63,420 research outputs found

    Minimum cycle bases of direct products of complete graphs

    Get PDF
    Abstract This paper presents a construction of a minimum cycle basis for the direct product of two complete graphs on three or more vertices. With the exception of two special cases, such bases consist entirely of triangles

    Convex Cycle Bases

    Get PDF
    Convex cycles play a role e.g. in the context of product graphs. We introduce convex cycle bases and describe a polynomial-time algorithm that recognizes whether a given graph has a convex cycle basis and provides an explicit construction in the positive case. Relations between convex cycles bases and other types of cycles bases are discussed. In particular we show that if G has a unique minimal cycle bases, this basis is convex. Furthermore, we characterize a class of graphs with convex cycles bases that includes partial cubes and hence median graphs. (authors' abstract)Series: Research Report Series / Department of Statistics and Mathematic

    Minimum Cycle Base of Graphs Identified by Two Planar Graphs

    Get PDF
    In this paper, we study the minimum cycle base of the planar graphs obtained from two 2-connected planar graphs by identifying an edge (or a cycle) of one graph with the corresponding edge (or cycle) of another, related with map geometries, i.e., Smarandache 2-dimensional manifolds

    Minimum cycle and homology bases of surface embedded graphs

    Get PDF
    We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles that generates the 11-dimensional (Z2\mathbb{Z}_2)-homology classes) of an undirected graph embedded on a surface. The problems are closely related, because the minimum cycle basis of a graph contains its minimum homology basis, and the minimum homology basis of the 11-skeleton of any graph is exactly its minimum cycle basis. For the minimum cycle basis problem, we give a deterministic O(nω+22gn2+m)O(n^\omega+2^{2g}n^2+m)-time algorithm for graphs embedded on an orientable surface of genus gg. The best known existing algorithms for surface embedded graphs are those for general graphs: an O(mω)O(m^\omega) time Monte Carlo algorithm and a deterministic O(nm2/logn+n2m)O(nm^2/\log n + n^2 m) time algorithm. For the minimum homology basis problem, we give a deterministic O((g+b)3nlogn+m)O((g+b)^3 n \log n + m)-time algorithm for graphs embedded on an orientable or non-orientable surface of genus gg with bb boundary components, assuming shortest paths are unique, improving on existing algorithms for many values of gg and nn. The assumption of unique shortest paths can be avoided with high probability using randomization or deterministically by increasing the running time of the homology basis algorithm by a factor of O(logn)O(\log n).Comment: A preliminary version of this work was presented at the 32nd Annual International Symposium on Computational Geometr

    The Resolving Graph of Amalgamation of Cycles

    Get PDF
    For an ordered set W = {w_1,w_2,...,w_k} of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the ordered k-tuple r(v|W) = (d(v,w_1),d(v,w_2),...,d(v,w_k)) where d(x,y) represents the distance between the vertices x and y. The set W is called a resolving set for G if every vertex of G has a distinct representation. A resolving set containing a minimum number of vertices is called a basis for G. The dimension of G, denoted by dim(G), is the number of vertices in a basis of G. A resolving set W of G is connected if the subgraph induced by W is a nontrivial connected subgraph of G. The connected resolving number is the minimum cardinality of a connected resolving set in a graph G, denoted by cr(G). A cr-set of G is a connected resolving set with cardinality cr(G). A connected graph H is a resolving graph if there is a graph G with a cr-set W such that = H. Let {G_i} be a finite collection of graphs and each G_i has a fixed vertex v_{oi} called a terminal. The amalgamation Amal{Gi,v_{oi}} is formed by taking of all the G_i's and identifying their terminals. In this paper, we determine the connected resolving number and characterize the resolving graphs of amalgamation of cycles
    corecore