructed scenemodel.
For instance, inference about an object can be greatly improved by the knowledge of its 3D
structure.

In quest of finding a reliable solution to this problem, researchers spend considerable pe-
riod to time to realize that SfM for rigid scenes can be solved with a reasonable accuracy
[119, 163, 86, 154, 4]. However, for a dynamic or non-rigid scene it is still a challenging task.
For dynamic scenes any projected position in a camera image plane can have several possible
3D configuration. Therefore, additional information which may be related to the geometry,
appearance or motion of the objects in the scene is required to solve this problem. These ad-
ditional information or prior knowledge helps to reduce the number of degrees of freedom.
For example: constraints such as parallelism, co-planarity, orthogonality can be used to re-
construct simple geometric shapes. To gather more knowledge about the scene two or more
images of the scene is used for reconstruction. Additionally, several other assumptions such
as orthographic projection, low-rank shape are used to solve this problem.

Due to stiff theoretical complexity of the problem, modification in sensors has also been em-
ployed. Sensors such as stereo camera, RGB-D has been exploited to procure the scene ge-
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(a) First Image Feature Points (b) Second Image Feature Points

(c) Image Feature Matching (d) 3D reconstruc on of the scene

Figure 1.1: Ahigh-level illustra on of basic pipeline for rigid scene reconstruc on usingmul ple-view geometrymethod
[85]. (a)-(b) Detect the interest points across mul ple frames (shown only for two images). (c) Assign descriptor to each
features and match these feature descriptors across images. (d) Solve for mo on and 3D points using essen al matrix
decomposi on and triangula on respec vely. Refine the solu on using bundle-adjustment [171]. The above dataset
is taken from gerrard-hall sequence [147]. (Best viewed on screen)

ometry. Although new understanding has been interleaved with this massive engineering in
development of sophisticated sensors. Nevertheless, reconstructing dense detailed structure
of a dynamic scene is still a challenging problem as these sensors have their own limitations.

Based on the algorithms proposed in past, one can classify SfM based on different attributes
such as types of sensors, types of motion, number of frames, types of projection and many
more. However, this thesis covers SfM based on types of motion, which can be broadly clas-
sified into two significant family: rigid SfM and non-rigid SfM. Briefly, a transformation
such that the distance between the points is preserved before and after motion is called rigid
motion transformation else it can be termed as non-rigid motion transformation.
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Figure 1.2: Large scale structure from mo on using Internet photo collec on [4]. This 3D structure of Saint
Mark’s Basilica is recovered by harves ng the images from the web. Here, the black color frustum show the
camera posi on. (Note: This image is taken from Agrawal.S et al. work [4])

1.2 Rigid Structure from Motion

Structure frommotionunder the key assumption that object ismoving rigidly or only camera
ismoving and the scene is static can be termed as rigid structure frommotion. Theory related
to the solution of SFM under rigid motion assumption is very mature and can be considered
as a solved problem [163, 85, 88, 154, 4, 95] (see Figure 1.1). With elegant theory and optimiza-
tion techniques in hand researchers have extended this to reconstruct multiple object in the
scene while camera is moving, popularly known as multi-body structure from motion [57].
The idea of multi-body SFM is to cluster feature tracks and fit rigid motion model to each
cluster. As each cluster is assumed to be rigid, techniques described in [86] can be applied
to infer 3D points. The theory of rigid SFM has also been extended to large scale multi-view
reconstruction, where the goal is to reconstruct entire city by collecting images from Internet
of the same scenes taken by different user camera’s [36, 150, 154, 4] (see Figure 1.2). The mag-
nitude of success accomplished with the theory of rigid SfM is enormous [151] but still it has
certain limitations.

Limitations

Despite the fact that the classical theory developed for rigid structure from motion provides
satisfactory results for rigid scenes [87, 88, 132, 171], its usage to large scale application needs
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efficient optimizers and different variety of modern SfM pipelines [152, 153, 150, 4]. To pro-
vide robustness to the solution of rigid Structure-from-Motion, incremental approach is also
adopted but it makes the execution quite slow. As a result, motion averaging approaches
are adopted in the recent past which provides robust results for large scale problems [29, 76,
75, 54]. In conclusion, several ideas in the past are proposed to provide a reliable result for
large scale rigid SfM problems, however, there is still scope of improvements in its intrinsic
pipeline such as camera registration, robustness to noise, convexity, dense solution to rigid
SfM etc.

Matrix factorization also provides an alternative way to solve rigid Structure-from-Motion
using batch of frames [163, 43, 124]. However, it’s application to large scale problems are
limited.

1.3 Non-Rigid Structure from Motion

The other family of SfM is popularly known as “Non-Rigid Structure-from-Motion”. Un-
der non-rigid deformation, its difficult to infer the shape and motion model of the object
using only image data. Also, if arbitrary deformations are allowed, then, 3D reconstruction
of a non-rigid moving object is still considered as an ill posed problem. Consequently, addi-
tional assumption about the object or the scene is required to solve this problem. Some of
the popular assumptions for handling non-rigid SFM problem are a) Restrict the shape to
lie on a low-dimensional subspace [21], [168]. b) Orthographic camera projection [21], [168],
[42], [6]. (c)Only one non-rigid shape is present in the scene . Figure (1.3) illustrates the basic
working pipeline for non-rigid shape reconstruction using factorization approach.

The first practical solution to NRSfM [21] extended the classical factorization frame-
work [163] under the assumption that 3D shape in each frame is a linear combination of a
set of basis shapes. However, such an assumption does not provide satisfactory solution to
the problem as its formulation is inherently under-constrained and it requires more prior
knowledge/constrained on 3D shape deformation to supply better results. Xiao et al. [191]
in 2004 proposed that NRSfM is an ill-posed problem and orthonormality constraints pro-
posed in the previous works are alone not sufficient to recover shape basis and shape coeffi-
cient uniquely. Consequently, Xiao et al. proposed to add extra basis constraint to solve the
problem. Following the same underlying theory Torresani et al.[169] used Gaussian priors
to estimate shape coefficients. In contrast, Akther et al. [7] first pointed out that the met-
ric constraints are alone sufficient to 3D shape without ambiguity, though the ambiguity in
shape basis is inherent.

A recent break-through in NRSfM proposed a prior free approach to NRSFM under
low-rank shape as the only assumption [42]. This paper is able to show—both theoretically
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and practically, thatwithout any extra knowledge about the non-rigid object (other than low-
rank) it’s possible to reconstruct the shape without any inherent basis-ambiguity. However,
its performance on the benchmark dataset [6, 168, 93] is arguable. Therefore, the main con-
cern is, with the recent theoretical surge in the understanding of NRSfM both theoretically
and practically [44], Is SFM for any general non-rigidly moving object/scene is solved? At
the time of writing this thesis, the answer remains ‘NO’!. Some of the reasons for this disap-
pointing answer are listed in the following limitations.

Limitations

Even though few successful algorithms inNRSFM can provide satisfactory results, its still an
unsolved problem for any general dynamic scene. The reasons are as follows:

• Most of the successful research in NRSFM assumes orthographic projection which
limits its application to widely used perspective camera model.

• NRSfM methods assumes single non-rigid object is present in the scene for entire im-
age sequence. In general, scene is composed of multiple moving objects.

• To realize per-pixel (dense) deformationof a shape, usually 3D templates are employed,
which again is a non-practical and non-scalable approach to solve dense NRSfM.

• One of the most important limitation of the NRSfM in general is the validity of the
correct representation of the deformation model. More precisely, which type of de-
formation model can explain the non-rigidity of the object in the scene, for example
low-rank, isometric deformationmodel, piece-wise rigidmodel etc. Tome, its an open-
problem.

Due to the above limitations, NRSfM algorithms are not widely applicable for practical pur-
poses. In this thesis, we develop algorithms which enables new insight to solve NRSfM and
provides some practical approaches to solve real world NRSfM problems. This thesis is also
about realizing rigid 3D reconstruction problem as a small subset of problem available in this
vast world of non-rigidity.

In the remaining section of this introduction chapter, we provide small summary on themo-
tivation behind each of the work. Firstly, we introduce modification to the existing single
body NRSFM framework to supply better 3D reconstruction results. Then, we outline the
limitations with single body framework and how matrix factorization approach can be used
to achieve the multi-body NRSfM. Further, we introduce the problem with sparse repre-
sentation of the object and brief on our two different algorithm to estimate dense 3D re-
construction of a non-rigid object. After that we discuss on the drawbacks of orthographic
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model assumption. We slowly lift the insight of the readers and motivate them to think of
any general dynamic scene as a global as rigid as possible scene, if observed closely within
subsequent time frame (assuming this time is small enough), hence a NRSfM problem. To
endorse our intuition we outline two methods to solve dense 3D reconstruction of a general
dynamic scene. Finally, we provide the chapter-wise progression of the thesis from sparse to
dense 3D reconstruction.

1.4 Prior-Free NRSFM Factorization: Modifications and Improvement

Bregler et al.[21] matrix factorization approach proposed in the year of 2000 is one of the
most widely used framework to solve NRSfM problem. After that, more than a decade of
profound attempts to extend this framework were unable to provide a practical algorithm
to solve this problem. Finally, it was in the year 2012 that Dai et al. provided a new insight
to solve NRSfM which is popularly known as “prior-free” approach. The theory and algo-
rithm proposed byDai et al.[42] in a way changed the course of current research in NRSfM.
However, overtime it was observed that their method fails to provide acceptable 3D recon-
struction results on available dataset. As a result the prevailing view about this work is that it
provides arguable results and hence, methods using compact data representation lashes on its
performance [199]. So, the question we ask is Dai et al. seems theoretically correct but suffers
practically “Why”?.

This thesis firstly provides the possible reasons for its practical failure. Our work gives
an in-depth understanding of “prior-free” method and how some powerful elementarymea-
sures andmodifications can significantly improve its performance. We argue that by properly
utilizing thewell-established assumption about a non-rigidly deforming shape i.e., it deforms
smoothly over frames and it spans a low-rank space, the simple prior-freemethod can provide
results which is comparable to the best available algorithms—at the time of writing this the-
sis. Similar to prior-free method the only assumption we make is “low-rank” shape, and we
show that a better solution to motion which satisfies smooth motion assumption is already
present within the estimated “Grammatrix”, and explicit regularization onmotion is not es-
sentially required. Secondly, we propose how to better utilize the low-rank assumption. The
improved performance is justified and empirically verified by extensive experiments on sev-
eral benchmark datasets. Finally, this work also conjecture some theoretical problems which
we think needs attention for further developments in factorization approach to NRSfM.

1.5 From single body to multi-body NRSFM.

The existing algorithms to solve the task of NRSFM are limited to handle one non-rigid ob-
ject in the scene, which restricts its application to a general scene. Real world scenario’s often
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consists of multiple objects undergoing non-rigid deformation. Therefore, we must look for
an approach that solves multi-body NRSFM. One way to handle this it to solve 3D recon-
struction task for each non-rigid object one at a time by pre-segmenting different objects in
the scene. Nonetheless, its not a optimal way to solve the problem in which both the mo-
tion and shape interacts. Under the assumption that each non-rigid object spans a distinct
global linear subspace, this thesis present the first algorithm to realize multi-body NRSfM
[106]. To compactly represent complex multi-body non-rigid scenes, we propose to exploit
the deformation in both spatial and temporal space, thus achieving a spatio-temporal rep-
resentation. Specifically, we represent the 3D shape deformation in a union of subspaces
in the temporal space and the 3D trajectories in the union of subspaces in the spatial space.
Such spatio-temporal representation not only provides competitive 3D reconstruction but
also gives reliable segmentation of multiple non-rigid objects present in the scene.

1.6 From Sparse NRSFM to Dense NRSFM

For many real-world applications, such as facial expressions, heart-surgery etc, dense or per-
pixel reconstruction of the object is very essential. NRSfM algorithms developed to recon-
struct few sparse points of the non-rigid object fails to provide dense reconstruction of the
object and therefore, its unable to cater the subtle deformation in the object. The framework
developed under the assumption of global low-rank shape and the shape spans global linear
subspace may not hold for dense deforming surface. The main reason for it is, any complex
deforming surface can be composed of several local linear subspace structure. Therefore, the
algorithm developed for sparse NRSfM fails to cater the inherent local structure of the de-
forming shape over space and time. This thesis lifts the intuition developed for union of
subspaces in NRSfM problem andmodifies it further to provide a scalable dense NRSfM al-
gorithm. Our work utilizes Grassmannian representation to solve dense NRSfM which was
previously studied only to represent set of images.

1.7 Dense monocular 3D reconstruction of a complex dynamic scene.

The method outlined before works well under the orthographic camera model assumption.
However, the widely used camera are perspective in nature and orthographic camera model
may not hold. With the proliferation of monocular perspective camera inmobile robots and
cell phones has increased the demands for sophisticated reconstruction algorithm’s. These
reconstruction algorithm should not be restricted to camera model and types of motion in
the scene. Hence, it should be flexible enough to work smoothly for any general scene of
unknown rigidity type. In order to support geometric reasoning for images, maps, obstacles,
environment etc. such algorithm is required for future smart devices. In this thesis, we pro-
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pose two geometric algorithm that can help in achieving dense detailed 3D reconstruction of
a dynamic scene under somemild assumption. Consider a general real-world dynamic scene,
the change we observe in the scene between consecutive time frame is not arbitrary, rather
it is regular. Hence, if we observe a local transformation closely, it changes rigidly, but the
overall transformation that the scene undergoes is non-rigid. Therefore, to assume that the
dynamic scene deforms as rigid as possible seems quite convincing and practically works well
for most real-world dynamic scenes.

Importance

The topic covered in this thesis is of sheer importance to science and technology as it has
tremendous application inmedical, robotics, architecture, design, tourism, gaming, andmany
more. For instance, imagine a mobile robot which can capture the spatial layout of under-
ground coal mine field, a precise medical surgery without any human supervision, automatic
traffic or driving system, 3Dmodels of your favoritemonuments or building or actors, a truly
immersed virtual reality experience for 3D game. All these application needs a robust dense
3D reconstruction of the involved scene. One can argue to use laser anddepth sensing devices.
However, such sensor is very costly with its own limitations and it is not portable enough to
be embedded in smart portable devices with current technology. So, the argument here is;
canwe come upwith some algorithm that uses the current imaging and computing resources
to supply reliable geometry of a general dynamic scene.

1.8 Thesis Outline

After a brief introduction on structure from motion and brief overview of our thesis, we are
ready provide progression of this thesis. At the beginning of each chapter in this thesis, we
briefly discuss the motivation behind the concerned work. This discussion is followed by a
comprehensive literature survey, where we review the relevant research area specific to topics
covered therein. Our literature survey also tries to highlight the gray areas of the previous
works.

The thesis starts with the classical approach to NRSfM. In the Chapter (2), we attempt to
make the baseline factorization approachmore accurate and usable to real world application.

In Chapter (3) we describe our first multi-body NRSFM that enables joint reconstruction
and segmentation of deformable objects. We also extend the formulation to compactly rep-
resent both shape space and trajectory space via elastic net regularizer. Later, we describe the
solution and implementation of the developed optimization framework followed by experi-
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ments and results.

In Chapter (4) provides our work on dense non-rigid structure from motion which focuses
on extending the idea of compact data representation using union of linear subspace to ob-
tain per pixel 3D reconstruction of a deforming object.

An extension of theChapter (4) is presentedChapter (5)where themotivation is to better uti-
lize the Grassmannian representation developed in the previous chapter. The representation
to group high dimensional data points inevitably introduce the drawbacks of categorizing
samples on the high-dimensional Grassmann manifold. Therefore, to deal with such limita-
tions, we propose to jointly exploits the benefit of high-dimensional Grassmannmanifold to
perform reconstruction, and its equivalent low-dimensional representation to infer suitable
clusters. To achieve this, we project eachGrassmannians onto a low-dimensional Grassmann
manifold which preserves and respects the deformation of the structure w.r.t its neighbors.
These Grassmann points in the lower-dimension then act as a representative for the selection
of high-dimensional Grassmann samples to perform each local reconstruction.

In Chapter (6) we propose an efficient optimization framework to solve dense 3D recon-
struction of complex dynamic scene using two perspective images. This work investigate on
the rigidity of the scene using piecewise planar assumption. Under these assumptions, rel-
ative scale of objects in the scene can be recovered faithfully. We describe the details of the
formulations and its implementation followed by extensive experimental results. These ex-
perimental results help conclude that dense detailed reconstruction using two perspective
images is possible under some mild assumptions about the scene. In the following chapter
(7), we took the assumptionmade in the Chapter (6) about a dynamic scene to next level. We
proposed that if the depth for the reference frame is known a prior then we can estimate the
dense depth map of a dynamic scene without using any 3D motion parameters.

1.9 State of the art

This brief section is included in the thesis to provide a quick reference to the state of the
art in non-rigid structure from motion at the time of writing this thesis. The table below
provides the evaluation statistics of NRSfM under classical setting i.e., orthographic camera
model with an assumption that the features tracks are given for the entire sequence of frames.
These evaluations were done as a part of NRSfM Challenge organized at CVPR 2017. Inter-
ested readers are encouraged to refer to the Jensen et al.[93] work for detailed explanation on
evaluation metric and experimental setups.
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Algorithm Mean RMS Articulated Balloon Paper Stretch Tearing
Multibody[106, 104] 24.64mm 45.51mm 14.55mm 22.88mm 18.30mm 21.98mm
CSF2 [73] 26.09mm 35.51mm 19.01mm 33.95mm 23.22mm 18.77mm
RIKS [81] 26.75mm 42.11mm 18.45mm 32.18mm 22.88mm 18.12mm
KSTA [72] 26.86mm 35.63mm 24.88mm 31.96mm 24.25mm 17.59mm
MetricProj [136] 28.73mm 37.96mm 25.28mm 34.45mm 25.51mm 20.43mm
CSF [71] 30.83mm 36.84mm 30.43mm 32.17mm 28.87mm 25.82mm
PTA[8] 32.18mm 36.71mm 28.88mm 41.72mm 30.45mm 23.14mm
Bundle[46] 41.38mm 64.48mm 36.40mm 41.64mm 35.64mm 28.73mm
ScalableSurface[10] 41.84mm 58.12mm 31.71mm 45.45mm 38.88mm 35.03mm
RigidTriangle [160] 43.83mm 65.71mm 34.38mm 43.57mm 40.54mm 34.94mm
SoftInext [180] 45.80mm 61.43mm 36.75mm 47.41mm 45.56mm 37.87mm
EM PPCA [167] 47.86mm 46.62mm 36.87mm 51.56mm 58.01mm 46.21mm
BALM [47] 48.79mm 75.09mm 35.84mm 53.13mm 40.31mm 39.58mm
Compressible [98] 59.98mm 72.77mm 52.53mm 62.44mm 57.45mm 54.71mm
SPFM [44] 63.81mm 89.40mm 45.65mm 64.19mm 64.04mm 55.79mm
MDH [32] 67.37mm 88.66mm 58.27mm 66.98mm 66.27mm 56.67mm
Concensus [115] 70.53mm 105.38mm 54.71mm 64.25mm 69.22mm 59.10mm

Table 1.1: State of the art evalua on presented at the CVPR 2017 NRSfM Challenge [93]
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1.10 Preliminaries

Beforewe start to discuss on the problemof non-rigid structure fromproblem,we provide an
overview on the basics of algebra and optimization concepts. The discussion on these topics
by nomeans comprehensive, and is provided for the understanding and completeness of the
thesis. In case the reader wants to get a very clear picture onmost of the concepts used in this
thesis, I strongly recommend to go through MIT Linear Algebra on-line course [157] and
articles on the subspace clustering [181, 182] and ADMM optimization [19].

(A) Trace of a Matrix: LetX ∈ Rn×n be a square matrix. The trace of the matrixX is
the sum of its main diagonal element. The trace of a matrix is also the sum of its eigen values.

Tr(X) =
n∑

i=1

Xii = x11 + x22 + x33 + ....+ xnn =
n∑

i=1

λi(X) (1.1)

where λi(X) refers to the eigen values of X.

Basic Properties

• Tr(X+ Y) = Tr(X) + Tr(Y), AssumingX,Y are the matrix of same dimension

• Tr(kX) = kTr(X), where k is a constant.

• Tr(XY) = Tr(YX),X ∈ Rm×n, Y ∈ Rn×m

• Tr(XTY) = Tr(XYT) = Tr(YTX) = Tr(YXT)

• Tr(XYZW) = Tr(YZWX) = Tr(ZWXY) = Tr(WXYZ) i.e., Trace is invariant
under cyclic permutation

(B) Inner Product: Let x ∈ Rn, y ∈ Rn be vectors of real numbers. The standard inner
product onRn is given by

< x, y >= xTy =
n∑

i=1

xiyi (1.2)

The standard inner product on real matrixX,Y ∈ Rm×n is given by

< X,Y >= Tr(XTY) =
m∑
i=1

n∑
j=1

XijYij (1.3)
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(C) Rank of a Matrix: The rank of a matrix is defined as the maximum number of lin-
early independent columns/rows of the matrix. IfX ∈ Rm×n then

0 ≤ rank(X) ≤ min(m, n) (1.4)

The rank can be thought as the intrinsic dimension of the matrix. Any matrix of rank r can
be written as sum of r rank-one matrix i.e.,

X =
r∑

i=1

λiuivTi (1.5)

Equivalently every m × n matrix can be decomposed as X = UΣVT popularly known as
singular value decomposition (SVD) whereU ∈ Rm×r, Σ ∈ Rr×r and V ∈ Rn×r.

(D) Norms: The function f usually denotes as ∥.∥symbol: Rn 7→ R+ is called norm if it
satisfies the following properties:

1. f is non-negative i.e., f(x) ≥ 0, ∀ x ∈ Rn

2. f is definite i.e., f(x) = 0 only if x = 0

3. f is homogeneous i.e., f(kx) = kf(x), ∀x ∈ Rn and k ∈ R

4. f must satisfy triangle inequality i.e., f(x+ y) ≤ f(x) + f(y),∀x, y ∈ Rn

Exampl of vector norms
Let x be a n-dimensional vector. The two very frequently used norms are l1 norm and l2

norm. The l1 and l2 norm of a vector is given by

∥x∥1 = |x1|+ |x2|+ |x3|+ ......+ |xn| =
n∑

i=1

|xi| (1.6)

∥x∥2 = (|x1|2 + |x2|2 + |x3|2 + ......+ |xn|2)
1
2 =

n∑
i=1

(|xi|2)
1
2 (1.7)

More generally lp norm for p ≥ 1 is defined as

∥x∥p = (|x1|p + |x2|p + |x3|p + ......+ |xn|p)
1
p =

n∑
i=1

(|xi|p)
1
p (1.8)
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As p→∞, the l∞ norm or Chebyshev norm is defined as

lim
p→∞
∥x∥p = max(|x1|+ |x2|+ |x3|+ ......+ |xn|) (1.9)

Example of matrix norms
Let X ∈ Rm,n be a matrix. Here, we will define some commonly used matrix norm in

literature.

• l1-norm of a matrix:

∥X∥1 = max
1≤j≤n

m∑
i=1

|xij| (1.10)

• l2-norm or spectral or operator norm:

∥X∥2 = λmax(X) = (λmax(XTX)) 1
2 (1.11)

where, λmax refers to the largest singular value ofX.

• Frobenius Norm:

∥X∥F =
√

< X,X > =
√
Tr(XTX) =

√√√√ r∑
i
λ2

i (1.12)

where, λi is the ith singular value of the matrix and r is the rank of the matrix.

• Nuclear norm or Trace norm:

∥X∥∗ =
r∑

i=1

λi(X) (1.13)

i.e., nuclear norm is the sum of singular values of a matrix. Here r is the rank of the
matrix.

(E) Vector Spaces and Subspaces: Our brief discussion on this topic is inspired from
Strang.G book [157] and Lecture 6 of MIT 18.06.
Let v,w ∈ Rn be two vector in a n-dimensional space. The vector space requirements are:

• If we add these two vector in the space, the answer stays in the same space i.e., v,w, and
v+ w are in the same space.
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a) Convex Set b) Non-Convex Set c) Non-Convex Set

Figure 1.4: Examples of convex and non-convex sets. (a) The square which includes its boundaries is convex (b) The
pacman shaped set is non-convex, the line segment between the shown points in the set is not contained in the set.
Similarly, set (c) is non-convex.

• If we multiply vectors with some scalars in the space, the answer remains in the same
space i.e., v, kv are in the same space for some real number k.

• All the linear combination k1v + k2w stay in the same space. Here k1 and k2 denotes
any real numbers.

The vector space inside this n-dimensional vector space is called the subspace ofRn. The
subspace of a vector space is a set of vectors (including 0) that satisfies two requirements: If
v,w are the vectors in the subspace and k any scalar, then

1. v+ w is in the subspace.

2. kv is in the subspace.

3. All linear combination stay in the subspace.

(F) Convex Analysis: Here we will discuss some the basic definition that are important
for the convex analysis an optimization problem. Our discussion is inspired fromBoyd.S and
Vandenberghe.L book on Convex Optimization [20].

Definition 1. A set C convex if the line segment between any two points in C li in C, i.e.,
if for any x1, x2 ∈ C and any θ ∈ [0, 1], we have

θx1 + (1− θ)x2 ∈ C (1.14)
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(a) Convex Func on (b) Non-Convex Func on

Figure 1.5: Some examples of convex func on and non-convex func on

In other words, every point on the line segment connecting two points within the set lies
in the set. Fig.(1.4) show some examples of convex and non-convex sets.

Definition 2. A function f : Rn → R convex if domain of f a convex set and if ∀ x, y ∈
domain of f, and θ with 0 ≤ θ ≤ 1, the following relation hold

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (1.15)

More specifically, the line segment joining (x, f(x)) and (y, f(y)) lies above the graph of
function f. The function is strictly convex if the above inequaltiy holds whenever x ̸= y and
0 < θ < 1. Fig.(1.5) show some examples of convex and non-convex functions.

(G)TopologicalManifold: A topological n-manifold (M) is a topological spacewhich
is locally homeomorphic to a n-ball (Bn), where n is a positive integer which is well-defined,
and it is the dimension of themanifold. Here, the space (M) is assumed to beHausdorff and
second countable. Fig.(1.6) shows an abstract example of a topological n-manifold.

Topological space: A topological space is a set endowed with the notion of open set and
closed set.

Locally homeomorphic: Locally homeomorphic to a n-ball means that every point in the
space (M) contained in an open setO such that, there is a continuous one-to-one onto map
f : O → Bn.

In this thesis we used a particular class of Riemannian manifold known as Grassmann
manifold. A point on the Grassmann manifold G(p, d) is a linear subspace, which may be
specified by an arbitrary orthogonal basis stored as an p × d matrix [50]. Formally, the
Grassmann manifold G(p, d) is the the space of n dimensional linear subspace ofRd, where,

22



Figure 1.6: Visual intui on of a topological n-manifold. The do ed black-line along the boundaries of the circle denotes
that the set is open.

0 < p ≤ d. Fig.(1.7) show each observation spans a one-dimensional subspace ofR2, there-
fore, its a point on G(1, 2).

(H)MathematicalOptimization: Amathematical optimizationproblemhas the form

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, 2, ....m
(1.16)

Here x is the optimization variable of the problem, the f0 is called the objective function or
cost function. The functions fi’s are the constraint functions (may be equality or inequality
function) imposed on the optimization variable. The constant bi’s are the bounds for the
constraint. The solution to the above cost function is considered optimal, if it has the smallest
objective value among all the possible x that satisfy the constraint. For more rigorous and
detailed explanation on this, kindly refer to Boyd.S and Vandenberghe.L book on Convex
Optimization [20].

(I) Low Rank Approximation Problem: The problem

minimize
Y

∥X− Y∥2F
subject to rank(Y) ≤ r
where, X ∈ Rm×n

(1.17)

has an analytic solution using singular value decomposition. Let [U,Σ,VT] = svd(X). The
rank r solution to this problem can be found by preserving the top r singular values and
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A Point on a Grassmann Manifold

Figure 1.7: Circled point represent a 1-dimensional subspace ofR2 which is a point on Grassmann manifold G(1, 2).

replacing the remaining singular values by zeros. The result is referred to as the matrix ap-
proximation lemma or Eckart–Young–Mirsky theorem [49]. More precisely,

Y∗ = Udiag(σ1, σ2, ...σr, 0, 0, ..0)VT. (1.18)

With brief overview on some of the mathematical concept, we will start our discussion on non-
rigid structure from motion. I assume the readers are familiar with matrix differentiation. In
case you want to revise it, kindly refer to Matrix cookbook [139], I personally found it very
handy book for reference.
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In this chapter we start our discussion with one of the classical work done in NRSfM [44].
We detail the problem with the execution of this approach and how it can be improved to
perform better on available dataset.

2.1 Why revisting?

A simple prior free factorization algorithm[44] is quite often cited work in the field of Non-
Rigid Structure fromMotion (NRSfM). The benefit of this work lies in its simplicity of im-
plementation, strong theoretical justification to the motion and structure estimation, and its
invincible originality. Despite this, the prevailing view is, that it performs exceedingly inferior
to other methods on several benchmark datasets[93, 7]. However, our subtle investigation
provides some empirical statistics which made us think against such views. The statistical re-
sults we obtained supersedes Dai et. al.[44] originally reported results on the benchmark
datasets by a significant margin under some elementary changes in their core algorithmic
idea[44]. Now, these results not only exposes some unrevealed areas for research in NRSfM
but also give rise to newmathematical challenges for NRSfM researchers. In this chapter, we
will explore some of the hidden intricacies missed by Dai et. al. work[44] and how some
elementary measures and modifications can significantly enhance its performance, as high as
18% on the benchmark dataset. The improved performance is justified and empirically veri-
fied by extensive experiments on several datasets. We believe this chapter has both practical
and theoretical importance for the development of better NRSfM algorithms. Practically, it
can also help improve the recently reported state-of-the-art [104, 93] and other similar works
in this field which are inspired by Dai et al.work[44].

2.2 Introduction

Notation: For consistency and ease of understanding to the readers, the notation we used in
th paper similar to Dai et al. work [44] unless otherwise stated. We assume that the reader
familiar with Dai et. al. work [44].

A simple prior-free method for computing non-rigid structure from motion (NRSfM) in-
troduced by Dai et al. is now considered as a classical work in NRSfM [44]. In their work,
the camera motion is estimated by imposing the null space constraint and the rank-3 positive
semi-definite matrix cone constraint on the Gram matrix (Qk). Further, nuclear norm mini-
mization of the reshuffled shape matrix (S♯) was introduced to proffer stronger rank bound
on the shape matrix for non-rigid shape estimation. The striking part of their work is that
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(a) Paper Sequence

Ground-Truth
Ours

(b) Paper 3D Reconstruc on

(c) Tearing Sequence

Ground-Truth
Ours

(d) Tearing 3D Reconstruc on

Figure 2.1: The method recovers 3D dimensional structure of the deforming object over mul ple frames. Our elemen-
tary but powerful changes provides a substan al improvement in the reconstruc on accuracy than the previous results
reported for “prior-free” approach. The example images are taken from the recently released NRSfM Challenge Dataset
[93]. Our reconstruc on results are nearly as good as the best performing algorithm without using very complex and
involved mathema cal op miza on [104].

it not only challenged the myth of the inherent basis ambiguity in NRSfM [190] but also
supplied a practical “prior-free” algorithm to solve NRSfM.

The elementary idea of Dai et al. [44] work conveniently encapsulates all the basic intu-
itions which are required to solve a general NRSfM problem. One may immediately argue
on its performance when the deforming shape is composed of a union of low-rank subspace
[104, 199]. However, in this chapter, we restrict our discussion to the classical representation
of aNRSfMproblem [22], without payingmuch attention to, how clustering benefits 3D re-
construction of the non-rigid object and other such notions of compact data representation.
The reason for this choice is that the improvement in the performance of a classical baseline
will automatically benefit the methods built on top of it [104, 199].

Themain purpose of this chapter is to uncover some of the unexploredmathematical in-
tricacies in the prior free factorization approach toNRSfM and improve on the idea supplied
by Dai et al.[44]. Our exposition leads to the possible reason for its inferior performance on
the benchmark datasets [7, 93, 169]. It is shown in this chapter that the rotation estimate us-
ing Dai et al.work [44] is not unique under the same model complexity prior (K/rank), and
they overlooked to utilize the well-known assumption of smooth non-rigid deformation of
the object[142]. A simple search for the proper column-triplet for the correctionmatrix (Gk)
based on the smoothness of cameramotion can indeed help improve the accuracy of the algo-
rithm. Further, we argue that the weighted nuclear norm minimization of the shape matrix
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(S♯) is a far better choice than its global trace normminimization. Lastly, due to our extensive
analysis, we are able to posit some unsolved issues in NRSfM under “prior-free” idea which
needs attention for further progress in this field.

It is not claimed that we achieve state-of-the-art results on the benchmark datasets us-
ing our new approach. However, we empirically show that we can get very close to the best
performing approaches and the difference is not very great, without the employment of com-
plex and involved mathematical optimization [104, 113]. In this chapter, we also argue that
the inferior performance of “prior-free” method may not be due the proposed algorithmic
idea but because they overlooked some of the mathematical construction in their own for-
mulation, and missed on properly utilizing the well-known assumptions about non-rigidly
moving object i.e., smooth deformation[142] and low-rank shape [44]. Hence, the conclu-
sion, understanding and use of simple “prior-free” algorithm toNRSfM is not complete and
precise. This chapter try to amend and nullify the prevailing perception about the “prior-
free” approach, and how it can be used to its maximum potential. We feel that our work
touches some critical points which are essential to establish a theoretical closure to some of
the elementary problems within the factorization approach to NRSfM.

Contribution: Firstly, this work postulates some rectification to the usage of “Intersec-
tionMethod” [44] to compute camera motion. With the suitable example, we establish that
the generalization made on the rotation matrix estimation by Dai et al.work [44] is not con-
vincing and therefore, the knowledge about the strength of “Intersection theorem” is not
completely exploited. Secondly, we provide an analytic solution to estimate suitable rota-
tion using Intersection theorem and conjecture some challenges associated with it. Lastly,
we propose a weighted nuclear normminimization problem to estimate non-rigid 3D shape.
Our approach shows a substantial improvement in the 3D reconstruction accuracy (as high as
17.6%). We also observed improvement in the performance of the algorithm in the presence
of noisy data §2.5 and missing data §2.5 (with a minor adjustment).

In thiswork, our attempt is tomake the baselinemethod* more accurate, both in terms of
understanding and performance, subject to the mathematical simplicity. To achieve this, we
attempt to avoid the usage of complex mathematical notions such as union of independent
subspace, dependent subspace representation [199, 104, 112], procrustean normal distribu-
tion [113], kernelization [72] etc. Hence, it is simple to understand the theoretical and prac-
tical justification of our method. We show that by applying simple but powerful logical and
mathematical modifications to prior free idea [44], we can get close to or even perform bet-
ter at times than the best algorithms on the benchmark datasets. Additionally, our approach

*By baseline, we mean the methods that solve NRSfM using its classical representationW = RS that have
withstood the test of time [164, 22].
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shall help improve the other state-of-the-art methods built on top of the targeted baseline
[44].

2.3 Classical Representation

Tomasi andKanade factorizationmethod to structure-from-motionunderorthographic cam-
eraprojection appropriately summarizes thebehavior of the 3Dpoints over frames [164]. The
relation between 3D shape, motion and its projection over frames was defined as

W = RS (2.1)

where,W ∈ R2F×P is the measurement matrix formed by stacking all the image coordinates
(x = [u, v]T) for ‘P’ points along ‘F’ rows i.e., total number of frames. R = blockdiagonal
(R1,R2, ..,RF) ∈ R2F×3F denotes the orthographic camera rotation matrix with each Ri ∈
R2×3 as per frame rotation. S ∈ R3F×P represent the shape matrix with each row triplet as a
3D shape. This representation was later extended by Bregler et al. [22] to recover non-rigid
3D shapes. More concretely,

W =

 x11 . . . x1P
. . .

xF1 . . . xFP

 =

R1S1
..

RFSF

 =

 c11R1 . . . c1KR1
. . .

cF1RF . . . cFKRF

B1
..
BK


⇒W = R(C⊗ I3)B = ΠB

(2.2)

The matrix ‘B’ and ‘C’ are composed of shape bases and shape coefficients respectively, with
‘K’ as the number of shape bases. ‘⊗’ denotes the kronecker product and ‘I3’ is a 3×3 identity
matrix. It is evident from the above formulation that the rank ofW ≤ 3K and also rank(S) ≤
3K. However, S is not a general rank 3Kmatrix but own a special structure due toC⊗I3 factor
[44].

2.3.1 Null Space Representation to Orthonormality Constraint

An initial step in the factorization approach to NRSfM is to perform a rank 3K decompo-
sition of the measurement matrix W via singular value decomposition (svd) i.e.W = Π̂B̂.
This is then followed by the estimation of Euclidean corrective matrix ‘G’ to solve rotation
and 3D structure. The main reason for such a procedure is due to the fact that the singular
value decomposition of ‘W’ matrix is not unique as any non-singular matrix G ∈ R3K×3K in
between the two matrices Π̂ and B̂ can form a valid factorization. Mathematically,

W = Π̂B̂ = (Π̂G)(G−1B̂) = ΠB (2.3)

29



Now, once we are able to solve G correctly, then rotation and shape can be estimated using
the above relations [22]. To solve G, orthonormality constraints are imposed i.e.RiRT

i = I2.
Representing the ith double row of Π̂ as Π̂2i−1:2i ∈ R2×3K andGk ∈ R3K×3 as the kth column
triplet ofG, then using Eq:(2.2) and Eq:(2.3) we can write

Π̂2i−1:2iGk = cikRi,∀ i = {1, 2, .., F}, k = {1, 2, ..,K} (2.4)

Multiplying both sides by RT
i from right side gives

Π̂2i−1:2iGkGT
k Π̂

T
2i−1:2i = c2ikI2

This leads to two linear equation constraint

Π̂2i−1QkΠ̂
T
2i−1 = Π̂2iQkΠ̂

T
2i

Π̂2i−1QkΠ̂
T
2i = 0

(2.5)

where, Qk ∈ R3K×3K = GkGT
k . Using the algebraic relation vec(AXBT) = (B ⊗ A)vec(X),

Dai et al. transformed these constraints (Eq:2.5) to a null space representation as follows:[
Π̂2i−1 ⊗ Π̂2i−1 − Π̂2i ⊗ Π̂2i

Π̂2i−1 ⊗ Π̂2i

]
vec(Qk) = Avec(Qk) = 0 (2.6)

Using the above form and previous work in NRSfM [190], Dai et al. proposed the in-
tersection theorem and supplied a SDP solution to estimate the Qk matrix and the Euclidean
corrective matrixGk using svd().

Theorem 2.3.1. Intersection Theorem: Under non-generate and noise-free conditions, any cor-
rect solution of Qk must lie in the intersection of the (2K2 − K) dimensional null-space of A
and a rank 3 positive semi-definite matrix cone i.e.Qk must belong to

{Avec(Qk)} ∩ {Qk ⪰ 0} ∩ {rank(Qk) = 3} (2.7)

2.3.2 Dai et al. solution to rotation

They proposed that once the Qk is solved, rather than solving for full Euclidean corrective
matrix G ∈ R3K×3K, use svd() to extract rank 3 Gk. The solved Gk ∈ R3K×3 can then be
use to find R (Eq:2.4) up to sign (cik). The method quote “we adopt a simpler approach
that directly computes the camera motion R from single column-triplet Gk without need to
fill in a big and full G matrix”. Naturally, this single column-triplet is chosen to be the first
column-triplet (G1)of theGmatrix (see Fig:2.2). Now, such strategy give rise to few legitimate
concerns
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Gϵ	ℝ3K×3K

G1 G) G3 GK

1: 3 4: 6 7: 9 3K− 2: 3K

Considered by Dai et.al.

Figure 2.2: (a) The column triplet (1:3) of euclidean correc ve matrix (Gk) used by Dai et al.work [44] shown
in red shade. It is stated with the no on that there is no loss of generality to chooseG1. However, choosing
other column triplet may result in be er rota on and shape es mate as shown in Figure 2.4a and 2.4b

(a) When each column triplet {Gi}Ki=1 qualifies for a suitable correction matrix, then why
G1 has a high preference? Are we loosing useful information by such unwarranted
preference? Whether such solution to rotation caters the assumption of smooth de-
formation?

(b) Will each {Gi}Ki=1 provide the same solution to the rotation matrix?
Dai et al.overlooked all these intrinsic issues with their approach to obtain rotation.

2.3.3 Plausible Rectification

Our experiment show thatDai et al.[44] solution to rotation estimation actually aborted the
useful information present in the G ∈ R3K×3K. Each of the ‘K’ column triplets in G (i.e.Gk)
gives a possible rotation matrix which is different from each other (see Fig:(2.3)). Our em-
pirical evaluations on several datasets show that the first column triplet is not always the best
choice to estimate rotation. Hence, the details provided by Dai et al.work [44] is incomplete
and there is a loss of generalitywith such procedure to estimate rotationunder thewell-known
assumption of smooth deformation [142]. Fig:(2.4a) and Fig:(2.4b) provides few statistical
results with comparison for both rotation and shape error estimate respectively. For clarity,
we also provide the column triplet index that gives the better results for the corresponding
data sequence and therefore, provides few counter-examples to such generalization.

Theoretically and practically, this result is of significant importance as it helps in inferring
that the solution provided by “Intersection Theorem” has a lot of useful information left to
be exploited completely andDai et al.work ignored this. Also, it gives rise to some challenges
that finding the best column triplet for Gk is not an easy task. With these results, we posit
few propositions for further research in NRSfM that are: (a) Can we find a best possible
column triplet for the corrective matrix with a given rank prior ‘(K)’, or (b) At least can we
put an upper bound on the value k ⊂ K such that there exists no such ‘k’ for Gk which will
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provide better rotation and structure estimate (c) Upper bound on the value of ‘K’ which
can guarantee a smooth solution. The problem seems hard keeping in view that the prior
rank (K) in NRSfM factorization methods is an assumed approximation and it changes for
different datasets to achieve better results.

2.3.4 A solution to motion

In this work, we use an analytical observation based on the smoothness and regularity† of
the camera trajectory to filter Gk to infer better rotation matrix. Letψ(.) be a function that
takes Gk as input and gives R as output using Intersection Theorem. We estimate different
R ∈ R2F×3F for all the column triplets i.e.{Gk}Kk=1, then computed the smoothness of the
camera motion ‘δf’ for eachGk as:

Suppose, R = ψ(Gk), via Intersection method, then,
δf = ∥Rf − Rf+1∥2F ∀ f = 1, 2, ..., F− 1. [84] Sec.4.

(2.8)

By examining the smoothness of the camera motion for each Gk, we select the suitable
rotation matrix for structure estimation (see Fig. 2.3). Our strategy to select smooth camera
motion over frames based on Eq:(2.8) consistently supplied us with better performance than
the previously proposed approach. We acknowledge that this is not a profound way to in-
fer the best rotation, however, it does provide a possibility to deduce better rotation using
“prior-free” approach which respects the well-known assumption of smooth deformation
in NRSfM. Further, it helps endorse our claim on the generalization of rotation estimate
by [44]. You may use variable ‘δf’ Eq:(2.8) as a smoothness term in the final optimization
(Eq:(2.11)) to further improve rotation, however, to show the competence within the “prior-
free” framework [44], we stick to the classical way.

2.4 Structure Estimation

Once the rotation is estimated based on the smoothness of the camera motion, the next step
is to solve for 3D structure. The block matrix method (BMM) by Dai et al.[44] proposed
the following optimization problem to estimate the non-rigid low-rank shape.

minimize
S♯

∥S♯∥∗

subject to:
W = RS, S♯ = g(S)

(2.9)

†The term <<regularity>> is used in a loose sense (Mathematically).
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Figure 2.3: The rota on samples on SO(3) using {Gk}12k=1 for Pick-up sequence. Below each SO(3)manifold
is the graph showing the per frame change in the camera mo on using Eq:(2.8) ‘δf’. A simple observa on
establishes that all rota on matrix (R) are not the same. ‘δf’ graph analysis on this dataset show that the
rota on es mate provided byG7,G8,G9 has a smoother camera mo on than otherGk’s, withG9 being the
smoothest. Any one out of these 3 Gk’s supply be er performance than G1. Note: Each Ri ∈ R2×3 7→
Ri ∈ R3×3 via cross product. (Best viewed on screen)
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(a)Mo on Improvement (b) Shape Improvement

Figure 2.4: Few counter examples on benchmark dataset [8]. (a) Rota on error in comparison to BMM [44] on
synthe c data. (b) 3D reconstruc on error using global trace norm minimiza on of shape matrix as used in
BMM with rota on matrix es mate using other column triplet in comparison to G(1:3). The column triplets
of (G) for which the method perform be er on Pickup and Stretch sequence are (19:21), and (19:21) respec-
vely. Note that we used the same rank prior value ‘K’ used in Dai et al.work [44].

where, S♯ ∈ RF×3P is a rearranged shape matrix with each row corresponds to the shape
for that frame. The trace norm minimization on ‘S♯’ is enforced instead of ‘S’ to provide a
stronger rank bound on the shape matrix [44]. The second term in Eq:(2.9) enforces the
re-projection error constraint. The function g(.)maps S ∈ R3F×P to S♯ ∈ RF×3P.

2.4.1 Dai et al. solution to shape

Following thework ofMa et al.[123] on rankminimizationproblems,Dai et al.[44] proposed
a solution to the optimization in Eq:(2.9). The method enforces low-rank constraint on ‘S♯’
matrix and provide the solution by solving Eq:(2.9) via ADMM[19] using matrix shrinkage
operator S[λ](X) = Udiag(s[λ](σ))VT, where s[λ](σ) = σ̄ with σ̄i =

{
σi − λ if σi − λ > 0

and ‘0’ otherwise
}
.

2.4.2 Plausible Rectification

Despite the trace norm minimization provides a satisfactory solution to non-rigid structure
estimation, it has some serious issues. The proposed solution to nuclear normminimization
gives equal priority to each singular values, as a result, the shrinkage operator penalizes each
singular value with the same quantity (λ). For a non-rigid object, we always have this prior
assumption that the shape lies in a low-rank subspace, therefore, it’s not a better choice to pe-
nalize themajor component of the shape data and its veryminor component equally. Conse-
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quently, nuclear norm minimization of the shape matrix struggles to appropriately conserve
the useful component of the non-rigidly deforming shape.

Truncated nuclear norm regularization can be a choice to handle such issues, however,
it depends on the binary decision, hence not versatile in nature [197]. To really cater the
behavior of the deformations based on its low-rank nature, we propose to use weighted nu-
clear norm minimization approach to solve for non-rigid structure [156, 79]. In contrast to
the previous notation to the nuclear norm of the shape matrix i.e.∥S♯∥∗, we introduce a new
notation for its weighted nuclear norm

∥S♯∥Θ,∗ =
K∑
j=1

Θjσj(S♯) (2.10)

where σj(.) denotes the jth singular value of S♯. We assume that the weights Θj’s are non-
negative scalar i.e.Θj ≥ 0 . Using this representation, we redefine the optimization proposed
in the Eq:(2.9) as follows:

minimize
S♯,S

μ∥S♯∥Θ,∗ +
1
2
∥W− RS∥2F

subject to: S♯ = g(S)
(2.11)

The motivation for such formulation is quite clear, however, the proposed optimization
(Eq:2.11) is generally non-convex, and is more difficult to solve than the nuclear norm mini-
mization. Fortunately, recent results [196, 122, 79] in compressed sensing have shown that we
can achieve a global optimal solution to Eq:(2.11) in the case when 0 ≤ Θ1 ≤ Θ2 ≤ .... ≤ Θ
§2.4.3

2.4.3 A solution to shape

This section provides the mathematical derivation to the optimization proposed in Eq:(2.11).
Our solution use the following theorems and proofs as stated and used in [196, 79, 27].

Theorem 2.4.1. For all Y ∈ Rm×n, denoted by Y = UΣVT, the SVD of it. The solution
to minimizeX∥Y − X∥2F + ∥X∥Θ,∗, with non-negative weight vector Θ, its solution X̂ can be
written X̂ = UB̂VT, where B̂ the solution to the following optimization problem

B̂ = argminB∥Σ− B∥2 + ∥B∥Θ,∗ (2.12)

Theorem 2.4.2. If the singular valu σ1 ≥ .... ≥ σK and the weights satisfy 0 ≤ Θ1 ≤ Θ2 ≤
.... ≤ ΘK then the weighted nuclear norm minimization problem minimizeX∥Y − X∥2F +
∥X∥Θ,∗ h a globally optimal solution

X̂ = USΘ(Σ)VT (2.13)
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where Y = UΣVT the SVD of Y, and SΘ(Σ) the generalized soft-thresholding operator
with weight vector Θ

SΘ(Σ) = max(Σii − Θi, 0) (2.14)

The readers are encouraged to refer to [196, 79] work for detailed derivations to the lemma’s
leading to the proof of the theorems. In conclusion, if the weights satisfies non-descending
order, not necessarilywith the same value, theweighted nuclear normminimization problem
is still convex and optimal solution can be obtained using a soft-thresholding operator with
different weights [196, 79].

Optimization: Wepropose our solution to the optimizationproblemdefined inEq:(2.11)
using alternating direction method of multipliers [19] (ADMM), a simple, fast but power-
ful algorithm used to solve many convex and non-convex problems in computer vision and
mathematical optimization. The ADMM algorithm decomposes the original problem into
several sub-problems, where each of them is solved separately by introducing Lagrange mul-
tipliers and penalty parameters to estimate convergence. Using the method of multipliers,
the Augmented Lagrangian form for Eq:(2.11) is written as follows:

Lρ(S♯, S) = μ∥S♯∥Θ,∗ +
1
2
∥W− RS∥2F +

ρ
2
∥S♯ − g(S)∥2F+

< Y, S♯ − g(S) >
(2.15)

here Y ∈ RF×3P is a Lagrange multiplier and ρ > 0 is the penalty parameter. The solution to
each variable is obtained by solving the following subproblems over iterations (indexed with
the variable i):

(S♯)i+1 = argmin
S♯

Lρ
(
(S♯)i, S

)
(2.16)

(S)i+1 = argmin
S
Lρ
(
S♯, (S)i

)
(2.17)

The Lagrange multiplier and the penalty parameter are updated as follows:

Y = Y+ ρ(S♯ − g(S))
ρ = minimum(ρmax, λρ)

(2.18)

ρmax refers to the maximum value of ‘ρ’ and λ is an empirical constant (λ > 1). The math-
ematical derivations to each sub-problems are provided in the Appendix (A) for reference.
The closed form solution to the Eq:(2.17) is obtained by taking the derivative of Eq:(2.15)
w.r.t variable ‘S’ and equating it to zero i.e.,

S =
(ρI+ RTR

ρ
)\((

g−1(S♯) + g−1(Y)
ρ
)
+

RTW
ρ

)
(2.19)
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Note ‘\’ is a Matlab slang i.e.ifAx = B implies x = A\B. Similarly, rewriting the Eq:(2.15)
treating S♯ as variable.

= argmin
S♯

μ∥S♯∥Θ,∗ +
ρ
2
∥S♯ − g(S)∥2F+ < Y, S♯ − g(S) > (2.20)

In contrast to the previous form, the solution to Eq:(2.20) is not straight forward. To obtain
a closed form solution to this problem, lets define a soft-thresholding function S[τ](σ) =
sign(σ).max(|σ| − τ, 0). Also, let [U,Σ,V] be the singular value decomposition of (g(S) −
Y/ρ), then the optimal solution to Eq:(2.20) is given by:

S♯ = US[Θμ
ρ ](Σ)V (2.21)

Here, Θ is the weight assigned to the different singular values in the non-descending order
based on its significance to the deformation data. For detail discussion on the initialization
of weights refer section §2.5 (2). Its important to note that the ADMMbased solution to our
optimization problem Eq:(2.15) gives us a satisfactory solution (near optimal) whichmay not
be globally optimal.

2.5 Experiment and Discussion

To endorse our claim, we performed extensive experiments on real and synthetic benchmark
datasets [7, 93, 169]. We compared the performance of our algorithm against different state-
of-the-art methods on these datasets [73, 113, 104]. Additionally, we unveil the substantial
percentage boost in the reconstruction accuracy as high as 18% in comparison to the previous
results reported for “simple prior-free” approach. For real-world applications to NRSfM,
noisy data and missing feature tracks over frames are crucial, therefore, we also performed
experiments to tackle such issues. Before we provide details on the performance analysis, we
discuss the variable initialization.

Initialization: Our algorithm has few parameters and variables to initialize. For all our
experiments on different datasets, we initialize μ = 1, λ = 1.1, ρmax = 1e10, ρ = 1e−4,
Y = zeros(F, 3P) and the ‘K’ values are kept same as Dai et al. method[44]. Practically, we
considered the convergence of our optimization, if the gap max∥(S♯ − g(S))∥∞ < 1e−8 or
ρ > ρmax over iteration.

1. Structure initialization: Using the result of Liu et al. [118] on the uniqueness of mini-
mizer for the rankminimizationproblem,we initialize the the 3D shape ‘S’ as ‘S’ =pinv(R)W
and S♯ = g(S). The pseudo-inverse solution to shape matrix provides a good enough initial-
ization to our algorithm. Reader may refer to Dai et al. [44] and Valmadre et al. [174] work

37



for detailed discussion on the uniqueness and planarity of pseudo inverse solution to ‘S’ in
NRSfM.

2. Weight (Θ) initialization: It is well-known in NRSfM under factorization approach
that the shapematrix lies in a low-rank space. Generally, the largest singular value of the shape
matrix contains themost information about the non-rigid shape, therefore, while optimizing
for the shapematrix, it’s illogical to treat each singular value equally. The singular values with
major component must be penalized less and vice-versa. Using this inverse relation between
singular values and its significance to the shape deformation modeling, we assign the weight
(Θ) to be inversely propositional to the singular values of the shape matrix.

Θj =
ξ

σj(S♯) + γ =
ξ

σj(g(S)) + γ (2.22)

where, ξ is a positive number and γ = 1e−6, a very small positive number to avoid division
by zero as some singular values are likely to be zero (low rank). We initialized the weights by
substituting the pseudo-inverse initialization of ‘S♯’i.e.using the relation S♯ = g(S) §2.5 in the
Eq:(2.22).

Performance Analysis After a detailed discussion on the variable initialization, we are
ready to present our experimental evaluation. We performed extensive experiments on both
newandpreviously releasedbenchmarkdatasets [7, 169, 93]. We report thequantitative result
on the previous benchmark dataset using mean normalized 3D reconstruction error formu-
lation i.e.

es =
1
F

F∑
i=1

∥Siest − SiGT∥F
∥SiGT∥F

(2.23)

where, Sest, SGT are the estimated 3D shape and ground-truth 3D shape respectively. To keep
our statistics consistent with the newly proposed NRSfM challenge dataset, we used their
error evaluation code to compute the robust root mean square error (RMSE) metric as pro-
posed in Taylor et al.work [160]. For more details on NRSfM CVPR 2017 challenge dataset
evaluation metric, kindly refer to Jensen et al.work[93].

1). Benchmark datasets: Most of the methods proposed in non-rigid structure from mo-
tion often use it to evaluate the performance of the algorithm. Loosely speaking, this dataset
is composed of eight standard sequences namely Drink, Pickup, Yoga, Stretch, Dance, Walk-
ing, Face and Shark. The number of frames (F) to number of points (P) i.e.(F,P) set for
these datasets are (1102, 41), (357, 41), (307, 41), (370, 41), (264, 75), (316, 40) and (240, 91) re-
spectively. Table (2.1) show the statistical comparison of our approach in comparison to the
other competing approaches for single body NRSfM. Our evaluation results clearly present
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Dataset/Method PTA CSF2 PND BMM Ours
Drink 0.0287 0.0227 0.0037 0.0266 0.0119 (1.470%)
Pickup 0.1939 0.1791 0.0372 0.1731 0.0198 (15.33%)
Yoga 0.1243 0.1179 0.0140 0.1150 0.0129 (10.21%)

Stretch 0.1035 0.1136 0.0156 0.1034 0.0144 (8.900%)
Dance 0.2426 0.1877 0.1454 0.1864 0.1060 (8.040%)
Walking 0.3761 0.1938 0.0465 0.1298 0.0882 (4.160%)
Face 0.0489 0.0319 0.0165 0.0303 0.0179 (1.240%)
Shark 0.2933 0.1117 0.0135 0.2311 0.0551 (17.60%)

Table 2.1: Performance comparison in the shape recovery using our new approach with some of the state-
of-the-art methods in single body NRSfM. The sta s cs clearly demonstrate our claim that we can achieve
a significant improvement in the reconstruc on accuracy without using complex mathema cal formula on.
The percentage value in the last column (blue) show the improvements over the result documented by Dai et
al.original work (BMM) [44].

a significant improvement in the reconstruction accuracy in comparison to the previously
reported results for “prior-free” approach. Figure (2.5) show the qualitative reconstruction
results w.r.t ground-truth on all of these sequences.

2). NRSfM challenge datasets: Jensen et al. recently proposed this dataset as a part of
NRSfM competition held at CVPR 2017[93]. This is a high quality challenging dataset di-
vided into five categories based on the deformation type, namely, Articulated, Balloon, Paper,
Stretch and Tearing. Each of these categories is again shot using six different camera paths
namely circle, flyby, line, semi-circle, tricky and zig-zag. This dataset is significantly larger
and diverse to really test the performance of a NRSfM algorithm’s. However, the dataset
provides only a single frame ground-truth 3D for each of the five categories to test the algo-
rithm. To estimate the reliability of our approach, we compared our performance against the
best performing algorithm on this dataset. Table (2.2) show the quantitative results of our
method. The performance clearly demonstrates the significant improvement in the accuracy
using “prior-free” idea under ourmodification. It also help infer that without using complex
mathematical notions, we can reach performance accuracy close to the state-of-the-art. Fig-
ure (2.6) show some qualitative results using our method.

3). Noisy data: The feature tracks captured from a real-world motion capture system is
noisymost of the time. Therefore, to test the reliability and robustness of our new approach,
we performed experiments by re-synthesizing the trajectories added withGaussian noise. We
introduced the Gaussian noise with standard deviation set as σnoise = r ∗max{|W|}, where r
is varied from 0.05-0.25. Figure (2.7a) shows the variation in the normalized average 3D error
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Figure 2.5: Reconstruc on results of our method on the NRSfM synthe c benchmark dataset [7, 8]. Ground-
truth and reconstructed points are shown in filled(red) and non-filled circles respec vely. Note: We used the
same ‘K’ value as in [44] work for all the experiments.

Method / Data Articulated Ballon Paper Stretch Tearing
Multi-body [104] 10.15 10.64 15.78 9.96 14.17

BMM [44] 24.54 12.91 22.37 18.71 18.87
Ours 12.02 11.79 16.21 12.05 16.08

Table 2.2: Performance comparison of our method in comparison to the best performing algorithm (Mul -
body) [104] on NRSfM challenge dataset [93]. The above sta s cs shows the average root-mean-square
error in millimeters for the single test image on the orthogonal sequence available with the dataset. Our
method shows a clear improvement over the originally proposed BMM approach and it’s accuracy got very
close to the mul -body. The sta s cs of mul -body [104] is taken from it’s public presenta on slides.
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Figure 2.6: Reconstruc on results of our method on the NRSfM challenge dataset [93]. The results shown
here are for the circular camera path. Ground-truth 3D and reconstructed 3D points are shown with filled
and non-filled circles respec vely.

for the stretch sequence using the performance of different algorithm recorded over 20 times.
The plot clearly shows the robustness of our algorithm in comparison to other methods in
the presence of large noise ratio’s.

4). Missing Data: In addition to the noisy data, the other problem with 3D reconstruc-
tion from a real video sequence is the missing trajectories over frames. We handle the missing
trajectory quite robustly by incorporating a simple modification to the optimization pro-
posed in Eq:(2.11). Let’s assume W̃ ∈ R2F×P is the incomplete measurement matrix and
M ∈ {0, 1} is the mask matrix which indicates the presence or absence of the tracks over
frames. Given W̃,M, we first find a completeWmatrix using the following optimization

minimize
W

1
2
∥M⊙ (W̃−W)∥2F, subject to: rank(W) ≤ 3K (2.24)

The above optimization is a well studied optimization form. To keep things simple, we used
Cabral et al.work [26] to estimate W. The motive is to first solve for complete ‘W’ to esti-
mate camera motion using our rectified approach §2.3.1, and then solve for shape using the
following cost function:

minimize
S♯,S

u∥S♯∥Θ,∗ +
1
2
∥M⊙ (W̃− RS)∥2F

subject to: S♯ = g(S)
(2.25)
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Figure 2.7: (a) 3D reconstruc on error comparison over noisy trajectories. (b) Comparison of our method
performance with other compe ng methods with missing data in the measurement matrix.

Clearly, it’s just a minor adjustment to the proposed method based on the kind of data
available in different situations. To evaluate our performance, we randomly set 30% of the
data missing from the sequence same as Lee et al.work [113]. Figure (2.7b) shows the perfor-
mance of our algorithm with missing data.

Discussion:
1. In some applications, we have more prior knowledge about the shape in addition to its

low-rankmatrix assumption, for example: exact rank of the clean shapematrix. In such cases,
one may choose to minimize partial sum minimization of singular values optimization i.e.,

minimize
S♯,S

μ|rank(S♯)− T|+ 1
2
∥W− RS∥2F

subject to: S♯ = g(S)
(2.26)

where, T is the target rank of the shape matrix. However, such an optimization needs an
introduction to new operator known as PSVT [134] to optimize the problem. Nevertheless,
PSVT can be regarded as special case of solving the weighted nuclear norm minimization
[30, 60]. Therefore, the point is, depending on the application, the proposed approach can
be modified or changed, hence, its flexible.

Q. Why not add the motion regularisation ∥Rt − Rt−1∥F in the final optimisation and solve
for both motion and shape?
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It’s definitely a valid argument. Nevertheless, adding this motion regularization goes against
“simple prior free approach” [44] algorithm which is “solve for motion first and then solve
for shape without any extra motion constraint”, therefore, we didn’t add it in the final opti-
misation. We showed that smooth solution already exist within the solution to intersection
theorem. Comprehensive analysis of our algorithm after adding motion regularisation to
solve the final optimisation is left as an extension to the present idea.

2.6 Closing Remarks on Prior-Free Approach

Withweightednuclear normminimizationof the shapematrix and an analytic solution to the
rotation matrix based on the smoothness of the camera motion, we witnessed that the sim-
ple prior-free idea performs almost as good as the best algorithm’s. Without exploiting the
“prior-free” idea[44] fully based on the well-known assumptions of smooth deformation of
the non-rigid object and its low-rank shape, it may perform badly, whichmight be the reason
that researchers have had poor results using it, even for the non-rigid objects that span a sin-
gle linear subspace. Our work revealed the possibility of making “prior-free” algorithm[44]
more accurate under the different conditions of measurement matrix with elementary mod-
ifications, and also posed some open problems. The accuracy of our algorithm on the bench-
mark datasets empirically validates that the “prior-free” theory is still a very powerful way to
solve NRSfM and therefore, the proposition before the NRSfM researchers to consider is,
it’s not the failure of the concept behind the prior-free idea for its inferior performance but,
it’s possibly due to our inability to correctly cater, and cleverly exploit the arc of information
and perspectives provided by it to solve NRSfM.

Note: The next three chapters in the thes us nuclear norm minimization of the shape ma-
trix rather than weighted nuclear norm minimization. The reason of th inconsistency :
The research work presented in those chapters were done before chapter (2). Nevertheless, it
should not affect the overall flow of idea in the thes . The foundation developed in th chapter
shall make it simple for the readers to understand the upcoming chapters without any loss of
generality.

43



3
From single body to multi-body non-rigid
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3.1 Motivation for multi-body NRSFM

Until now, NRSFM methods are focused on recovering the 3D structure of a single non-
rigidly deforming object. To handle the real world scenarios where multiple deforming ob-
jects are present, existingmethods canbeusedbypre-segmenting different objects in the scene
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and perform non-rigid 3D reconstruction for each individual subject. However, such an ap-
proach fails to exploit the inherent behavior of the motion and structure problem. This is
important because, inNRSfM factorization setting,motion and structure interact and there-
fore, to completely isolate structure from motion seems difficult. As a result, any joint solu-
tion to segmentation and reconstruction could benefit each other. In this chapter, we will
introduce a unified framework to jointly segment and reconstruct multiple non-rigid ob-
jects. To compactly represent complex multi-body non-rigid scenes, we propose to exploit
the change in the behavior of the object along both spatial and temporal space. Specifically,
we represent the 3D deforming shapes as lying in a union of subspaces along the temporal
space and represent the 3D shape trajectories as lying in the union of subspaces along the spa-
tial space. We will show that solution to this spatiotemporal representation provides reliable
3D reconstruction and segmentation of multiple non-rigid objects present in the scene.

3.2 Introduction to Multi-body NRSFM

Non-rigid structure frommotion (NRSfM) is central to many computer vision applications
and has received considerable attention in recent years. Although existing approaches in
NRSfM [21] [42] [166] [64] [6] have presented promising results but all of these methods
assume that there is only one object is present in the scene. However, real-world scenes are
muchmore complex, for example, multiple persons performing different activities in a traffic
scene, soccer players in the playground, salsa dance etc. All these real-world examples consti-
tute multi-body non-rigid deformation which could not be explained well with the single
non-rigid object assumption. Therefore, it is quite natural to extend single-body NRSfM to
multi-bodyNRSfMwhere the task would be to jointly reconstruct and segmentmultiple 3D
deforming objects over-time.

To solve the problem of multi-body NRSfM, a natural and direct two-stage process is to re-
construct non-rigid multi-body structure by applying state-of-the-art non-rigid reconstruc-
tion methods [45][114] [200] and then segment distinct objects using clustering algorithms
and vice-versa. However, by adopting such pipelines the inherent structure of the problem
has never been exploited, i.e.non-rigid motion segmentation provides critical information
to constrain 3D reconstruction while 3D non-rigid reconstruction could also constrain the
corresponding motion segmentation problem. Furthermore, since the non-rigid shape de-
formation actually occurs in 3D space, it is more intuitive to perform segmentation of objects
in 3D space rather than on projected 2D image space.

Additionally, it is always convenient–both computationally and numerically, to solve a given
task using a unified framework than solving it in different stages. Therefore, in this chap-

45



Figure 3.1: Illustra on of the two clustering constraints used in our framework. We observe that, when different
objects are undergoing complex non-rigid mo on, the temporal clustering helps in improving the 3D reconstruc on
by clustering different ac vi es over- me such as stretch, walking, jumping and etc. The spa al clustering helps in
explaining the segmenta on of dis nct structures over images. Frames with similar ac vi es are shown in the same
colors and different subjects undergoing deforma ons are shown in box. Here,T.Cluster refers to the Temporal cluster
and S.Cluster refers to the Spa al Cluster. This flow diagram demonstrates that subjects performing different ac vi es
over- me lie in dis nct temporal subspace and spa al subspace, subsequently different 3D trajectories spanned by
different structures lies in dis nct subspace. The example images are taken from the UMPM dataset [175].

ter, we introduce an algorithm that help reconstruct and cluster multiple non-rigid shapes
present in the scene. Using this algorithm can explain the dynamics of non-rigid shape in
a more intuitive way. Explicitly, we represent multi-body NRSfM as a union of subspace
problem both in 3D trajectory space (spatially) and 3D shape space (temporally). We use the
notion that each 3D trajectory can be expressed with other trajectories only if the trajectory is
from the same subspace (spatial clustering) [106], and each individual shape can be expressed
with other shapes belonging to the same subspace (temporal clustering) [200]. A visual illus-
tration of the spatiotemporal subspace concept is presented in Fig. (3.1). Concretely, spatial
clustering tries to reconstruct a trajectory using an affine combination of other trajectories
from the same deforming object, while temporal clustering tries to explain the shape of de-
forming objects using an affine combination of other shapes at different frame instance.

By exploiting the spatio-temporal clustering structure, the algorithm is able to procure the
affinity matrices that naturally encode subspace information. From the affinity matrices, di-
rect inference about number of deformable objects, different activities and membership of
each sample to achieve reconstruction can be deduced. Furthermore, we exploit the fact that
the connectivity between subspacesmust be tight if it belongs to the same subspace and loose
if belongs to different subspaces. Therefore, we propose to use a mixture of ℓ1 norm and ℓ2
norm regularization (also known as the Elastic Net [202]), which helps in controlling the
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sparsity of the affinity matrices.

3.3 Previous Relevant Work

Multi-body structure from motion (SfM) is an important problem in computer vision. To
work out this problem for rigid motion is a direct extension to multi-view geometry tech-
niques [57][135][195]. However, the solution to multi-body NRSfM is not straightforward,
due to the difficulty in modeling complex non-rigid variations. Recent state-of-the-art in
NRSfM reconstruction [45] has shown promising results while Zhu et al. [200] proposed
that such an approach may fail while modeling long-term complex non-rigid motions. The
work quoted thatDai et al. [42]work is “highly dependent on the complexity of themotion”
[200]. Hence, to overcome this difficulty they suggested to represent long-term non-rigid
motion as a union of subspace rather than a single subspace. Subsequently, Cho et al. [34]
used probabilistic variations to model complex shape.

Despite the above accomplishments, NRSfM is still far behind its rigid counterpart. This
gap is principally due to difficulty in modeling real-world non-rigid deformation. If the de-
formation is irregular or arbitrary then to explain the 3D structure using image data seems
very difficult. Nevertheless, many real-world deformations are not arbitrary but are regu-
lar/smooth and therefore, it can be constrained. For example, Bregler et al. in his seminal
work demonstrated that non-rigid deformation can be represented by a linear combination
of a set of shape basis [21]. Following the work, several researchers tried to model NRSfM
by utilizing additional constraints [168], [189], [136]. In 2008, Akhter et al. [6] presented
a dual approach by modeling 3D trajectories. In 2009, Akhter et al. [5] proved that even
there is an ambiguity in shape bases or trajectory bases, non-rigid shapes can still be solved
uniquely without any ambiguity. In 2012, Dai et al. [42] proposed a “prior-free” method
to recover camera motion and 3D non-rigid deformation by exploiting low-rank constraint
only. Besides shape basis model and trajectory basis model, the shape-trajectory approach
[70] combines two models and formulates the problems as revealing trajectory of the shape
basis coefficients. Besides linear combination model, Lee et al. [114] proposed a Procrustean
Normal Distribution (PND) model, where 3D shapes are aligned and fit into a normal dis-
tribution. Simon et al. [149] exploited the Kronecker pattern in the shape-trajectory (spatial-
temporal) priors. Zhu and Lucey [201] applied the convolutional sparse coding technique to
NRSFM using point trajectories. However, the method requires to learn an over-complete
basis of 3D trajectories a priori to perform 3D reconstruction.

Recently, Russell et al. [145] proposed to simultaneously segment a complex dynamic scene
containing amixture ofmultiple objects into constituent objects and reconstruct a 3Dmodel
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of the scene by formulating the problem as hierarchical graph-cut based segmentation, where
the whole scene is decomposed into background and foreground objects with complex mo-
tion of non-rigid or articulated objects are modeled as a set of overlapping rigid parts.

3.4 Chapter contribution

Our algorithm varies from the aforementioned works in the following aspects:

1. It introduces the first algorithm to solve multi-body non-rigid structure from motion
under factorization [106].

2. A joint segmentation and reconstruction framework to solve the taskof complexmulti-
bodyNRSfMbyexploiting the inherent spatio-temporal unionof subspace constraint.

3. Efficient solution to the resultant non-convex optimization problem based on the Al-
ternating Direction Method of Multipliers (ADMM) method [19].

4. Extensive experimental results on both synthetic and real multi-bodyNRSfMdatasets
demonstrate the superior performance of our proposed algorithm.

3.5 Problem formulation and solution

Under our formulation, we intend to reconstruct 3D non-rigid shapes such that they satisfy
both the spatio-temporal union of affine subspace constraint and the non-rigid shape con-
straints (low rank and spatial coherency). Similar to last chapter, let W ∈ R2F×P represent
the measurement matrix with F as the number of frames and P be the number of feature
points. We use the orthographic camera model and eliminate the translation component of
the motions as suggested in [21].

W = RS, (3.1)

where R = blockdiagonal(R1, · · · ,RF) ∈ R2F×3F denotes the camera rotation matrix and S
represents the 3D shapes of deformingobjects over entire frames. This classical representation
for NRSfM problem [21] aims at recovering both the camera motion R and the non-rigid
3D shapes S ∈ R3F×P from the 2D measurement matrix W ∈ R2F×P such that W = RS.
Following the same representation to cater 2D-3D relation, we use ∥W − RS∥2F to infer the
re-projection error.
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Figure 3.2: Visual illustra on of the affine subspace constraint Si = SCi in trajectory space. Each column of S is a
trajectory of a 3D point (shown in green). This visualiza on states that a trajectory Si can be reconstructed using affine
combina on of few other trajectories. Note : This pictorial representa on is provided for be er understanding and is
only for illustra on purpose. (Best viewed in color)

Representing multiple non-rigid deformations in trajectory space

To represent multiple non-rigid objects using a single linear trajectory space does not pro-
vide compact representation of 3D trajectories [200]. When there are multiple non-rigid
objects, each object can be characterized as lying in an affine subspace. As a result, the 3D
trajectories lying in a union of affine subspaces can equivalently be formulated in terms of
self-expressiveness i.e.,

S = SC1, diag(C1) = 0, 1TC1 = 1T. (3.2)

where S ∈ R3F×P,C1 ∈ RP×P. To get rid of the trivial solution of S = S or C1 = I,
we explicitly enforce the diagonal constraint as diag(C1) = 0. As we represent each non-
rigid object as lying in an affine subspace, we further enforce the affine constraint 1TC1 =
1T. Besides the above constraint, we also want to enforce a constraint that if the trajectories
belong to the same deforming object then it must be tightly connected or loosely connected
the otherwise. To cater this idea of inter-class and intra-class trajectories clustering, we use the
elastic net formulation [193] to compromise between connectedness and sparsity. Combining
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(a) Dance and Yoga, 3D reconstruc on& segmenta on (b) Shape space representa on using Ellipsoid

Figure 3.3: Visual representa on of union of subspace in shape space. (a) Two different subjects are performing Dance
(Red) and Yoga (Green) respec vely. (b) Equivalent representa on of both ac vi es in shape space for a single frame
with green ellipsoid showing the shape space for Yoga ac vity and red ellipsoid showing the Dance ac vity. It can be
observed that the space spanned by different shapes performing different ac vi es span a dis nct subspace. Gray
color ellipsoid shows the union of both subspaces. (Best viewed in color)

all the constraints together, we reach the following optimization:

minimize
C1

λ1∥C1∥1 +
(1− λ1)

2
∥C1∥2F

subject to:
S = SC1, diag(C1) = 0, 1TC1 = 1T, λ1 ∈ [0, 1].

(3.3)

A visual illustration of this idea in trajectory space for a single trajectory is provided in Fig.
(3.2). Here, ∥.∥1 and ∥.∥F denote the ℓ1-norm and the Frobenius norm respectively.

Representing multiple non-rigid deformations in shape space

An example of complex non-rigid motion is shown in Fig. (3.1), where the subjects are per-
forming different activities at different time instances. Such distinct activities adheres to dif-
ferent local subspace and complete non-rigid behavior throughout the video lies in union of
shape subspace. Asmentioned in [200] such assumption leads to superior 3D reconstruction.
To incorporate this concept in our formulation that different activities lie in union of affine
subspaces, we express the 3D shapes in terms of self-expressiveness of frames along temporal
direction.

S♯ = S♯C2, diag(C2) = 0, 1TC2 = 1T. (3.4)

where S♯ ∈ R3P×F is the reshuffled version of S representing the per-frame 3D shape as a
column vector, C2 ∈ RF×F. A visual intuition of this idea in shape space for single frame is
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provided in Fig.(3.3).

For temporal coefficient matrix, we again use the elastic net regularizer due to the aforemen-
tioned reason. Using it gives the following optimization:

minimize
C2

λ3∥C2∥1 +
(1− λ3)

2
∥C2∥2F

subject to:
S♯ = S♯C2, diag(C2) = 0, 1TC2 = 1T, λ3 ∈ [0, 1].

(3.5)

Enforcing the global shape constraint

In seeking a compact representation for multi-body non-rigid objects, we penalize the num-
ber of independent non-rigid shapes. Similar to [42] and [64], we penalize the nuclear norm
of the reshuffled shape matrix S♯ ∈ R3P×F, this is because the nuclear norm is known as the
convex envelope of the rank function. In this way, the global shape constraint is expressed
as:

∥S♯∥∗, (3.6)

where ∥∥∗ denotes the nuclear norm of the matrix, i.e, sum of singular values.

Joint Reconstruction and Segmentation Formulation

Putting all the above constraints (spatio-temporal union of subspace constraint and global
shape constraint) together, we reach a multi-body non-rigid reconstruction and segmenta-
tion formulation:

minimize
S,C1,C2,S♯

1
2
∥W− RS∥2F + λ1∥C1∥1 +

1− λ1

2
∥C1∥2F + λ2∥S♯∥∗ + λ3∥C2∥1 +

1− λ3

2
∥C2∥2F

subject to:
S = SC1, S♯ = S♯C2,

1TC1 = 1T, 1TC2 = 1T,
diag(C1) = 0, diag(C2) = 0,
λ1, λ3 ∈ [0, 1].

(3.7)
where S♯ ∈ R3P×F, C1 ∈ RP×P, and C2 ∈ RF×F. λ1, λ2, λ3 are the trade-off parameters.
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Solution

To solve the proposed optimizationwe introduce decoupling variables in Eq. 3.7, which leads
to the following formulation:

minimize
S,J,E1,E2,C1,C2,S♯

1
2
∥W− RS∥2F + λ1∥E1∥1 +

1− λ1

2
∥E1∥2F + λ2∥J∥∗ + λ3∥E2∥1 +

1− λ3

2
∥E2∥2F

subject to:
S♯ = g(S), S♯ = J,
S = SC1, S♯ = S♯C2,

1TC1 = 1T, 1TC2 = 1T,
diag(C1) = 0, diag(C2) = 0,
C1 = E1,C2 = E2,

λ1, λ3 ∈ [0, 1].
(3.8)

The auxiliary variables E1,E2, J are introduced to simplify the derivation. g(.) : S3F×P →
S♯3P×F denotes the linear mapping from S ∈ R3F×P to its reshuffled version S♯ ∈ R3P×F. S =

X11 X12 X13 . . . X1P
Y11 Y12 Y13 . . . Y1P
Z11 Z12 Z13 . . . Z1P
. . . . . . . . . . . . . . . . . . . . . . .
XF1 XF2 XF3 . . . XFP
YF1 YF2 YF3 . . . YFP
ZF1 ZF2 ZF3 . . . ZFP


and S♯ =


X11 . . .X1P Y11 . . .Y1P Z11 . . .Z1P
X21 . . .X2P Y21 . . .Y2P Z21 . . .Z2P

. . . . . . . . .
XF1 . . .XFP YF1 . . .YFP ZF1 . . .ZFP


T

. The first

term in the above optimization ismeant for penalizing re-projection error under orthographic
projection. Under single-body NRSFM configuration, 3D shape S can be well characterized
as lying in a single low dimensional linear subspace. However, when there are multiple non-
rigid objects, each non-rigid object could be characterized as lying in an affine subspace. To
represent this idea mathematically in shape and trajectory space respectively, we introduceE1
and E2.

In addition to this, to reveal the intrinsic structure of multi-body non-rigid structure-from-
motion (NRSfM), we seek for the sparsest solution both in trajectory and shape space. Con-
sequently, we enforce the ℓ1 norm for E1 and E2. However, high sparsity may lead to mis-
classification of samples or trajectories. Therefore, to maintain the balance between sparsity
and connectedness, we incorporate the elastic net for both E1 and E2. Lastly, we enforce a
global shape constraint (∥J∥∗) for compact representation of multi-body non-rigid objects
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by penalizing the rank of the entire non-rigid shape.

Due to the two bilinear terms S = SC1 and S♯ = S♯C2, the overall optimization of Eq.-(3.8) is
non-convex. We solve it via the alternating directionmethod ofmultipliers (ADMM), which
has a proven effectiveness for many non-convex problems and is widely used in computer vi-
sion task. ADMM works by decomposing the original optimization problem into several
sub-problems, where each sub-problem can be solved efficiently. To this end, we seek to de-
compose Eq.(3.8) into several sub-problems.

Introducing Lagrangianmultipliers in the Eq: (3.8) gives the Augmented Lagrangian formu-
lation for Eq.(3.8) as

L(S, S♯,C1,C2,E1,E2, J, {Yi}8i=1) =
1
2
∥W− RS∥2F + λ1∥E1∥1 + γ1∥E1∥2F + λ2∥J∥∗+

λ3∥E2∥1 + γ3∥E2∥2F+ < Y1, S♯ − g(S) > +
β
2
∥S♯ − g(S)∥2F+ < Y2, S− SC1 > +

β
2
∥S− SC1∥2F+ < Y3, S♯ − S♯C2 > +

β
2
∥S♯ − S♯C2∥2F+ < Y4, 1TC1 − 1T > +

β
2
∥1TC1 − 1T∥2F+ < Y5, 1TC2 − 1T > +

β
2
∥1TC2 − 1T∥2F+ < Y6,C1 − E1 > +

β
2
∥C1 − E1∥2F+ < Y7,C2 − E2 > +

β
2
∥C2 − E2∥2F+ < Y8, S♯ − J > +

β
2
∥S♯ − J∥2F,

(3.9)
where we define γ1 = (1−λ1)/2 and γ3 = (1−λ3)/2. Yi for i = {1, · · · , 8} are the Lagrange
multipliers. β is the penalty parameter, where we use the same parameter for each augmented
Lagrange term to simplify the derivation and parameter setting. The symbol< ., . > repre-
sents the Frobenius inner product of twomatrices, i.e, the trace of the product of twomatri-
ces. For example, given twomatricesA,B ∈ Rm×n, the Frobenius inner product is calculated
as< A,B >=Tr(ATB).

TheADMMworks byminimizing Eq. (3.9) with respect to one variable while treating others
as constant. During each iteration, we update each variable and the Lagrange multipliers in
sequel. The detailed derivation for the solution is presented in the Appendix (B).

Solution for S: The closed form solution for S can be derived by taking derivative of Eq: (3.9)
w.r.t to S and equating it to zero.

1
β(R

TR+ βI)S+ S(I− C1)(I− CT
1 ) =

1
βR

TW+ (g−1(S♯) + g−1(Y1)

β − Y2

β (I− CT
1 )).

(3.10)

53



Solution for S♯: The closed form solution for S♯ can be derived by taking derivative of Eq:
(3.9) w.r.t S♯ and equating to zero.

S♯(2I+ (I− C2)(I− CT
2 )) = (g(S)− Y1

β ) + (J− Y8

β )− Y3

β (I− CT
2 ). (3.11)

Solution for C1 : The closed form solution for C1 can be derived as

(STS+ 11T + I)C1 = ST(S+ Y2

β ) + 1(1T − Y4

β ) + (E1 −
Y6

β ). (3.12)

C1 := C1 − diag(C1), (3.13)

Solution for C2 : The closed form solution for C2 can be derived as

((S♯)TS♯ + 11T + I)C2 = (S♯)T(S♯ + Y3

β ) + 1(1T − Y5

β ) + (E2 −
Y7

β ). (3.14)

C2 := C2 − diag(C2), (3.15)

Solution for J : The optimization of J given all the remaining variables can be expressed as:

J = argmin
J

λ2∥J∥∗+ < Y8, S♯ − J > +
β
2
∥S♯ − J∥2F.

= argmin
J

λ2∥J∥∗ +
β
2
∥J− (S♯ + Y8

β )∥2F.
(3.16)

A closed-form solution exists for this sub-problem. Let’s define the soft-thresholding opera-
tion as S[τ](x) = sign(x)max(|x| − τ, 0), the optimal J can be obtained as:

J = US[λ2

β ](Σ)V, (3.17)

where [U, Σ, V] = SVD(S♯ + Y8/β).

Solution for E1: The closed-form solution for E1 can be obtained similarly:

E1 = S[
λ1

γ1 + β/2 ]
(

β
2γ1 + β(C1 +

Y6

β )

)
. (3.18)
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Solution for E2 The derivation for the solution of E2 is similar to E1.

E2 = S[
λ3

γ3 + β/2 ]
(

β
2γ3 + β(C2 +

Y7

β )

)
. (3.19)

Detailed derivations to each sub-problems solution are provided in Appendix (B). Finally,
the Lagrange multipliers {Yi}8i=1 and β are updated as:

Y1 = Y1 + β(S♯ − g(S)),Y2 = Y2 + β(S− SC1), (3.20)

Y3 = Y3 + β(S♯ − S♯C2),Y4 = Y4 + β(1TC1 − 1T) (3.21)

Y5 = Y5 + β(1TC2 − 1T),Y6 = Y6 + β(C1 − E1), (3.22)

Y7 = Y7 + β(C2 − E2),Y8 = Y8 + β(S♯ − J). (3.23)

β = min(βm, βρ). (3.24)

Initialization: Since the proposed problem is non-convex, proper initialization is required for
fast convergence. In this work, we obtained rotation using [42] and initialized the S matrix
as pinv(R)*W. β0, βm, ρwere kept as 10−3, 103, and 1.1 respectively. The complete implemen-
tation is provided in Algorithm (1).

3.6 Experiments and results

We provide extensive experiments on freely available benchmark data-sets. We tested our
approach onboth real data and synthetic data under sparse and semi-dense scenarios. Denote
Sest as the estimated 3D structure and SGT as the ground-truth structure. We use the following
error metrics to evaluate the performance of the approach:
(i) Mean normalized error in multi-body non-rigid 3D reconstruction

e3D =
1
F

F∑
f=1

∥Sestf − SGT
f ∥F/∥SGT

f ∥F, (3.25)

(ii) Error in multi-body non-rigid motion segmentation,

eMS =
Total number of incorrectly segmented trajectories

Total number of trajectories
. (3.26)

55



Algorithm 1 Multi-body non-rigid 3D reconstruction and segmentation using ADMM
Require:

2D feature track matrixW, camera motion R, λ1, λ2, λ3, ρ > 1, βm, ε;

Initialize: S(0), S♯(0), C(0)
1 , E(0)

1 , C(0)
2 , E(0)

2 , {Y(0)
i }8i=1 = 0, β(0) = 1e−3;

while not converged do
1. Update (S, S♯,E1,E2,C1,C2) by Eq. (3.10), Eq. (3.11), Eq. (3.18), Eq. (3.19), Eq. (3.13)
and Eq. (3.15); The new value for each variable is updated over iteration.
2. Update {Yi}8i=1 and β by Eq. (3.20)-Eq. (3.24);
3. Check the convergence conditions ∥S♯ − g(S)∥∞ ≤ ε, ∥S − SC1∥∞ ≤ ε, ∥S♯ −
S♯C2∥∞ ≤ ε, ∥1TC1−1T∥∞ ≤ ε, ∥1TC2−1T∥∞ ≤ ε and ∥C1−E1∥∞ ≤ ε, ∥C2−E2∥∞ ≤
ε; ∥S♯ − J∥∞ ≤ ε;

end while

Ensure: C1, C2, E1, E2, S, S♯.
Form an affinity matrix A1 = |C1| + |CT

1 |, then apply spectral clustering [130] to A1 to
achieve non-rigid motion segmentation.

Experiment 1: Performance on sparse dataset

Since our approach simultaneously reconstructs and segments multi-body non-rigid mo-
tions. Thus, we conducted the first experiment to verify the advantage of our method com-
pared with alternative two stage approaches. To this end, we devise the following experi-
mental setup, namely first segmenting the 2D tracks and then reconstructing each body with
single body non-rigid structure-from-motion algorithm and vice-versa. Specifically, the two
baseline setups are:

1. Baselinemethod 1: Single bodynon-rigid structure-from-motion (State-of-the-art “block-
matrix method” [42] was used) followed by subspace clustering of the 3D trajectories
(SSC [53] was used), denoted as “BMM+SSC(3D)”.

2. Baseline method 2: Subspace clustering of the 2D feature tracks (2D trajectories) fol-
lowed by single body non-rigid structure-from-motion for each cluster of 2D feature
tracks, denoted as “SSC(2D)+BMM”.

In Table ( 3.1), we provide the statistical comparison between our method and the two base-
line methods in dealing with multi-body non-rigid structure-from-motion problem.

Comments: In all of these sequences, our method achieves perfect motion segmentation and
better non-rigid 3D reconstruction in most of the sequences compared with the two-staged
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Datasets BMM+SSC(3D) SSC(2D)+BMM Our Method
e3D eMS e3D eMS e3D eMS

Dance + Yoga 0.045 0.034 0.058 0.026 0.045 0.00
Drink + Walking 0.074 0.0 0.085 0.0 0.073 0.00
Shark + Stretch 0.024 0.401 0.098 0.394 0.021 0.00
Walking + Yoga 0.070 0.0 0.090 0.0 0.066 0.00
Face + Pickup 0.032 0.098 0.023 0.098 0.027 0.00
Face + Yoga 0.017 0.012 0.033 0.012 0.021 0.00
Shark + Yoga 0.035 0.416 0.105 0.409 0.033 0.00
Stretch + Yoga 0.039 0.0 0.055 0.0 0.036 0.00

Table 3.1: Performance comparison between our method and the two stage methods i.e first cluster and then recon-
struct or vice-versa, where 3D reconstruc on error (e3D) and non-rigid mo on segmenta on error (eMS) are used as
error metrics. The sta s cs clearly shows the superior performance of our method in both 3D reconstruc on and
mo on segmenta on compared with the two stage methods.

(a) NRSFM [44] and then SSC (b) SSC and then NRSFM [44] (c) Joint NRSFM and Segmenta on

Figure 3.4: An illustra on of the efficacy of our approach. The plot shows the results on the “Dance + Yoga” sequence.
(a) Result obtained by applying BMM method [42] to get 3D reconstruc on and then using SSC [53] to segment 3D
points. (b) Result obtained by applying SSC [53] to 2D feature tracks and then using BMM [42] to each cluster to get
3D reconstruc on. (c) Result from our simultaneous reconstruc on and segmenta on framework.
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(a) Dance and Yoga (b) Face and Yoga (c) Shark and Stretch

(d) Shark and Yoga (e) Stretch and Yoga (f)Walking and Yoga

Figure 3.5: 3D reconstruc on and segmenta on of different complex mul -body non-rigid mo on sequences, where
different objects intersect with each other. a) Dance-Yoga Sequence b) Face-Yoga Sequence c) Shark-Stretch Sequence
d) Shark-Yoga Sequence e) Stretch-Yoga Sequence f) Walking-Yoga. Different colors indicate different clusters with
dark small circles in the respec ve segments shows the ground-truth 3D points. (Best viewed in color)
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(a) Face and Pickup (b) Shark and Yoga (c) Stretch and Yoga

(d) Dance and Yoga (e) p3_ball_1 (f) p4_meet_12_result

Figure 3.6: 3D reconstruc on and segmenta on of different mul -body non-rigid mo on sequences a) Face-
Pickup Sequence b) Shark-Yoga Sequence c) Stretch-Yoga Sequence d) Dance-Yoga Sequence e) p3_ball_1 f)
p4_meet_12. The non-rigid mo on sequences are generated from the CMUMoCap dataset [6], Torresani et
al. [170] dataset and the UMPM dataset [175]. Different colors indicate different clusters with dark small
circles in the respec ve segments shows the ground-truth 3D points. (Best viewed in color)

approaches–statistical value for the same sequences can be inferred from Table (3.1). Visual
comparison is also provided in Fig. (3.4) for easy understanding. The results clearly illustrates
that with the proposed framework we can procure correct features belonging to each object
than the two-stage pipeline.

To further test the segmentation of different deforming objects performing different activi-
ties, we designed two synthetic experimental settings. In the first setting, we combined non-
rigid objects such that they are well separated in 3D space. In the next experiment setting
the objects are intersecting with each other in 3D space. We obtained perfect segmentation
results for both settings. Fig. (3.5) andFig. (3.6) show thequalitative segmentation and recon-
struction results for the corresponding experiment. Quantitative performance comparison
of segmentation with SSC [52] on synthetic sequence is presented in Table 3.1 .
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Figure 3.7: Comparison of 3D reconstruc on error with other compe vemethods on synthe c datasets (CMUMocap
[6] and [168]). The comparison methods (BMM [42], PND [114], Zhu et al. [200], Kumar et al. [106]) present state-
of-the-art approaches. Note: Code for Zhu et al. [200] work is not publicly available, the sta s cs we provide here
are obtained from our own implementa on of this method. For exact numerical values, please refer to Table B.1 (Best
viewed in color).

Performance comparison of reconstruction error with state-of-the-art methods on synthetic
dataset
We compared the performance of our approach with other state-of-the-art NRSFM meth-
ods on the same dataset under similar settings. Synthetic dataset that are used for evaluating
reconstruction error of multi-body non-rigid deformations are created by combining differ-
ent objects from theMocap [6] and Torresani et al. dataset [170]. We compare our approach
with methods such as BMM [42], PND [114], Zhu et al. [200] and Kumar et al. [106].
Statistical results are provided in Fig. (3.7) which clearly indicates the improvement in 3D
reconstruction accuracy using our method in comparison to other approaches.

Comments: It can be observed from Fig. (3.7) that the reconstruction error obtained by our
method in comparison to other state-of-the-art is either better or close to other competing
approaches on all the datasets. We would like to mention that code for Zhu et al. [200] is
not publicly available. Therefore, we used our own implementation of this algorithm for
numerical comparison. MATLAB codes for other method such as BMM [42] and PND
[114] are freely available for research purpose.
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Figure 3.8: Comparison of 3D reconstruc on error with other compe ve methods on real image data-set(UMPM
[175]), which is composed of complex non-rigid deforma on along with different ac vi es over- me. The comparison
methods (BMM [42], PND [114], Zhu et al. [200], Kumar et al. [106]) present state-of-the-art approaches. For exact
numerical values, please refer to the Table B.2 (Best viewed in color).

Experiment 2: Performance on real image dataset UMPM [175].

UMPM : The Utrecht Multi-Person Motion (UMPM) dataset [175] is a benchmark dataset
formultiple person interaction. It consists of synchronized videos with 644×484 resolution
images. Each dataset consists of long-video sequence withmultiple activities and different ar-
ticulated motions. Although data are provided from four view point for each category, we
onlyusedone viewpoint for evaluation. This dataset has beenused in thepast as a benchmark
to evaluate multi-person motion capturing technique and many state-of-the-art techniques
have used it to evaluate the performance of NRSfM methods [114], [51].

Performance comparison of 3D reconstruction with state-of-the-art methods onUMPMdataset
[175]

Following previous works on this topic, we used the UMPM dataset for evaluation of our
method in comparison to other competing methods. We evaluated our performance on five
long video sequence which are composed of complex non-rigid motion and extensive vari-
ations of daily human actions with severe pose changes. Namely we tested our method on
p4_table_12, p4_meet_12, p2_grab_2, p2_free_2, and p3_ball_1 sequence.
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(a) p4_table_12 (UMPM Dataset) (b) p4_meet_12 (UMPM Dataset)

(c) p2_grab_2 (UMPM Dataset) (d) p2_free_2 (UMPM Dataset)

Figure 3.9: In (a), (b), (c), (d) larger and smaller circles shows the 3D reconstruc on and ground-truth of p4_table_12,
p4_meet_12, p2_grab_2, p2_free_2 data-set respec vely. Different colors show the corresponding segmenta on. (Best
viewed in color)

Comments: The observations on real image experiments are very similar to the synthetic ones.
In all the aforementioned datasets, we obtained almost perfect segmentation along with reli-
able 3D reconstruction. Fig.(3.8) demonstrates the superior 3D reconstruction performance
of our method in comparison to other methods. Furthermore, qualitative results obtained
using our approach on the UMPMdataset can be inferred from Fig.(3.9) and Fig.(3.10). Spa-
tial and temporal affinity matrices obtained during the experiment on real sequence are anal-
ogous to synthetic sequence and therefore, similar inference can be drawn. The numerical
values clearly indicate the superiority of our approach on 3D reconstruction, in addition it
provides robust segmentation of multiple deformable objects.
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Figure 3.10: 3D non-rigid reconstruc on and segmenta on results on p2_free_2 sequence of the UMPMdataset [176].
We obtained perfect segmenta on and reliable 3D reconstruc on over the en re video sequence which comprises of
complex non-rigid deforma on followed by different ac vi es. (Best viewed in color)

Experiment 3: Performance on dense sequences

We also tested our method on freely available dense datasets [64]. Although our method is
not scalable to millions of feature tracks, for completeness of our evaluation, we tested our
method on the uniformly sampled features points of the original sequences. We performed
experiments on benchmark dense NRSfM synthetic and real dataset sequence [64] intro-
duced byGrag et al.[65]. The synthetic sequence consists of four different face datasets. Each
sequence has different deformation and camera motion over frames.

We sampled 3275 trajectories from each synthetic face sequence to verify the performance of
our approach. The 3D reconstruction errors obtained on these four face sequence are shown

63



Figure 3.11: Comparison of 3D reconstruc on error with other compe ve methods on synthe c dense face sequence
([64] ) which is composed of non-rigid face deforma on of different facial expression over- me. The comparison meth-
ods (BMM [42], PND [114], Zhu et al. [200], Kumar et al. [106]) represent the state-of-the-art approaches. This com-
parison is made over 3275 feature tracks which is taken by uniformly sampling the dense feature tracks. For exact
numerical values, please refer to the Table B.3. (Best viewed in color).

in Fig. (3.11). Fig.(3.12) show the qualitative of reconstruction result that is obtained using
our method. In qualitative illustration i.e., Fig. (3.12), the green dots show the reconstructed
points whereas the red dots show the ground-truth 3D structure.

Face with a background is very common in real world scenarios. To test segmentation and
reconstruction in such cases, we combined synthetic face with an artificial background and
projected it using an orthographic camera model. We use these projected 2D feature tracks
as input to our algorithm and obtained its 3D shapes as shown in Fig.(3.13). Different colors
represent distinct clusters that are recovered using our method.

Real face, back and heart sequence
Garg et al. [64] dataset is composed of three monocular videos namely face, back and heart
sequence. These sequence captures the natural human deformation with considerable dis-
placements from one frame to other. In the face sequence, the subject performs day-to-day
facial expression whereas in the back sequence the person is stretching and shrinking his back
wearing a textured t-shirt. Lastly, this dataset also provides a challenging monocular heart-
beat sequence taken during bypass surgery. Quantitative evaluation on this dataset is not per-
formed due to the absence of ground-truth 3D values. However, qualitative results obtained
are shown in Fig.(3.14a), Fig.(3.14b) and Fig.(3.14c) respectively. The qualitative results show
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Figure 3.12: Results on synthe c face sequence [64]. Red and green color show the ground-truth and reconstructed
3D structures respec vely. (Best viewed in color)

the high-quality 3D reconstruction of the object using our method on real world video’s.

Experiment 4: Evaluation on more than two objects.

We also evaluated our method when three objects in the scene are performing complex mo-
tions over time. It was observed during the experiment that shape clustering with trajectory
clustering does not affect the segmentation, while it can help improve 3D reconstruction. A
graphical illustration of such example along with our obtained results is shown in Fig.(3.15).

Experiment 5: Convergence and analysis of the proposed optimization.

Since the proposed optimization is non-convex, we conducted experiments to study the con-
vergence and timings of our approach. Fig. (3.16) shows a typical convergence curve of the
proposed optimization on Shark+Yoga dataset. The optimization curve is provided only for
better intuition of the algorithm. Similar trends of the convergence curves were observed
for other datasets as well. In this figure different curves show the primal residuals for each
optimization terms over iteration. The current implementation takes around 5-7 minutes
for thousand feature tracks to converge on commodity desktop installed with Ubuntu 14.04
OS. The above simulation time is observed using MATLAB R2015b software running on
Intel core i7 processor with 16GB RAM.
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(a) Foreground (Red), Background (Green) [Front View] (b) Foreground (Red), Background (Green) [Side View]

Figure 3.13: (a), (b) show the front view and side view of the reconstruc on and segmenta on result ob-
tained on “Face+Background” Sequence. This dataset was synthe cally generated by combining synthe c
face sequence [66] with background as mask. (Best viewed in color)

Additional analysis

High values of λ1 and λ3 (say 0.6 or 0.7) during optimizationmay lead to high segmentation
error due to very sparse structure in matrices. The benefit of elastic net is that it provides
the flexibility to trade off between the sparsity and connectedness among different classes.
Mathematically, it means, with elastic net we have the freedom to adjust between ℓ1 and ℓ2
minimization of the same optimization variable. Such regularization is handy in controlling
the sparsity of the matrix. Fig.(3.18) shows the sparsity of C1 matrix with variation in λ1 for
different sparse synthetic dataset. Fig.(3.17a) and Fig.(3.17b) show the affinity matrix of C1 ∈
RP×P andC2∈RF×F for theDance-Yoga sequence. Theblock-diagonal structure correspond-
ing to both deforming objects is shown in Fig. (3.17a). Clearly, the two objects span different
subspace that are independent of each other. The obtained affinity matrix of C1 implies that
the trajectories of each individual objects are self-expressive and thus each trajectory can be
represented as a linear combination of other trajectories. Similarly, Fig.(3.17b) show similar
shapes spans its own subspace and therefore, the frames corresponding identical activity can
be clustered.

3.7 Limitations of the proposed approach

The proposed approach is not scalable to millions of feature tracks. Consequently, dense
non-rigid structure from motion using the formulation discussed in this chapter is difficult.
Themajor computational complexity stems due to the calculation of clusteringmatrix which
is of the dimension P× P. Additionally, we assumed orthographic camera projection which
has its own limitations to approximate real world scenes.
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(a) Back sequence

(b) Face sequence

(c) Heart sequence

Figure 3.14: (a), (b), (c) shows the 3D reconstruc on obtained on the Back, Face and Heart sequences respec vely.
Here, 2D trajectories are shown over the images to give more intui ve representa on of the obtained structure. These
results were obtained on uniformly sampled feature tracks. The number of feature points used for reconstruc on of
the Back, Face and Heart sequence are 2281, 3146 and 7546 respec vely. (Best viewed in color)

(a) Scene with 3 subject (b) Scene with 3 subject (c) Scene with 3 subject (d) Block Diagonal Matrix

Figure 3.15: (a)-(c) 3D reconstruc on with segmenta on results in a three subject scene taken from MoCap dataset
[6]. Our approach is able to reconstruct and segment each ac on such as stretch (red), dance (cyan) and yoga (green)
faithfully with overall 3D reconstruc on error of 0.0407. Here, different color corresponds to dis nct deforming object,
while dark and light color circles show ground-truth and reconstructed 3D coordinates respec vely. (d) Affinity matrix
obtained a er spectral clustering [130]. (Best viewed in color)
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Figure 3.16: Convergence curve of the proposed op miza on. Each curve represents the residual value associated
with each terms shown in legends over itera on. (Best viewed in color)

(a) Spa al Affinity Matrix (b) Temporal Affinity Matrix

Figure 3.17: (a) Affinity matrix obtained on the “Dance + Yoga” Sequence. Clearly, it shows two block diagonal struc-
ture, corresponding to the two objects, which is an interes ng observa on during our experiment. Thus, number of
deforming objects can be directly inferred from the affinity matrix. (b) Affinity matrix obtained with temporal clustering,
it shows similar ac vi es are encapsulated in the same block structure or captured in local subspace.
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Figure 3.18: Sparsity of C1 matrix vs λ1 on different sparse data-set, it can be inferred that by using a proper
value of λ1 one can control the balance between sparsity and connectedness. Similar inference can be drawn
for non-zero entries of C2 with varia on in λ3. (Best viewed in color)

3.8 Closing Remarks

In this chapter, we described an algorithm to solve complex multi-body non-rigid structure
from motion by exploiting spatio-temporal relation of the deforming shapes. This chap-
ter demonstrated a new way to compactly represent deformable shapes. Despite being a
non-convex formulation, we provide a solution to the resultant optimization using ADMM
[19] which is effective, fast and easy to implement. We supply extensive experimental results
on both synthetic and real benchmark datasets to test the method. The result demonstrate
that the present approach outperforms the recent state-of-the-art non-rigid reconstruction
methods by providing competitive 3D reconstruction and reliable object segmentation. Even
though methods such as [42], [136], [170], [106] can handle simple variations of non-rigid
deformationwell, our approach provides robust reconstruction for both short and long-term
complex multi-body deformations. In the next chapter, we will discuss the scalability issue
with non-rigid structure from motion under factorization.
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4.1 From sparse NRSFM to dense NRSFM

Non-rigid structure from motion algorithm discussed in the previous chapter has shown
some promising results for sparse feature points. We also learned that the previous formula-
tion suffers from the scalability issue. Additionally, the formulation proposed in chapter (3)
assumes that the non-rigid object span a global linear space, and the spatial-temporal space
spanned by these deforming objects lies in a union of Euclidean affine or linear subspace.
However, in practice the features can be noisy and dense with underlyingmanifold structure
[192]. These dense structure can be composed of several local linear subspace, hence single
global linear subspace assumption does not hold. To overcome these limitation, this chapter
addresses the task of solving a dense non-rigid structure from motion (NRSfM) problem.
The algorithm introduced in this chapter can handle millions of points or does not ignore
local non-linearities of surface deformation, and thus can reliably model complex non-rigid
deformations. Our method propose a new approach for dense NRSfM by modeling the
problem on a Grassmann manifold. Specifically, we assume the complex non-rigid deforma-
tions lie on a union of local linear subspaces both spatially and temporally. This naturally
allows for a compact representation of the complex non-rigid deformation over frames. We
provide experimental results on several synthetic and real benchmark datasets. The procured
results clearly demonstrate that our current formulation, apart from being scalable andmore
accurate than state-of-the-art methods, is also more robust to noise and generalizes to highly
non-linear deformations.

4.2 Introduction to dense NRSFM

Dense Non-rigid Structure fromMotion (NRSfM) aims to recover 3D coordinates for every
pixels of the deforming object. The existing solutions to sparseNRSfM cannot be employed
directly to dense NRSFM as they do not scale to dense feature points and their resilience to
noise remains unsatisfactory. Moreover, state-of-the-art algorithms [65, 41] to solve dense
NRSfM are computationally expensive and rely on the assumption of global low-rank shape
which, unfortunately, fails to cater the inherent local structure of the deforming shape over
time. Consequently, to represent dense non-rigid structure under such formulations seems
rather flimsy and implausible.

For many real-world applications, for instance, dense reconstruction of facial expressions
from images, limitations such as scalability, timing, robustness, reliable modeling, etc, are
of crucial concern. Despite these limitations —which are well-known to the researchers of
this area, no template-free approach exists that can reliably deal with these concerns. In this
chapter, we will learn a template-free dense NRSfM algorithm that overcomes these diffi-
culties. As a first step to overcome these difficulties, we reduce the overall high-dimensional
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Input Sequence Reconstruction (View1)  Reconstruction (View 2)

Figure 4.1: Our algorithm takes dense long-term 2D trajectories of a non-rigid deforming object as input, and
provides a dense detailed 3D reconstruc on of it. The reconstructed surface captures the complex non-
linear mo on which can be helpful for real world applica ons such as 3D virtual and augmented reality.
Example frames are taken from publicly available real datasets: real face sequence[65] and kinect_paper
sequence[177] respec vely.

non-linear space spanned by the deforming shape as a union of several local low-dimensional
linear subspaces. Our approach is based on a simple idea/assumption i.e., any complex de-
forming surface can be approximated by a locally linear subspace structure [37]. We use this
simple intuition in a spatio-temporal framework to solve dense NRSfM. This choice natu-
rally leads to a few legitimate queries:
a) Why spatio-temporal framework for solving dense NRSfM? Spatio-temporal framework
discussed in the previous chapter has exhibited the state-of-the-art results in NRSfM chal-
lenge [9, 93]. Even though the concept behind such a framework is elementary, no algorithm
to our knowledge exists that exploit such an intrinsic idea for dense NRSfM.
b) Why the previously proposed spatio-temporal methods are unable to handle dense NRSfM?
The formulation discussed in the previous chapter in inspired from SSC algorithm [52]. As
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a result, the complexity of their formulations grows exponentially in the order of the num-
ber of data points. This makes it difficult to solve dense NRSfM using such formulation.
Moreover, these methods ([104, 199]) use an assumption that non-rigid shape should lie on
a low-dimensional linear or affine subspace globally. In reality, such an assumption does not
hold for all kinds of non-linear deformations [185, 142]. Although a recent spatio-temporal
method proposed by Dai et al.[41] can solve this task, however, it involves a series of least
square problems to be solved, which is computationally very demanding.

To overcome all these issues, this work introduce a spatio-temporal dense NRSfM algorithm
which is free from previous chapter limitations. In this chapter, we adhere to the assump-
tion that the low-dimensional linear subspace spanned by a deforming shape is locally valid.
Such assumptions about shapes have beenwell studied in topologicalmanifold theory [1, 48].
The Grassmann manifold is a topologically rich non-linear manifold, each point of which
represents the set of all right-invariant subspaces of a Euclidean space. One property of the
Grassmannian that is particularly useful in our setting is that the points in it can be embed-
ded into the space of symmetric matrices. This property has been used in several computer
vision applications that deals with subspace representation of data [80, 28]. Accordingly,
in our problem, to model a non-linear shape, using a Grassmannian allows us to represent
the shape as a set of “smooth” low-dimensional surfaces embedded in a higher dimensional
Euclidean space. Such a representation not only reduces the complexity of our task but also
makes our formulation robust and scalable as described below.
c) Why Grassmann manifold? It is well-known that the complex non-rigid deformations are
composedofmultiple subspaces that quite often fit a higher-order parametricmodel [138, 148,
199]. To handle such complex models globally can be very challenging – both numerically
and computationally. Consequently, for an appropriate representation of such a model, we
decompose the overall non-linearity of the shape by a set of locally linear models that span
a low-rank subspace of a vector space. As alluded to above, the space of all d-dimensional
linear subspaces of RN (0 < d < N) forms the Grassmann manifold [1, 2]. By modeling
the deformation on this manifold allows us to operate on the number of subspaces rather
than on the number of vectorial data points (on the shape), which reduces the complexity
of the problem significantly. Moreover, since each local surface is a low-rank subspace, it can
be faithfully reconstructed using a few eigenvalues and corresponding eigenvectors, which
makes such representation scalable and robust to noise.

The aforementioned properties of the Grassmannian perfectly fit our strategy to model
complex deformations, and therefore, we blend the concept of spatio-temporal representa-
tions with local low-rank linear models. This idea results in a two-stage coupled optimiza-
tion problem i.e. local reconstruction and global grouping, which is solved efficiently using
the standard ADMM algorithm [19]. As the local reconstructions are performed using a
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low-rank eigen decomposition, our representation is computationally efficient and robust
to noise. We demonstrate the benefit of our approach to benchmark real and synthetic se-
quences §4.6. Our experimental results show that our method outperforms previous state-
of-the-art approaches by 1-2 % on all the benchmark datasets. Before we provide the details
of our algorithm, we review some pertinent previous works in the next section.

4.3 Background

In this section we provides a brief background on the recent advancements in NRSfM, fo-
cusing mainly on the methods that are relevant to this work.

Preliminaries: Given ‘P’ feature points over ‘F’ frames, we represent W ∈ R2F×P, S ∈
R3F×P, R ∈ R2F×3F as the measurement, the shape, and the rotation matrices, respectively.
HereRmatrix is composedofblockdiagonalRi ∈ R2×3, representingper frameorthographic
camera projection. Also, the notation S♯ ∈ R3P×F stands for the rearranged shape matrix,
which is a linear mapping of S. We use ∥ . ∥F and ∥ . ∥∗ to denote the Frobenius norm and
the nuclear norm, respectively.

(a) Dai et al.’s [44]
min.
S♯,E
∥S♯∥∗ + λ∥E∥2F

subject to:W = RS+ E

(b) Zhu et al.’s [199]
min.
S♯,C,E

∥C∥∗ + γ∥S♯∥∗ + λ∥E∥1
subject to: S♯ = S♯C,W = RS+ E

(c) Kumar et al.’s [104]
min.

S,S♯,C1,C2

1
2∥W− RS∥2F + λ1∥C1∥1 + λ2∥S♯∥∗ + λ3∥C2∥1

subject to: S = SC1, S♯ = S♯C2, 1TC1 = 1T, 1TC2 = 1T,
diag(C1) = 0, diag(C2) = 0, S♯ = g(S)

(d) Garg et al.’s[65]
min.
S,R

λ ∥W−RS∥2
F

2 +
∑

f,i,p ∥∇Sif(p)∥+ τ∥S♯∥∗
subject to:
R ∈ SO(3)

Table 4.1: A brief summary of formula on used by some of the recent approaches to solve sparse and dense NRSfM
which are closely related to our method. Among all these four methods only Garg et al.’s [65] approach is formulated
par cularly for solving dense NRSfM.

4.3.1 Relevant Previous Work

Dai et al.’s approach: Dai et al. proposed a simple and elegant solution to NRSfM [44].
The work, dubbed “prior-free”, provides a practical solution as well as new theoretical in-
sights to NRSfM. Their formulation involves nuclear norm minimization on S♯ instead of S
–see Table 4.1(a). This is enforced due to the fact that 3K rank bound on S is weaker than K
rank bound on S♯, whereK refers to the rank of S. Although this elegant framework provides
robust results for the shapes that span a single subspace, it may perform poorly on complex
non-rigid motions [199].
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Zhu et al.’s approach: To achieve better 3D reconstructions on complex non-rigid se-
quences, this work capitalized on the limitations of Dai et al.’s work[44] by exploiting the
union of subspaces in the shape space [199]. The proposed formulation is inspired by LRR
[118] in conjunction with Dai et al.work –see Table 4.1(b). In the formulation, C ∈ RF×F,
E ∈ R2F×P are the coefficient and error matrices.

Kumar et al.’s approach: The work is discussed in previous chapter. It exploits multi-
ple subspaces both in the trajectory space and in the shape space [104]. This work demon-
strated empirically that procuring multiple subspaces in the trajectory and shape spaces pro-
vide better reconstruction results. The work proposed a joint segmentation and reconstruc-
tion framework, where segmentation inherently benefits reconstruction and vice-versa –see
Table 4.1(c). In their formulation C1 ∈ RP×P, C2 ∈ RF×F are the coefficient matrices and,
g(.) linearly maps S to S♯.

Dense NRSfM approach: Garg et al. developed a variational approach to solve dense
NRSfM[65]. The optimization framework proposed by them employs total variational con-
straint on the deforming shape (∇Sif(p)) to allow edge preserving discontinuities, and trace
norm constraints to penalize the number of independent shapes –see Table 4.1(d). Recently,
Dai et al. has also proposed a dense NRSfM algorithm with a spatio-temporal formulation
[41].

4.3.2 Motivation

This work is intended to overcome the shortcomings of the previous approaches to solve
dense NRSfM. Accordingly, we would like to outline the critical limitations associated with
them. Although some of them are highlighted before, we reiterate it for the sake of complete-
ness.

1. To solve dense NRSfM using the formulation discussed in the previous chapter is
nearly impractical due to complexity of the formulation §4.2. Also, the error measure
used by it is composed of Euclidean norm defined on the original data (see Table 4.1),
which is not proper for non-linear data with a manifold structure [1, 183].

2. The algorithm proposed by Garg et al. [65] results in a biconvex formulation, which
is computationally expensive and needs a GPU to speed up the implementation. Sim-
ilarly, Dai et al.’s recent work[41] is computationally expensive as well due to costly
gradient term in their formulation.

3. Methods such as [194, 117] rely on the template prior for dense 3D reconstruction of
the object. Other piecewise approach for solving dense NRSfM [144] require a post-
processing step to stitch all the local reconstructions.
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To avoid all the aforementioned limitations, we propose a new denseNRSfM algorithm.
The primary contributions of this work are as follows:

1. A scalable spatio-temporal frameworkon theGrassmannmanifold to solvedenseNRSfM
which does not need any template prior.

2. An effective framework that can handle non-linear deformations even with noisy tra-
jectories and provides state-of-the-art results on benchmark datasets.

3. An efficient solution to the proposed optimization based on the ADMM procedure
[19].

4.4 Problem Formulation

In this section, we first provide a brief introduction to theGrassmannmanifold and a suitable
definition for a similarity distance metric on it.

4.4.1 Grassmann Manifold

TheGrassmannmanifold, usually denoted asG(n, r), consists of all r-dimensional linear sub-
spaces of Rn, where n > r. A point on the Grassmann manifold is represented by a n × r
matrix (sayX), whose columns are composed of orthonormal basis of the subspace spanned
by X, denoted as span(X) or in short as [X]. Let’s suppose [X1], [X2] are two such points
on this manifold, then among several similarity distances known for this manifold [80], we
will be using the projection metric distance given by dg([X1], [X2]) =

1√
2∥X1XT

1 − X2XT
2 ∥F, as

it allows directly embedding the Grassmannian points into a Euclidean space (and the use of
the Frobenius norm) using themappingX→ XXT. With thismetric, (G, dg) forms ametric
space. Interested readers may refer to [80] for details.

4.4.2 Formulation

With the relevant background as reviewed in the above sections, we are now ready to present
our algorithm to solve the dense NRSfM task under orthographic projection. We start our
discussion with the classical representation to NRSfM i.e.

Ws = RSs (4.1)

where, Ws ∈ R2F×P, R = blkdiag(R1, ...,RF) ∈ R2F×3F, Ss ∈ R3F×P. The motive here
is, given the input measurement matrix, solve for rotation (R) and 3D shape (Ss). To serve
this objective, Eq.(4.1) maintains the camera motion and the shape deformation such that it
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ᮁ

(a) Spatial Grassmann Samples (Trajectory Space)

sᶅ1

(b) Temporal Grassmann Samples (Shape Space)

sᶅ2 sᶅisᶅ3

tᶅ1 tᶅ2 tᶅ3 tᶅi

Figure 4.2: Conceptual illustra on of data point representa on on the grassmann manifold. Each local subspace can
equivalently be represented by a single point on the manifold. Top row: Construc on of grassmann samples in the
trajectory space using spa al informa on. Bottom row: Construc on of grassmann samples in the shape space by
par oning the shapes in a sequen al order over frames.

complies with the image measurements. For our method, we solve for rotations using the
Intersection method [44] by assuming that the multiple non-rigid motions within a single
deforming object, over frames, can be faithfully approximated by per frame single relative
camera motion with a higher rank*. Accordingly, our goal reduces to develop a systematic
approach that can reliably explain the non-rigid shape deformations and provides better 3D
reconstruction. We use subscript ‘s’ in Eq.(4.1) to indicate that the column permutations of
Ss and Ws matrix are allowed. Alternatively, the column permutations of S♯t is inadmissible
as it results in the discontinuity of the trajectories over frames.

Grassmannian Representations in Trajectory Space:
Let’s suppose Ψs = {ψs1,ψs2, ..,ψsKs

} is the set of points on the Grassmann manifold
generated using Ss matrix, then Ts =

{
(ψs1)(ψs1)

T, (ψs2)((ψs2)
T..., (ψsKs

)(ψsKs
)T
}

rep-
resents a tensor which is constructed by mapping all symmetric matrices of the Grassmann
data points—refer Figure 4.2(a). As discussedbefore in §4.2, to explain the complex deforma-
tions, we reduce the overall non-linear space as a union of several local low-dimensional linear
spaces which form the sample points on the Grassmann manifold. But, the notion of self-
expressiveness is validonly forEuclidean linear or affine subspace. Toapply self-expressiveness
on the Grassmannmanifold one has to adopt linearity onto themanifold. Since, Grassmann
manifold is isometrically equivalent to the symmetric idempotent matrices [33], we embed

*Check the Appendix (C) for a detail discussion on rotation.
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the Grassmann manifold into the symmetric matrix manifold, where the self-expression can
be defined in the embedding space. This leads to the following optimization:

minimize
Es,Cs

∥Es∥2F + λ1∥Cs∥∗

subject to: Ts = TsCs + Es
(4.2)

We denote Cs ∈ RKs×Ks as the coefficient matrix with ‘Ks’ as the total number of spatial
groups. Here, Es measures the trajectory group reconstruction error as per the manifold ge-
ometry. Also, we would like to emphasize that since the object undergoes deformations in
the 3D space, we operate in 3D space rather than in the projected 2D space. ∥ ∥∗ is enforced
on Cs for a low-rank solution.

Grassmannian Representations in Shape Space:
Deforming object attains different state over time which adheres to distinct temporal local

subspaces [104]. Assuming that the temporal deformation is smooth over-time, we express
deforming shapes in terms of local self-expressiveness across frames as:

minimize
Et,Ct

∥Et∥2F + λ2∥Ct∥∗

subject to:Tt = TtCt + Et
(4.3)

Similarly, Tt is the set of all symmetric matrices constructed using a set of Grassmannian
samples Ψt, where Ψt contains the samples which are drawn from S♯t ∈ R3P×F —refer Fig-
ure 4.2(b). Intuitively, S♯t is a shape matrix with each column as a deforming shape. Et,
Ct ∈ RKt×Kt represent the temporal group reconstruction error and coefficient matrix re-
spectively, with Kt as the number of temporal groups. ∥ ∥∗ is enforced on Ct for a low-rank
solution.

Spatio-Temporal Formulation:
Combining the above two objectives and their constraints with reprojection error term

give us our formulation. Our representation blends the local subspaces structure along with
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the global composition of a non-rigid shape. Thus, the overall objective is:

minimize
Ss,S♯t ,Es,Et,Cs,Ct

E =
1
2
∥Ws − RSs∥2F + γ∥S♯t∥∗ + λ1∥Es∥2F + λ2∥Et∥2F + λ3∥Cs∥∗ + λ4∥Ct∥∗

subject to:
Ts = TsCs + Es; Tt = TtCt + Et;

Ψs = ξ(Cs, Ss, q);Ψt = ξ(Ct, S♯t , q);
Ss = ζ

(
Ψs,Σs,Vs,Ns); S♯t = ζ

(
Ψt,Σ♯

t ,Vt,Nt);

S♯t = T1(Ss);Ws = T2(Ws, Ss);
(4.4)

The re-projection error constraint performs the 3D reconstruction using Ws and R. Mean-
while, the local subspace grouping naturally enforces the union of subspace structure in Ss,
S♯t with corresponding low-rank representations of the coefficient matrices Cs and Ct. Here,
the function ξ(.) draws inference fromCmatrices to refineGrassmannian sample set, both in
trajectory and shape spaces. The function ζ(.) reconstructs Ss and S♯t matrices based on a set
of local subspaces (Ψs,Ψt,Vs,Vt), singular values (Σs, Σt) and the number of top eigenvalues
(Ns,Nt). The function T1(.) transforms Ss ∈ R3F×P matrix to S♯t ∈ R3P×F matrix and T2(.)
function rearranges Ws matrix as per the recent ordering of Ss†. Parameters such as ‘q’, ‘Ns’
and ‘Nt’ provides the flexibility to handle noise and adjust computations. Note that the ele-
ment of the sets Ψs,Ψt,Vs and Vt are obtained using SVD (Singular Value Decomposition).
The above equation i.e. Eq: (4.4) is a coupled optimization problem where the solution to S
matrices influence the solution of Cmatrices and vice-versa, and T1() connects S♯t to Ss.

4.5 Solution

The formulation in Eq.(4.4) is a non-convex problem due to the bilinear optimization vari-
ables (TsCs, TtCt), hence a global optimal solution is hard to achieve. However, it can be
efficiently solved using Augmented Lagrangian Methods (ALMs) [19], which has proven its
effectiveness for many non-convex problems. Introducing Lagrange multipliers ({Yi}3i=1)

†It’s important to keep track of column permutation ofWs, Ss.
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and auxiliary variables (Js, Jt) to Eq.(4.4) gives us the complete cost function as follows:

minimize
Ss,S♯t ,Cs,Ct,Js,Jt

E =
1
2
∥Ws − RSs∥2F +

β
2
∥S♯t −T1(Ss)∥2F+ < Y1, S♯t −T1(Ss) > +γ∥S♯t∥∗

+ λ1∥Ts − TsCs∥2F + λ3∥Js∥∗ +
β
2
∥Cs − Js∥2F+ < Y2,Cs − Js > +λ2∥Tt − TtCt∥2F

+ λ4∥Jt∥∗ +
β
2
∥Ct − Jt∥2F+ < Y3,Ct − Jt >

subject to:Ψs = ξ(Cs, Ss, q);Ψt = ξ(Ct, S♯t , q);
Ss = ζ(Ψs,Σs,Vs,Ns); S♯t = ζ(Ψt,Σ♯

t ,Vt,Nt);

Ws = T2(Ws, Ss);

(4.5)

The function ξ(.) first computes the SVD of C matrices, i.e.C = [Uc,Σc,Vc], then forms
a matrix A such that Aij = [XXT]

q
ij, where ‘q’ is set empirically based on noise levels and

X = Uc(Σc)
0.5 (normalized). Secondly, it uses Aij to form new Grassmann samples from

the S matrices. Notice that ξ(.) operates on C matrices whose dimensions depend on the
number of Grassmann samples. This reduces the complexity of the task from exponential in
the number of vectorial points to exponential in the number of linear subspaces. The later
being of the order 10-50, where as the former can go more than 50,000 for dense NRSfM.

The ζ(.) function is defined as follows ζ=
{
(Ψa,Σa,Va, r)|Sa = horzcat(Ψr

aΣ
r
aVr

a),∀1 ≤
a ≤ Card(Ψa), r ∈ Z+

}
, where r stands for top-r eigenvalues, Card(.) denotes the cardinal

number of the set and horzcat(.) denotes for the horizontal concatenation of matrices. Intu-
itively, ζ(.) reconstructs back each local low-rank subspace. During implementation, replace
Ss, S♯t in place of Sa accordingly in the definition. The optimization variables over iteration
can be obtained by solving for one variable at a time treating others as constant, keeping the
constraints intact. For detailed derivations for each sub-problem and proofs, kindly refer to
Appendix (C). The pseudo code of our implementation is provided in Algorithm (2).

4.6 Experiments and Results

We compare the performance of our method against four previously reported state-of-the-
art approaches, namely Dense Spatio-Temporal DS [41], Dense Variational DV [65], Trajec-
tory Basis PTA [7] and Metric Projection MP [137]. To test the performance, we used dense
NRSfM dataset introduced by Garg et al. [65] and Varol et al. [177] under noisy and noise
free conditions. For quantitative evaluation of 3D reconstruction, we align the estimated
shape Stest with ground-truth shape StGT per frame using Procrustes analysis. We compute
the average RMS 3D reconstruction error as e3D = 1

F
∑F

t=1
∥St

est−StGT∥F
∥St

GT∥F
. We used Kmeans++

algorithm [11] to initialize segments without disturbing the temporal continuity.
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Algorithm 2 Scalable Dense Non-Rigid Structure from Motion: A Grassmannian Perspective

Require: Ws, R using [44], λ1, λ2, λ3, λ4, γ, ρ = 1.1, β = 1e−3, βm = 1e6, ε = 1e−12,Ks,Kt.
Initialize: Ss = pseudoinverse(R)Ws and S♯t = T1(Ss).
Initialize: ‘Kt’ temporal Grassmannians using ‘S♯t ’ matrix, Ψt = {ψti}

Kt
i=1.

Initialize: ‘Ks’ spatial Grassmannians using ‘Ss’ matrix, Ψs = {ψsi}
Ks
i=1.

Initialize: The auxiliary variables Js, Jt and Lagrange multiplier {Yi}3i=1 as zero matrices.

Initialize: Ωs
ij = trace[

(
ψT

sjψsi
)(
ψT

siψsj
)
], Ωt

ij = trace[
(
ψT

tjψti
)(
ψT

tiψtj
)
], Ωs = (Ωs

ij)
Ks
i,j=1, Ωt =

(Ωt
ij)

Kt
i,j=1, LsLT

s = Cholesky(Ωs), LtLT
t = Cholesky(Ωt)

while not converged do
1: Ss← (RTR+ βI)−1

(
β
(
T −1

1 (S♯t ) + T −1
1 (Y1)/β

)
+ RTWs

)
2: Cs←

(
2λ1LsLT

s + β(Js − Y2/β)
) (

2λ1LsLT
s + βIs

)−1

3: Ψs← ξ(Cs, Ss, q) {Update spatial Grassmann points}
4: Ss← ζ(Ψs,Σs,Vs,Ns); {refine based on topNs eigen value}
5: Js ← UJsS[λ3/β](ΣJs)VJs , where [UJs ,ΣJs ,VJs ] = svd(Cs + Y2/β) and S[τ](x) =
sign(x)max(|x|-τ, 0)
6: S♯t ← UtS[γ/β](Σt)Vt, where [Ut,Σt,Vt] = svd(T1(Ss) − Y1/β) and S[τ](x) =
sign(x)max(|x|-τ, 0)
7: Ct←

(
2λ2LtLT

t + β(Jt − Y3/β)
) (

2λ2LtLT
t + βIt

)−1

8: Ψt← ξ(Ct, S♯t , q) {Update temporal Grassmann points}
9: S♯t ← ζ(Ψt,Σt,Vt,Nt); {refine based on topNt eigen value}
10: Jt ← UJtS[λ4/β](ΣJt)VJt , where [UJt ,ΣJt ,VJt ] = svd(Ct + Y3/β) and S[τ](x) =
sign(x)max(|x|-τ, 0)
11: Ωs

ij← trace[
(
ψT

sjψsi
)(
ψT

siψsj
)
], Ωt

ij← trace[
(
ψT

tjψti
)(
ψT

tiψtj
)
];

12: Ωs ← (Ωs
ij)

Ks
i,j=1, Ωt ← (Ωt

ij)
Kt
i,j=1; {Ωs ⪰ 0,Ωt ⪰ 0, if Ωs||Ωt = 0 add δI to make it

≻ 0 (see Appendix (C) )}
13: LsLT

s = Cholesky(Ωs), LtLT
t = Cholesky(Ωt);

14: Ws ← T2(Ws, Ss) {Note: Column permutation for Ws and Ss should be
same.}
15: Y1 := Y1 + β(S♯t −T1(Ss)), Y2 := Y2 + β(Cs− Js), Y3 := Y3 + β(Ct− Jt); {Update Lagrange
multipliers}
16: β← minimum(ρβ, βm)

17: maxgap := maximum([∥S♯t −T1(Ss)∥∞, ∥Cs − Js∥∞, ∥Ct − Jt∥∞])
if (maxgap< ε ∥ β > βm) then

break;
end if{check for the convergence}

end while{Note: δ is a very small positive number and I symbolizes identity matrix}.
Ensure: Ss, St, Cs, Ct. {Note: Kindly use economical version of svd on a regular desktop.}
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Frame 1 Frame 18 Frame 25 Frame 32 Frame 50 Frame 60 Frame 68 Frame 99

Figure 4.3: Reconstruc on results obtained on synthe c dense face dataset (face sequence 4). Top row :
Ground-truth 3D points, Bottom row : Recovered 3D points using our approach.

Experiments on Synthetic Face Sequences: This dataset consists of 4 different face sequence
with 28,880 feature points tracked over multiple frames. The face sequence 1, 2 is a 10 frame
long video, whereas, face sequence 3, 4 is a 99 frame long video. It’s a challenging dataset
mainly due todifferent rotation frequencies anddeformations in eachof the sequence. Figure
4.3 shows the qualitative reconstruction results obtained using our approach in comparison
to the ground-truth for face sequence 4. Table (4.2) lists the performance comparisons of
our method with other competing methods. Clearly, our algorithm outperforms the other
baseline approach, which helps us to conclude that holistic approaches to rankminimization
without drawing any inference from local subspace structure is a less effective framework to
cope up with the local non-linearities.

Method DS [41] DV [65] PTA [7] MP [137] Ours
Seq. 1 0.0636 0.0531 0.1559 0.2572 0.0443
Seq. 2 0.0569 0.0457 0.1503 0.0640 0.0381
Seq. 3 0.0374 0.0346 0.1252 0.0611 0.0294
Seq. 4 0.0428 0.0379 0.1348 0.0762 0.0309

Table 4.2: Average 3D reconstruc on error (e3D) comparison on dense synthe c face sequence[65]. Note:
The code for DV [65] is not publicly available, we tabulated its results from DS [41] work.

Experiments on face, back and heart sequence: This dataset contains monocular videos of
human facial expressions, back deformations, and beating heart under natural lighting con-
ditions. The face sequence, back sequence, and heart sequence are composed of 28332, 20561,
and 68295 feature points tracked over 120, 150, and 80 images, respectively. Unfortunately,
due to the lack of ground-truth 3D data, we are unable to quantify the performance of these
sequences. Fig. (4.4) show some qualitative results obtained using our algorithm on this real
dataset.
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(a) Face sequence (b) Back sequence (c) Heart sequence

Figure 4.4: Qualita ve reconstruc on results procured on benchmark real dense dataset [65] a) Face sequence
(28,332 feature points over 120 frames) b) Back sequence (20,561 feature points over 150 frames) c) Heart
sequence (68,295 feature points over 80 frames).

Figure 4.5: Reconstruc on results on benchmark kinect_tshirt (74,000 points, 313 frames) and
kinect_paper(58,000 points, 193 frames) dataset [177]. Top row: Input image frame. Bottom row: Dense
3D reconstruc on for the corresponding frame using our approach.

Experiments on kinect_paper and kinect_tshirt sequence: To evaluate our performance on
the real deforming surfaces,weusedkinect_paper andkinect_tshirt dataset[177]. This dataset
provides sparse SIFT[121] feature tracks along with dense 3D point clouds of the entire scene
for each frame. Since, dense 2D tracks are not directly available with this dataset, we syn-
thesized it. To obtain dense feature tracks, we considered the region within a window con-
taining the deforming surface. Precisely, we considered the region within xw = (253, 253, 508,
508), yw = (132, 363, 363, 132) across 193 frames for paper sequence, and xw = (203, 203, 468,
468), yw = (112, 403, 403, 112) across 313 frames for tshirt sequence to obtain themeasurement
matrix [67, 63]. Fig.(4.5) show some qualitative results obtained using our method on this
dataset. Table (4.3) lists the numerical comparison of our approach with other competing
dense NRSfM approaches on this dataset.
Experiments on noisy data: To evaluate the robustness of our method to noise levels, we
performed experiments by adding Gaussian noise under different standard deviations to the
measurement matrix. Similar to DS [41] the standard deviations are incorporated as σn =
rmax{|Ws|} by varying r from 0.01 to 0.05. We repeated the experiment 10 times. Fig.(4.6a)
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Method DS [41] DV [65] PTA [7] MP [137] Ours
paper 0.0612 - 0.0918 0.0827 0.0394
tshirt 0.0636 - 0.0712 0.0741 0.0362

Table 4.3: Average 3D reconstruc on error (e3D) comparison on kinect_paper and kinect_tshirt [177] se-
quence. Note: The code for DV [65] is not publicly available. The pixels with no 3D data available were
discarded for the experiments and the evalua on.

and Fig.(4.6b) show the variation in the performance of our method under different noise
ratio’s on synthetic face sequences[65] and kinect sequences[177] respectively. It can be in-
ferred from the plot that even with large noise ratios, the average reconstruction error does
not fluctuate significantly. This improvement is expected from our framework as it is suscep-
tible only to top eigen values.

Effects of variable initialization on the overall performance: We performed several other
experiments to study the behavior of the algorithm under different variable initializations.
For easy exposition, we conducted this experiment on noise free sequences. Wemainly inves-
tigated the behavior ofNs,Nt,Ks,Kt on the overall performance of our algorithm. Fig.(4.6c)
and Fig.(4.6d) show the variations in the reconstruction errors with respect toNs and Ks re-
spectively. A similar trend in the plots is observed for changes on Nt and Kt values. These
plots clearly illustrate the usefulness of our local low-rank structure i.e., considering a small
number of eigenvalues for every local structure is as good as considering all eigenvalues. Simi-
larly, increasing the number of local subspaces after a certain value has negligible effect on the
overall reconstruction error. Furthermore, we examined the form of Cs and Ct after conver-
gence as shown Fig.(4.7a) and Fig.(4.7b). Due to the lack of ground-truth data on local sub-
spaces, we could not quantify Cs and Ct. For qualitative analysis on the observation, kindly
refer to the Appendix(C).

Ablation Analysis: This test is performed to evaluate the importance of spatial and tem-
poral constraints in our formulation. To do this, we observe the performance of our for-
mulation under four different setups: a) without any spatio-temporal constraint (NC), b)
with only spatial constraint (SP), c) with only temporal constraint (TP), and d) with spatio-
temporal constraint (Both). Fig.(4.7c) shows the variations in reconstruction errors under
these setups on four synthetic face sequence. The statistics clearly illustrate the importance
of both constraints in our formulation.

Runtime Analysis: To analyze the runtime performance of our approach, we used syn-
thetic face, real paper, and tshirt sequence. This experiment is performed on a computer
with an Intel core i7 processor and 16GB RAM. The script to compute the runtime is writ-
ten in MATLAB 2016b. Fig.(4.7d) show the runtime comparisons of our approach with
other denseNRSfMmethods. The runtime reported in Fig.(4.7d) corresponds to the results
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(b) Results on Noisy Trajectory for kinect Sequence
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(c) Result with varia on in no. of singular values
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Figure 4.6: (a)-(b) Avg. 3D reconstruc on error (e3D) varia on with the change in the noise ra o for synthe c
face sequence and kinect sequence respec vely. (c)-(d) Varia on in e3D with the number of top eigen value
and number of grassmann data points for Face Seq3.
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Figure 4.7: (a)-(b) A typical structure of Cs ∈ RKs×Ks , Ct ∈ RKt×Kt a er convergence. (c) Abla on test
performance on the synthe c face sequence [65], NC(No spa al or temporal constraint), SP(only spa al
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of our method with MP [137] and a recent state-of-the-art dense NRSfM algorithm DS[41].
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listed in Table (4.2), 4.3. The results clearly show the scalability of our method on datasets
with more than 50,000-70,000 points. Despite PTA [7] is faster than our approach, its re-
construction accuracy suffers by a large margin for dense NRSfM (see Table 4.2, 4.3).

4.7 Chapter Outcome

In this chapter, wehave introduced a scalable denseNRSfMalgorithmwhich efficientlymod-
els the complex non-linear deformations. We achieved this by exploiting the non-linearity
on the Grassmann manifold via spatiotemporal formulation. Moreover, we provided an ef-
ficient ADMM [19] based solution for solving our optimization. Several experiments on
benchmark datasets are provided which clearly show the usefulness of ourmethod. The pro-
posed algorithm provides a new insight to model dense NRSfM which previously seems in-
conceivable under spatiotemporal formulation. We believe that in practice such a framework
will be helpful to interesting 3D-vision applications.
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5.1 Motivation

Given dense image feature correspondences of a non-rigidly moving object across multiple
frames, the goal is to develop an algorithm that provide accurate 3D shape for each frame. In
the previous chapter, we developed a foundation to solve this task using Grassmannian rep-
resentation. Unfortunately, the method we proposed has some minor practical issues associ-
atedwith themodeling of surface deformations, for e.g., we ignored the inherent dependence
of a local surface deformation on its neighbors. Furthermore, our representation to group
high dimensional data points inevitably introduce the drawbacks of categorizing samples on
the high-dimensional Grassmann manifold [91, 83]. Hence, to deal with such limitations
with our previous algorithm [103], we propose an algorithm that jointly exploits the bene-
fit of high-dimensional Grassmann manifold to perform reconstruction, and its equivalent
lower-dimensional representation to infer suitable clusters. To accomplish this, we project
each Grassmannians onto a lower-dimensional Grassmann manifold which preserves and
respects the deformation of the structure w.r.t its neighbors. These Grassmann points in
the lower-dimension then act as a representative for the selection of high-dimensional Grass-
mann samples to perform each local reconstruction. In practice, our algorithm provides a
geometrically efficient way to solve dense NRSfM by switching betweenmanifolds based on
its benefit and usage. Experimental results show that the proposed algorithm is very effective
in handling noise with reconstruction accuracy as good as or better than the other competing
methods.

5.2 Introduction: Manifold View

Non-rigid Structure-from-Motion (NRSfM), a problemwhere the task is to recover the three-
dimensional structure of a deforming object from a set of image feature correspondences
across frames. Any solution to this problem depends on the proper modeling of structure
∈ M and an efficient estimation of motion ∈ SE(3), whereM denotes some structure
manifold and SE(3) denotes special Euclidean group which is a differentiable manifold [56].
Though, after Bregler et al. factorization framework to NRSfM [164], motion estimations
are mostly relaxed to rotation estimation ∈ SO(3). Even after such relaxation, the problem
still remains unsolved for any arbitrary motion. The main difficulty in NRSfM comes from
the fact that both the camera and the object are moving and, along with it the object them-
selves are deforming, hence, it becomes difficult to distinguish camera motion from object
motion using only image data. Despite such difficulties, many efficient and reliable solutions
based on the priors are proposed to solve NRSfM. A reliable solution to this problem is im-
portant as it covers a wide range of applications from medical industry to the entertainment
industry and many more.
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(a) (b) (c)

Figure 5.1: Dense 3D reconstruc on of facial expression using our algorithm. The result show the 3D reconstruc on
of 73,765 points of a complex non-rigidly deforming surface. These results can be useful for real world applica ons
such as 3D modeling, virtual reality etc. The example sequence is taken from Actor dataset [14].

To solve NRSfM, the algorithms proposed in the past can broadly be divided into two
major classes 1) sparseNRSfM and 2) denseNRSfM. This classification is based on the num-
ber of feature points that the algorithm can efficiently process to model the deformation
of the object. Although many reliable solution to this problem exists for sparse NRSfM
[44, 104, 8, 160, 137, 113, 73, 81], very few work have been done towards solving the dense
NRSfM reliably and efficiently [65, 41, 103, 10]. Also, the existing solutions to dense NRSfM
are computationally expensive and are mostly constrained to analyze the global deformation
of the non-rigid shape [65, 41]. The basis for this gradual progress in denseNRSfM is perhaps
due to its dependence on per pixel reliable correspondences across frames, and the absence
of a resilient structure modeling framework to capture the local non-linearities. One may ar-
gue on the efficient motion estimation, however, from image correspondences, we can only
estimate relative motion and reliable algorithms with solid theory exists to perform this task
well [44, 113]. Also, with the recent progress in deep learning algorithms, per pixel correspon-
dences can be achieved with a remarkable accuracy [158], which leaves structure modeling as
a potential gray area in dense NRSfM to focus.
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1"#Grassmann Point
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K#(Grassmann Point

Frames

Figure 5.2: Temporal representa on using Grassmannians in the shape space introduces discon nuity in the
overall trajectory of the feature point. Also, to define neighboring subspace dependency graph in the me
domain seems very challenging keeping in mind that the ac vity/expression may repeat. Red circle shows
the feature point with its trajectory over frames (Black).

In the previous chapter, we exploited the Grassmann manifold to model non-rigid sur-
faces in denseNRSfM. The key insight in that work is; even though the overall complexity of
the deforming shape is high, each local deformationmay be less complex [37, 38, 39, 40]. Us-
ing this idea, we proposed a union of local linear subspace approach to solve dense NRSfM
problem. Nevertheless, that work overlooked on some of the intrinsic issues associated with
the modeling of non-rigidly deforming surface. Firstly, we represents each local linear sub-
space independently via a high-dimensional Grassmannian representation. Now, such rep-
resentation may help reconstruct complex 3D deformation but can lead to wrong clustering,
and it’s very important in joint reconstruction and clustering framework to have suitable clus-
tering of subspaces, else reconstruction may suffer. Secondly, the previous approach to rep-
resent local non-linear deformation completely ignored the neighboring surfaces, whichmay
result in an inefficient representation of the Grassmannians in the trajectory space. Thirdly,
the representation of Grassmannians in the shape space adopted in the previous work results
in irredeemable discontinuity of the trajectories (see Fig.(5.2)). Hence, temporal representa-
tion of the set of shapes using Grassmannians seems not an extremely beneficial choice for
modeling dense NRSfM on Grassmannian manifold*. Lastly, although the dense NRSfM
algorithmproposed in last chapterworks better and faster than the othermethods, it depends
on several manual parameters which are inadmissible for a practical application.

This chapter introduce an algorithm that overcomes the aforementioned limitationswith
previous formulation. The main point we are trying to make is that; reconstruction and

*Purpose behind NRSfM is not the same as activity/action recognition. See Appendix (D) for a discussion
on this.
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grouping of subspace on the same high dimensional Grassmann manifold seem an unrea-
sonable choice. Even recent research in the Riemannian geometry has shown that the low-
dimensional representation of the corresponding high dimensional Grassmann manifold is
more favorable for grouping Grassmannians [91, 83]. So, we formulate dense NRSfM in a
way that it takes advantage of both high and low dimensional representation of Grassman-
nians i.e., perform reconstruction in the original high-dimension and cluster subspace in its
lower-dimension representation.

We devise an unsupervised approach to efficiently represent the high-dimensional non-
rigid surface on a lower dimensional Grassmann manifold. These low-dimensional Grass-
mannians are represented in such a way that it preserves the local structure of the surface
deformation in accordance with its neighboring surfaces when projected. Now, these low-
dimensionalGrassmannians serves as apotential representative for its high-dimensionalGrass-
mannians for suitable grouping, which subsequently help improve the reconstruction and
representation of the Grassmannians on the high-dimensional Grassmann manifold, hence,
the term Jumping Manifolds (MoJu). Further, we drop the temporal grouping of shapes us-
ing Grassmannians to discourage the discontinuity of the trajectories (see Fig.(5.2)).

In essence, our work is inspired from the last chapter and is oriented towards settling
its important limitations. Moreover, in contrast to last algorithm, we capture the notion of
dependent local subspace in a union of subspace algorithm [112] viaGrassmannianmodeling.
The algorithm we proposed is an attempt to supply a more efficient, reliable and practical
solution to this problem. Our formulation gives an efficient framework for modeling dense
NRSfMon theGrassmannmanifold than [103]. Experimental results show that ourmethod
is as accurate as other algorithms and is numerically more efficient in handling noise. The
main contributions of this work are as follows:

• An efficient framework for modeling non-rigidly deforming surface that exploits the
advantage of Grassmannmanifold representation of different dimensions based on its
geometry.

• A formulation that encapsulates the local non-linearity of the deforming surface w.r.t
its neighbors to enable the proper inference and representation of local linear sub-
spaces.

• An iterative solution to the proposed cost function based on ADMM [19], which is
simple to implement and provide results as good as the best available methods. Ad-
ditionally, it helps improve the 3D reconstruction substantially, in the case of noisy
trajectories.

Next, we will briefly discuss some previous work that solves dense NRSfM. Although in
the last chapter we mentioned some of it, we reference it concisely for easy follow up.
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5.3 Relevant Previous Work

Earlier attempts to solve dense NRSfM used piecewise reconstruction of the shape parts
which were further processed via a stitching step to get a global 3D shape [35, 144]. To our
knowledge, Garg et al. variational approach [67] was the first to propose and demonstrate
per pixel dense NRSfM algorithm without any 3D template prior. This method introduced
a discrete total variational constraint with trace norm constraint on the global shape, which
resulted in a biconvex optimization problem. Despite the algorithm outstanding results, it’s
computationally very expensive and needs a GPU to provide the solution.

In contrast, Dai et al. extended his simple prior free approach to solve dense NRSfM
problem [44, 41]. The algorithm proposed a spatial-temporal formulation to solve the prob-
lem. The author revisits the temporal smoothness term from [44] and integrate it with a
spatial smoothness term using the Laplacian of the non-rigid shape. The resultant optimiza-
tion leads to a series of least squares to beminimizedwhichmakes it extremely slow toprocess.
In the previous chapter, we modeled this problem on the Grassmann manifold [103]. The
work extended the spatiotemporalmulti-body framework to solve denseNRSfM [104]. The
algorithm demonstrated that such an approach is more efficient, faster and accurate than all
the other recent approaches to solve dense NRSfM task [67, 41, 10].

Consecutive frame-based approach has recently shown some promising results to solve
dense 3D reconstruction of a general dynamic scene including non-rigid object [107, 143].
Nevertheless, motion segmentation, triangulation, as rigid as possible constraint and scale
consistency quite often breaks down for the deforming object over frames. Therefore, dense
NRSfMbecomes extremely challenging for such algorithms. Not long ago,Gallardo et al. com-
bined shading, motion and generic physical deformation to model dense NRSfM [61].

5.4 Preliminaries

In this chapter, ∥.∥F, ∥.∥∗ denotes the Frobenius norm and nuclear norm respectively. ∥.∥G
represent the notion of norm on the Grassmann manifold. Single angle bracket < ., . >
denotes the Euclidean inner product. Despite we discussed some of themanifold preliminar-
ies in the last chapter, for ease of understanding and completeness, in this section, we briefly
review few important definitions related to the Grassmann manifold. Firstly, a manifold is a
topological space that is locally similar to the Euclidean space —this is a loose definition and
may not be completely satisfactory to a mathematician but its helpful for building intuition.
Out of several manifolds, the Grassmann manifold is a topologically rich non-linear mani-
fold, each point of which represent the set of all right invariant subspace of the Euclidean
space [48, 2, 103].
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Definition 3. The Grassmann manifold, denoted by G(p, d), consists of all the linear ‘p’ di-
mensional subspace embedded in a ‘d’ dimensional Euclidean space Rd such that 0 ≤ p ≤ d
[Absil et al., 2009] [2].

Apoint ‘Φ’ on theGrassmannmanifold canbe representedbyRd×p matrixwhose columns
are composed of orthonormal basis. The space of such matrices with orthonormal columns
is a Riemannian manifold such that ΦTΦ = Ip, where Ip is a p× p identity matrix.

Definition 4. Grassmann manifold can be embedded into the space of symmetric matric via
mapping Π : G(p, d) 7→ Sym(d),Π(Φ) = ΦΦT, where Φ a Grassmann point [80, 82].
Given two Grassmann points Φ1 and Φ2, then the distance between them can be measured
using the projection metric d2

g(Φ1,Φ2) = 0.5∥Π(Φ1)−Π(Φ2)∥2F [80].

In thepast, these twoproperties ofGrassmannmanifoldhas beenused inmany computer
vision applications [80, 28, 103]. Second definition is very important as it allows to measure
the distance on the Grassmann manifold, hence, (G, dg) forms a metric space. We used these
properties in the construction of our formulation. For comprehensive details on this topic
readers may refer to [80].

5.5 Problem Formulation

Let ‘P’ be the total number of feature points tracked across ‘F’ frames. Concatenating these
2D coordinates of each feature points for all frames across the columns of a matrix gives ‘W’
∈ R2F×P matrix. This matrix is popularly known as measurement matrix [164]. Our goal
is, given the image measurement matrix, estimate the camera motion and 3D coordinates of
every 2D feature points across all frames.

We start our formulationwith the classical representation toNRSfM i.e.W = RS, where,
R ∈ R2F×3F is a block diagonal rotation matrix with each block as a 2× 3 orthographic rota-
tion matrix, and ∈ R3F×P as the 3D structure matrix. With such a representation, the entire
problem simplifies to the estimation of correct rotation matrix ‘R’ and structure matrix ‘S’
such that the above relation holds. Following the assumption of the previous work [103], we
estimate the rotation using Intersection method [44]. As a result, the task reduces to com-
posing of an efficient algorithm that correctly models the surface deformations and provide
better reconstruction results. Recent algorithms in NRSfM have demonstrated that cluster-
ing benefits reconstruction and vice-versa, however, the existing framework to employ this
idea is not scalable to millions of points. To establish this idea for dense NRSfM, Kumar et
al.[103] used LRR on Grassmannian manifold. Using the similar notions, we model dense
deforming surface using Grassmannian representation to provide more reliable and accurate
solution.
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In the following subsection, we first introduce the Grassmannian representation of the
surface and how to project these Grassmannians onto the lower dimensionGrassmannman-
ifold by preserving the neighboring information. In the later subsection, we use these repre-
sentations to formulate the overall cost function for solving dense NRSfM problem.

5.5.1 Grassmannian representation

Let ‘Φi’∈ G(p, d)be aGrassmannpoint representing the ith local linear subspace spanned by
ith set of columns of ‘S’. Using this notion, we decompose the entire trajectories of the struc-
ture into a set of ‘K’ Grassmannians ξ = {Φ1,Φ2,Φ3, ....,ΦK}. Now, such a representation
treats each subspace independently and therefore, its low-dimensional linear representation
may not be suitable to capture the surface dependent non-linearity. To properly represent
Grassmannianwhich respects the neighboring non-linearity in low-dimension, we introduce
a different strategy to model non-rigid surface in low-dimension. For now, let Δ ∈ Rd×d̃ be
a matrix that maps ‘Φi’∈ G(p, d) to ‘φi’∈ G(p, d̃) such that d̃ < d. Mathematically,

φi = ΔTΦi (5.1)

Its quite easy to examine that φi is not a orthogonal matrix and, therefore, does not quali-
fies as a potential point on a Grassmann manifold. However, by performing a orthogonal-
triangular (QR) decomposition of φi, we estimate the new representative of φi on the Grass-
mann manifold of ‘d̃’ dimension.

ΘiUi = qr(φi) = ΔTΦi (5.2)

Here, qr(.) is a function that returns the QR decomposition of the matrix. The Θi ∈ Rd̃×p

is an orthogonal matrix and Ui ∈ Rp×p is the upper triangular matrix†. Using Eq.(5.2), we
represent the equivalence of Φi in low dimension as

Θi = ΔT(ΦiU−1
i )

Θi = ΔTΩi
(5.3)

where, Ωi = ΦiU−1
i ∈ Rd×p. The key-point to note is that both Θi and φi has the same col-

umn space. In principle such a representation is useful however, it does not serve the purpose
of preserving the non-linearity w.r.t its neighbors. In order to encapsulate the local depen-
dencies (see Fig.(5.3), Fig.(5.4)), we further constrain our representation as:

E(Δ) = minimize
Δ

K∑
(i,j)

wij
1
2
∥Π(Θi)−Π(Θj)∥F2 (5.4)

†Note: The value of d̃ ≥ p, Use [Θi,Ui] = qr(φi, 0) in MATLAB to get a squareUi matrix (Ui ∈ Rp×p)
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i"# Grassmann point (	Θi) 
j"# Neighbor Grassmann point (	Θj) 
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Z

Figure 5.3: In contrast to [103], our modeling of surface using Grassmannians considers the similarity between
the neighboring Grassmannians while represen ng it in the lower dimension. Based on the assump on that
spa ally neighboring surface tend to span similar subspace, defining neighboring subspace dependency graph
is easy and most of the real-world examples follows such assump on. However, building such graph in shape
space can be tricky.

The parameter ‘wij’ accommodate the similarity knowledge between the twoGrassmannians.
Using the Definition(4) and Eq.(5.3), we further simplify Eq.(5.4) as

E(Δ) ≡ minimize
Δ

∑
(i,j)

wij
1
2
∥ΔTΩiΩT

i Δ − ΔTΩjΩT
j Δ∥2F

E(Δ) ≡ minimize
Δ

K∑
(i,j)

wij
1
2
∥ΔT(ΩiΩT

i −ΩjΩT
j )Δ∥2F

E(Δ) ≡ minimize
Δ

K∑
(i,j)

wij
1
2
∥ΔT(Λij)Δ∥2F

(5.5)

where, Λij ∈ Sym(d). The parameter ‘wij’ (similarity graph) is set as exp(−d2
g(Φi,Φj))

withdg as theprojectionmetric (seeDefinition (4)). Eq.(5.5) is anunconstrainedoptimization
problem and its solution may provide a trivial solution. To estimate the useful solution, we
further constrain the problem. Using ith Grassmann point ‘Ωi’ and its neighbors, expand
Eq.(5.5). By performing some simple algebraic manipulation, Eq.(5.5) reduces to

trace
(
ΔT( K∑

i=1

λiiΩiΩT
i
)
Δ
)

(5.6)
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where, λii =
∑K

j=1 wij. Constraining the value of Eq.(5.6) to 1 provides the overall optimiza-
tion for an efficient representation of the local non-rigid surface on theGrassmannmanifold.

E(Δ) ≡ minimize
Δ

K∑
(i,j)

wij
1
2
∥ΔT(Λij)Δ∥2F

subject to:

trace
(
ΔT( K∑

i=1

λiiΩiΩT
i
)
Δ
)
= 1

(5.7)

Its easy to verify that the matrix Λ and
(∑K

i=1 λiiΩiΩT
i
)
are symmetric and positive semi-

definite, and therefore, the above optimization can be solved as a generalized eigen value
problem —refer Appendix (D) for details.

5.5.2 Dense NRSfM formulation

To solve the dense non-rigid structure from motion with the representation formulated in
the previous sub-section §5.5.1, we propose to jointly optimize the objective function over
the 3D structure and its local group representation. In order to build the overall objective
function, we introduce each constraint equation one by one for clear understanding of our
overall cost function.

Ep(S) = minimize
S

1
2
∥W− RS∥2F (5.8)

The first term constrain the 3D structure such that it satisfies the re-projection error.

Es(S♯) = minimize
S♯

∥S♯∥∗ (5.9)

The second term caters the global assumption about the non-rigid object; that is the over-
all shape matrix is low-rank. To establish this assumption, we perform rank minimization
of the shape matrix. Although the rank minimization of a matrix is NP-hard, it’s relaxed
to nuclear norm minimization to find an approximate solution. This term mainly penal-
izes the total number of independent shape required to represent the shape. The choice of
minimizing S♯ ∈ R3P×F instead to S ∈ R3F×P is inspired from Dai et al.’s work [44]. Since
the dense deforming shape is composed of several local linear low-dimensional subspace, the
global constraint (Eq.(5.9)) may not reflect their local dependency. Therefore, in order to in-
troduce the local subspace constraint on the shape, we use the notion of self-expressiveness
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on the non-linear Grassmann manifold space.

minimize
E,C,S♯

∥E∥2G + β2∥S
♯∥∗ + β3∥C∥∗

subject to: S♯ = f(S), S = SC+ E
(5.10)

Here, we define f : S ∈ R3F×P 7→ S♯ ∈ R3P×F and C ∈ RP×P as the coefficient matrix.
We know from the literature that the Grassmann manifold is isometrically equivalent to the
symmetric idempotent matrix [33]. So, we embed the Grassmann manifold into symmetric
matrix manifold to define the self-expressiveness. Let ξ̃ = {Θ1,Θ2, ...,ΘK} be the set of
Grassmannians on a low-dimensional Grassmann manifold. The elements of ξ̃ are the pro-
jection of high-dimensional Grassmannian representation of the columns of ‘’ matrix. Let
χ = {(Θ1ΘT

1 ), (Θ2ΘT
2 ), ..., (ΘKΘT

K)} be its embedding onto symmetric matrix manifold.
Using such embedding techniques we re-write Eq.(5.10) as

minimize
E,C̃,♯

∥E∥2F + β2∥S
♯∥∗ + β3∥C̃∥∗

subject to:
S♯ = f(S),χ = χC̃+ E

(5.11)

where, C̃ ∈ RK×K and χ ∈ Rd̃×d̃×K denotes the coefficient matrix of Grassmannians and
structure tensor respectively, withK as the total number ofGrassmannians. Generally,K <<
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P, which makes such representation scalable.
The third term we introduce is composed of few constraint functions that provides a

way to group Grassmannians and recover 3D shape simultaneously. Let P ∈ R1×P be an
ordering vector that contains the index of columns of S. Our function definition is of the
form {(output, function(.)) : definition}. Using it, we define the function fg, fh, fp and fs as
follows: {(

ξ, fg(P, S)
)
: order {Si}Ki=1 columns of S of using P,

ξ := {Φi}Ki=1where, [ Φi,Σi, ξvi] = svds(Si, p)
} (5.12)

{(
ξ̃, fh(Δ, ξ)

)
: ξ̃ = {Θi}Ki=1,Θi = ΔT(ΦiU−1

i ),

where, Δ = solution to the minimization of Eq.(5.7)
} (5.13)

{
(P, fp(ξ̃, C̃, Po) : P = spectral_clustering(ξ̃, C̃, Po)

}
(5.14)

{(
S, fs(ξ,Σ, ξv)

)
: i = [ξi Σi ξvi],where Σi ∈ Rp×p} (5.15)

Intuitively, the first function (fg) uses the ordering vector P∈ R1×P to refine the grouping of
the trajectories for suitable Grassmannian representation. The second function (fh) projects
the Grassmannians to a lower dimension in accordance with the neighbors using Eq.(5.7).
The third function (fp) uses the projected Grassmannians to assign proper labeling to the
Grassmann points and update the given ordering vector P using spectral clustering. The
fourth function (fs) uses the group of trajectories to reconstruct back the set of local surface.
Σ, ξv are the singular values and right singular vector matrices in the high-dimension.

Objective Function: Combining all the above terms and constraints provides our over-
all cost function.

minimize
E,C̃,S,S♯

1
2
∥W− RS∥2F + β1∥E∥

2
F + β2∥S

♯∥∗ + β3∥C̃∥∗

subject to:
S♯ = f(S),χ = χC̃+ E,
ξ = fg(P, S), ξ̃ = fh(Δ, ξ),
S = fs(ξ,Σ, ξv), P = fp(ξ̃, C̃, Po)

(5.16)

where Po vector contains the initial ordering of the columns of ‘W’ and ‘S’. The function
(fp) provides the ordering index to rearrange the columns of ‘S’ matrix to be consistent with
‘W’ matrix. This is important because, grouping the set of columns of ‘S’ over iteration,
disturbs its initial arrangements.
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5.6 Solution

The optimization proposed in Eq.(5.16) is a coupled optimization problem. Several methods
of Bi-level optimization can be used to solve such minimization problem [13, 74]. Never-
theless, we propose ADMM [19] based solution due to its application in many non-convex
optimization problems. The key point to note is that one of our constraint is composed of
separate optimization problem (fh) i.e., the solution to Eq.(5.7), and therefore, we cannot
directly embed the constraint to the main objective function. Instead, we only introduce
two Lagrange multiplier L1,L2 to concatenate a couple of constraints back to the original
objective function. The remaining constraints are enforced over iteration. To decouple the
variable C̃ from χ, we introduce auxiliary variable C̃ = Z. We apply these operations to our
optimization problem to get the following Augmented Lagrangian form:

minimize
Z,C̃,S,S♯

1
2
∥W− RS∥2F + β1∥χ − χC̃∥2F + β2∥S

♯∥∗+

ρ
2
∥S♯ − f(S)∥2F+ < L1, S♯ − f(S) > +β3∥Z∥∗+
ρ
2
∥C̃− Z∥2F+ < L2, C̃− Z >

subject to:

ξ = fg(P, S), ξ̃ = fh(Δ, ξ),
S = fs(ξ,Σ, ξ), P = fp(ξ̃, C̃, Po)

(5.17)

Note that C̃ provides the information about the subspace, not the vectorial points. How-
ever, we have the chart of the trajectories and its corresponding subspace. Once, we group the
trajectories based on C̃, fg(.) provides new Grassmann sample corresponding to each group.
The definition of fh(.) and fs(.) is provided in Eq.(5.7) and Eq.(5.14) respectively. More gen-
erally, the solution to the optimization in Eq.(5.7) is obtained by solving it as a generalized
eigenvalue problem. To keep the order of columns of ‘S’ matrix consistent with ‘W’ ma-
trix fp(.) provides the ordering index. We provide the implementation details of our method
with suitable MATLAB commands in the Algorithm (3). For details on the derivation to
each sub-problem, kindly refer to the Appendix (D).

5.7 Initialization and Evaluation

We performed experiments and evaluation on the available standard benchmark datasets [65,
177, 14]. To keep our evaluations consistent with the previous methods, we compute the
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Algorithm 3 Dense Non-rigid Structure from Motion (MoJu)

Require: W, R, {βi}
3
i=1, ρ=e−2, ρm=e8, ε=e−10, c =1.1,K;

Initialize: S=pinv(R)W, S♯=f(S), Z=0, {Li}2i=1=0, d̃;
Δ = [Id̃×d̃; random values], p%top singular values
Po = kmeans++(S,K), iter = 1, Pstore(iter, :) = Po,
P = Po

while not converged do
1. S := mldivide

(
RTR+ ρI, ρ(f−1(S♯) + f−1(L1)/ρ) + RTW

)
;

2. ξ := fg(P, S); see Eq.(5.12)
3. W := arrange_column(P,W)
4. Update the similarity matrix ‘wij’ using ξ. §5.5.1
5. ξ̃ := fh(ξ,Δ); s.t,Δ ≡ minimize

Δ
E(Δ); see Eq.(5.13)

6. Γij = Tr[(ΘT
j Θi)((ΘT

i Θj)]; Γ = (Γij)Kij=1;L = chol(Γ)

7. C̃ :=
(
2β1LLT + ρ(Z− L2/ρ)

) (
2β1LLT + ρI

)−1;

8. P := fp(ξ̃, C̃, P);
9. S := fs(ξ,Σ, ξv); see Eq.(5.14)
10. S♯ := UsSβ2

ρ
(Σs)Vs; s.t, [Us,Σs,Vs] := svd(f(S)− L1/ρ)

11. Z := UzSβ3
ρ
(Σz)Vz; s.t, [Uz,Σz,Vz] := svd(C̃+ L2/ρ);

12. L1 := L1 + ρ(S♯ − f(S));L2 := L2 + ρ(C̃− Z)
13. iter := iter + 1; Pstore(iter, :) := P;
14. ρ := min(ρm, cρ);
15. gap := max{∥S♯ − f(S)∥∞, ∥C̃− Z∥∞};
(gap < ε) ∨ (ρ > ρm)→ break;%convergence check

end while
return S;

e3D = Estimate_error (S, SGT, Pstore);%use Eq.(5.18)

mean normalized 3D reconstruction error of the estimated shape ‘Sest’ after convergence as

e3D =
1
F

F∑
i=1

∥Siest − SiGT∥F
∥SiGT∥F

(5.18)

here ‘SGT’ denotes the ground-truth 3D shape matrix.

Initialization: We used Intersection method [44] to estimate the rotation matrix and
initialize S = pinv(R)W. The initial grouping of the trajectories or columns of S is done
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(a) (b) (c) (d)
Figure 5.5: From le : 3D reconstruc on results on Back [65], Heart [65], Paper[177] and T-shirt [177] data
sequence respec vely.

using k-means++ algorithm [11]. These groups are then used to initialize Po, P and the Grass-
mann points {Φi}Ki=1 ∈ ξ via subset of singular vectors. To represent the Grassmannians in
the lower-dimension, we solve Eq.(5.7) to initialize ξ̃ and store corresponding singular values.
The similarity matrix or graph in Eq.(5.7) is build using the distance measure between the
Grassmannians in the embedding space §5.5.1.

1. Results on synthetic Face dataset: The synthetic face dataset is composed of
four distinct sequence [65] with 28,880 feature points tracked over multiple frames. Each
sequence captures the human facial expression with a different range of deformations and
cameramotion. Sequence 1 and Sequence 2 are 10 frame long videowith rotation in the range
±30◦ and±90◦ respectively. Sequence 3 andSequence 4 are 99 frame long video that contains
high frequencies and low frequencies rotation respectively which captures real human facial
deformations. Table (5.1) shows the statistical results obtained on these sequences using our
algorithm. For qualitative results on these sequences kindly refer to Appendix (D).
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Dataset MP PTA CSF1 CSF2 DV DS SMSR SDG Ours
Face1 0.2572 0.1559 0.5325 0.4677 0.0531 0.0636 0.1893 0.0443 0.0404
Face2 0.0644 0.1503 0.9266 0.7909 0.0457 0.0569 0.2133 0.0381 0.0392
Face3 0.0682 0.1252 0.5274 0.5474 0.0346 0.0374 0.1345 0.0294 0.0280
Face4 0.0762 0.1348 0.5392 0.5292 0.0379 0.0428 0.0984 0.0309 0.0327
Actor1 0.5226 0.0418 0.3711 0.3708 - 0.0891 0.0352 0.0340 0.0274
Actor2 0.2737 0.0532 0.2275 0.2279 - 0.0822 0.0334 0.0342 0.0289
Paper 0.0827 0.0918 0.0842 0.0801 - 0.0612 - 0.0394 0.0338
T-shirt 0.0741 0.0712 0.0644 0.0628 - 0.0636 - 0.0362 0.0386

Table 5.1: Sta s cal comparison of our method with compe ng approaches namely MP [137], PTA [7], CSF1 [71],
CSF2[73], DV [65], DS [41], SMSR [10] and SDG[103]. Quan ta ve evalua ons for SMSR [10] and DV [65] are not
performed by us due to the unavailability of their code, and therefore, we tabulated their reconstruc on error from
their published work. Codes for DS [41] and SDG [103] are obtained through personal communica on.

2. Results on Paper and T-shirt dataset: Varol et al.introduced ‘kinect_paper’ and
‘kinect_tshirt’ datasets to test the performance of NRSfM algorithm under real conditions
[177]. This dataset provides sparse SIFT [121] feature tracks and noisy depth information
captured from Microsoft Kinect for all the frames. As a result, to get dense 2D feature cor-
respondences of the non-rigid object for all the frames becomes difficult. To circumvent this
issue, we usedGarg et al.[63] algorithm to estimate themeasurementmatrix. To keep the nu-
merical comparison consistent with the previous work in dense NRSfM [103], we used the
same coordinate range for tracking the features. Numerically, its xw = (253, 253, 508, 508), yw
= (132, 363, 363, 132) rectangular window across 193 frames for kinect_paper sequence. For
kinect_tshirt sequence, we considered rectangular window of xw = (203, 203, 468, 468), yw =
(112, 403, 403, 112) across 313 frames, same as used in Kumar et al.work [103]. Fig.(5.5) shows
the reconstruction results on these sequence with comparative results provided in Table (5.1).

3. Results on Actor dataset: Beeler et al. [14] introduced Actor dataset for high-
quality facial performance capture. This dataset is composed of 346 frames captured from
seven cameraswith 1,180,232 vertices. The dataset captures the fine details of facial expressions
which is extremely useful in the testing of NRSfM algorithms. Nevertheless, for our experi-
ment, we require dense 2D image feature correspondences across all images as input, which
we synthesized using ground-truth 3D points and synthetically generated orthographic cam-
era rotations. Tomaintain the consistency with the previous works in dense NRSfM for per-
formance evaluations, we synthesized two different datasets namelyActor Sequence1 andAc-
tor Sequence2 based on the head movement as described in Ansari et al.work [10]. Fig.(5.6)
show thedense detailed reconstruction that is achievedusing our algorithm. Table (5.1) clearly
indicates the benefit of our approach to reconstruct such complex deformations.
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(a) (b) (c) (d)
Figure 5.6: 3D reconstruc on results on the Actor sequence [14].

4. Results on Face, Heart, Back dataset: To evaluate the variational approach to
dense NRSfM [65] Garg et al. introduced these datasets. Its sequences are composed of
monocular video’s captured in a natural environment with varying lighting condition and
large displacements. It consists of three different videos with 120, 150 and 80 frames for face
sequence, back sequence and heart sequence respectively. Additionally, it provides dense 2D
feature track for the same with 28332, 20561, and 68295 features track over the frames for face,
back and heart sequence. No ground-truth 3D is available with this dataset for evaluation.
Fig.(5.5) show reconstruction results on back and heart sequence. Fig.(5.7) and Fig.(5.8) show
the 3D reconstruction results of our algorithm on real face and synthetic face sequence.

5.7.1 Algorithmic Analysis

We performed some more experiments to understand the behavior of our algorithm under
different input parameters and evaluation setups. In practice these experiment help analyze
the practical applicability of our algorithm.
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Figure 5.7: 3D reconstruc on results on real face sequence [65]

1. Performance over noisy trajectories: We utilized the standard experimental
procedure to analyze the behavior of our algorithm under different noise levels. Similar to
the previous work [103], we added the Gaussian noise to the input trajectories. The standard
deviation of the noise are adjusted as σg = λgmax{|W|} with λg varying from 0.01 to 0.055.
Fig.(5.9a) show the quantitative comparison of our approach with recent algorithms namely
DS [41] and SDG [103]. The graph is plotted by taking the average reconstruction error of
all the four synthetic face dataset [65]. The procured statistics indicate that our algorithm is
more resilient to noise than other competing methods.

2. Performancewith change in the number of singular values: The selection
of ‘p’ inG(, ) i.e. the number of top singular vectors for Grassmannian representation and its
corresponding singular values to perform reconstruction can directly affect the performance
of our algorithm. However, it has been observed over several experiments that we need very
few singular value and singular vectors to recover dense detailed 3D reconstruction of the
deforming object. Fig.(5.9b) show the variation in average 3D reconstruction with the values
of ‘p’ for synthetic face dataset [65].

3. Dependenceof the algorithmonvariable d̃: While reducing the dimension for
grouping the grassmann points, one of the critical aspect is to determine the dimension to
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(a) Reconstructed Shape

(b) Ground-Truth Shape

Figure 5.8: 3D reconstruc on results on synthe c face sequence [65].

which we should project for better results. We used well-known procedure of cumulative
energy of eigen vectors to get the value of d̃. Mathematically, let Ω be the set that stack all the
Grassmannians and σi be the ith singular value of ΩΩT, then

d̃ = argmin
dopt

∑dopt
i=1 σi∑d
i=1 σi

≥ τ (5.19)

where τ can vary from 0 to 1 and dopt (optimal dimension) is a positive integer. We put τ =
0.97 for all our experiment. Fig.(5.10) show the variations in the reconstruction error with
the value of τ. It is observed that for different dataset the value of suitable d̃ is different. The
point to note is that if the reduced dimension is less than the intrinsic dimension, the samples
may lose important information for better grouping of Grassmannians.

4. ProcessingTimeandConvergence: Our algorithm execution time is almost at par
or a bit slower than SDG [103]. Fig.(5.9c) show the processing time taken by our method on
different datasets. Fig.(5.9d) show a typical convergence curve of our algorithm. Ideally, it
takes 120-150 iteration to provide an optimal solution to the problem.
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Table 1

Noise Performan DS SDG Ours

0.0050 0.0621 0.0474 0.0364

0.0100 0.0622 0.0487 0.0377

0.0150 0.0631 0.0499 0.0389

0.0200 0.0639 0.0510 0.0400

0.0250 0.0645 0.0520 0.0410

0.0300 0.0655 0.0530 0.0420

0.0350 0.0669 0.0539 0.0429

0.0400 0.0679 0.0550 0.0440

0.0450 0.0691 0.0559 0.0449

0.0500 0.0703 0.0575 0.0460

0.0550 0.0731 0.0584 0.0474
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Table 1

Dataset MP DS SDG Ours

Face Seq1 280.32 360.87 121.0144 156.0122

Face Seq2 260.78 343.78 95.3093 105.7743

Face Seq3 2068.42 4032.71 894.2133 907.3231

Face Seq4 2125.67 4162.21 936.5386 978.5123

Paper 3212.22 4213.41 1577.36 1685.17

T-shirt 3713.22 4512.84 2189.95 2228.72
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Figure 5.9: (a) Varia on in the average 3D reconstruc on error with change in the noise ra o’s for face dataset[65]. (b)
Fluctua on in the 3D reconstruc on accuracy with change number of top singular values and corresponding singular
vectors used by our algorithm for face sequence[65]. (c) Processing me againt other compe ng algorithm’s on Intel
Core i7-4790 CPU @3.60GHz x 8 Desktop with MATLAB 2017b, our method show comparable execu on ming to
SDG[103]. (d) A typical ADMM op miza on convergence curve of our algorithm.
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Table 1

Face Seq.1 Face Seq.2

0.7 0.1432 0.1722

0.8 0.1083 0.1267

0.9 0.0702 0.0864

0.91 0.0611 0.0701

0.92 0.0552 0.0645

0.93 0.0526 0.0581

0.94 0.0448 0.0409
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Figure 5.10: Accuracy varia on with respect to τ.

5.8 Closing Remarks

In this chapter, we introduced an algorithm that uses Grassmannmanifold representation to
solve dense NRSfM. Our Grassmannian representation of a non-rigidly deforming surface
exploits the advantage of Grassmannians of different dimensions to jointly estimate better
grouping of subspaces and their corresponding 3D geometry. Our approach explicitly lever-
ages the geometric structure of the non-rigidly moving object w.r.t its neighbors onmanifold
via similarity graph and, it’s embedding in the lowerdimension. Weempirically demonstrated
that our method is able to achieve 3D reconstruction accuracy which is better or as good as
the state-of-the-art, with significant improvement in handling noisy trajectories.
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6
Dense monocular 3D reconstruction of a

complex dynamic scene.
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In this chapter we will deviate from factorization approach to solve dense NRSFM. We
introduce a dense 3D reconstruction algorithmwhich is more applicable to real world scenes
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and is free from orthographic camera assumption. The algorithm can supply dense 3D re-
construction of both the background and foreground irrespective of the rigidity type.

6.1 Introduction

To set the stage for this topic, we reiterate that “The task of reconstructing 3D scene geometry
from images –popularly known as structure-from-motion (SfM) is a fundamental problem
in computer vision”. An initial introduction and working solution to this problem can be
found as early as 1970’s and 1980’s [172] [78] [119], which were further discussed compre-
hensively in Blake et al. seminal work [18]. While this field of study was largely dominated
by sparse feature based reconstruction of rigid [88] [87] [85] [162] [164] and non-rigid ob-
jects [22] [44] [113] [106] [104], in recent years with the surge in computational resources
dense 3D reconstruction of a complex dynamic scene have been introduced and successfully
demonstrated [128] [143].

A dense solution to this inverse problem is required due to its increasing demands in the
real-world application —from animation and entertainment industry to robotics industry
(VSLAM). In particular with the proliferation of monocular camera in almost all modern
mobile devices has elevated the demand for sophisticated dense reconstruction algorithm.
When a 3D scene is rigid, the reconstruction can be easily done by conventional rigid-SfM
techniques [85]. However, real-world scenes are more complex containing not only rigid
motions but also non-rigid deformations as well as their combination. For example, a typ-
ical outdoor traffic scene consists of both multiple rigid motions of vehicles, and non-rigid
motions of pedestrians etc. Therefore, it is highly desirable to develop a 3D reconstruction
framework that can handle generic (complex and dynamic) scenes.

As stated earlier, when only camera is moving and the scene is static under such situation
a dense 3D reconstruction can be faithfully recovered using well known geometry approach
[85], upto an unknown global scale. Now, imagine a situationwhen there aremultiple rigidly
moving objects in the same scene observed by a moving camera. Although each of the in-
dividual rigid objects can be reconstructed up to an arbitrary scale (and assuming motion
segmentation is done), the reconstruction of the shape of the whole dynamic scene is gen-
erally impossible, simply because the relative scales among all the moving shapes cannot be
determined in a globally consistent way in general. Furthermore, since all the estimated mo-
tions are relative to each other, one cannot distinguish camera motion from object motions.
Therefore, prior information about the objects or the scene and their connection in the real-
world are used to fix the placement of these objects in the environment. This is precisely the
pipeline adopted by Ranftl et al. in his recent work [143].
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Input frames Depth map Scene normals Dense 3D point cloud

Figure 6.1: Dense 3D reconstruc on of a complex dynamic scene from two frames using our method. Here, both the
subject and the camera were moving dynamically. (MPI Sintel [24] alley_1 frame 10 and 26).

In this chapter, we present an approach to solve this problem which neither perform any
object level motion segmentation nor assumes any prior knowledge about the scene rigid-
ity type and still able to recover scale consistent dense reconstruction of a complex dynamic
scene. Our formulation instinctively encapsulates the solution to inherent scale ambiguity
in perspective structure frommotion which is a very challenging problem to solve in general.
However, we show that by using two prior assumptions –about the 3D scene and about the
deformation, we can effectively pin down the unknown relative scales, and obtain a globally
consistent dense 3D reconstruction of a dynamic scene from its two perspective views.

6.2 Motivation and Contribution

The formulationproposed in thiswork ismotivatedby the following endeavor indense struc-
ture from motion of a dynamic scene.

1. Object level motion segmentation

To solvedense reconstructionof a complexdynamic scene fromperspective images, a straight-
forward idea is:

1. Implement object level motion segmentation to infer distinct motion models of mul-
tiple rigidly moving object.

2. Execute existing rigid reconstruction algorithm [88] to retrieve per object reconstruc-
tion.
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3. Use the prior information about the object and the environment to procure scale con-
sistent reconstruction upto unknown global scale.

Themain concernwith such a framework is: In a general dynamic setting, the task of densely
segmenting rigidlymovingobjects or part is not trivial. Consequently, inferringmotionmod-
els for deforming shapes becomes very challenging. Furthermore, the success of object-level
segmentation build upon the assumption of multiple rigid motions, fails to describe more
general scenarios such as “when the objects themselves are deforming”. Subsequently, recon-
struction dependent onmotion segmentation of objects suffers. This motivate us to develop
an algorithm that is able to recover a dense-detailed 3D model of a complex dynamic scene,
from its two perspective images, without object-level motion segmentation as an essential in-
termediate step.

2. Separate treatment for rigid SfM and non-rigid SfM

Our investigation shows that the framework for reconstructing deformable object often dif-
fers from rigidly moving object. Not only solutions, but even the assumptions varies signifi-
cantly e.g orthographic projection, low-rank shape [22] [44] [113] [104]. The reason for such
inadequacy is perfectly valid due to the under-constraint nature of the problem itself. This
motivate us to our next goal i.e “To achieve 3D reconstruction of deformable object and com-
plex dynamic scene under similar assumptions and same formulation.”

To accomplish this goal for any arbitrary non-rigid deformation still remains an open prob-
lem. However, experiments suggest that our frameworkunder somebasic assumptions about
the scene and the deformation, can reconstruct a general dynamic scene irrespective of the
scene rigidity type. Thanks to the recent advancements in the dense optical flow algorithm’s
[12] [31] which are able to capture smooth non-rigid deformation over frames. These robust
dense feature correspondences gives us the opportunity to exploit localmotion. Thus, makes
our formulation competent enough to bridge this gap between rigid and non-rigid SfM.

Assumptions: The twobasic assumptionswe used about the scene are: 1) the deformation
of the scene between two frame is locally-rigid, but globally -rigid- -possible. 2) the struc-
ture of the scene in each frame can be approximated by a piecewise planar smooth surface.

We call our new algorithm the SuperPixelSoup algorithm, for reasons discussed in Section
§6.4.1. Fig. (6.1) show sample reconstruction results obtained using our algorithm. Themain
contributions of this work are:

• a) A framework which disentangle object level motion segmentation for dense 3D re-
construction of a complex dynamic scene.
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• A common framework for dense two-frame 3D reconstruction of a complex dynamic
scene (including deformable objects), which achieves state-of-the-art performance.

• A new idea to resolve the inherent relative scale ambiguity problem in monocular 3D
reconstruction by exploiting the as-rigid-as-possible (ARAP) constraint [155].

6.3 Prior works

The existence of a solution to SfMcanbe tracedback to almost fourdecades ago [172]. Hence,
this field of research can be considered as one themost researched field in the computer vision
community. Since its inception this area has undergone a prodigious development and now
practical algorithms are available which facilitates live dense reconstruction of a rigid scene
[127] [129].

Even after such a remarkable development in this field, the choice of algorithm depends on
the complexity of the object motion and the environment. Therefore, even now researchers
are actively working in this area. One can also consider our work as an attempt to bridge
this gap of rigid SfM and non-rigid SfM (NRSfM) which are most often treated as separate
problems. Our work utilizes the idea of rigidity (locally) to solve dense reconstruction of a
general dynamic scene. This concept of rigidity is not new in structure from motion prob-
lem [172] [120] and it has been effectively applied as a global constraint to solve large scale
reconstruction problem [4]. This global rigidity to solve structure and motion has also been
exploited to solve reconstruction over multiple frames at the same time via factorization ap-
proach [164].

Since, the literature on structure frommotion and its treatment to different scenario’s is very
extensive. For brevity, we give a brief review only to previous works for monocular dynamic
reconstruction that are of direct relevance to our method. Linear low-rank model has been
used for dense nonrigid reconstruction. E.g., Garg et al. [65] solved the task with an ortho-
graphic camera model assuming feature matches across multiple frames. Fayad et al. [55]
recovered deformable surfaces with a quadratic approximation, again from multiple frames.
Taylor et al. [160] proposed a piecewise rigid solution using locally-rigid SfM to reconstruct
a soup of rigid triangles.

While Taylor et al. [160] method is conceptually similar to ours, there are major differences:

1. We achieve two-view dense reconstruction while [160] relies on multiple views (N ≥
4).

2. We use perspective camera model while they rely on an orthographic camera model..
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3. We solve the scale-indeterminacy issue, which is an inherent ambiguity for 3D recon-
structionunder perspective projection,whileTaylor et al. [160]methoddoes not suffer
from this at the cost of being restricted to the orthographic camera model.

Recently, Russel et al. [146] and Ranftl et al. [143] used object-level segmentation for dense
dynamic reconstruction. In contrast, our method is free from object segmentation, hence
circumvent the difficulty associated with motion segmentation in a dynamic setting.

Template based approach is yet another method for deformable surface reconstruction. Yu
et.al. [194] proposed a direct approach to capture dense, detailed 3D geometry of generic,
complex non-rigid meshes using a single RGB camera. While it works for generic surfaces,
the need of a template prevent its wider application tomore general scenes. Wang [186] intro-
duced a template-free approach to reconstruct a poorly-textured, deformable surface. How-
ever, its success is restricted to a single deforming surface rather than an entire dynamic scene.
Varol et.al. [178] reconstructed deformable surfaces based on a piecewise reconstruction by
assuming overlapping patches to be consistent over the entire surface and its also limited to
the reconstruction of a single deformable surface.

6.4 Outline of the Algorithm

Before providing the details about our algorithm, we would like to introduce some common
notations that are used throughout the paper.

Notation: In our formulation, we represent two perspective images as I, I′ : Ω→ R3

|Ω ⊂ Z2 also referred as reference image and next image respectively. Vectors are represented
by lower case letters, such as ‘x’ andmatrices are represented by upper case letters such as ‘X’.
The subscript ‘a’, ‘b’ in a vector denotes anchor point and boundary point vectors respec-
tively, for example xai, xbi represents anchor point and boundary point vector corresponding
to ith superpixel in the image space. For now, we are just introducing notations, exact mean-
ing of these terms will be introduced in the later sections §6.4.2. The 1-norm, 2-norm of a
vector is denoted as |.|1 and ∥.∥2 respectively. For matrices, Frobenius norm is denoted as
∥.∥F.

6.4.1 Overview

Given two perspective images I, I′ of a general dynamic scene, our goal is to recover the dense
3D structure of the scene. We first over-segment the reference image into superpixels, then
model the deformation of the scene by union of piece-wise rigidmotions of these superpixels.
Specifically, we divide the overall non-rigid reconstruction into small rigid reconstruction for
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     Output Optimization 
   framework

Figure 6.2: Reconstruc ng a 3D surface from a soup of un-scaled superpixels via solving a 3D Superpixel
Jigsaw puzzle problem.

each individual superpixel, followed by an assembly process which glues all these individual
local reconstructions in a globally coherent manner. While the concept of the above divide-
and-conquer procedure looks simple, there is however a fundamental difficulty of scale in-
determinacy in its implementation. Scale-Indeterminacy refers to the well-known fact that
using amoving camera one can only recover the 3D structure up to an unknown scale. In our
method, the individual rigid reconstruction of each superpixel can only be determined up
to an unknown scale, the assembly of the entire non-rigid scene is only possible if and only
if these scales among the superpixels are solved —which is however a challenging open task
itself.

In this chapter, we show how this can be done, under our two very mild assumptions §6.2.
Under these assumptions, ourmethod solves the unknown relative scales and obtains a glob-
ally coherent dense 3D reconstruction of a complex dynamic scene from its two perspective
views. Intuitively, our newmethod can be understoodwith the following intuition: Suppose
every individual superpixel corresponds to a small planar patch moving rigidly in 3D space.
Since the correct scales for these patches are not determined, they are floating in 3D space as
a set of unorganized superpixel soup. Our method then starts from finding for each super-
pixel an appropriate scale, under which the entire set of superpixels can be assembled (glued)
together coherently, forming a piecewise smooth surfaces, if playing the game of “3D jig-
saw puzzle”. Hence, we call our method the “SuperPixel Soup” algorithm (see Fig.(6.2) for a
conceptual visualization).

6.4.2 Problem Statement

To implement the above idea of piecewise rigid reconstruction, we first partition the ref-
erence image I into set of superpixels ξI = {s1, s2, .., si, .., sN}, where each superpixel si is
parametrized by its boundary pixels {xbi = [ubi, vbi, 1]T |b = 1, ...,Bi} and an anchor point
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xai corresponding to the centroid of the ith superpixel in the image plane. To infer any pixel
inside a superpixel, we use the operatorψ(.), for e.gψ(sj1)will give the coordinates of jth pixel
inside s1. Such a superpixel partition of the image plane naturally induces a piecewise-smooth
segmentation of the corresponding 3D scene surface. We denote this set of 3D scene surfaces
as ξW = {~s1,~s2, ...~si, ...~sN}. Although surfel is perhaps a better term, we nevertheless call it
“3D superpixel” for the sake of easy exposition. We further assume each 3D superpixel (‘~si’)
is a small 3D planar patchΠ~si =

{
ni,~xai, {~xbi} : (ni,~xai) ∈ R3 and {~xbi} ∈ R3×Bi

}
, which

is parameterized by surface normal ni, 3D anchor-point ~xai, and 3D boundary-points {~xbi}
(i.e. these are the pre-images of xai and {xbi}). Assume every 3D superpixel ~si moves rigidly
according to

Mi =

(
Ri λîti
0 1

)
∈ SE(3) (6.1)

whereRi represents relative rotation, t̂i is the translation direction, andλi the unknown scale.
With the symbols and the notation preparation, we are in a position to put our idea in a

more precise way: Given two intrinsically calibrated perspective images I and I′ of a generally
dynamic scene and the corresponding optical flow field, our task is to reconstruct a piecewise-
planar approximation of the dynamic scene surface. The deformable scene surface in the
reference frame (i.e, ξW) and the one in the second frame (i.e, ξ′W) are parametrized by their
respective 3D superpixels {~si} and {~s′i}, where each~si is described by its surface normal ni and
an anchor point ~xai. Any 3D plane can be determined by an anchor point ~xai and a surface
normal ni. If one is able to estimate correct placement of all the 3D anchor points and all
the surface normals corresponding to the reference frame, the problem is solved, since each
element of ξW is related to ξ′W via SE(3) transformation (locally rigid).

The overall procedure of our method is presented in Algorithm 1.

6.4.3 Formulation

We begin by briefly reiterating some of our representation. We partition the reference image
into a set ξI, whose corresponding set in the 3D world is ξW. Equivalently, ξ′I and ξ

′
W are the

respective sets for the next frame. The mapping of each element in the reference frame and
next frame differs by a rigid transformation. Mathematically, ξW 7→ ξ′W via SE(3) transfor-
mation (also known as special euclidean group), for instance ~x′ai = Mi~xai where ~x′ai ⊂ ξ′W and
~xai ⊂ ξW. In our formulation each 3D plane is described by Φ ~si =

{
(Π~si, Mi) | ∀ i ∈ [1,N], ∃

{Π~si},Mi

}
, whereN is the total number of superpixels (see Fig. 6.3). Similarly, in the image

116



Algorithm 4 : SuperPixel Soup
Input: Two consecutive image frames of a dynamic scene and dense optical flow corre-
spondences between them.
Output: 3D reconstruction for both images.
1. Divide the reference image into ’N’ superpixels and construct aK-NNgraph to represent
the entire scene as a graphG(V,E) defined over these superpixels §6.4.3.
2. Employ two-view epipolar geometry to recover the rigid motion and shape for each 3D
superpixel §6.4.4.
3. Optimize the proposed energy function to assemble (or glue) and align all the recon-
structed superpixels (“3D Superpixel Jigsaw Puzzle”) §6.4.4.
Note: The procedure of the above algorithm looks simple; there is, however, a fundamen-
tal difficulty of scale indeterminacy in its execution.

space ξI 7→ ξ′I through the plane-induced homography.

si′ = K
(
Ri −

λitinT
i

λidi

)
K−1si* (6.2)

Here, K is the intrinsic camera matrix and di is the depth of the plane. Using these notations
and definition, we define a K-NN graph.

Build K-NN graph: Using over-segmentation of the reference images which is the pro-
jection of the set of 3D planes Φ ~si, we construct a K-NN graph G(V, E) to build the relation
between anchor points. The graph vertices (V) are anchor points, which connects with each
other via graph edges (E). To be precise, the distance between any two vertices (Ei ⊂ E) is de-
fined as the Euclidean distance between them. Here, we assume euclidean distance as a valid
graph metric to describe the edge length between any two local vertices. Such assumption
is valid for local compactness( Euclidean spaces are locally compact). Interested reader may
refer to [23] [188] [187] for comprehensive details. The intension behind constructing this
graph is to constrain themotion and continuity of the space (defined in terms of optical flow,
depth). To establish the constraints to be strong enough, we allow each anchor point to build
its relation beyond its immediate neighbors (see Fig. 6.4).

Constructing this K-NN graph is very crucial in the establishment of local rigidity con-
straint which is the basis of our assumption. This assumption allows the shape to be as rigid
as possible globally and rigid locally.

*scale λi is introduced both in the numerator and denominator for clarification that scale does not affect the
homography transformation.
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( ši, Mi)

( šk, Mk)

Anchor Point
Anchor Point

Figure 6.3: Themodeling of a con nuous scenewith a piece wise rigid and planar assump on. Each superpixel
is composed of a set (Π~si,Mi) where Π~si contains geometric parameters such as normal, anchor point,
boundary points of a plane in 3D andMi contains the mo on parameters i.e rota on and transla on.

As-Rigid-As-Possible (ARAP) EnergyTerm: Ourmethod is built upon the idea that
the correct scales of 3D superpixels can be estimated by enforcing prior assumptions that gov-
ern the deformation of the dynamic surface. Specifically, we require that, locally, the motion
that each 3D-superpixel undergoes is rigid, and globally the entire dynamic scene surfacemust
move as rigid as possible (ARAP). In other words, while the dynamic scene is globally non-
rigid, its deformation must be regular in the sense that it deforms as rigidly as possible. To
implement this idea, we define an ARAP-energy term as:

Earap =
N∑
i=1

∑
k∈Ni

w1(xai, xak)
(
∥Ri − Rk∥F + ∥λîti − λk̂tk∥2

)
+

w2(xai, xak).
∣∣∣∥~xai − ~xak∥2 − ∥~x′ai − ~x′ak∥2

∣∣∣
1
.

(6.3)

Here, the first term favors smoothmotionbetween the local neighbors, while the second term
encourages inter-node distances between the anchor node and its K nearest neighbor nodes
(denoted as k ∈ Ni) to be preserved before and after motion (hence as-rigid-as-possible, see
Fig. 6.4). We define the weighting parameters as:

w1(xai, xak) = w2(xai, xak) = exp(−β∥xai − xak∥). (6.4)
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!"#Anchor node ($%&')
K-NN to !"#Anchor node in relation to reference frame
K-NN to !"#Anchor node in relation to next frame

Superpixelled reference Image

Figure 6.4: Demonstra on of as rigid as possible constraint. Superpixel segmenta on in the reference frame
is used to decompose the en re scene as a set of anchor points. Schema c representa on shows the con-
struc on of K-NN around a par cular anchor point (shown in Red). We constrain the local 3D coordinate
transforma on both before and a er mo on (green shows K-NN the reference frame, yellow shows the
rela on in the next frame (a er mo on)). We want this transforma on to be as rigid as possible.

These weights are set to be inversely proportional to the distance between two superpixels.
This is to reflect our intuition that, the further apart two superpixels are, the weaker theEarap
energy is. Although there may be redundant information in these two terms w.r.t scale esti-
mation, we keep them formotion refinement §6.4.4. Note that, this term is only defined over
anchor points, hence it enforces no depth smoothness along boundaries. Theweighting term
in Earap advocates the local rigidity by penalizing over the distance between anchor points.
This allows immediate neighbors to have smooth deformation over time. Also, note that
Earap is generally non-convex. This non-convexity arises due to the second term in Eq.(6.3),
where we allow for discontinuity by introducing l1 norm on top of the difference of two l2
norm term. In Eq. (6.4) β is a trade-off constant chosen empirically.

Earap alone is good enough to provide reasonably correct scales, however, piece-wise pla-
nar composition of a continuous 3D space creates discontinuity near the boundaries of each
plane. For this reason, we incorporate additional constraints to fix this depth discontinuity
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and further refine motions and geometry for each superpixel via neighboring relations. We
call these constraints as Planar Re-projection, 3D Continuity and Orientation Energy con-
straint.

Planar Re-projection Energy Term: With the assumption that each superpixel rep-
resents a plane in 3D, it must satisfy corresponding planar reprojection error in 2D image
space. This reprojection cost reflects the average dissimilarity in the optical flow correspon-
dences across the entire superpixel due to motion. Therefore, it helps us to constrain the
surface normals, rotation and translation direction such that they obey the observed planar
homography in the image space. Let |ψ(si)| = Q

Eproj =
N∑
i=1

w3

Q

Q∑
j=1

∥ψ(sji)
′ − K(Ri −

tini
T

di
)K−1ψ(sji)∥2. (6.5)

Here, ψ(sji), ψ(sji)′ is the optical flow correspondence of jth pixel in the reference frame and
next frame of ith superpixel respectively. The operator |.| represent the cardinal number of a
set. w3 is a trade-off scalar chosen empirically. A natural question that may arise is: Th term
independent of scale, then what’s the purpose of th constraint? How do it help? Kindly,

refer to §6.4.4 for details.

3D Continuity Energy Term: In case of a dynamic scene, where both camera and the
objects are in motion, its quite apparent that the scene will undergo some changes across
frames. Hence, to assume unremitting global continuity with piece-wise planar assumption,
in a dynamic scene is unreasonable. Instead, local weak continuity constraint can be enforced
—a constraint that can be broken occasionally [89] i.e local planes are connected to few of its
neighbors. Accordingly, we want to allow local neighbors to be piece-wise continuous. To
favor this continuous or smooth surface reconstruction, we require neighboring superpixels
to have smooth transition at their boundaries. To do so, we define a 3D continuity energy
term as:

Econt =
N∑
i=1

∑
k∈Ni

w4(Xbi,Xbk) (∥~Xbi − ~Xbk∥F + ρ(∥~X′
bi − ~X′

bk∥F) (6.6)

where, X, ~X represents the corresponding matrices in 2D image space and 3D euclidean
space (Xbi ∈ R2×Bi, ~Xbi ∈ R3×Bi, whereBi is the total number of boundary pixel for ith super-
pixel). Since in our representation, geometry and motion are shared among all pixels within
a superpixel, so regularization within the superpixel is not explicitly needed. Thus, we only
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Figure 6.5: 3D Con nuity energy favors con nuous surface for the planes that shares the common boundary
points. a)-d) The lesser the Econt is, smoother the surface becomes (color bar shows the energy).

concentrate on the shared boundary pixels to regularize our energy. Note that the neigh-
boring relationship in Econt is different from Earap term. Here, the neighbors share common
boundaries with each other.

To encourage the geometry to be approximately smooth locally if the object has similar
appearance, we color weight the energy term along the boundary pixels. For each boundary
pixel of a given superpixel, we consider its 4-connected neighboring pixels to weight. Using
this idea for w4 we obtain:

w4(Xbi,Xbk) =

4∑
j=1

exp(−β∥I(Xbi)− I(ζj)∥F) (6.7)

whichweigh the inter-plane transition by color difference. The symbol ζj ∈ R2×Bi is a set that
contains the 4 connecting pixels to each ith superpixel boundary pixel shared with kth super-
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pixel. The color based weighting term plays an important role to allow for “weak continuity
constraint”i.e. gradually allowing for occasional discontinuity [89] [17].

To better understand the implication of Econt constraint, consider two boundary points
in the image space a, b ∈ R2. Generally, if these two points lie on a different plane, it will not
coincide in the 3D space before and after motion. Hence, we compute the 3D distance be-
tween boundary pixels corresponding to both reference frame and next frame, which leads to
our goal of penalizing distance along shared edges (see Fig. 6.5). Therefore, this term ensures
the 3D coordinates across superpixel boundaries to be continuous in both frames. The chal-
lenge here is to reach a satisfactory solution of overall scene continuity, almost everywhere in
both the frames [18]. In the Eq.(6.6) ρ is a truncation function defined as ρ = min(., σ) and
similar to Eq.(6.4) β in Eq.(6.7) a trade-off constant, chosen empirically.

Orientation Energy Term: To encourage the smoothness in the orientation of the
neighboring planes, we added one more geometric constraint i.e, Eorient defined as follows.

Eorient =
N∑
i=1

∑
k∈Ni

ρn
(
1− ni

Tnk

)
(6.8)

Here neighbor index are same as 3D continuity term. ρn is truncated l1 penalty function.

CombinedEnergyFunction: Equippedwith all these constraints, wedefine ouroverall
cost function or energy function to obtain a scale consistent 3D reconstruction of a complex
dynamic scene. Our goal is to estimate depth (di), surface normal (ni) and scale λi for each
3D planar superpixel. The key is to estimate the unknown relative scale λi. We solve this by
minimizing the following energy function:

min
λi,ni,di,Ri,ti

E = Earap + α1Eproj + α2Econt + α3Eorient

subject to
N∑
i=1

λi = 1, λi > 0.

Ri ∈ SO(3), ∥ni∥2 = 1.

(6.9)

The equality constraint on λ fixes the unknown freedom of a global scale. The constraint on
Ri is imposed to restrict the rotationmatrix to lie onSO(3)manifold. The constantα1, α2, α3
are included for numerical consistency.

6.4.4 Implementation

We partition the reference image into about 1,000-2,000 superpixels [3]. Parameters such
as α1, α2, α3, β, σ were tuned differently for different datasets. To perform optimization of
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a) b) c) d)

Figure 6.6: a) Superpixelled reference image b) Individual superpixel depth with arbitrary scale (unorganised
superpixel soup) c) recovered depth map using our approach (organised superpixel soup) d) ground-truth
depth map.

the proposed energy function (Eq. 6.9), we require initial set of proposals for motion and
geometry.

Initial Proposal Generation

We exploit piece-wise rigid and planar assumption to estimate initial proposal for geome-
try and motion. We start by estimating homography (Hi) for each superpixel using dense
feature correspondences. Piece-wise rigid assumption allows us for evaluating approximate
rotation and correct translation direction via triangulation and chierality check [85] [88]. To
obtain the correct normal direction and initial depth estimate, we solve the following system
of equations for each superpixel:

Hi = K(Ri −
tini

di
)K−1 (6.10)

The reasonwe choose this strategy to obtain normal is because a simple decomposition of ho-
mography matrix to rotation, translation and normal can lead to sign ambiguity [178] [125].
Nevertheless, if one has correct rotation and direction of translation –which we infer from
chierality check, then inferring normal becomes easy†. Here, we assume the depth ‘di’ to be a
positive constant and the initial arbitrary reconstruction is in the +Z direction. This strategy
of gathering 9-dimensional variables (6-motion variable and 3-geometry variable) for each in-
dividual superpixel gives us a good enough estimate to get started with the minimization of
our overall energy function ‡.

To initialize 3D vectors in our formulation use the following well known relation:

~xai =

[(uai − cx
fx

)
,
(vai − cy

fy
)
, 1/ni

TK−1

uai
vai
1

]T

(λidi) (6.11)

where, (uai, vai) are image coordinates and (cx, cy, fx, fy) are camera intrinsic parameterswhich
can be inferred from K matrix.

†The solution for the obtained normal must be normalized.
‡If the size of the superpixel is very small kindly use the neighbors to estimate motion parameters.
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Optimization

With the good enough initialization of variables, we start to optimize our energy function
Eq.(6.9). A global optimal solution is hard to achieve due to the non-convex nature of the
proposed cost function (Eq. (6.9)). However, it can be solved efficiently using interior-point
methods [16] [15]. Although the solutions found by the interior point method are at best lo-
cal minimizers, empirically they appear to give good 3D reconstructions. In our experiments,
we initialized all λ’s with an initial value of 1.0

N .
Next, we employ a particle based refinement algorithm to rectify our initial motion and

geometry beliefs. Specifically, we used the Max-Product Particle Belief propagation (MP-
PBP) procedure with the TRW-S algorithm [97] to optimize over the surface normals, rota-
tions, translations and depths for all 3D superpixels using Eq.(6.12). We generated 50 particles
as proposals for the unknown parameters around the already known beliefs to initiate refine-
ment moves. Repeating this strategy for 5-10 iterations, we obtain a smooth and refined 3D
structure of the dynamic scene.

Eref = Earap + α1Eproj + α2Econt + α3Eorient (6.12)

Why particle based filtering is required? Assigning superpixels to a set of planes
can lead to non-smooth blocky effect at their boundaries. Under our formulation, scale as-
signment to each plane is governed by its anchor point. Now, even if the neighboring planes
have similar scale, it may bemisaligned in the world coordinate, violating the geometry of the
scene. Moreover, aswe set the proposal for planes to be limited due to practical consideration,
we may not be able to assign accurate depth to each pixels. But, we can definitely do better
by refining our solution usingTRW-S [97] or similar algorithm’s subjected to computational
constraint.

Use of continuous optimization method: We also used gradient based approach
such as BFGS and L-BFGS to optimize our objective function using available MATLAB li-
brary. Although it showed some improvement in terms of reconstruction accuracy, however,
it consumes a lot of time (30 minutes or more) to provide approximate solution. Conse-
quently, we confine ourself to discrete approach for evaluations.

6.5 Experimental Evaluation

Weevaluatedour formulationbothqualitatively andquantitatively onvarious standardbench-
mark datasets, namely MPI Sintel [24], KITTI [68], VKITTI [59] and You-Tube Object
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Result with only rigid as possible term(E_arap)

Result with all terms E_arap + E_proj + E_cont + E_orient.

Result with planar re-projection, 3D continuity term and orientation (E_proj + E_cont + E_orient)

Figure 6.7: Effects of using “as rigid as possible”, “Planar re-projec on”, “3D con nuity” and “Orienta on” term.
Top row: By enforcing the “as rigid as possible” term only, the recovered rela ve scales are correct but
the reconstructed planes are misaligned with respect to their neighbors. Middle row: With the planar re-
projec on, 3D con nuity and orienta on term enforced, the resultant 3D reconstruc on achieves con nuous
neighboring boundaries, however, the rela ve scales for every plane in 3D is not correct. Bottom row: By
enforcing the the “as rigid as possible” term along with all the other smoothness terms, we can handle both
rela ve scales and 3D reconstruc on for a complex dynamic scene.

125



dataset [141]. All these dataset contains images of dynamic scene where both camera and ob-
jects are in motion w.r.t each other. To test the reconstruction results on deformable objects
we used Paper, T-shirt [178] [177] and Back Sequence [65]. Before we dive into our exper-
imental analysis on the aforementioned datasets, we would like to show and briefly discuss
the role of different terms in our formulation.

Ablation Analysis

Firstly, in theproposedoptimization framework the 3D continuity term is definedoverbound-
aries between neighboring superpixels, which alone is not sufficient to constrain the motion
beyond its immediate neighbors. Secondly, proj and orient has nothing to do with scale com-
putation whatsoever. Hence, combining these three terms is not good enough to explain the
correct scales for each of the object present in the scene. On the other hand, rigid possible
term is defined for each superpixel’s anchor point over the K-NN graph structure. However,
it does not take into account the alignment of planes in 3D along the boundaries. As a re-
sult overall reconstruction suffers. Thus, this demonstrates that all the terms are essential for
reliable dynamic 3D reconstruction. Fig.(6.7) illustrates the contribution of different terms
toward the final reconstruction result.

Evaluation

We aim at an evaluation as comprehensive as possible and as a result we evaluated ourmethod
with different kind of scenes –rigid, non-rigid, complex dynamic scene i.e composition of both
rigid and non-rigid, availablewith benchmarkdatasets. We selected themost commonly used
error metric to evaluate the fidelity of the depth map.

Evaluation Metric

For quantitative evaluation, the errors are reported in mean relative error (MRE), defined
as 1

P
∑P

i=1 |zigt − ziest|/zigt. Here, ziest, zigt denotes the estimated and ground-truth depth re-
spectively with being the total number of points. The error is computed after re-scaling the
recovered depth properly, as the reconstruction is obtained up to an unknown global scale.
We used MRE for the sake of consistency with the previous work [143]. Quantitative evalu-
ations for the YouTube-Objects dataset and the Back dataset are missing due to the absence
of ground-truth results.

Experimental setup and processing time: We partition the reference image using
SLIC superpixels [3]. We used current state-of-the art optical flow to compute dense opti-
cal flow [12]. To initialize the motion and geometry variables, we used the the procedure
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Input Image

Ground-Truth 
Depth

Ours Depth

Figure 6.8: Qualita ve results using our algorithm in a complex dynamic scene. Example images are taken
from MPI Sintel dataset [24]. Top row: Input reference image from sleeping_1, sleeping_2, shaman_3,
temple_2, alley_2 sequence (from le to right). Middle row: Ground-truth depth map for the respec ve
frames. Bottom row: Recovered depth map using our method.

Input Image

Ours Depth

Figure 6.9: Qualita ve results on KITTI Dataset [68]. The second row shows the obtained depth map for the
respec ve frames. Note: Dense ground-truth depth data is not available with this dataset.

discussed in §6.4.4. Interior point algorithm [16] [15] and TRW-S [97] were employed to
solve the proposed optimization. The implementation of the algorithm is done in MAT-
LAB/C++. Ourmodified implementation (modified fromour ICCV implementation[107])
takes on an average 15-20 minutes to converge for images of the size 1024 × 436 on a regular
desktop with Intel core i7 processor (16 GB RAM) for 50 refinement particle per superpixel.

Results on MPI Sintel Dataset: We begin our analysis on the experimental results
with MPI Sintel dataset [24]. This dataset is derived from animation movie featuring com-
plex scenes. It contains highly dynamic sequences with large motions, significant illumina-
tion changes and non-rigidly moving objects. This dataset has emerged as a standard bench-
mark to evaluate dense optical flow algorithm’s and recently, it has also been used in evalua-
tion of dense 3D reconstruction methods for a general dynamic scenes [143].

The presence of non-rigid objects in the scene makes it a prominent choice for us to test
our algorithm. It is a challenging dataset particularly for the piece-wise planar assumption
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Figure 6.10: Qualita ve results using our algorithm for the outdoor scenes. Examples are taken from VKITTI
dataset [59]. Top row: Input reference image. Middle row: Ground-truth depth map for the respec ve
frames. Bottom row: Recovered depth map using our method.

due to presence of many small and irregular shapes in the scene. Additionally, the presence
of ground-truth depth map makes quantitative analysis much easier. We selected 120 pairs
of images to test our method, which includes images from alley_1, ambush_4, mountain_1,
sleeping_1 and temple_2. Fig.(6.8) shows some qualitative results on few images.

Results on KITTI Dataset: The KITTI dataset [68] features the real world outdoor
scene targeting automobile application. Its images are acquired from camera mounted on
the top of a car. It’s a challenging dataset due to the fact that it contains images with large
displacement of camera and realistic lighting condition. However, it only contains sparse
ground-truth 3D information, which makes evaluation a bit strenuous. Nonetheless, it cap-
tures noisy real-life situation and thereforewebelieve it iswell suited to test 3D reconstruction
of a general dynamic scene. We selected 00-09 from odometry dataset to evaluate and com-
pare our results. We calculated mean relative error only over the provided sparse 3D LiDAR
points –after adjusting the global scale. Fig.(6.9) shows some qualitative results on few im-
ages.

Results onVKITTIDataset: The Virtual KITTI dataset [59] contains computer ren-
dered photo-realistic outdoor driving scenes which resemble the KITTI dataset. The advan-
tage of using this dataset is that it provides perfect ground-truths for many measurements.
Furthermore, it helps to simulate algorithm related to dense reconstruction with noise free
and distortion-free images, facilitating quick experimentation. We selected 120 images from
0001_morning, 0002_morning, 0006_morning and 0018_morning. The qualitative results
obtained are shown in Fig.(6.10).
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Figure 6.11: Dense 3D reconstruc on of the objects that are undergoing non-rigid deforma on over frames.
Top row: Input reference frame from Back sequence [65], Paper sequence [178][177] and t-shirt se-
quence[178][177]. Bottom row: Qualita ve 3D reconstruc on results for the respec ve deforming object.

Method→
(Method type)

DT [96]
(SF)

GLRT [58]
(MF)

BMM [44]
(MF)

PTA [8]
(MF)

DMDE [143]
(TF)

Ours
(TF)

MPI Sintel 0.4833 0.4101 0.3121 0.3177 0.297 0.1669
Virtual KITTI 0.2630 0.3237 0.2894 0.2742 - 0.1045
KITTI 0.2703 0.4112 0.3903 0.4090 0.148 0.1268
kinect_paper 0.2040 0.0920 0.0322 0.0520 - 0.0476
kinect_tshirt 0.2170 0.1030 0.0443 0.0420 - 0.0480

Table 6.1: Performance Comparison: this table lists the MRE errors. For DMDE [143] we used its previously reported
result, as its implementa on is not publicly available. Here, SF, MF and TF refers to single frame, mul -frame and two
frame respec vely.

Results on Non-Rigid Sequence: We also tested our method on some commonly
used dense non-rigid sequence namely kinect_paper [178], kinect_tshirt [178] and back se-
quence [65]§. Most of the benchmark approach to solve non-rigid structure from motion
use multiple frames and orthographic camera model. Despite a two-frame method and per-
spective cameramodel, we are able to capture the deformation of non-rigid object and achieve
its reliable reconstruction. Qualitative results for dense non-rigid object sequence are shown
in Fig.(6.11). To compute the mean relative error, we align and scale our shape (fixing global
ambiguity) w.r.t ground-truth shape.

§Note: The intrinsicmatrix for back sequence is not availablewith the dataset, we estimated an approximate
value of it using 2D-3D relation available from Garg et al. [65].
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Figure 6.12: Quan ta ve comparison with our method with PTA [8], BMM [44], GLRT[58], DT [96] on bench-
mark datasets. The depth error is calculated by adjus ng the numerical scale of the obtained depth map to
the ground-truth value, to account for global scale ambiguity. Comparison on MPI Sintel [24] and Virtual
KITTI [59]dataset. These numerical values show the fidelity of reconstruc on that can be retrieved on these
benchmark datasets using our formula on.

Comparison

The performance of our method is compared to several dynamic reconstruction methods,
which include the Block Matrix Method (BMM) [44], Point Trajectory Approach (PTA)
[8], Low-rank Reconstruction (GBLR) [58]), Depth Transfer (DT) [96], DMDE [143] and
ULDEMV [198]. This comparison is made over the available benchmark datasets i.e MPI
Sintel, KITTI, VKITTI, T-shirt, Paper, Back. Table 6.1 provides the statistical details of
our results in comparison to the baseline approach. Clearly, our method outperforms others
in outdoor sequence and provides a commendable performance for deformable sequence.
While compiling the results per frame comparison is made over th entire sequence. Evalu-
ation in the case of KITTI dataset is done only for the provided sparse 3D LiDAR points.
Fig.(6.12), Fig.(6.13) and Fig. (6.16c) show per category statistical performance of our ap-
proach with other competing methods on benchmark dataset. Additionally, we also per-
formedaqualitative comparisononMPISintel [24],KITTI[68] andYou-Tubeobject dataset[141]
(see Fig.(6.14) andFig.(6.15)). It canbe inferred that ourmethod consistently delivers superior
performance on all of these datasets.
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Figure 6.13: Quan ta ve comparison with our method with PTA [8], BMM [44], GLRT[58], DT [96] on bench-
mark datasets. The depth error is calculated by adjus ng the numerical scale of the obtained depth map to
the ground-truth value, to account for global scale ambiguity. Comparison on KITTI [68] dataset. These nu-
merical values show the fidelity of reconstruc on that can be retrieved on these benchmark datasets using
our formula on.

Input Image Video Pop-up Ours 
Figure 6.14: Qualita ve evalua on of our approachwith the Video-PopUp [146]. Clearly, ourmethod provides
more dense and detailed reconstruc on of the scene. In the second row t-shirt descrip on is missing with
Video-PopUp [146] approach. By contrast our method has no such holes. Note: The results presented
here for Video-PopUp are taken from their webpage since the source code provided by the authors crashes
frequently.
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Input Image GT Depth DMDE Ours

a) b) c) d)

Figure 6.15: Qualita ve comparison of our method with DMDE [143] on MPI Sintel [24] and KITTI Dataset
[24]. Left to Right: For each input reference image, we show its ground-truth depth map (GT Depth), depth
map reported by DMDE [143] and depth map obtained using our approach. Note: Dense GT depth map for
KITTI Dataset is taken from DMDE [143] work.
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Figure 6.16: (a) Fluctua on in mean rela ve depth error with the change in number of superpixels. It can be
observed that a er 1000 superpixel the MRE more or less starts satura ng with no significant effect on the
overall accuracy. However, it was observed that the mo on es ma on becomes cri cal with the increase in
number of superpixels. (b) Performance evalua on in RMSE (in meters) with the state-of-the-art op cal flow
methods in comparison to the ground-truth op cal flow (MPI Sintel [24] dataset). (c) Mean Rela ve Depth
Error comparison with a recently proposed unsupervised learning based approach (ULDEMV [198]) on KITTI
dataset [68].

Performance Analysis

Besides statistical evaluation, we also conducted several other experiments to better analyze
theperformanceof our algorithm. These experimentwill better illustrate thedifferent aspects
of the proposed approach.

Performancewith variation in number of superpixels: Our method uses SLIC
based over segmentation of the reference frame to discretize the 3D space. Therefore, the
number of superpixels that will be used to faithfully represent the real-world plays a crucial
role in the accuracy of piece-wise continuous reconstruction. If the number of superpixel is
very high the estimation ofmotion parameters becomes tricky and therefore neighboring su-
perpixel are used to estimate rigidmotionwhich leads to computation challenges. In contrast,
few number of superpixels are unable to capture the intrinsic details of a complex dynamic
scene. So, a trade-off between the two is often a better choice. Fig. (6.16a) shows the plot of
depth error variations with respect to change in the number of superpixels.

Performance with different optical flow algorithm’s: As our method needs
dense optical flow correspondences between the frames, the performance of ourmethod is di-
rectly dependent on the accuracy of the dense optical flow estimation. Therefore, to analyze
the sensitivity of our method to different optical flow methods, we conducted experiments
by testing our method with the ground-truth optical flow, and the state-of-the-art optical
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a) b)

Figure 6.17: Effects of superpixel pa ern on the reconstruc on of a dynamic scene. a) with SLIC as superpixels
(MRE for the shown frame is 0.0912) b) with uniform grid as superpixels (MRE achieved for the given frame
is 0.1442).

flow methods [12] [31] to inspect the efficiency of our method. In Fig.(6.16b), we show the
reconstruction performance evaluated in RMSE ¶ with different optical flow as inputs. This
experiment reveals the importance of dense optical flow estimation in achieving accurate re-
construction of a dynamic scene. While ground truth optical flow naturally achieves the best
performance, the difference between different state-of-the-art optical flows estimations is not
dramatic. Therefore, we conclude that our method can achieve better performance with the
available of dense optical flow algorithm’s.

Performance with regular grid as image superpixel: Its not only the number
of superpixel that affects the accuracy of reconstruction under piece-wise planar assumption
but the choice of superpixel pattern. To analyze this dependency, we took the worst possi-
ble case i.e divide the reference image into approximately 1000 regular grid and compare its
performance against 1000 SLIC superpixel. Our observation clearly shows the decline in per-
formance in comparison to SLIC superpixels. However, the difference in accuracy is not very
significant (see Fig.(6.17)).

¶Root mean square error RMSE =
√

1
P
∑P

i=1(zigt − zie)2 , where zie, zigt denotes the estimated and the
ground-truth depth respectively and P is the total number of points
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a) b) c) d)

Figure 6.18: Effect of parameter K in building the K-NN graph. Our algorithm results in good reconstruc on
if a suitable K is chosen, in accordance with the levels of complexity in a dynamic scene. (b) Ground-truth
depth-map (scaled for illustra on purpose). (c) when K=4, a reasonable reconstruc on is obtained. (d) when
K=20, regions tend to grow bigger. (Best viewed in color.)

Effects of K in K-NNGraph: Under our method, the ARAP energy term is evaluated
within K nearest neighbors, different K’s may have different effect on the resultant 3D re-
construction. We conducted an experiment to analyze the effect of varying K on the MPI
Sintel dataset and the results are illustrated in Fig.(6.18). With the increase of K, the rigidity
constraint is enforced in increased neighborhood, which makes the 3D reconstruction tends
to be globally rigid. In most of our experiments, we used a K in the range of 15 − 20, which
achieved satisfactory reconstructions. Increasing the value of K directly affects the overall
computational complexity of the algorithm.

6.6 Limitations

The success of our method depends on the effectiveness of the piece-wise planar and rigid
assumption. Our method may fail if the piece-wise smooth model is no longer a valid ap-
proximation for the dynamic scene. For example, very fine or very small structures which are
considerably far from the camera are difficult to recover under the piecewise planar assump-
tion. Furthermore, our approach may also fail, when the motions of the dynamic objects in
the scene between consecutive frame are significantly large such that most of its neighboring
plane relations in the reference frame get violated in the next frame. Couple of examples for
such situations are discussed in Fig.(6.19).

Moreover, our algorithm is computationally expensive to execute on a regular desktop
machine. This is due to the higher order graph relation and particle based refinement us-
ing TRW-S. One can use different optimization algorithms such as BFGS, L-BFGS and their
variants [25]. In any case, the higher order relation increases the range of interaction which
makes the problem computationally expensive.
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a) b) c) d)

Figure 6.19: (a)-(b) are the reference frame and the next frame. It is a very challenging case for proper scale
recovery with monocular images with dynamic mo on. In both of these cases the mo on of the girl between
two consecu ve frames is very large and therefore, the neighboring rela ons with the planes (say superpixels
in image domain) in the consecu ve frames gets violated. In such cases, our method may not be able to
provide correct scales for each moving planes in 3D. In the first example, the complicated mo on of the feet
of the girl leads to wrong scale es ma on. In the second example, the cart along with girl is moving w.r.t
the camera. The hand of the girl has a substan al mo on in the consecu ve frames which leads to incorrect
es ma on of scale. (c)-(d) Ground-truth and obtained depth map respec vely.

6.7 Closing Remarks

In this chapter we explored, investigated and supplied a distinct perspective to one of the
classical problem in geometric computer vision i.e to reconstruct a dense 3Dmodel of a com-
plex, dynamic, and generally non-rigid scene from its two perspective images. This topic
of research is often considered as a very challenging task in structure-from-motion. In spite
of its reasonable challenges, we have demonstrated that dense-detailed 3D reconstruction of
dynamic scenes is in fact possible, provided that certain prior assumptions about the scene
geometry and about the deformation in the scene are satisfied. Both assumptions we stated
are mild, realistic and commonly satisfied by the real-world scenario’s.

Our comprehensive evaluation on benchmark datasets shows that, our new insight to
solve dense monocular 3D reconstruction of a general dynamic scene provides better results
than other competing methods. This said, we think a more profound research on top of our
idea may help in development of sophisticated SfM algorithm’s.

We believe our algorithm provides a plausible new direction to perceive a complex dy-
namic scene with a single monocular camera. Lastly, we want to stress on the point that
rigidity is a powerful concept in SFM, and careful or acute extensions of the present approach
may open up new path to advance dense 3D reconstruction from images.
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In the last chapterwedescribehow to estimate dense 3D reconstructionof adynamic sceneus-
ing twoperspective frames. Our geometricmethod to address this problemusing a piece-wise

137



rigid scene model requires a reliable estimation of motion parameters for each local model,
which can be tricky to obtain and validate. In this chapter we will show that given per-pixel
optical flow correspondences between two consecutive frames and the sparse depth prior for
the reference frame, we can recover the dense depth map for the successive frames without
solving for motion parameters. By assigning the locally rigid structure to the piece-wise pla-
nar approximation of a dynamic scene which transforms as rigid as possible over frames, we
will demonstrate that we can bypass themotion estimation step. In essence, our formulation
provides a newway to think and recover dense depthmap of a complex dynamic scene which
is recursive, incremental and motion free in nature and therefore, it can also be integrated
with themodernmachine learning frameworks for large-scale depth-estimation applications.
Our proposed method does not make any prior assumption about the rigidity of a dynamic
scene, as a result, it is applicable to a wide range of scenarios. Experimental results show that
ourmethod can effectively provide the depth for the successive/multiple frames of a dynamic
scene without using any motion parameters.

7.1 Introduction

Dense depth estimation of complex dynamic scenes from two consecutive frames has re-
cently gained enormous attention from several industries involved in augmented reality, au-
tonomous driving, movies etc. Despite the recent research in solving this problem has pro-
vided some promising theory and results, its success still strongly depends on the accurate
estimation of motion parameters.

Toour knowledge, almost all the existing geometric solutions to this problemhave tried to
fit the well-established theory of rigid reconstruction to estimate per-pixel depth of dynamic
scenes frommonocular images [133, 107, 143]. Hence, these extensions are intricate to execute
and highly depends on per-object or per-superpixel [3] reliable motion estimates [133, 107,
143]. The main issue with these frameworks is that, even if the depth for the first/reference
frame is known, we must solve for per-superpixel or per-object motion to obtain the depth
for the next frame. As a result, the composition of their objective function fails to utilize the
depth knowledge and therefore, it does not integrate to the large-scale applications. In this
work, we argue that in a dynamic scene, if the depth for the reference frame is known then
it seems “unnecessary or at least undesirable” to estimate motion to recover the dense depth
map for the next frame. Therefore, the rationale behind relative motion estimation as an
essential paradigm for obtaining the depth of a complex dynamic scene seems optional under
the prior knowledge about the depth of the reference frame and dense optical flow between
frames. To endorse our argument, we propose a new motion free approach which is easy to
implement and allow the users to get rid of the complexity associated with the optimization
on SE(3) manifold.
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(a) Reference Frame (b) Next Frame

(c) Piecewise modeling of 3D scene and 
sparse depth initialization of reference frame. 

(d) Optical Flow
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(f) Depth for next frame (Our Method)(e) Ground-truth depth for next frame

Optimization (Our algorithm)

Figure 7.1: Given consecu ve monocular perspec ve frame (a), (b) of a complex dynamic scene and the dense op cal
flow correspondences between them (d). Also, assume an approximate sparse depth prior for the reference frame is
provided as input (c), then, our algorithm under the piecewise planar approxima on of a dynamic scene gives per-pixel
depth es mate for the next frame (f) without solving for any mo on parameters. (e) ground-truth depth.

We posit that the recent geometric methods to solve this task have been limited by their
inherent dependence on the motion parameters. Consequently, we present an alternative
method to realize the dynamic scene depth estimation task as a global as-rigid-as-possible
(ARAP) optimization problem which is motion-free. Inspired by the prior work [107], we
model the dynamic scene as a set of locally planar surface, now previous work constrains the
movement of local planar structure based on the homography [125] and its relative motion
between frames. In contrast, we propose that ARAP constraint over a dynamic scene may
not need 3D motion parameters, and its definition just based on 3D Euclidean distance met-
ric is a sufficient regularization to supply the depth for the next frame. To this point, onemay
ask “Why ARAP assumption for a dynamic scene?”

We want to recapitulate the intuition we developed in the last chapter. Consider a gen-
eral real-world dynamic scene, the change we observe in the scene between consecutive time
frame is not arbitrary, rather it is regular. Hence, if we observe a local transformation closely,
it changes rigidly, but the overall transformation that the scene undergoes is non-rigid. There-
fore, to assume that the dynamic scenedeforms as rigid as possible seemsquite convincing and
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practically works well for most real-world dynamic scenes.
Touse thisARAPmodel, we first decompose the dynamic scene as a collection ofmoving

planes. We considered K-nearest neighbors per superpixel [3] —which is an approximation
of a surfel in the projective space, to define our ARAPmodel. For each superpixel, we choose
three points i.e., an anchor point (center of the plane), and two other non-collinear points.
Since the depth for the reference frame is assumed to be known (for at least 3 non-collinear
points per superpixel), we can estimate per plane normal for the reference frame, but to esti-
mate per plane normal for the next frame, we need depth for at least 3 non-collinear points
per plane §7.3. If per-pixel depth for the reference frame is known, then ARAP model can
be extended to pixel level without any loss of generality. The only reason for such discrete
planar approximation is the computational complexity.

In this work, we make the following contributions:

• We provide a motion-free approach to estimate the dense depth map of a complex
dynamic scene.

• Our algorithm under piece-wise planar and as rigid as possible assumption appropri-
ately encapsulates the behavior of a dynamic scene to estimate per pixel depth.

• Although the formulation is shown towork ideally for classical case of two consecutive
frames, its incremental in nature and therefore, it is easy to extend to handle multiple
frames without estimating any 3Dmotion parameters. Experimental results over mul-
tiple frames show the validity of our claim §7.4.

7.2 Related Literature and Motivation

Recently, numerous work motivated by the success of deep learning has been published for
the dense depth estimation of a dynamic scene from images [198, 69, 184, 62]. The notice-
able part is, none of thesework shows their results on complex dynamic scene sayMPI dataset
[24]. For brevity, in this chapter, we limit our discussion to the recent works that are moti-
vated geometrically to solve this problem, leading to the easy discourse of our contributions.
Also,webriefly discusswhyour formulation canbemorebeneficial to the learning algorithms
for this task than other geometric approaches [107, 143].

Motion-free approach to estimate the 3D geometry of a rigid scene introduced by Li [116]
and its extension [94] to single non-rigidly deformingobject are restricted tohandle few sparse
points over multiple frames (M view, N point). To the best of our knowledge at the time of
writing this thesis, two significant class of work in the recent past have been proposed for
estimating dense depth map of the entire dynamic scene from two consecutive monocular
images [133, 107, 143], however, all of these methods are motion dependent. These work can
broadly be classified as (a) object level motion segmentation approach (b) object level motion
segmentation free approach.

140



O
X

Y

Z

!"

!"#

(a) Piece-wise planar model

Locally rigid graph
(Reference Image)

Locally rigid graph
(Next Image)

i"#Anchor Point
K Nearest Neighbor Point
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Figure 7.2: (a) Piece-wise planar approxima on of a dynamic scene. Each superpixel is assumed to be an approxima on
of a 3D plane in the projec ve space. The center of the plane is shown with a filled circle (anchor point). (b) Decompo-
si on of the scene into a local graph structure. Locally rigid graph model with its k-nearest neighbor is shown for the
reference frame and the next frame.

(a) Object-level motion segmentation approach: Ranftl et al. [143] proposed a
two/three-staged approach to solve dense monocular depth estimation of a dynamic scene.
Given the dense optical flow field, the method first performs an object level motion segmen-
tation using epipolar geometry [85]. Per-objectmotion segmentation is then used to perform
object level 3D reconstruction using triangulation [85]. To obtain a scene consistent depth
map, ordering constraint and smoothness constraint were employed over Quick-shift super-
pixel [179] graph to deliver the final result.

(b)Object-levelmotion segmentation freeapproach: Kumar et al. [107] argued
that “in a general dynamic scene setting, the task of densely segmenting rigidlymoving object
or parts is not trivial”. They proposed an over-parametrized algorithm to solve this task with-
out using object-specific motion segmentation. The method dubbed as “Superpixel Soup”
showed that under two mild assumptions about the dynamic scene i.e., (a) the deformation
of the scene is locally rigid and globally as rigid as possible and (b) the scene can be approxi-
mated by piece-wise planar model, scale consistent 3D reconstruction of a dynamic scene can
be obtained for both the frames with a higher accuracy. Inspired by locally rigid assumption,
recently, Noraky et al. [133] proposed a method that uses optical flow and depth prior to
estimate pose and 3D reconstruction of a deformable object.

Challenges with such geometric approaches: Although these methods provide
a plausible direction to solve this challenging problem, its usage to real-world applications is
very limited. The major challenge with these approaches is the correct estimation of motion
parameters. The method proposed by Ranftl et al. [143] estimates per-object relative rigid
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motion which is not a sensible choice if the object themselves are deforming. On the other
hand method such as [133, 107] estimates per superpixel/region relative rigid motion which
is sensitive to the size of the superpixels and distance of the surfel from the camera.

The point we are trying to make is, given the depth for the reference frame of a dynamic
scene, can we correctly estimate the depth for the next frame using the aforementioned ap-
proach ?. Maybe yes, but then, we have to again estimate relative rigidmotion for each object
or superpixel and so on and so forth. Inspired by the “as-rigid-as-possible” (ARAP) intuition
[107], in thiswork, we show that if we know the depth for the reference frame and dense opti-
cal flow correspondences between consecutive frames, then estimating relative motion is not
essential, under the locally planar assumption. We can successfully estimate the depth for the
next frame by exploiting as-rigid-as-possible global constraint. These depth estimate using
ARAP can further be refined using boundary depth continuity constraint.

The next concern could be why we are after solving th problem in a motion free way?.
Keeping in mind the success of deep learning approaches to estimate per-frame dense depth
map, our cost function can directly provide the depth for the next frame of a dynamic scene
without any motion estimate. And since the choice of a reference frame and the next frame
is relative, it further provides a recursive way to improve depth estimate over iteration if sup-
plied with appropriate priors. Moreover, our formulation provides the flexibility to solve for
depth at a pixel level rather than at an object level or superpixel level which is hard to realize
using motion based approaches [133, 107, 143]. Nevertheless, to reduce the overall computa-
tional cost, we stick to optimize our objective function at superpixel level.

7.3 Piecewise Planar Scene Model

Inspired by the recent work on dense depth estimation of a general dynamic scene [107], our
model parameterizes the scene as a collection of piece-wise planar surface, where each local
plane is assumed to be moving over frames. The global deformation of the entire scene is
assumed tobe as rigid as possible. Moreover, we assign the center of eachplane (anchor point)
to act as a representative for the entire pointswithin that plane (see Fig.7.2). In addition to the
anchor point of each plane, we take twomore points from the same plane so that these three
points are non-collinear (see Fig.7.3). This strategy is used to define our as rigid as possible
constraint between the reference frame andnext framewithoutusing anymotionparameters.
As the depth for the reference frame and the optical flowbetween the two successive frames is
assumed tobe knownapriori, each local planar region is describedusing only four parameters
—normal and depth, instead of nine [107].

Our model first assigns each pixel of the reference frame to a superpixel using SLIC algo-
rithm [3] and each of these superpixels then acts as a representative for its 3D plane geometry.
Since the global geometry of the dynamic scene is assumed to be deforming ARAP, we solve
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for the depth in the next frame subject to the transformation that each plane undergoes from
the first frame to the next frame should be as minimum as possible. The solution to ARAP
global constraint provides depth for three points per plane in the next frame, which is used to
estimate the normal and depth of the plane. The estimated depth and normal of each plane
is then used to calculate per pixel depth in the next frame.

Although our algorithm is described for the classical two-frame case, it is easy to extend
to themulti-frame case. The energy functionwe define below is solved in two steps: First, we
solve for the depth of each superpixel in the next frame using as rigid as possible constraint.
Due to the piece-wise planar approximation of the scene, the overall solution to the depth
introduces discontinuity along the boundaries. To remove the blocky artifacts —due to the
discretization of the scene, we smooth the obtained depth along the boundaries of all the esti-
mated 3D plane in the second step using TRWS [97]. If the ARAP cost function is extended
to pixel-level then the boundary continuity constraint can be avoided [90]. Nevertheless,
over-segmentation of the scene provides a good enough approximation of a dynamic scene
and is computationally easy to handle.

7.3.1 Model overview

Notation: We refer two consecutive perspective image I, I′ as the reference frame and next
frame respectively. Vectors are represented by bold lowercase letters, for e.g., ‘x’ and the ma-
trices are represented by bold uppercase letters, for e.g., ‘X’. The 1-norm, 2-norm of a vector
is denoted as |.|1 and ∥.∥2 respectively.

7.3.2 As-Rigid-As-Possible (ARAP)

The idea of ARAP constraint is well known in practice and has been widely used for shape
modeling and shapemanipulation [92]. Recently Kumar et al. [107] exploited this idea to es-
timate scale consistent dense 3D structure of a dynamic scene. The motivation to use ARAP
constraint in our work is inspired by [107] idea i.e. restrict the deformation such that the
overall transformation in the scene between frames is as small as possible.

Let (di, dj) and (d̃i, d̃j) be the depth of two neighboring 3D points i, j from the reference
coordinate in the consecutive frames. Let (ui, vi, 1)T, (uj, vj, 1)T be its image coordinate in the
reference frame and (ũi, ṽi, 1)T, (ũj, ṽj, 1)T be its image coordinate in the next frame. If ‘K’
denotes the intrinsic camera calibration matrix then, ei = K−1(ui, vi, 1)T/∥K−1(ui, vi, 1)T∥2,
ej = K−1(uj, vj, 1)T/∥K−1(uj, vj, 1)T∥2 is the unit vector in the direction of the ith, jth 3D point
respectively for the reference frame. Similarly, the corresponding unit vectors in the next
frame is denoted with ẽi, ẽj (see Fig. 7.2a). Using these notations, we define the ARAP con-
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Figure 7.3: Intui on on orienta on and shape regulariza on. Anchor point and two non-collinear points are
shown in red and green respec vely. Dark red line show the change in the next frame.

straint as:

Φarap =

3N∑
i=1

∑
j∈N k

i

w(1)
ij

∣∣∣ ∥diei − djej∥2︸ ︷︷ ︸
reference frame

−∥d̃iẽi − d̃jẽj∥2︸ ︷︷ ︸
next frame

∣∣∣
1

(7.1)

Here,N is the total number of planes used to approximate the scene andN k
i is the ‘k’ neigh-

boring planes local to ith superpixel (see Fig. 7.2b). w(1)
ij is the exponential weight fall off based

on the image distance of the points i.e.slowly break the rigidity constraint if the points are far
apart in the image space. This constraint encapsulates our idea i.e., the change in the distance
of ith point relative to its local neighbors in the next frame should be asminimum as possible.
Note that the summation goes over 3N rather thanN due the reason discussed in Sec. §7.1

7.3.3 Orientation and Shape Regularization

Solving theARAP constraint provides us the depths for three non-collinear points per-plane
for the next frame. We use these three depth estimate per plane to solve for their normals in
the next frame. Let the 3D points corresponding to the three depths for ith superpixel in the
next frame be denoted as x̃ai , x̃1

i and x̃2
i respectively. We estimate the normals in the next frame

as:
ñi =

(x̃ai − x̃1
i)× (x̃ai − x̃2

i )

∥(x̃ai − x̃1
i)× (x̃ai − x̃2

i )∥2
, (7.2)
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where superscript ‘a’ is used intentionally to denote the anchor point, which is assumed to
be at the center of each plane (see Fig. 7.3). Rewriting Eq. (7.2) in terms of depth

ñi =
(d̃a

i ẽai − d̃1
i ẽ1i)× (d̃a

i ẽai − d̃2
i ẽ2i )

∥(d̃a
i ẽai − d̃1

i ẽ1i)× (d̃a
i ẽai − d̃2

i ẽ2i )∥2
. (7.3)

(a) Orientation smoothness constraint: Once we compute the normal for each
plane and 3D coordinates of the anchor point, which lies on the plane, we estimate the depth
of the plane as follows

ñT
i x̃

a
i = d̃ pa

i . (7.4)

The computed depth of the plane is then used to solve for per-pixel depth in the next frame
—assuming the intrinsic camera matrix is known [107, 85]. To encourage the smoothness
in the change of angles between each adjacent planes (see Fig. 7.3), we define the orientation
regularization as

Φorient
ij = λ1ρ1

(
1−

|ñT
i ñj|

∥ñi∥∥ñj∥

)
, (7.5)

where, λ1 is an empirical constant and ρ1(x) =min(|x|, σ1) is the truncated l1 function with σ1
as a scalar parameter.

(b) Shape smoothnessconstraint: Inour representation, the dynamic scenemodel is
approximated by the collection of piecewise planar regions. Hence, the solution to per-pixel
depth obtained using Eq. (7.1) to Eq. (7.4) may provide discontinuity along the boundaries
of the planes in 3D (see Fig. 7.3). To allow smoothness in the 3D coordinates for each adjacent
planes along their region of separation, we define the shape smoothness constraint as

Φshape =
∑

(i,j)∈Nb

w(2)
ij ρ2(∥diei − djej∥22︸ ︷︷ ︸

reference frame

+ ∥d̃iẽi − d̃jẽj∥22︸ ︷︷ ︸
next frame

). (7.6)

The symbol ‘Nb’ denotes the set of boundary pixels of ith superpixel that are shared with the
boundary pixel of other superpixels. The weightw(2)

ij = exp(−β∥Ii− Ij∥2) takes into account
the color consistency of the plane along the boundary points —weak continuity constraint
[18]. Since all the pixels within the same plane are assumed to share the samemodel, smooth-
ness for the pixels within the plane is not essentially required. Similar to orientation regular-
ization, ρ2(x) =min(|x|, σ2) is the truncated l1 penalty function with σ2 as a scalar parameter.
The overall optimization steps of our method is provided in Algorithm (5).
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Algorithm 5 : A Motion Free Approach

Input: (I, I′), optical_flow(I, I′), K, depth for reference frame.
Output: Dense depth map for the next frame.
1: Over-segment the reference frame intoN superpixels [3].
2: Assign anchor point for each superpixel and two other points in the same plane such that these
three points are non-collinear (see Fig. 7.3).
3: Use K-NN algorithm over superpixels to get the K-nearest neighbor index set.
4: Solve for per-superpixel depth in the next frame §7.3.2

Φarap → minimize
d̃i

subject to: d̃i > 0, |d̃i − di| < diσ
where, diσ is the variance in the depth.

(7.7)

Note: The second constraint provides a trust region for the fast and proper convergence of a non-
convex problem (Fig.7.10). Can be thought of as max/min restriction to the scene deformation.

5: Estimate the normal of each plane in the next frame Eq. (7.3).
6: Estimate the depth of each plane Eq. (7.4).
7: Solve per pixel depth for the next frame using per plane depth (d̃ pa

i ), K, normal of the plane and
its image coordinate.
8: Refine the depth of the next frame by minimizing Eq. (7.5), Eq. (7.6) with respect to depth and
normal [97] §7.3.3.

(Φorient + Φshape)→ minimize
d̃i,ñi

subject to: d̃i > 0, ∥ñi∥ = 1.
(7.8)

9: (Optional) For generalizing the idea to multi-frame, repeat the above steps by making the next
frame as the reference frame and new frame as the next frame.

7.4 Experimental Evaluation

We performed the experimental evaluation of our approach on two benchmark datasets,
namely MPI Sintel [24] and KITTI [68]. These two datasets conveniently provide a com-
plex and realistic environment to test and compare our dense depth estimation algorithm. We
compared the accuracy of our approach against two recent state-of-the-artmethods [107, 143]
that use geometric approach to solve dynamic scene dense depth estimation frommonocular
images. These comparisons are performed using three different dense optical flow estimation
algorithms, namely PWC-Net [159], FlowFields [12] and Full Flow [31]. All the depth estima-
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tion accuracies are reported using mean relative error (MRE) metric. Let d̃ be the estimated
depth and d̃gt be the ground-truth depth, then MRE is defined as

MRE =
1
P

P∑
i=1

|d̃i − d̃gt
i |

d̃gt
i

, (7.9)

where ‘P’ denotes the total number of points. The statistical results for DMDE [143] and
Superpixel Soup [107] are taken from their published work for comparison.

Implementation Details: We over-segment the reference frame into 1000-1200 super-
pixels using SLIC algorithm [3] to approximate the scene. Almost all of the experiments
use fixed value of diσ = 1 andN k

i = 20-25. For computing the dense optical flow correspon-
dences between images we used both traditionalmethods and deep-learning framework such
as PWC-Net [159], FlowFields[12] and Full Flow [31]. The depth for the reference image is
initialized using Mono-Depth [69] model on the KITTI dataset and using Superpixel Soup
algorithm [107] on the MPI-Sintel dataset. The reason for such inconsistent choice is that
available deep-neural network depth estimationmodel fails to provide reasonable depth esti-
mate on theMPI dataset –see supplementary material. The proposed optimization is solved
in two stages, firstly Eq. (7.7) is optimized using SQP [140] algorithm and Eq. (7.8) is opti-
mized using TRW-S [97] algorithm. The choice of the optimizer is purely empirical, and the
user may choose different optimization algorithm to solve the same cost function. The algo-
rithm is implemented inC++/MATLABwhich takes 10-12minutes on a commodity desktop
computer to provides the results.

The implementation is performed under two different experimental settings. In the first
setting, given the sparse (i.e. for three non-collinear points per superpixel) depth estimate of
a dynamic scene for the reference frame, we estimate the per-pixel depth for the next frame.
In the second experimental setting, we generalize this idea of two frame depth estimation
to multiple frames by computing the depth estimates over frames. For easy understanding,
MATLAB codes are provided in the Appendix (E) showing our idea of ARAP on synthetic
examples of a dynamic scene.

MPI Sintel: This dataset gives an ideal setting to evaluate depth estimation algorithms
for complex dynamic scenes. It contains image sequences with considerable motion and se-
vere illumination change. Moreover, the large number of non-planar scenes and non-rigid
deformations makes it a suitable choice to test the piece-wise planar assumption. We selected
seven set of scenes namely alley_1, alley_2, ambush_5, bandage_1, bandage_2, market_2 and
temple_2 from the clean category of this dataset to test our method.

147



alley_2 bandage_1 bandage_2 market_2 temple_2

Im
ag

e
O

ur
s 

D
ep

th
G

ro
un

d-
Tr

ut
h

Figure 7.4: Depth results on the MPI Sintel dataset[24] for the next frame under two frame experimental
se ng. 2nd and 3rd row show ours and ground-truth depth map results respec vely.

OF↓ /Methods→ DMDE [143] S. Soup [107] Ours
PWC Net [159] - - 0.1848
Flow Fields [12] 0.2970 0.1669 0.1943
Full Flow [31] - 0.1933 0.2144

Table 7.1: Comparison of dense depth es ma on methods under two consecu ve frame se ng against the
state-of-the-art approaches on theMPI Sintel dataset [24]. For consistency, the evalua ons are performed
using mean rela ve error metric (MRE).

(a) Two-frame results: While testing our algorithm for the two-frame case, the refer-
ence frame depth is initialized using recently proposed superpixel-soup algorithm [107]. The
optical flow between the frames is computed using methods such as PWC-Net [159], Flow
Fields [12] and Full Flow [31]. Table (7.1) shows the statistical performance comparison of
our method against other geometric approaches. The statistics clearly show that we can per-
form almost equally well without motion estimation. Qualitative results within this setting
are shown in Fig.(7.4).

(b) Multi-frame results: In multi-frame setting, only the depth for the first frame is ini-
tialized. The result obtained for the next frame is then used for the upcoming frames to
estimate its dense depth map. Since we are dealing with the dynamic scene, the environment
changes slowly and therefore, the error starts to accumulate over frames. Fig.(7.9a) reflects
this propagation of error over frames. Qualitative results over multiple frames are shown in
Fig.(7.5).
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(a) Image (MPI Dataset) (b) Dense Depth Estimate over frames

Figure 7.5: Results on MPI Sintel dataset [24] under mul -frame experimental se ng. (a) Image frame for
which the depth is ini alized. (b) Depth es ma on results using our method over frames.
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Figure 7.6: Results on KITTI 2015 benchmark dataset under two frame experimental se ng. 3rd row: Mon-
odepth [69] results on the same sequence for the next frame for qualita ve comparison.
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(a) Image (KITTI) (b) Dense Depth Estimate over frames

Figure 7.7: Results on KITTI raw dataset under mul -frame experimental setup. (a) Reference image for which
the depth is ini alized (b) Dense depth results over frames using our algorithm.

KITTI: The KITTI dataset has emerged as a standard benchmark dataset to evaluate the
performance of dense depth estimation algorithms. It contains images of outdoor driving
scenes with different lighting conditions and large camera motion. We tested our algorithm
on both KITTI raw-data and KITTI 2015 benchmark. For KITTI dataset, we used Mon-
odepth method [69] to initialize the reference frame depth. Dense optical flow correspon-
dences are obtained using the same aforementioned methods. For consistency, the depth
estimation error measurement on KITTI dataset follows the same order of 50 meters as pre-
sented in [69] work.

(a)Two-frame results: KITTI 2015 scene flowdataset provides two consecutive frame pair
of a dynamic scene to test algorithms. Table (7.2) provides the depth estimation statistical
result of our algorithm in comparison to other competingmethods. Here, our results are a bit
better using PWC-Net [159] optical flow andMonodepth [69] depth initialization. Fig.(7.6)
shows the qualitative results using our approach in comparison to the Monodepth [69] for
the next frame.

(b)Multi-frame results: To test the performance of our algorithm onmulti-frameKITTI
dataset, we used KITTI raw dataset specifically from the city, residential and road category.
The depth for only the first frame is initialized using monodepth deep learned model and
then we estimate the depth for the upcoming frames. Due to very large displacement in
the scene per frame (>150) pixels, the rate of change of error accumulation curve for KITTI
dataset (Fig. 7.9b) is a bit steeper than MPI Sintel. Fig.(7.7) and Fig.(7.9b) show the qualita-
tive results and depth error accumulation over frames on KITTI raw dataset respectively.
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OF↓ /Methods→ DMDE [143] S. Soup [107] Ours
PWC Net [159] - - 0.1182
Flow Fields [12] 0.1460 0.1268 0.1372
Full Flow [31] - 0.1437 0.1665

Table 7.2: Comparison of dense depth es ma on under two consecu ve frame se ng against the state-of-the-
art approaches on KITTI dataset [24]. For consistency, the evalua ons are performed using mean rela ve
error metric (MRE). The results are be er due to monodepth ini aliza on for the reference frame.

 Background Non-Rigidly deforming object

Background Rigid Motion

(Rb, Tb)

(a) Reference Image (b) Next Image

Non-Rigid 
Deformation

Figure 7.8: Synthe c example to conduct in-depth behavior analysis of the ARAP. Two objects are deforming
independently over a rigid background mo on. The objects are at a finite separa on from the background.
For numerical details on this example, kindly go through the Appendix(E).
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7.5 Statistical Analysis

Besides experimental evaluations under the aforementioned variable initialization, we also
conducted other experiments to better understand the behavior of the proposed method.
We conducted experiments on a synthetic example shown in Fig.(7.8) for easy understanding
to the readers. MATLAB codes are provided in the Appendix (E) for reference.

(a) Effect of the variableN: Thenumber of superpixels to approximate the dynamic scene
can affect the performance of our method. A small number of superpixel can provide poor
depth result, whereas a very large number of superpixel can increase the computation time.
Fig.(7.9c) shows the change in the accuracy of depth estimation with respect to change in
the number of superpixels. The curve suggests that for KITTI and MPI Sintel 1000-1200
superpixel provides a reasonable approximation to the dynamic scenes.

(b) Effect of the variable N k
i : The number of K-nearest neighbors to define the local

rigidity graph can have a direct effect on the performance of the algorithm. AlthoughN k
i =

20 − 25 works well for the tested benchmarks, it is purely an empirical parameter and can
be different for a distinct dynamic scene. Fig.(7.9d) demonstrates the performance of the
algorithm with the change in the values ofN k

i .
(c) Performanceof the algorithmundernoisy initialization: This experiment is conducted

to study the sensitivity of the method to noisy depth initialization. Fig.(7.10a) shows the
change in the 3D reconstruction accuracy with the variation in the level of noise from 1% to
9%. We introduced the Gaussian noise using randn() MATLAB function and the results are
documented for the example shown in Fig.(7.8) after repeating the experiment for 10 times
and taking its average values. We observe that our algorithm can provide arguable results
when the noise level gets high.

(d) Performance of the algorithm under restricted isometry constraint with Φarap objec-
tive function: Whileminimizing theARAPobjective function under the |d̃i−di| < diσ con-
straint, we restrict the convergence trust region of the optimization. This constraint makes
the algorithmworks extremelywell—both in termsof timing and accuracy, if an approximate
knowledge about the deformation that the scene may undergo is known a priori. Fig. 7.10b
shows the 3D reconstruction accuracy as a function of diσ for the example shown in Fig.(7.8).
Clearly, if we have an approximate knowledge about the scene transformation, we can get
high accuracy in less time. See Fig.(7.10d) which illustrates the quick convergence by using
this constraint under suitable range of diσ.

(e) Nature of convergence of the proposed ARAP optimization:
1) Without restricted isometry constraint: As rigid as possible minimization Φarap under the
constraint d̃i > 0 is alone a good enough constraint to provide acceptable results. However,
it may take a considerable number of iterations to do so. Fig.(7.10c) shows the convergence
curve.
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(c) Results with change in number of Superpixel
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(d) Results with change in number of local neighbors

Figure 7.9: (a)-(b) Accumula on of error over frames for MPI and KITTI dataset respec vely. (c) Change in the
depth es ma on accuracy w.r.t number of superpixel. (d) Varia on in the depth accuracy as a func on of
k-nearest neighbor (N k

i )

2) With restricted isometry constraint: Employing the approximate bound on the deforma-
tion that the scene may undergo in the next time instance can help fast convergence with
similar accuracy. Fig.(7.10d) shows that the same accuracy can be achieved in 60-70 iterations.

7.6 Limitation and Discussion

Even though our method works well for diverse dynamic scenes, there are still a few chal-
lenges associated with the formulation. Firstly, very noisy depth initialization for the refer-
ence frame can provide unsettling results. Secondly, our method is challenged by the instant
arrival or removal of the dynamic subjects in the scene, and in such cases, itmay need reinitial-
ization of the reference depth. Lastly, well-known limitations such as occlusion and temporal

153



(a) 3D reconstruc on error with change in noisy depth (b) 3D reconstruc on Error varia on with diσ

(c) Convergence without prior knowledge on depth change(d) Convergence with prior knowledge on depth change

Figure 7.10: (a) Depth results for the next frame with different levels of Gaussian noise in the reference frame
coordinate ini aliza on. (b) Varia on in the performance with the change in the diσ values for synthe c
example. (c) Convergence curve of the ARAP objec ve func on. (d) Quick convergence with similar accuracy
on the same example can be achieved by using restricted isometric constraint.
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consistency, especially around the regions close to the boundary of the images can also affect
the accuracy of our algorithm.

Discussion: In defense, we would like to state that motion based methods to structure
from motion is prone to noisy data as well. Algorithms like motion averaging [77], M-
estimators and random sampling [165] are quite often used to rectify the solution.
(a) Why do we choose geometric approach to initialize our algorithm onMPI dataset? LKVO
network [184] is one of the top performing networks for dense depth estimation on KITTI
dataset. Our implementation of this network on the MPI dataset provided us with unsatis-
factory results. Qualitative results obtained using this network on the clean class is provided
in the supplementary material. The training parameters are also provided for reference.
(b)What do we gain or lose by our motion free approach?
Estimating all kinds of conceivable motion in a complex dynamic scene from images is a chal-
lenging task, in that respect, ourmethodprovides an alternativeway to achieveper pixel depth
without estimating any 3D motion. However, in achieving this we are allowing the gauge
freedom between the frames (temporal relations in 3D over frames).

7.7 Closing Remark

The problem of estimating per-pixel depth of a dynamic scene, where the complex motions
are prevalent is a challenging task to solve. Quite naturally, previous methods rely on stan-
dard motion estimation techniques to solve this problem, which in fact is a non-trivial task
for a non-rigid scene. In contrast, this chapter introduces a new way to perceive this prob-
lem, which essentially trivializes the motion estimate as a compulsory step. By observing the
behavior of most of the real-world dynamic scenes closely, it can be inferred that it locally
transforms rigidly and globally as rigid as possible. Such observation allows us to propose a
motion-free algorithm to dense depth estimation under the piece-wise planar approximation
of the scene.

Although the proposed approach has some limitations, we believe our motion free ap-
proach provides a promising direction to explore for the future work in this field. We believe
our idea can significantly benefit the deep-learning based methods in the areas of structure
from motion and visual SLAM.
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A
Mathematical derivation and discussion

related to chapter 2

In this appendix, we first provide mathematical derivation to the sub-problems proposed in
the paper. Also, we provide few qualitative comparison of ourmethod in comparison toDai
et al. approach [44] for reference followed by some general discussions.

A.1 Mathematical Derivations

The augmented form of the optimization is as follows:

Lρ(S♯, S) = μ∥S♯∥Θ,∗ +
1
2
∥W− RS∥2F +

ρ
2
∥S♯ − g(S)∥2F+

< Y, S♯ − g(S) >
(A.1)

(a) Solution to S: Minimization the Eq:(A.1) w.r.t ’S’ gives the following form

argmin
S
Lρ(S) = 1

2
∥W− RS∥2F +

ρ
2
∥g−1(S♯)− S∥2F+

< g−1(Y), g−1(S♯)− S >

≡ argmin
S

1
2
∥W− RS∥2F +

ρ
2
∥S−

(
g−1(S♯) + g−1(Y)

ρ

)
∥2F

(A.2)
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Figure A.1: Convergence Curve

Taking the derivative of Eq:(A.2) w.r.t S and equating it to zero gives

(ρI+ RTR)S = ρ
(
g−1(S♯) + g−1(Y)

ρ

)
+ RTW (A.3)

(b) Solution to S♯: Minimization the Eq:(A.1) w.r.t ’S♯’ gives the following form:

≡ argmin
S♯

μ∥S♯∥Θ,∗ +
ρ
2
∥S♯ − g(S)∥2F+ < Y, S♯ − g(S) >

≡ argmin
S♯

μ∥S♯∥Θ,∗ +
ρ
2
∥S♯ −

(
g(S)− Y

ρ
)
∥2F

(A.4)

TheEq:(A.4) is solvedbyusing the thresholdingoperatorS[τ](σ) = sign(σ).max(|σ|−τ, 0).
Let [U,Σ,V] be the singular value decomposition of (g(S) − Y/ρ) then the solution to S♯ is
given by S♯ = US[Θμ/ρ](Σ)V, with Θ as the weight assigned to singular values.

A.2 Convergence Curve

Figure A.1 show the convergence curve of our proposed optimization for solving non-rigid
shape matrix.
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Figure A.2: Qualita ve comparison of our algorithm with the classical baseline BMM [44] under the same
model complexity value (K). The first row and the second row shows the 3D reconstruc on using Dai et
al.and our approach respec vely on the benchmark dataset.(Best viewed in color)

A.3 Qualitative Comparison

At last, we provide the visual comparison of our algorithm in comparison to the targeted
baseline [44] in FigureA.2. The results clearly shows that by simple yet powerful rectification
to simple prior free idea, we can achieve a significant boost in the reconstruction quality*.

Note: The term <<regularity>> in the section(2) paragraph “plausible rectification” to
the solution of rotation, in the main paper, is used in a loose sense. Kindly, ignore this if it’s
not mathematically precise to use it to convey the intuition.

Q. Why the assumption of <<smooth>> deformation of an object over fram reasonable in
solving NRSfM?
In many real world scenario’s the transition of a non-rigidly moving object from one state to
another over frames is not arbitrary but is well ordered or regular in terms of rigidity. Such
assumption successfully captures the general notion about the global behavior of a deforming

*Our claims are easy to verify and test using Dai et al. [44] publicly available code at
http://users.cecs.anu.edu.au/ yuchao/publication.htm

158



surface, at the same time maintains the local attribute of the surface. Therefore, to assume
smooth motion is a reasonable choice and works well for most non-rigidly moving object
[142].
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B
Mathematical derivation related to chapter 3

B.1 Solution to each unknown variables

In this appendix, we provide a detailed derivation for each of the sub-problems introduce in
chapter (3)[105]. Recall that the Augmented Lagrangian formulation of our optimization
problem which is defined as:

L(S, S♯,C1,C2,E1,E2, J, {Yi}8i=1) =
1
2
∥W− RS∥2F + λ1∥E1∥1 + γ1∥E1∥2F + λ2∥J∥∗+

λ3∥E2∥1 + γ3∥E2∥2F+ < Y1, S♯ − g(S) > +
β
2
∥S♯ − g(S)∥2F+ < Y2, S− SC1 > +

β
2
∥S− SC1∥2F+ < Y3, S♯ − S♯C2 > +

β
2
∥S♯ − S♯C2∥2F+ < Y4, 1TC1 − 1T > +

β
2
∥1TC1 − 1T∥2F+ < Y5, 1TC2 − 1T > +

β
2
∥1TC2 − 1T∥2F+ < Y6,C1 − E1 > +

β
2
∥C1 − E1∥2F+ < Y7,C2 − E2 > +

β
2
∥C2 − E2∥2F+ < Y8, S♯ − J > +

β
2
∥S♯ − J∥2F.

(B.1)
The ADMMworks by alternatively updating each variable one at a time while assuming

the remaining variables as constant.
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B.1.1 Solution for S

S = argmin
S

1
2
∥W− RS∥2F+ < Y1, S♯ − g(S) > +

β
2
∥S♯ − g(S)∥2F+ < Y2, S− SC1 > +

β
2
∥S− SC1∥2F.

We are minimizing this equation w.r.t S. Therefore, we convert the second and third term
in the above equation to be of the dimension of S.
S♯ = g(S)⇒ S = g−1(S♯) (linear mapping).
Similarly, Lagrange multiplier Y1 is mapped to the dimension of S.

S = argmin
S

1
2
∥W− RS∥2F +

β
2
∥g−1(S♯)− S∥2F+ < g−1(Y1), g−1(S♯)− S > +

< Y2, S− SC1 > +
β
2
∥S− SC1∥2F.

= argmin
S

1
2
∥W− RS∥2F +

β
2
(∥g−1(S♯)∥2F + ∥S∥2F − 2Tr((g−1(S♯))TS)+

Tr((g−1(Y1))
T(g−1(S♯)))− Tr((g−1(Y1))

TS)+ < Y2, S− SC1 > +
β
2
∥S− SC1∥2F.

= argmin
S

1
2
∥W− RS∥2F +

β
2
(
∥S∥2F − 2Tr((g−1(S♯))TS)− 2

βTr((g
−1(Y1))

TS)
)
+

< Y2, S− SC1 > +
β
2
∥S− SC1∥2F.

{
S♯,Y1 are constants when minimizing over S

}
Since, adding constants to the above form will not affect the solution of S.

Therefore, we are adding ∥g−1(S♯) + g−1(Y1)

β )∥2F inside the second term,

which will give us the form

S = argmin
S

1
2
∥W− RS∥2F +

β
2
∥S− (g−1(S♯) + g−1(Y1)

β )∥2F+ < Y2, S− SC1 > +

β
2
∥S− SC1∥2F.

(B.2)
The closed form solution for S can be derived by taking derivative of (B.2) w.r.t to S and
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equating to zero.

1
β(R

TR+ βI)S+ S(I− C1)(I− CT
1 ) =

1
βR

TW+

(
g−1(S♯) + g−1(Y1)

β − Y2

β (I− CT
1 )

)
.

(B.3)
B.1.2 Solution for S♯

S♯ = argmin
S♯

< Y1, S♯ − g(S) > +
β
2
∥S♯ − g(S)∥2F+ < Y3, S♯ − S♯C2 > +

β
2
∥S♯ − S♯C2∥2F+ < Y8, S♯ − J > +

β
2
∥S♯ − J∥2F.

Here, also the first two term and last two terms is condensed to a simpler form for
mathematical convenience without affecting the final solution.

S♯ = argmin
S♯

Tr
(
YT

1 S♯
)
− Tr

(
YT

1 g(S)
)
+

β
2
(
∥S♯∥2F + ∥g(S)∥2F − 2Tr((S♯)Tg(S))

)
+ < Y3, S♯ − S♯C2 > +

β
2
∥S♯ − S♯C2∥2F + Tr

(
YT

8 S♯
)
− Tr

(
YT

8 J
)
+

β
2
(
∥S♯|2F + ∥J∥2F+

− 2Tr
(
(S♯)TJ

)
.

Since, we are minimizing over S♯. The terms which are not dependent on S♯ is considered
as constants, which gives us:

S♯ = argmin
S♯

β
2
(
∥S♯∥2F − 2Tr(S♯)T(g(S)− Y1

β )
)
+ < Y3, S♯ − S♯C2 > +

β
2
∥S♯ − S♯C2∥2F

+
β
2
(
∥S♯∥2F − 2Tr(S♯)T(J− Y8

β )
)
.

Adding ∥g(S)− Y1

β ∥
2
F and ∥J− Y8

β ∥
2
F inside the first term and last term respectively to get

the quadratic form. As these terms are constants when minimizing over S♯ it will not affect
the final solution.

S♯ = argmin
S♯

β
2
∥S♯ − (g(S)− Y1

β )∥2F+ < Y3, S♯ − S♯C2 > +
β
2
∥S♯ − S♯C2∥2F+

β
2
∥S♯ − (J− Y8

β )∥2F.

(B.4)
The closed form solution for S♯ can be derived by taking derivative of (B.4)w.r.t S♯ and equat-
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ing to zero.

S♯(2I+ (I− C2)(I− CT
2 )) =

(
g(S)− Y1

β

)
+ (J− Y8

β )− Y3

β (I− CT
2 ). (B.5)

B.1.3 Solution for C1

C1 = argmin
C1

< Y2, S− SC1 > +
β
2
∥S− SC1∥2F+ < Y4, 1TC1 − 1T > +

β
2
∥1TC1 − 1T∥2F+ < Y6,C1 − E1 > +

β
2
∥C1 − E1∥2F.

= argmin
C1

β
2
∥SC1 − (S+ Y2

β )∥2F +
β
2
∥1TC1 − (1T − Y4

β )∥2F +
β
2
∥C1 − (E1 −

Y6

β )∥2F.

(B.6)
The closed form solution for C1 is solved as:

(STS+ 11T + I)C1 = ST(S+ Y2

β ) + 1(1T − Y4

β ) + (E1 −
Y6

β ). (B.7)

C1 = C1 − diag(C1), (B.8)

B.1.4 Solution for C2

C2 = argmin
C2

< Y3, S♯ − S♯C2 > +
β
2
∥S♯ − S♯C2∥2F+ < Y5, 1TC2 − 1T > +

+
β
2
∥1TC2 − 1T∥2F+ < Y7,C2 − E2 > +

β
2
∥C2 − E2∥2F.

= argmin
C2

β
2
∥S♯C2 − (S♯ + Y3

β )∥2F +
β
2
∥1TC2 − (1T − Y5

β )∥2F +
β
2
∥C2 − (E2 −

Y7

β )∥2F.

(B.9)
The closed form solution for C2 is derived as:(

(S♯)TS♯ + 11T + I
)
C2 = (S♯)T(S♯ + Y3

β ) + 1(1T − Y5

β ) + (E2 −
Y7

β ). (B.10)

C2 = C2 − diag(C2), (B.11)
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B.1.5 Solution for E1

E1 = argmin
E1

λ1∥E1∥1 + γ1∥E1∥2F+ < Y6,C1 − E1 > +
β
2
∥C1 − E1∥2F.

= argmin
E1

λ1∥E1∥1 + γ1∥E∥2F +
β
2
∥E1 − (C1 +

Y6

β )∥2F.

= argmin
E1

λ1∥E1∥1 + γ1∥E1∥2F +
β
2
∥E1∥2F − β < E1, (C1 +

Y6

β ) >

= argmin
E1

λ1∥E1∥1 + (γ1 +
β
2
)(∥E1∥2F +

2β
2γ1 + β < E1,C1 +

Y6

β >).

= argmin
E1

λ1∥E1∥1 + (γ1 +
β
2
)∥E1 −

β
2γ1 + β(C1 +

Y6

β )∥2F.

(B.12)

The closed form solution for E1 is reached as:

E1 = S
[ λ1

γ1 + β/2
]( β

2γ1 + β(C1 +
Y6

β )
)

(B.13)

B.1.6 Solution for E2

The derivation for the solution of E2 is similar to the solution of E1.

E2 = argmin
E2

λ3∥E2∥1 + γ3∥E2∥2F+ < Y7,C2 − E2 > +
β
2
∥C2 − E2∥2F

= argmin
E2

λ3∥E2∥1 + (γ3 +
β
2
)∥E2 −

β
2γ3 + β(C2 +

Y7

β )∥2F.
(B.14)

The closed form solution for E2 is reached as:

E2 = S
[
λ3/(γ3 + β/2)

]( β
2γ3 + β(C2 +

Y7

β )
)
. (B.15)
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B.2 Tables for each comparison

Table B.1: Table corresponding to Figure 3.7

Datasets BMM PND Zhu et al. Kumar et al. Ours
Dance+Yoga 0.045 0.078 0.052 0.046 0.043

Drink+Walking 0.074 0.060 0.083 0.073 0.071
Shark+Stretch 0.024 0.015 0.067 0.025 0.019
Walking+Yoga 0.070 0.072 0.087 0.070 0.066
Face+Pickup 0.032 0.012 0.018 0.025 0.022
Face+Yoga 0.017 0.010 0.028 0.019 0.017
Shark+Yoga 0.035 0.018 0.094 0.037 0.033
Stretch+Yoga 0.039 0.109 0.045 0.039 0.036

Table B.2: Table corresponding to Figure 3.8

Datasets BMM PND Zhu et al. Kumar et al. Ours
p2_free_2 0.1973 0.1544 0.1142 0.1992 0.1171
p2_grab_2 0.2018 0.1570 0.0960 0.2080 0.0822
p3_ball_1 0.1356 0.1477 0.0832 0.1348 0.0810

p4_meet_12 0.0802 0.0862 0.0972 0.0821 0.0815
p4_table_12 0.2313 0.1588 0.1322 0.2313 0.0994

Table B.3: Table corresponding to Figure 3.11

Datasets BMM PND Zhu et al. Kumar et al. Ours
Face Sequence 1 0.078 0.077 0.082 0.075 0.073
Face Sequence 2 0.059 0.062 0.063 0.050 0.052
Face Sequence 3 0.042 0.051 0.057 0.038 0.039
Face Sequence 4 0.049 0.041 0.056 0.044 0.040
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C
Mathematical derivation and discussion

related to chapter 4

In this material, we provide a detailedmathematical derivation to the proposed optimization
in the chapter (4)[101]. Additionally, we provide additional qualitative results and insights.

C.1 Mathematical Derivations

minimize
Ss,S♯t ,Cs,Ct,Js,Jt

E =
1
2
∥Ws − RSs∥2F +

β
2
∥S♯t −T1(Ss)∥2F+ < Y1, S♯t −T1(Ss) > +γ∥S♯t∥∗ + λ1∥Ts − TsCs∥2F+

λ3∥Js∥∗ +
β
2
∥Cs − Js∥2F+ < Y2,Cs − Js > +λ2∥Tt − TtCt∥2F + λ4∥Jt∥∗ +

β
2
∥Ct − Jt∥2F+ < Y3,Ct − Jt >

subject to:
Ψs = ξ(Cs, Ss, q);Ψt = ξ(Ct, S♯t , q);
Ss = ζ(Ψs,Σs,Vs,Ns); S♯t = ζ(Ψt,Σ♯

t ,Vt,Nt);

Ws = T2(Ws, Ss).
(C.1)

166



C.1.1 Background

Tomake the optimization simpler, let’s consider an error term that involves the tensor struc-
ture

∥Es∥2F = ∥Ts − TsCs∥2F. (C.2)

Considering the ith term, and using ∥Esi∥2F = trace(ET
siEsi)

From our notation definition Ts =
{
(ψs1)(ψs1)

T, (ψs2)(ψs2)
T..., (ψsKs

)(ψsKs
)T
}
and Cs ∈

RKs×Ks

∥Esi∥2F = trace
[(

(ψsiψ
T
si)−

Ks∑
j=1

cij(ψsjψ
T
sj)
)T(

(ψsiψ
T
si)−

Ks∑
j=1

cij(ψsjψ
T
sj)
)]

∥Esi∥2F = trace
(
(ψsiψ

T
si)

T(ψsiψ
T
si)
)
− 2

Ks∑
j=1

cijtrace
(
(ψsiψ

T
si)

T(ψsjψ
T
sj)
)
+

Ks∑
l=1

Ks∑
m=1

cilcimtrace
(
(ψslψ

T
sl)

T(ψsmψ
T
sm)
)
.

(C.3)

Now using the trace cyclic property and the orthonormality property of matrices.

∥Esi∥2F = trace(Id)− 2
Ks∑
j=1

cijtrace
(
(ψT

sjψsi)(ψ
T
siψsj)

)
+

Ks∑
l=1

Ks∑
m=1

cilcimtrace
(
(ψT

slψsm)(ψ
T
smψsl)

)
.

∥Esi∥2F = d− 2
Ks∑
j=1

cijΩs
ij +

Ks∑
l=1

Ks∑
m=1

cilcimΩs
lm,where, Ωs

ij = trace
(
(ψT

sjψsi)(ψ
T
siψsj)

)
.

(C.4)
Here, d stands for the dimension. Notice Ωs

ij has a dimension of d × d which is easy to
handle than the total number of points in a dense datasets. Also, it’s simple to verify that Ωs

ij
is symmetric.

Using Equation (C.4) and Ωs = (Ωs
ij)

Ks
i,j=1 ∈ RKs×Ks , we can rewrite Equation (C.2) as

follows

∥Es∥2F = const− 2trace(CsΩs) + trace(CsΩsCT
s )

⇒ ∥Es∥2F = const− 2trace(CsLsLT
s ) + trace((CsLs)(CsLs)

T), where LsLT
s = Cholesky(Ωs)

⇒ ∥Es∥2F = const+ ∥Ls − CsLs∥2F{∵ constant w.r.t Cs will not affect the minimization}
(C.5)

Similarly, other tensor structure can be equivalently represented in the temporal domain.
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Overall Optimization

Substituting the above derivation in Equation (C.1) gives us a simpler representation

minimize
Ss,S♯t ,Cs,Ct,Js,Jt

E =
1
2
∥Ws − RSs∥2F +

β
2
∥S♯t −T1(Ss)∥2F+ < Y1, S♯t −T1(Ss) > +γ∥S♯t∥∗ + λ1∥Ls − CsLs∥2F+

λ3∥Js∥∗ +
β
2
∥Cs − Js∥2F+ < Y2,Cs − Js > +λ2∥Lt − CtLt∥2F + λ4∥Jt∥∗ +

β
2
∥Ct − Jt∥2F+ < Y3,Ct − Jt >

subject to:
Ψs = ξ(Cs, Ss, q);Ψt = ξ(Ct, S♯t , q);
Ss = ζ(Ψs,Σs,Vs,Ns); S♯t = ζ(Ψt,Σ♯

t ,Vt,Nt);

Ws = T2(Ws, Ss);
(C.6)

Solution to Ss

≡ argmin
Ss

1
2
∥Ws − RSs∥2F +

β
2
∥S♯t −T1(Ss)∥2F+ < Y1, S♯t −T1(Ss) >

≡ argmin
Ss

1
2
∥Ws − RSs∥2F +

β
2
∥T −1

1 (S♯t )− Ss∥2F+ < T −1
1 (Y1),T

−1
1 (S♯t )− Ss >

≡ argmin
Ss

1
2
∥Ws − RSs∥2F +

β
2
∥Ss −

(
T −1

1 (S♯t ) +
T −1

1 (Y1)

β
)
∥2F.

(C.7)

The solution to Ss can be derived by differentiating the above term w.r.t Ss and equating
it to zero.

Ss ≡ (RTR+ βI)−1
(
β
(
T −1

1 (S♯t ) +
T −1

1 (Y1)

β
)
+ RTWs

)
Solution to S♯t

≡ argmin
S♯t

γ∥S♯t∥∗ +
β
2
∥S♯t −T1(Ss)∥2F+ < Y1, S♯t −T1(Ss) >

≡ argmin
S♯t

γ∥S♯t∥∗ +
β
2
∥S♯t −

(
T1(Ss)−

Y1

β
)
∥2F

(C.8)

Let’s define the soft-thresholding operation as S[τ](x) = sign(x)max(|x| − τ, 0)
Then, the optimal solution to S♯t is given by

S♯t ≡ UtS[γ/β](Σt)Vt,

where, [Ut,Σt,Vt] = svd(T1(Ss)−
Y1

β )
(C.9)
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Solution to Cs

≡ argmin
Cs

λ1∥Ls − CsLs∥2F +
β
2
∥Cs − Js∥2F+ < Y2,Cs − Js >

≡ argmin
Cs

λ1∥Ls − CsLs∥2F +
β
2
∥Cs −

(
Js −

Y2

β
)
∥2F

(C.10)

The solution toCs can be derived by differentiating the above termw.r.tCs and equating
it to zero.

Cs ≡
(
2λ1LsLT

s + β(Js −
Y2

β )
)(

2λ1LsLT
s + βIs

)−1

Solution to Ct

Similar to the Cs solution derivation, it’s solution can be derived as follows:

≡ argmin
Ct

λ2∥Lt − CtLt∥2F +
β
2
∥Ct − Jt∥2F+ < Y3,Ct − Jt >

≡ argmin
Ct

λ2∥Lt − CtLt∥2F +
β
2
∥Ct −

(
Jt −

Y3

β
)
∥2F

(C.11)

Ct ≡
(
2λ2LtLT

t + β(Jt −
Y3

β )
)(

2λ2LtLT
t + βIt

)−1

Solution to Js

≡ argmin
Js

λ3∥Js∥∗ +
β
2
∥Cs − Js∥2F+ < Y2,Cs − Js >

≡ argmin
Js

λ3∥Js∥∗ +
β
2
∥Js −

(
Cs +

Y2

β
)
∥2F

(C.12)

Similar to Equation C.9 derivation, using the soft-thresholding operation, its optimal so-
lution can be obtained as

Js ≡ UJsS[λ3/β](ΣJs)VJs , where [UJs ,ΣJs ,VJs ] = svd(Cs +
Y2

β ) (C.13)

Solution to Jt

≡ argmin
Jt

λ4∥Jt∥∗ +
β
2
∥Ct − Jt∥2F+ < Y3,Ct − Jt >

≡ argmin
Jt

λ4∥Jt∥∗ +
β
2
∥Jt −

(
Ct +

Y3

β
)
∥2F

(C.14)

Jt ≡ UJtS[λ4/β](ΣJt)VJt , where [UJt ,ΣJt ,VJt ] = svd(Ct +
Y3

β ) (C.15)
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C.1.2 Proof

We have stated in the Algorithm table that Ωs ⪰ 0 The following lemma provides the proof
for the same.
LemmaC.1.1. Given a set of orthonormalmatric Ψs =

{
{ψsi}

Ks
i=1 : ∀ψsi ∈ Rd×n, ψsi

Tψsi =

I
}
, if ∃ Ωs

ij = trace[
(
ψT

sjψsi
)(
ψT

siψsj
)
] such that Ωs = (Ωs

ij)
Ks
i,j=1 ∈ RKs×Ks , then Ωs ⪰ 0.

Proof. Zi =ψsiψ
T
si is a d× d symmetric matrix.

As per the statement, Ωs
ij = trace[

(
ψT

sjψsi
)(
ψT

siψsj
)
] = trace[

(
ψsjψ

T
sj
)(
ψsiψ

T
sj
)
]

= trace(ZjZi) = trace(ZjZT
i ) = trace(ZT

i Zj)

Ωs = (Ωs
ij)

Ks
i,j=1, then, Ωs = ZTZ {Skipping some elementary steps}

⇒ Ωs ⪰ 0.
(C.16)

Similarly, the positive semi-definite proof for Ωt can be derived. Note: In case Ωs =
0||Ωt = 0 while implementing this algorithm, then add δ (a very small positive number) to
the diagonal elements of Ωs or Ωt accordingly, to get to an approximate Cholesky factoriza-
tion. Mathematically, approximate Ωs = 0||Ωt = 0 as Ω ≈ Ω + δI to make it numerically
positive definite.

C.2 Qualitative Results

C.2.1 Analysis of Cs and Ct

In the experiment sectionwementioned about the observation ofCs andCt matrix. Since, no
ground-truth data’s are available to quantify these matrices, we provide a visual observation
for the same. We used the spectral clustering [131] to group the trajectories and shapes after
convergence to infer the output ofCs andCt matrix. Fig.(C.1) shows the output of this exper-
iment. Visually it can be observed that local low-rank linear subspace are properly procured
—both spatially and temporally.

C.3 Rotation Estimate

We used the method proposed by Dai et al. [44] to estimate rotation which only depends
on the K value (model complexity) and therefore, it can efficiently handle dense feature cor-
respondence over multiple frame to estimate rotation. Assuming that a single non-rigid de-
forming object constitutes a global relative camera pose over frames is a reasonable choice
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Cs

(a)
Ct

(b)

Figure C.1: (a) Grouping of the trajectories based on Cs matrix. We provide four different views to check the
fidelity of our result and assump on. (b) Grouping of the shapes based on Ct matrix. Color corresponding
to the group block is shown with the color bars (extreme right). This simula on is done on the real face
sequence [65] with Ks and Kt = 10.

and works efficiently. Most of the past approaches also used this assumption to solve rota-
tion [44, 41, 7, 104, 106]. Quantitative results on several datasets also shows that high-quality
reconstruction can be obtained under such assumption. Additionally, it h also been ob-
served that different camera path can lead to different reconstruction results. For now, its
investigation on the algorithm performance left for future discussions.

Note: For technical details on the compactness of grassmannians, kindly refer to [126] for
comprehensive theory. Nevertheless, there are many other books and not on differential
manifolds which provid information on the compactness of grassmannians.
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D
Mathematical Derivations and Extra
Experimental Analysis of Chapter 5

This appendix provides mathematical derivation to the objective function proposed in chap-
ter (5). We provide somemore qualitative results and statistical evaluations of our algorithm.
Lastly, we made a brief comment on the challenges associated with handling temporal grass-
mannians for NRSfM problem.
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D.1 Mathematical derivation to the optimization of the objective func-
tion

In this section, we provide mathematical derivation of the following optimization proposed
in the paper.

minimize
Z,C̃,S,S♯

1
2
∥W− RS∥2F + β1∥χ − χC̃∥2F + β2∥S

♯∥∗+

ρ
2
∥S♯ − f(S)∥2F+ < L1, S♯ − f(S) > +β3∥Z∥∗+
ρ
2
∥C̃− Z∥2F+ < L2, C̃− Z >

subject to: ξ = fg(P, S), ξ̃ = fh(Δ, ξ),
S = fs(ξ,Σ, ξv), P = fp(ξ̃, C̃, Po)

(D.1)

The constraints in the Eq:(D.1) are invoked over iteration. The solution to each sub-
problem is obtained by taking the derivative of the above ALM form w.r.t the concerned
variable and equating it to zero.

D.1.1 Solution to ‘S’

≡ argmin
S

1
2
∥W− RS∥2F +

ρ
2
∥S♯ − f(S)∥2F+

< L1, S♯ − f(S) >

≡ argmin
S

1
2
∥W− RS∥2F +

ρ
2
∥S−

(
f−1(S♯) + f−1(L1)

ρ

)
∥2F

(D.2)

Taking the derivative of the above equation w.r.t ‘S’ and equating it to zero gives

(RTR+ ρI)S = RTW+ ρ
(
f−1(S♯) + f−1(L1)

ρ

)
(D.3)

We usedMATLABmldivide() function to solve it during our implementation. Youmay use
any linear algebra package to solve the above well known form.
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D.1.2 Solution to ‘S♯’

Similar to previous derivation, we can write the ALM form for the variable S♯

≡ argmin
S♯

β2∥S
♯∥∗ +

ρ
2
∥S♯ − f(S)∥2F+ < L1, S♯ − f(S) >

≡ argmin
S♯

β2∥S
♯∥∗ +

ρ
2
∥S♯ −

(
f(S)− L1

ρ

)
∥2F

(D.4)

The above sub-problem is well-known form for nuclear normminimization. By defining the
soft-thresholding operatorS[τ](v) = sign(v)max(|v|−τ), the solution of S♯ can be obtained
by

S♯ = UsS[β2/ρ](Σs)Vs (D.5)

where, [Us,Σs,Vs] = svd
(
f(S)− L1/ρ

)
D.1.3 Solution to ‘Z’

≡ argmin
Z

β3∥Z∥∗ +
ρ
2
∥C̃− Z∥2F+ < L2, C̃− Z >

≡ argmin
Z

β3∥Z∥∗ +
ρ
2
∥Z−

(
C̃+

L2

ρ

)
∥2F

(D.6)

Using the soft-thresholding function as mentioned before, the solution to Z is given by

Z ≡ UzS[β3/ρ](Σz)Vz (D.7)

where [Uz,Σz,Vz] = svd
(
C̃+ L2/ρ

)
D.1.4 Solution to ‘C̃’

Deriving the solution for ‘C̃’ from the sub-problem involving the variable ‘C̃’ is not straight
forward rather, it’s a bit involved and therefore, we first derive an equivalent form for the
error term that involves tensor χ. The equivalent form is easy to handle and program on
computers. Lets consider the following error term:

∥χ − χC̃∥2F (D.8)

Using the notation from our paper, for any ith Grassmann point this error term in Eq:(D.8)
can be written as

Tr

((
(ΘiΘT

i )−
K∑
j=1

cij(ΘjΘT
j )
)T(

(ΘiΘT
i )−

K∑
j=1

cij(ΘjΘT
j )
))

(D.9)
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Expanding the above form gives

≡ Tr
(
(ΘiΘT

i )
T(ΘiΘT

i )
)
− 2

K∑
j=1

cijTr
(
(ΘiΘT

i )
T(ΘjΘT

j )
)
+

K∑
l=1

K∑
m=1

cilcimTr
(
(ΘlΘT

l )
T(ΘmΘT

m)
) (D.10)

From our definition Θ ∈ Rd̃×p as an orthonormal matrix. Using it simplifies the above equation to:

≡ p− 2
K∑
j=1

cijΓij +
K∑
l=1

K∑
m=1

cilcimΓlm

where, Γij = Tr
(
(ΘT

j Θi)(ΘT
i Θj)

)
{using trace cyclic property}

(D.11)

Let Γ = (Γij)Kij=1 ∈ RK×K. Its easy to verify that Γ is symmetric positive semi-definite. Therefore,
using cholesky factorization of chol(Γ) = LLT, we can re-write the above equation as

≡ p− 2Tr(C̃LLT) + Tr(C̃LLTC̃T)

≡ const + ∥L− C̃L∥2F
where, const. means constant w.r.t C̃

(D.12)

By substituting the result from Eq:(D.12) to the sub-problem w.r.t C̃, we get the following form:

≡ argmin
C̃

β1∥L− C̃L∥2F +
ρ
2
∥C̃− Z∥2F+ < L2, C̃− Z >

≡ argmin
C̃

β1∥L− C̃L∥2F +
ρ
2
∥C̃−

(
Z− L2

ρ

)
∥2F

(D.13)

Taking the derivative of the Eq:(D.13) w.r.t C̃ and equating it to zero.

C̃(2β1LL
T + ρI) = 2β1LL

T + ρ
(
Z− L2

ρ

)
(D.14)

D.2 Solution to E(Δ)

E(Δ) ≡ minimize
Δ

K∑
(i,j)

wij
1
2
∥ΔT(Λij)Δ∥2F

subject to:

Tr
(
ΔT( K∑

i=1
λiiΩiΩT

i
)
Δ
)
= 1

(D.15)
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Theoptimization equationproposed forE(Δ) is awell-studiedoptimization formandRiemannCon-
jugate gradient toolbox can be employed to achieve the solution. Nevertheless, we can also derive aug-
mented lagrangian form to solve the same problem. By lettingX =

(∑K
i=1 λiiΩiΩT

i
)
and expanding

the Frobenius norm term, we can re-write the equation as:

E(Δ) ≡ minimize
Δ

K∑
(i,j)

wij
2

Tr
(
ΔTΛijΔΔTΛijΔ

)
E(Δ) ≡ minimize

Δ
Tr
(
ΔT

K∑
(i,j)

wij
2

ΛijΔt−1Δ(t−1)TΛijΔ
)

subject to:

Tr
(
ΔTXΔ

)
= 1

(D.16)

Here, t−1 refers to its knownvaluebefore the current iteration. Now, by assumingY =
wij
2 ΛijΔt−1Δ(t−1)TΛij,

the above equation simplifies to standard eigen value decomposition problem i.e.

E(Δ) ≡ minimize
Δ

Tr(ΔTYΔ)

subject to:

Tr
(
ΔTXΔ

)
= 1

(D.17)

The equivalent Lagrangian function form is given by

Tr(ΔTYΔ) + λ
(
1− Tr

(
ΔTXΔ

))
(D.18)

The Eq:(D.18) is of the standard form to generalized eigen value problem. You may use any standard
linear algebra package to solve it.

D.3 Discussion

D.3.1 Why we opt not to distrub the temporal continuity for this prob-
lem?

Although clustering of frames into smaller groups (Grassmannians) allows simpler model, however,
its quite possible that there will be repeat of certain activities or expression in the video sequence (say
facial expression). In such cases the Grassmannians at frame ‘f’ and frame ‘f+n’ will be assigned to
same group. Here, ‘n’ is the time instant at which activities repeat or is similar. As a result, such
representation procedure may disturb the overall time continuity of the sequence. Also, these group
of frames may form high-dimensional grassmannians, in order to project it into low-dimension using
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neighboringGrassmannianswill get extremely difficult, for example, how to decide neighboring grass-
mannians using temporal grassmann samples?. On the other hand, grouping of trajectories (spatial)
does not disturb the temporal continuity of the trajectory andwe can easily define the neighbors using
spatial information i.e., spatial neighbors tend to be neighbors throughout the sequence, for a single
deforming object (unless breaks or disassociate, which is very rare). But in shape space, we don’t have
any prior knowledge to define neighboring relation.
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E
Code and Extra Experimental Analysis of

Chapter 7

In this supplementary material, we first provide the MATLAB simulation code on two synthetic ex-
amples. These examples explains and show the utility of as rigid as possible constraint to recover the
3D points in a dynamic scene setting without estimating motion. Secondly, we provide few more
statistical experiment results about the behavior of our algorithm under noisy initialization and dif-
ferent diσ values (if the second constraint is used with Φarap). Although some of the evaluations are
also provided in the main paper, we provide it again with numerical examples for completeness and
easy understanding. Lastly, we provide some general discussion on our approach.

E.1 Synthetic Experiment Code and Explanation

We provide the code showing the utility of as rigid as possible constraint on two synthetic experimen-
tal setting of a dynamic scene. In these experiments, the background and the objects are shown in
red and blue color respectively. The background undergoes a rigid motion and the object undergoes
a non-rigid deformation in the scene. Given the depth of the reference frame and the image corre-
spondences of the feature points, we can estimate the 3D reconstruction for both the foreground and
the background in the next frame just by using the ARAP constraint without using any 3D motion
parameters.
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Figure E.1: (a) Experimental setup for the first experiment (b) 3D reconstruc on for the next frame a er op -
miza on (c) The 3D reconstruc on error varia ons against the number of nearest neighbor in the experiment
(topK variable in the code).

E.1.1 Experiment (1)

1. Scene Setup: A background and an object in the reference frame. The background undergoes
a rigid motion and the single object deforms non-rigidly in the next frame (see Figure E.1).

2. Input: 2D image feature correspondences, intrinsic camera parameters(K), depth of the points
in the reference frame.

3. Output: 3D coordinates of the entire scene for the next frame.

(1) firstExample.m Main file.
%% Evaluation of concept on sythetic dataset.
% 1. Given the 3D points for the background and the deforming object (foreground) for the reference
frame.
% 2. Also, you are provided with camera intrinsic calibration matrix(K), 2D image correspondance
between reference frame and next frame
% 3. Situation: The background is undergoing a rigidmotion and the object is deforming non-rigidly.
%% Problem: % Get the 3D reconstruction of this dynamic scene for the next time frame without
solving for motion.
%% 1. Generate a synthetic dataset for the reference frame
%Create a synthetic situation of the problem.
%generate 3D for the reference frame
%Background coordinate
ref_Xb = [1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5];
ref_Yb = [1, 1, 1, 1, 1; 2, 2, 2, 2, 2; 3, 3, 3, 3, 3; 4, 4, 4, 4, 4; 5, 5, 5, 5, 5];
ref_Zb = 2 ∗ ones(5, 5);
%Object coordinate
ref_Xo = [2.5, 3.5, 4.5; 2.5, 3.5, 4.5; 2.5, 3.5, 4.5];
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ref_Yo = [2.5, 2.5, 2.5; 3.5, 3.5, 3.5; 5.0, 5.0, 5.0];
ref_Zo = 3 ∗ ones(3, 3);
%Arrange in the matrix form
ref_Xb = ref_Xb’; ref_Yb = ref_Yb’; ref_Zb = ref_Zb’;
ref_Xo = ref_Xo’; ref_Yo = ref_Yo’; ref_Zo = ref_Zo’;
ref_X = [ref_Xb(:)’, ref_Xo(:)’];
ref_Y = [ref_Yb(:)’, ref_Yo(:)’];
ref_Z = [ref_Zb(:)’, ref_Zo(:)’];
%% 2. Generate the synthetic dataset for the next frame
%give some rigid motion to the background
angle = deg2rad(3);
R = [cos(angle), 0, sin(angle); 0, 1, 0; -sin(angle), 0, cos(angle)];
t = [0.2, 0.2, 0.2]’;
next_b = R*[ref_Xb(:)’; ref_Yb(:)’; ref_Zb(:)’] + repmat(t, [1, 25]);
next_Xb = next_b(1, :); next_Yb = next_b(2, :); next_Zb = next_b(3, :);
%give some inconsistent changes to the object
next_Xo = [2.6, 3.7, 4.7; 2.8, 3.6, 4.5; 2.5, 3.5, 4.6];
next_Yo = [2.6, 2.7, 2.75; 3.4, 3.45, 3.5; 5.05, 5.10, 5.15];
next_Zo = [2.9, 2.9, 2.9; 2.9, 2.9, 2.9; 2.9, 2.9, 2.9];
%arrange in the matrix form
next_Xo = next_Xo’; next_Yo = next_Yo’; next_Zo = next_Zo’;
next_X = [next_Xb, next_Xo(:)’];
next_Y = [next_Yb, next_Yo(:)’];
next_Z = [next_Zb, next_Zo(:)’];
%% 3. Generate synthetic image for the reference frame and the next frame.
%some K matrix
fx = 100; fy = 100; cx = 240; cy = 320;
K = [fx, 0, cx; 0, fy, cy; 0, 0, 1];
%image point for the reference image
ref_img = K*[ref_X;ref_Y; ref_Z];
ref_img = ref_img./repmat(ref_img(3, :), [3, 1]);
%image point for the next image
next_img = K*[next_X; next_Y; next_Z];
next_img = next_img./repmat(next_img(3, :), [3, 1]);
%plot the image points
figure, plot(ref_img(1, :), ref_img(2, :), ’k.’); hold on;
plot(ref_img(1, 26:34), ref_img(2, 26:34), ’ro’); title(’Reference Image’);
figure, plot(next_img(1, :), next_img(2, :), ’k.’); hold on;
plot(next_img(1, 26:34), next_img(2, 26:34), ’ro’); title(’Next Image’);
%% 4. Define the neighbors based on the reference image distance
%total number of anchor node.
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N = 34; %K-NN to consider
topK = 15; %vary form 1 to N
%get the index of the neighbors
[persuperpixelKNNid, persuperpixelw1k] = givemeKNN(ref_img, N, topK); %function call 1
%% 5. Use as rigid as possible optimization routine
%(Optional: Youmay provide explicit lower and upper bound for better convergence of a non-convex
problem)
%(For large scale problems such bounds can be handy)
%dvariance = ones(N, 1);
%lb = ref_Z’ - dvariance; %lower bound on the variables
%ub = ref_Z’ + dvariance; %upper bound on the variables
%general upper and lower bound
lb = zeros(N, 1); ub = []; Aeq = []; Beq = []; A = []; B = []; d0 = ones(N, 1)/N;
%optimization options
%for MATLAB 2017 version uncomment
%options = optimoptions(’fmincon’, ’Algorithm’, ’sqp’, ’Display’, ’iter-detailed’, ’MaxIter’, 1000,
’MaxFunctionEvaluations’, 300000, ’PlotFcns’, @optimplotfval);
%for MATLAB 2015 version
options=optimoptions(‘fmincon’, ‘Algorithm’, ‘sqp’, ‘Display’, ‘iter-detailed’, ‘MaxIter’, 1000, ‘Max-
FunEvals’, 300000, ‘PlotFcns’, @optimplotfval);
ref3D = [ref_X; ref_Y; ref_Z];
next3D = inv(K)*next_img;
disp(’Optimizing....’);
[depthVal, cost] = fmincon(@(d)objectiveFunctionARAP(d, ref3D, next3D, persuperpixelKNNid,
persuperpixelw1k), d0, A, B, Aeq, Beq, lb, ub,[], options); %function call 2
%% 6. Get the output depth and estimate the 3D.
output3D = zeros(3, N);
for i = 1:N

output3D(:, i) = depthVal(i)*next3D(:, i);
end
%% 7. Plot the result
figure,
plot3(next_X(:), next_Y(:), next_Z(:), ’r.’); hold on;
plot3(output3D(1, :), output3D(2, :), output3D(3, :), ’go’);
axis([0, 10, 0, 10, 0, 10]); grid on;
title(‘3D reconstruction for the next frame’);
legend(‘Ground-Truth’, ‘Reconstructed Points’)
%% 8. Perform error estimation (Relative Error)
gt_3D = [next_X(:)’; next_Y(:)’; next_Z(:)’];
es_3D = [output3D(1, :); output3D(2, :); output3D(3, :)];
error = norm(es_3D - gt_3D, ‘fro’)/norm(gt_3D, ‘fro’);
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fprintf(‘Relative Error =%f \n’, error);

(2) givemeKNN.m First function file (K-nearest neighboring index)
function [persuperpixelKNNid, persuperpixelw1k] = givemeKNN(ref_img, N, topK)
persuperpixelKNNid = cell(1, N); persuperpixelw1k = cell(1, N); distanceMat = zeros(N, N);
for i = 1:N

x_ai = ref_img(1:2, i);
for j = 1:N

x_ak = ref_img(1:2, j);
distanceMat(i, j) = sqrt((x_ai(1, 1) - x_ak(1, 1))ˆ2 + (x_ai(2, 1) - x_ak(2, 1))ˆ2);

end
end
[sortDistance, index] = sort(distanceMat, 2);
betad = 1;
for i = 1:N

persuperpixelKNNidi.knnid = index(i, 2:topK); %1 id is always the same anchor (distance to itself
= 0);

persuperpixelw1ki.w1k = exp(-betad*sortDistance(i, 2:topK));
end
end

(3) objectiveFunctionARAP.m Second function file (As rigid as possible cost function defini-
tion).
function cost = objectiveFunctionARAP(d, ref3D, next3D, persuperpixelKNNid, persuperpixelw1k)
N = length(persuperpixelKNNid);
cost = 0;
for i = 1:N

knnid = persuperpixelKNNidi.knnid;
di = d(i);
Xi = ref3D(:, i);
Xip = next3D(:, i);
for j = 1:length(knnid)

dj = d(knnid(1, j));
Xj = ref3D(:, knnid(1, j));
Xjp = next3D(:, knnid(1, j));
cost = cost + abs(norm(Xi-Xj)-norm(di*Xip - dj*Xjp));

end
end
end
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E.1.2 Experiment (2)

1. Scene Setup: A background with two objects in the reference frame scene. The background
undergoes a rigidmotion andboth the objects deformsnon-rigidly in thenext frame (see Figure
E.2).

2. Input: 2D image feature correspondences, intrinsic camera parameters(K), depth of the points
in the reference frame.

3. Output: 3D coordinates of the entire scene for the next frame.

secondExample.m Main file.
% 1. Given the 3D points for the background and the two foreground object for the reference frame.
% 2. Also, you are provided with 2D image correspondance between reference frame and next frame.
% The 3D background is undergoing rigid motion and the two foreground are undergoing non-rigid
deformation.
% 3. use ARAP constraint to estimate the 3D output for the next frame.

%% 1. Generate a synthetic dataset for the reference frame

%3D in the reference frame.
ref_Xb = repmat(1 : 10, [10, 1]);
ref_Yb = ones(10, 10). ∗ repmat((1 : 10)′, [1, 10]);
ref_Zb = 2 ∗ ones(10, 10);

ref_Xo1 = [2.5, 3.5, 4.5; 2.5, 3.5, 4.5; 2.5, 3.5, 4.5];
ref_Yo1 = [2.5, 2.5, 2.5; 3.5, 3.5, 3.5; 5.0, 5.0, 5.0];
ref_Zo1 = 3 ∗ ones(3, 3);

ref_Xo2 = [7.5, 8.5, 9.5; 7.5, 8.5, 9.5; 7.5, 8.5, 9.5];
ref_Yo2 = [5.5, 5.5, 5.5; 6.5, 6.5, 6.5; 8.0, 8.0, 8.0];
ref_Zo2 = 4 ∗ ones(3, 3);

% figure, plot3(ref_Xb(:), ref_Yb(:), ref_Zb(:), ’r*’); hold on;
% plot3(ref_Xo1(:), ref_Yo1(:), ref_Zo1(:), ’g.’); hold on;
% plot3(ref_Xo2(:), ref_Yo2(:), ref_Zo2(:), ’g.’); hold on;

ref_Xb = ref_Xb’; ref_Yb = ref_Yb’; ref_Zb = ref_Zb’;
ref_Xo1 = ref_Xo1’; ref_Yo1 = ref_Yo1’; ref_Zo1 = ref_Zo1’;
ref_Xo2 = ref_Xo2’; ref_Yo2 = ref_Yo2’; ref_Zo2 = ref_Zo2’;

ref_X = [ref_Xb(:)’, ref_Xo1(:)’, ref_Xo2(:)’];
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Figure E.2: (a) Experimental setup for the second experiment (b) 3D reconstruc on of the points in the next
frame a er op miza on (c) The 3D reconstruc on error varia ons against the number of nearest neighbor
in the experiment (topK variable in the code)

ref_Y = [ref_Yb(:)’, ref_Yo1(:)’, ref_Yo2(:)’];
ref_Z = [ref_Zb(:)’, ref_Zo1(:)’, ref_Zo2(:)’];
plot3(ref_X(:), ref_Y(:), ref_Z(:), ‘ro’); hold on;

%% 2. Generate the synthetic dataset for next frame
angle = deg2rad(3);
R = [cos(angle), 0, sin(angle); 0, 1, 0; -sin(angle), 0, cos(angle)];
t = [0.2, 0.2, 0.2]’;
next_b = R*[ref_Xb(:)’; ref_Yb(:)’; ref_Zb(:)’] + repmat(t, [1, 100]);

next_Xb = next_b(1, :);
next_Yb = next_b(2, :);
next_Zb = next_b(3, :);

next_Xo1 = [2.6, 3.7, 4.7; 2.8, 3.6, 4.5; 2.5, 3.5, 4.6];
next_Yo1 = [2.6, 2.7, 2.75; 3.4, 3.45, 3.5; 5.05, 5.10, 5.15];
next_Zo1 = [2.9, 2.9, 2.9; 2.9, 2.9, 2.9; 2.9, 2.9, 2.9];

next_Xo2 = [7.6, 8.7, 9.7; 7.8, 8.6, 9.5; 7.5, 8.5, 9.6];
next_Yo2 = [5.6, 5.7, 5.75; 6.4, 6.45, 6.5; 8.05, 8.10, 8.15];
next_Zo2 = [3.9, 3.9, 3.9; 3.9, 3.9, 3.9; 3.9, 3.9, 3.9];

% figure, hold on;
% plot3(next_Xb(:), next_Yb(:), next_Zb(:), ’ro’); hold on;
% plot3(next_Xo1(:), next_Yo1(:), next_Zo1(:), ’go’); hold on;
% plot3(next_Xo2(:), next_Yo2(:), next_Zo2(:), ’go’); hold on;
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next_Xo1 = next_Xo1’; next_Yo1 = next_Yo1’; next_Zo1 = next_Zo1’;
next_Xo2 = next_Xo2’; next_Yo2 = next_Yo2’; next_Zo2 = next_Zo2’;

next_X = [next_Xb, next_Xo1(:)’, next_Xo2(:)’];
next_Y = [next_Yb, next_Yo1(:)’, next_Yo2(:)’];
next_Z = [next_Zb, next_Zo1(:)’, next_Zo2(:)’];
%% 3. generate a synthetic image for the reference frame and next frame.
%some K matrix
fx = 100; fy = 100; cx = 240; cy = 320;
K = [fx, 0, cx; 0, fy, cy; 0, 0, 1];

% image point for the reference image
ref_img = K*[ref_X;ref_Y; ref_Z];
ref_img = ref_img./repmat(ref_img(3, :), [3, 1]);

% image point for the next image
next_img = K*[next_X; next_Y; next_Z];
next_img = next_img./repmat(next_img(3, :), [3, 1]);

%plot the image points
figure, plot(ref_img(1, :), ref_img(2, :), ’k.’); hold on;
plot(ref_img(1, 101:118), ref_img(2, 101:118), ’ro’);

figure, plot(next_img(1, :), next_img(2, :), ’k.’); hold on;
plot(next_img(1, 101:118), next_img(2, 101:118), ’ro’);

%% 4. Now define the neighbors based on the reference image distance
N = 118; %total number of anchor node.
topK = 22; %vary form 1 to N
[persuperpixelKNNid, persuperpixelw1k] = givemeKNNforConcept(ref_img, N, topK);

%% 5. Perform ARAP optimization
%dvariance = ones(N, 1);
%lb = ref_Z’ - dvariance; % lower bound on the variables, this works
%ub = ref_Z’ + dvariance; % upper bound on the variables
lb = zeros(N, 1); %this also works
ub = []; %this also works
Aeq = []; % equality constraint
Beq = [];
A = []; % inequality constraint
B = [];
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d0 = ones(N, 1)/N; %variable initialization

%optimization options
options = optimoptions(‘fmincon’, ‘Algorithm’, ‘sqp’, ‘Display’, ‘iter-detailed’, ‘MaxIter’, 400, ‘Max-
FunEvals’, 300000, ‘PlotFcns’, @optimplotfval);
ref3D = [ref_X; ref_Y; ref_Z];
next3D = inv(K)*next_img;

disp(’Optim’);
[depthVal, cost]= fmincon(@(d)objectiveFunctionConceptARAP(d, ref3D,next3D,persuperpixelKN-
Nid, persuperpixelw1k), d0, A, B, Aeq, Beq, lb, ub, [], options);

output3D = zeros(3, N);
for i = 1:N

output3D(:, i) = depthVal(i)*next3D(:, i);
end

figure,
plot3(next_X(:), next_Y(:), next_Z(:), ’r.’); hold on;
plot3(output3D(1, :), output3D(2, :), output3D(3, :), ’go’);

%% error estimation
gt_3D = [next_X(:)’; next_Y(:)’; next_Z(:)’];
es_3D = [output3D(1, :); output3D(2, :); output3D(3, :)];
error = norm(es_3D - gt_3D, ’fro’)/norm(gt_3D, ‘fro’);
fprintf(‘Relative Error = %f \n’, error)

E.2 Statistical Evaluation

We performed few more experiments to better understand the behavior of the algorithm under dif-
ferent input condition and variable initialization.

(a) Performance of the algorithm under noisy 3D initialization for the reference frame: This experi-
ment is conducted to study the sensitivity of the method to noisy initialization. Fig. (E.3a) show the
change in the 3D reconstruction accuracy with the variation in the level of noise from 1% to 9%. The
Gaussian noise is introduced using randn() function of MATLAB and the result is documented for
example(E.1.2) after repeating the experiment 10 times and taking its average value. We observe that
algorithm can provide unsettling results when the noise becomes very large
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(a) (b)

Figure E.3: (a) 3D reconstruc on results for the next frame with different levels of Gaussian noise in the
reference frame coordinate ini aliza on. The curve is generated using the second synthe c experiment with
K-NN as 117 (topK = 117) i.e. fully connected graph. (b) Varia on in the performance with the change in the
diσ values for synthe c example 2.

(b) Performance of the algorithmunder restricted isometry constraint (diσ)with Φarap objective func-
tion: Whileminimizing the as rigid as possible objective function under the |d̃i−di| < diσ constraint,
we restrict the convergence trust region of the optimization. This constraint makes the algorithm
works extremely well—both in terms of timing and accuracy, if the prior knowledge about the defor-
mation that the scene may undergo is known a priori. Fig.(E.3b) show the reconstruction accuracy as
a function of diσ. Clearly, if we have the the approximate knowledge about the scene scene transfor-
mation, we can get high accuracy in less computation time. See Fig.(E.4b) which illustrates the quick
convergence by using this constraint under proper the values of diσ.

(c) Nature of convergence of the proposed as rigid as possible optimization

• Without restricted isometry constraint: As rigid as possible minimization Φarap under the con-
straint d̃i > 0 is a good enough constraint to provide acceptable results. However, it may take
considerable number of iteration to do so. Fig.(E.4a) show the convergence curve

• With restricted isometry constraint: Employing the approximate bound on the deformation
that the scene may undergo in the next time instance can help fast convergence with similar
accuracy. Fig.(E.4b) show that the same accuracy can be achieved in 60 iteration.

E.3 Discussion

(a) Why do we choose geometric approach to initialize our algorithm on MPI dataset [24]? We tested
the LKVOnetwork [184] onMPI Sintel dataset which is one of the recent state-of-the-art network for
dense depth estimation on KITTI dataset. Unfortunately, the network provides some unsettling re-
sults on MPI Sintel dataset. Fig.(E.5) show some results obtained by using this network after training
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(a) (b)

Figure E.4: (a) Convergence curve of the cost func on using SQP implementa on of MATLAB toolbox for the
second example. (b) Quick convergence with similar accuracy on the same example can be achieved by using
isometry constraint.

alley_2 bandage_1 bandage_2 market_2 temple_2

Figure E.5: Depth results using the recent state-of-the-art LKVO network [184] a er training on MPI Sintel
dataset.
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on the clean class of MPI Sintel dataset. The training parameters used for the this network on MPI
Sintel dataset is provided below.

(b) What do we gain or lose by our motion free approach?
Estimating all kinds of conceivable motion in a complex dynamic scene from images is a challenging
task, in that respect our method provides an alternative way to achieve per pixel depth without esti-
mating any 3D motion. However, in achieving this we are allowing the gauge freedom between the
frames (temporal relations in 3D over frames).

E.4 LKVO network flags and parameters used to train on MPI Sintel

Weused the clean category to train the network. Here are the list of all the parameters and their default
values

• dataroot, required=True, help=‘path to images (should have subfolders trainA, trainB, valA,
valB, etc)’

• batchSize, type=int, default=1, help=‘input batch size’

• imH, type=int, default=128, help=‘imH’

• imW, type=int, default=416, help=‘imW’

• max_lk_iter_num, type=int, default=10, help=‘maximum iteration for LK update’

• gpu_ids, type=str, default=‘0’, help=‘gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU’

• name, type=str, default=‘experiment_name’, help=‘name of the experiment. It decides where
to store samples and models’

• nThreads, default=2, type=int, help=‘# threads for loading data’

• checkpoints_dir, type=str, default=‘./checkpoints’, help=‘models are saved here’

• display_winsize, type=int, default=256, help=‘display window size’

• display_id, type=int, default=1, help=‘window id of the web display’

• display_port, type=int, default=8097, help=‘visdom port of the web display’

• display_single_pane_ncols, type=int, default=0, help=‘if positive, display all images in a single
visdom web panel with certain number of images per row.’

• lk_level, type=int, default=1
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• use_ssim, default=False, action=‘store_true’, help=‘use ssim loss’

• smooth_term, type=str, default=‘lap’, help=‘smoothness term type, choose between lap, 1st,
2nd’

• lambda_S, type=float, default=.01, help=‘smoothness cost weight’

• lambda_E, type=float, default=.01, help=‘explainable mask regulariation cost weight’

• epoch_num, type=int, default=20, help=‘number of epochs for training’

• display_freq, type=int, default=100, help=‘frequency of showing training results on screen’

• print_freq, type=int, default=10, help=‘frequency of showing training results on console’

• save_latest_freq, type=int, default=5000, help=‘frequency of saving the latest results’

• phase, type=str, default=‘train’, help=‘train, val, test, etc’

• which_epoch, type=int, default=-1, help=‘which epoch to load? set to epoch number, set -1 to
train from scratch’

• niter, type=int, default=100, help=‘# of iter at starting learning rate’

• niter_decay, type=int, default=100, help=‘# of iter to linearly decay learning rate to zero’

• beta1, type=float, default=0.5, help=‘momentum term of adam’

• lr, type=float, default=0.0002, help=‘initial learning rate for adam’

• no_html, action=‘store_true’, help=‘do not save intermediate training results to
[opt.checkpoints_dir]/[opt.name]/web/′

The altered parameters for training are listed below:

E.4.1 Training posenet, modified parameters:

1. –dataroot= formatted/data

2. –checkpoints_dir= checkpoints

3. –which_epoch= -1

4. –save_latest_freq= 1000

5. –batchSize = 1

6. –display_freq =50
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7. –name= posenet

8. –lambda_S= 0.01

9. –smooth_term= 2nd

10. –use_ssim

11. –display_port =8009

E.4.2 Fine tuning the LKVO network, modified parameters

1. –dataroot= formatted/data

2. –checkpoints_dir= checkpoints

3. –which_epoch= -1

4. –save_latest_freq= 1000

5. –batchSize = 1

6. –display_freq =50

7. –name= finetune

8. –lk_level = 1

9. –lambda_S= 0.01

10. –smooth_term= 2nd

11. –use_ssim

12. –display_port =8009

13. –epoch_num = 10

14. –lr = 0.00001
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