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Abstract

Convex cycles play a role e.g. in the context of product graphs. We introduce convex cycle bases and
describe a polynomial-time algorithm that recognizes whether a given graph has a convex cycle basis and
provides an explicit construction in the positive case. Relations between convex cycles bases and other
types of cycles bases are discussed. In particular we show that ifG has a unique minimal cycle bases, this
basis is convex. Furthermore, we characterize a class of graphs with convex cycles bases that includes
partial cubes and hence median graphs.
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1 Introduction and Basics
The cycle space C(G) of a simple, unweighted, undirected graph G = (V,E) consists of all its Eulerian
subgraphs (or generalized cycles), i.e., all the subgraphs of G for which every vertex has even degree.
It is convenient in this context to interpret subgraphs of G as edge sets. The generalized cycles form a
vector space over GF(2) with vector addition X ⊕ Y := (X ∪ Y ) \ (X ∩ Y ) and scalar multiplication
1 ·X = X , 0 ·X = ∅, for X,Y ∈ C(G). This vector space is generated by the elementary cycles of G,
i.e., the connected subgraphs of G for which every vertex has degree 2. A basis B of the cycle space C is
called a cycle basis of G = (V,E) [9]. The dimension of the cycle space is the cyclomatic number µ(G)
(or first Betti number). For connected graph we have µ(G) = |E| − |V |+ 1. Notice that the cycle space
of a graph is the direct sum of the cycle spaces of its 2-connected components.

Cycle bases of graphs have diverse applications in science and engineering. Examples include struc-
tural flexibility analysis [27], electrical networks [11], chemical structure storage and retrieval systems
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[15], scheduling problems [36], graph drawing [33], and biopolymer structures [34, 35]. Surveys and
extensive references can be found in [19, 22, 28, 37].

A convexity space (V,C) [6] consists of a ground set V and a set C of subsets of V satisfying

(C1) ∅ ∈ C, V ∈ C, and

(C2) K ′,K ′′ ∈ C implies K ′ ∩K ′′ ∈ C.

For a simple, undirected graph G with vertex set V , every set P of paths on G defines a convexity
space (V,C(P)) in the following way: A set of vertices K is P-convex, K ∈ C(P), if and only if, for
every path P ∈ P with both end vertices in K, all vertices of P are contained in K. This construction
is discussed in detail in [14]. Several special types of paths P have been studied in this context, most
prominently the set of all paths [5], the set of all triangle paths [8], the set of all induced paths [13], and
the set of all shortest paths [39].

We will be concerned here only with the latter definition of convexity, usually known as geodetic
convexity, see Section 2 for a formal definition. Geodetically convex cycles play an important role in the
theory of Cartesian graphs products and their isometric subgraphs. The absence of convex cycles longer
than 4, for example, characterizes semi-median graphs [3]. Such long convex cycles furthermore play a
role e.g. in Euler-type inequalities for partial cubes [31].

It appears natural, hence, to investigate whether there is a connection between the cycle space and the
(geodetic) convexity space of a graph G = (V,E). Note that the cycle space is defined on the edge set,
while the convexity space is defined on the vertex set. Intuitively, this connection is made possible by the
fact that induced elementary cycles in G are characterized by either their vertex sets or their edge sets.

Definition 1.1. A convex cycle basis of a graph G is a cycle basis that consists of convex elementary
cycles.

We briefly consider a generalized definition of convex cycle bases relaxing the requirement for ele-
mentary basis cycles in the final section.

Cycles bases with special properties have been investigated in much detail in the literature. Examples
include minimum cycle bases [2, 17, 19, 29, 44], (strictly) fundamental cycle bases [20, 32, 38], or (quasi)
robust cycle bases [26, 40]. Here, we consider convex cycle bases. We show that convex cycle bases are
not related to other types of cycle bases, we introduce a polynomial-time algorithm to compute a convex
cycle basis for an arbitrary input graph, and we construct a class of graphs with convex cycles bases by
means of Cartesian products that in particular includes partial cubes.

2 Geodetic Convexity and Characterization of Convex Cycles
For a graph G we denote the vertex set and edge set of G by V (G) and E(G), respectively. Similarly, we
write C(G) for the cycle space of G. An edge that joins vertices x and y is denoted by the unordered pair
{x, y}. The lengths |P | and |C| of a path P and a cycle C inG, respectively, is the number of their edges.
For simplicity, we will refer to a path with end vertices u and v as uv-path. The distance distG(u, v)
between two vertices u and v of G is length of a shortest uv-path. It is well known that this distance
forms a metric on V . The set of all shortest uv-paths will be denoted by PG[u, v]. The cardinality of
this set, i.e., the number of shortest uv-paths, will be denoted by Suv = |PG[u, v]|. A modification of
Dijkstra’s algorithm computing both the distance matrix of G and the matrix S is given in the appendix.

A subgraph H of G is isometric if distH(u, v) = distG(u, v) holds for all u, v ∈ V (H). We say that
H is a (geodetically) convex subgraph of G if for all u, v ∈ V (H), all shortest uv-paths P ∈ PG[u, v]
are contained in H . In the following, convex will always mean geodetically convex. The empty subgraph
will be considered as convex. The intersection of convex subgraphs of G is again a convex subgraph of
G [42].
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Since H is an isometric subgraph of G if and only if H contains at least one P ∈ PG[u, v] for every
pair u, v ∈ V (H), we see that convex implies isometric. Furthermore, if H is an isometric subgraph
of G, it is in particular an induced subgraph of G. Finally, the connectedness of G implies that all its
isometric subgraphs are connected.

Our first result characterizes elementary convex cycles.

Lemma 2.1. Let C be an elementary cycle of G.
If |C| is odd, then C is convex if and only if for every edge e = {x, y} in C there is a unique vertex z in
C such that distG(x, z) = distG(y, z) = (|C| − 1)/2 and Sxz = Syz = 1.
If |C| is even, then C is convex if and only if for every edge e = {x, y} in C there is a unique edge h =
{u, v} in C such that (i) distG(x, u) = distG(y, v) = |C|/2−1, (ii) distG(x, v) = distG(y, u) = |C|/2,
(iii) Sxu = Syv = 1, and (iv) Sxv = Syu = 2.

Proof. Suppose C is convex. Consider two vertices p and q in C with distG(p, q) < |C|/2. If C is
convex, then the unique shortest path between p and q must run along C, so that Spq = 1. Clearly, this
condition characterizes convex cycles provided C is odd.

The situation is more complicated for even cycles. Let us first suppose that C is convex and fix
an arbitrary edge {x, y}. In an even elementary cycle there is a unique edge h = {u, v} satisfying (i)
distC(x, u) = distC(y, v) = |C|/2− 1, (ii) distC(x, v) = distC(y, u) = |C|/2. Isometry of C implies
that properties (i) and (ii) are satisfied. The argument of the preceding paragraph shows that (iii) holds.
For x, the only point in C at distance |C|/2 is v. Thus there are two paths P ′ and P ′′ in C of length
distG(x, v) = |C|/2. By the convexity of C, these paths are contained in C (so that C = P ′ ∪ P ′′)
and must be the only shortest paths connecting x and v; hence consequently Sxv = 2. An analogous
argument shows that Syu = 2.

In order to prove the converse, consider an even elementary cycle C satisfying (i) through (iv). Again
we fix an arbitrary edge {x, y} of C. Since C is even, there is a unique antipodal point v of x and a
unique antipodal point u of y with distC(x, v) = distC(y, u) = |C|/2. We claim that {u, v} is the
required edge. If this were not the case, then there would be some other edge with both endpoints closer
to x along C than v that satisfies condition (ii). This is impossible, however, since for such a vertex v′

we would have |C|/2 = distG(x, v′) ≤ distC(x, v′) < distC(x, v) = |C|/2. We easily check that
distC(x, u) = |C|/2 − 1 and distC(y, v) = |C|/2 − 1. By property (i), therefore, the paths from x to
u and from y to v along C are shortest paths in G. Furthermore, the two paths from x to v along C via
either u or y are also shortest paths in G by property (ii). Thus distC(x, q) = distG(x, q) for all vertices
q in C. Repeating this argument for all x in C shows that C is isometric. By property (iii), the shortest
path from x to u is unique. Since all sub-paths of shortest paths are again shortest path, this is also true
for all vertices q in C along the shortest path from x to u. The same is true for all q in C along the unique
shortest path from v to y. By property (iv), finally, there are exactly two shortest paths from x to v. We
have already seen that two of these run along either half of the cycle C. The same is true for the two paths
connecting y with u. Thus all shortest path connecting a vertex q in C with either x or y are contained in
C. Repeating the argument for all edges {x, y} in C shows that C is convex.

A direct consequence of Lemma 2.1 is that a cycle C in G can be efficiently tested for convexity
provided both the distance matrix and the matrix S containing the number of shortest paths have been
pre-computed: it suffices to verify, in constant time, the conditions of the lemma for each antipodal pair
of edges or pair of edge and vertex, respectively. The test thus requires O(|C|) time provided that C is
given as ordered list of its vertices.

As a simple corollary of Lemma 2.1 we have

Corollary 2.2. Let C be an elementary convex cycle of G. Then, for every e = {x, y} ∈ C there is a
vertex z in C such that C = P ′ ∪ P ′′ ∪ {x, y}, P ′ ∈ PG[x, z], and P ′′ ∈ PG[y, z].
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A closely related, but much weaker, condition appears in the theory of minimal cycles bases [22]:

Definition 2.3. A cycle C is edge-short if it contains an edge e = {x, y} and a vertex z such that C =
Cxy,z := {x, y} ∪ Pxz ∪ Pyz where Pxz and Pyz are shortest paths.

Corollary 2.4. If C is an elementary convex cycle of G then it is edge-short.

3 Convex Cycle Bases
Corollary 2.2 sets the stage for enumerating all elementary convex cycles in a graph. The following result
establishes an upper bound and provides a polynomial time algorithm for this purpose.

Theorem 3.1. Any graph G = (V,E) contains at most |E||V | elementary convex cycles. These can be
constructed and listed in O(|E||V |2) time.

Proof. Every pair of an edge e = {x, y} and a vertex z specifies at most one elementary convex cycle in
the following way: If distG(x, z) = distG(y, z) and Sxz = Syz = 1 we set Cez := Pxz ∪ Pyz ∪ {x, y}.
If distG(x, z) = distG(y, z) + 1, Sxz = 2 and Syz = 1, then we choose a neighbor u of z such that
distG(x, u) = distG(y, z), Sux = 1 and Suy = 2, and set Cez := Pxu ∪ {u, z} ∪ Pyz ∪ {x, y}. Note
that the choice of u is unique if C is convex. The selection of these |E| |V | candidates thus requires
O(|E| |V |2) time.

In order to efficiently retrieve each candidate cycle in O(|C|) time given {x, y} and z we need the to
know the predecessor πsu of u on the shortest path from s to u. Note that this information is needed only
if Ssu = 1. The modified Dijkstra algorithm in the Appendix computes this array without changing the
asymptotic complexity of the shortest path algorithm. Since each candidate cycle can then be checked for
convexity in O(|C|) time, the total effort to extract all elementary convex cycles is in O(|E||V |2).

This algorithm outlined in the proof of Theorem 3.1 can be regarded as a variant of Vismara’s con-
struction of prototypes of candidates for relevant cycles [44]. The fact that the number of elementary
convex cycles in G is bounded by |V | |E| immediately implies that a convex cycle basis can also be
found in polynomial time:

Corollary 3.2. For each graph G = (V,E) it can be decided whether G has a convex cycle basis, and if
so, a convex cycle bases can be constructed, in O(|E|2 |V |µ(G)2) time.

Proof. Since the cycles of a graph form a matroid, the canonical greedy algorithm can be applied to
find a maximum set of linearly independent elementary convex cycles, see e.g. [21]. G has a convex
cycle basis if and only if this set has size µ(G) = |E| − |V | + 1. For each of the at most |V | |E|
candidate cycles, this requires a test of linear independence with a partial basis that is not larger than
µ(G) = |E| − |V | + 1, i.e., O(|E|). Applying Gaussian elimination for this purpose, the total effort is
bounded by O(|E| |V |2) +O(|E|2 |V |µ(G)2) = O(|E|2 |V |µ(G)2) time.

There are graphs that do not have a convex cycle basis. The complete bipartite graph K2,3 is the
simplest counter example (see Fig. 1). None of its three cycles (all have length 4) is convex.

4 Relation of Convex Cycle Bases to Other Types of Cycle Bases
Although we have an efficient algorithm to test whether a graph has a convex cycle basis, it will be
interesting to characterize the class of graphs that admit convex cycle bases. However, we first investigate
the relation between convex cycle bases and other types of cycle bases.

A procedure analogous to Corollary 3.2 was introduced in [22] for the purpose of retrieving minimal
cycle bases from a candidate set of edge-short cycles. One would expect, therefore, that convex cycle
bases and minimal cycles bases are closely related.
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Figure 1: None of the cycles in K2,3 is convex.

Convex cycle bases of a graph need not have the same length. Consider the graph that is obtained
from the cube Q3 where one edge is contracted. Then the four quadrangles and two triangles are convex
and five of these form a convex cycle basis. Thus convex bases contain either exactly one or two triangles
and thus may have different lengths.

The length `(B) of a cycle basis B is the sum of the lengths of its generalized cycles: `(B) =∑
C∈B |C|. A minimum cycle basisM is a cycle basis with minimum length. The generalized cycles in

M are chord-less cycles (see [22]). Hence, we may consider elementary cycles instead of generalized
cycles in the remaining part of this section. For the sake of completeness we note that a minimum cycle
basis is a cycle basis in which the longest cycle has the minimum possible length [10].

The set R of relevant cycles of a graph is the union of its minimum cycle bases [41, 44]. In analogy
to convex cycle bases one may want to consider isometric cycle bases, i.e., cycle bases consisting of
isometric cycles.

Lemma 4.1. All relevant cycles of a graph are isometric. Thus every minimal cycle basis is an isometric
cycle basis.

Proof. We start from Lemma 2 of [44]: If P is a subpath of a relevant cycle C such that |P | ≤ 1
2 |C|,

then P is a shortest path. It follows that every relevant cycle is isometric, and hence every minimal cycle
basis of G consists of elementary isometric cycles.

Theorem 4.2. If G has a uniquely defined minimal cycle basis, then this minimal cycle basis is convex.

Proof. Assume thatG has a unique minimal cycle basis B. By Lemma 4.1 the cycles of B are necessarily
isometric. Now suppose that C ∈ B is not convex. Then there exist two vertices u, v ∈ C and (at least)
three edge disjoint uv-paths P , P ′ and P ′′ such that |P | ≥ |P ′| = |P ′′| and C = P ∪ P ′. Hence there
are two cycles C1 = P ∪ P ′′ and C2 = P ′ ∪ P ′′ with |C| = |C1| ≥ |C2|. By construction C, C1, and
C2 are linearly dependent and thus one of C1 or C2 cannot be represented as sum of cycles in B \ {C}.
Hence we get a new cycle basis B′ = (B \ {C}) ∪ {C ′} where C ′ is either C1 or C2. In either case we
find `(B′) ≤ `(B) a contradiction to our assumption that B is the unique minimal cycle basis.

As a consequence, we can conclude that Halin graphs that are not necklaces [43] and outerplanar
graphs [35] have a convex cycle basis.

The converse of Theorem 4.2 is not true, however, as Figure 2 shows. This graph has a convex cycle
basis but its minimal cycle basis is not uniquely defined. Even worse, none of its minimal cycle bases is
convex.

A cycle basis B = {C1, . . . , Cµ(G)} of G is called fundamental [20, 46] if there is an ordering π such
that for 2 ≤ k ≤ µ(G):

Cπ(k) \

k−1⋃
j=1

Cπ(j)

 6= ∅ . (4.1)
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Figure 2: The cyclomatic number of the graph is 7. All minimal cycle bases consist of the two triangles,
all quadrangles that do not contain the upper dashed edge and two of the three quadrangles that contain
the upper dashed edge (which also includes the outer cycle). However, two of these three quadrangles
that contain the upper dashed edge are not convex. Hence none of the minimal cycle bases is a convex
cycle basis.
On the other hand there is a unique convex cycle basis that consists of all triangles, all quadrangles that
do not contain the upper dashed edge, the outer quadrangle and the cycle of length 5 at the bottom.

Fundamental cycle bases are obtained from ear decomposition, suggesting that there could be a relation
between convex and fundamental cycles bases. Champetier’s graph [4], however, has a cycle basis con-
sisting entirely of triangles, which obviously is convex. On the other hand, this basis is not fundamental
[1]. Conversely, fundamental cycle bases need not be convex, as shown, e.g., by the planar basis of K2,3.

5 Convexity in Subgraphs and Intersections
This section contains some auxiliary results which will need for our investigation of isometric subgraphs
in Section 6 below.

Lemma 5.1. Let M be an isometric (convex) subgraph of G and F ⊆ M be a subgraph of M . Then F
is isometric (convex) in M if and only if it is isometric (convex) in G.

Proof. If F is an isometric subgraph of G, then for each pair of vertices u, v ∈ V (F ), F contains a
shortest uv-path. Since F ⊆M , this path is also a shortest uv-path in M and hence F is isometric in M .
If F is a convex subgraph of G, then it contains all shortest uv-paths which are also shortest paths in M
and thus F is convex in M .

Now assume that F is not isometric in G. Then there exists two distinct vertices u, v ∈ V (F ) ⊆
V (M) such that there are shortest uv-paths P in G with |P | < distF (u, v). At least one of these paths
must be contained in M since M is an isometric subgraph of G. Thus F cannot be an isometric subgraph
of M , either. If F is not convex in G then there exists two distinct vertices u, v ∈ V (F ) ⊆ V (M) such
that there is at least one shortest uv-path P which is not contained in F . Since M is convex, P must be
contained in M and thus F cannot be convex in M , either.

Lemma 5.2. Let M be an isometric subgraph of G and F be a convex subgraph of G. Then F ∩M is
convex in M .

Proof. For each pair of vertices x, y ∈ V (F ) ∩ V (M), F contains all shortest xy-path in G. Since M is
an isometric subgraph of G it must contain at least one of these and thus the proposition follows.

Lemma 5.3. Assume that G has a convex cycle basis. Let M be a convex subgraph of G that has a
convex cycle basis BM . Then BM can be extended to a convex cycle basis BG of G.
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Proof. By Lemma 5.1 the cycles in BM are convex subgraphs of G. By assumption there exists a convex
cycle basis B′G of G. By the Austauschsatz we can replace appropriate cycles in B′G by the cycles in BM .
Thus we obtain a convex cycle basis BG of G which such that BM ⊆ BG as claimed.

Figure 3 shows that the converse of this lemma is not true in general: a convex subgraph of a graph
that has a convex cycle basis need not necessarily have a convex cycle basis.

Figure 3: The cyclomatic number of this graph is |E|− |V |+1 = 16−9+1 = 8. The three triangles and
the five quadrangles that do not entirely consist of dashed edges form a convex cycle basis. The subgraph
that consists of the dashed edges is convex but does not have a convex cycle basis (see Fig. 1).

6 Isometric Subgraphs of Cartesian Products
In this section, we will be concerned with the Cartesian product G�H and its isometric and convex
subgraphs. The Cartesian product has vertex set V (G�H) = V (G)× V (H); two vertices (xG, xH) and
(yG, yH) are adjacent in G�H if {xG, yG} ∈ E(G) and xH = yH , or {xH , yH} ∈ E(H) and xG = yG.
For detailed information about product graphs we refer the interested reader to [18, 24].

For the Cartesian product G�H the subgraph Gv induced by all vertices (x, v) with x ∈ V (G) and a
fixed vertex v ∈ V (H) is called a layer of G (or G-layer) in G�H . The projection πG : G�H → G is
the usual weak homomorphism defined as (x, y) ∈ V (G�H) 7→ x ∈ V (G). Note that edges in G-layers
are mapped into edges in G and edges in H-layers are mapped into vertices in G.

There is a close relationship between (geodetic) convexity and Cartesian products, see [7] for a general
result. The fundamental result for this purpose is the distance lemma.

Proposition 6.1 (Distance Lemma, [23]). Let x = (xG, xH) and y = (yG, yH) be arbitrary vertices of
the Cartesian product G�H . Then

distG�H(x, y) = distG(xG, yG) + distH(xH , yH) .

Moreover, if P is a shortest xy-path in G�H , then πG(P ) is a shortest xGyG-path in G.

It seems natural that convexity properties of products also hold for layers and projections.

Lemma 6.2 ([24]). The layers Gv and Hw are convex subgraphs of the Cartesian product G�H . More-
over, if F is an isometric (convex) subgraph ofG�H , then for all v ∈ V (H) andw ∈ V (G) the following
holds: F ∩Gv and F ∩Hw are isometric (convex) subgraphs of F , Gv and Hw, respectively.

Corollary 6.3. Let M be an isometric subgraph of G�H . If (xG, xH) and (yG, yH) are two vertices
in M with xG = yG, then there exists a shortest xHyH -path in M ∩ HxG . Moreover, all shortest
(xG, xH)(yG, yH)-paths in M are contained in HxG .

Another consequence of the distance lemma is the following auxiliary result.
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Lemma 6.4. LetP be a shortest xy-path inG�H . Then πG(P ) is a path with |πG(P )| = distG(xG, yG) =∑
v∈H |P ∩Gv|, where the last term is the total number of edges of P in G-layers. The result holds anal-

ogously for πH(P ).

Proof. If (w, xH) and (w, yH) are two distinct points of P , then by Corollary 6.3 all shortest xHyH -
paths are contained in layer Hw. Consequently, there cannot be two distinct edges e1 and e2 in G with
πG(e1) = πG(e2) that belong to P since otherwise P also must contain two shortest paths in different
H-layers that connect corresponding vertices of these edges, that is, P would contain a cycle. Hence
all vertices of πG(P ) have degree 2 except its end vertices which have degree 1 (or 0 in the case where
πG(P ) is a single vertex). Thus πG(P ) is path of length |πG(P )| = distG(xG, yG) =

∑
v∈H |P ∩Gv|,

as claimed.

Lemma 6.5. For every isometric (convex) subgraph F of G�H , πG(F ) is an isometric (convex) sub-
graph of G.

Proof. Let x = (xG, xH) and y = (yG, yH) be two vertices in F . If F is isometric in G�H , then
there exists a shortest xy-path P in F . By the distance lemma, πG(P ) is a shortest xGyG-path in G
and contained in πG(F ). Thus πG(F ) is an isometric subgraph of G. Now if πG(F ) is not convex
in G, then there exists a shortest xGyG-path PG in G that is not contained in πG(F ). Let PH be a
shortest xHyH -path in H . Then P = PG�{xh} ∪ PH�{yG} is a shortest xy-path as its length is |P | =
distG(xG, yG) + distH(xH , yH) = distG�H(x, y). However, by construction P cannot be contained in
F and hence F is not convex in G�H . Consequently, if F is convex in G�H , then πG(F ) is convex in
G, as claimed.

On the other hand convexity and isometry properties of factors are also propagated to their Cartesian
product. The following result is well-known and holds for more general notions of convexity.

Lemma 6.6 ([7]). If F and M are convex subgraphs of G and H , respectively, then F�M is a convex
subgraph of G�H .

The last lemma also holds for isometric subgraphs.

Lemma 6.7. If F and M are isometric subgraphs of G and H , respectively, then F�M is an isometric
subgraph of G�H .

Proof. Immediate corollary of the distance lemma.

We now want to extend convex cycle bases of two graphs G and H to a cycle basis of their Cartesian
product G�H . Let TG and TH denote spanning trees of G and H , respectively. Let

B� = {e�f : e ∈ E(G), f ∈ TH} ∪ {e�f : e ∈ TG, f ∈ E(H)} . (6.1)

Then for fixed vertices v ∈ V (H) and w ∈ V (G) and respective cycle basis BG and BH

{Cv : C ∈ BG} ∪ {Cw : C ∈ BH} ∪ B� (6.2)

is a cycle basis of G�H [25].

Theorem 6.8. Let G and H be two graphs that have convex cycle bases BG and BH , respectively. Then
their Cartesian product G�H has a convex cycle basis that can be constructed using Eq. (6.2).

Proof. Notice that all quadrangles in B� are convex subgraphs in G�H . By Lemma 5.1 Cv is a convex
cycle in G�H . Thus we get a convex cycle basis of G�H by means of basis (6.2) when both BG and
BH are convex cycle basis.
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Remark 6.9. An analogous statement for the strong product (see [18]) is not true, as the strong product
of an elementary cycle and an edge K2 shows.

We have seen in Figure 3 that a convex subgraph of a graph that has a convex cycle basis does not
necessarily have a convex cycle basis. However, a more restrictive property appears to propagate under
the formation of Cartesian products: we consider the class of graphs for which every convex subgraph
has a convex cycles basis.

Theorem 6.10. Let G be a graph that has a convex cycle basis. Then every isometric subgraph M of
G�K2 with πG(M) = G has a convex cycle basis.

For the proof of this theorem we need some intermediate results.

Lemma 6.11. Let C be an isometric elementary cycle in G�H . Then one of the following holds:

(1) πG(C) ∼= K1, i.e., a single vertex, or

(2) πG(C) ∼= K2, i.e., a single edge, or

(3) πG(C) is an isometric elementary cycle in G.

Proof. Notice that πG(C) =
⋃
v∈V (H) πG(C∩Gv). Let x = (xG, xH) and y = (yG, yH) be two vertices

in C with xG = yG and xH 6= yH . Analogously to the proof of Lemma 6.4 no vertex v in πG(C) can
have degree greater than 2. Now if C ⊆ Hw for some w ∈ V (G), then πG(C) = {w} ∼= K1, i.e., case
(1). If there is a vertex x where πG(x) has degree 1, then there exist two distinct vertices u, v ∈ V (H)
such that πG(C ∩ Gu) and πG(C ∩ Gv) have a common edge e. However, this only can happen if
πG(C) = {e} ∼= K2, i.e., for case (2). Otherwise, there would be two vertices y′ and y′ in C so that
πG(y′) = πG(y′′) is adjacent to πG(x) with vertex degree larger than 1 in the projection, contradicting
isometry of C. If we have neither case (1) nor case (2), then all vertices of πG(C) have degree 2 and
hence πG(C) is an elementary cycle which is isometric in G by Lemma 6.5, i.e., case (3).

Now let C be an elementary cycle in G and M be an isometric subgraph of G�K2. Let Z(C,M)
denote the set of elementary cycles C ′ ⊆ M that are convex in M and satisfy πG(C ′) = C. We set
Z(C,M) = ∅ if no such cycle exists.

Lemma 6.12. Let M be an isometric subgraph of G�K2 and let C ∈ G be a convex elementary cycle
with C ⊆ πG(M). Then Z(C,M) is non-empty.

Proof. First notice that C�K2 is a convex subgraph of G�K2 by Lemma 6.6. M ′ = M ∩ (C�K2)
is isometric in C�K2 by Lemma 5.1 and convex in M by Lemma 5.2. Let M1 and M2 denote the
respective intersections of M ′ with the two K2-layers of C�K2. If M1 ∼= C (or M2 ∼= C) then
M1 (M2) is a convex elementary cycle in C�K2 by Lemma 6.2, and thus also in M ′ by Lemma 5.2.
Otherwise, both M1 and M2 are paths of length |M i| ≤ 1

2 |C| for i = 1, 2, since M ′ is isometric.
As πC(M ′) = C, πC(M1) ∪ πC(M2) = C. Consequently, as M ′ is isometric, M ′ is an elementary
cycle that is trivially convex in M ′. In all cases Z(C,M ′) is non-empty. Since Lemma 5.1 implies that
Z(C,M ′) ⊆ Z(C,M), the proposition follows.

Remark 6.13. The arguments in the proof of Lemma 6.12 together with the distance lemma also show
that the elements of Z(C,M) form the set of all shortest cycles C ′ in M with the property πC(C ′) = C.

Proof of Theorem 6.10. Let BG be a convex cycles basis of G. Let B� be as in (6.1) and define BZ be a
set of cycles that contains exactly one cycle C ′ ∈ Z(C,M) for each C ∈ BG. By Lemma 6.12 all these
sets Z(C,M) are non-empty. Clearly, the cycles in B� ∪ BZ are linearly independent and thus form a
cycle basis of G�K2. Now let BM be the set of all cycles in B� ∪ BZ that are contained in M . By



10 Hellmuth, Leydold, Stadler

construction all cycles in BM are convex subgraphs of M and BZ ⊆ BM . Thus it remains to show that
|BM | = µ(M). Let m̄G and m̄K2

denote the numbers of edges in (G�K2) \M that lie in G-layers and
K2-layers, respectively. Let n̄ be the number of vertices in (G�K2) \M . Since πG(M) = G and M is
an isometric subgraph of G�K2 we find that m̄K2

= n̄. Thus µ(M) = (|E(G�K2)| − m̄G − m̄K2
)−

(|V (G�K2)| − n̄) + 1 = |E(G�K2)|− |V (G�K2)|+ 1− m̄G = µ(G�K2)− m̄G. On the other hand,
there are exactly m̄G cycles in B� that are not contained in M and hence |BM | = µ(G�K2) − m̄G =
µ(M), i.e., BM is a cycle basis of M . This finishes the proof of the theorem.

We easily can generalize Theorem 6.10 to arbitrary isometric subgraphs of G�K2.

Theorem 6.14. Let G be a graph such that every isometric subgraph has a convex cycle basis. Then
every isometric subgraph of G�K2 also has a convex cycle basis.

Proof. Let H be an isometric subgraph of G�K2. By Lemma 6.5, G′ = πG(H) is an isometric em-
bedding into G and thus has a convex cycle basis by our assumptions. Hence by Theorem 6.10 every
isometric subgraph M of G′�K2 ⊆ G�K2 has a convex cycle basis.

Theorem 6.14 has quite strong implications. A d-dimensional hypercube is the d-fold product of K2

by itself, Qd = �di=1K2. Partial cubes are isometric subgraphs of Qd and form a very rich graph class
that contains hypercubes, trees, median graphs, tope graphs of oriented matroids, benzenoid graphs, tiled
partial cubes, netlike partial cubes, and flip graphs of point sets that have no empty pentagons; see [30, 31]
and references therein. As K2 has a convex cycle basis (namely ∅) we immediately obtain the following
results by a recursive application of Theorem 6.14.

Theorem 6.15. Partial cubes have a convex cycle basis.

Theorem 6.16. Let G be a graph such that every isometric subgraph has a convex cycle basis and let Q
be any partial cube. Then every isometric subgraph of G�Q has a convex cycle basis.

Proof. Let G be as claimed. Theorem 6.14 implies that every isometric subgraph of G�K2� · · ·�K2 =
G�Qn has a convex cycle basis. Lemma 6.7 implies that G�Q is an isometric subgraph of G�Qn.
Moreover, Lemma 5.1 implies that every isometric subgraph of G�Q is an isometric subgraph of G�Qn
and thus, has a convex cycles basis.

Figure 4 shows that the class covered by Theorem 6.16 is much larger than the class of partial cubes.
Recall that partial cubes are characterized by the so-called Djoković-Winkler-Relation Θ: Two edges
e = {u, v} and f = {x, y} are in relation Θ, (ef) ∈ Θ, if dist(u, x)+dist(v, y) 6= dist(u, y)+dist(v, x).
A graph is a partial cube if and only if it is bipartite and the relation Θ is an equivalence relation [47].

e1

e2

e3

Figure 4: Observe that (e1e2) ∈ Θ and (e2e3) ∈ Θ, but (e1e3) 6∈ Θ. Thus Θ is not an equivalence
relation. Therefore, this bipartite graph is not a partial cube. However it has a convex cycle base consisting
of the three planar faces.

It seems natural that Theorem 6.16 should remain true also for a more general type of Cartesian
products. We state this as
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Conjecture 6.17. Let G1 and G2 be graphs such that each of their isometric subgraphs have convex
cycle bases. Then every isometric subgraph of G1�G2 has a convex cycle basis.

A further step towards a proof of this conjecture is given by the following special case:

Theorem 6.18. Let G be a graph such that every isometric subgraph has a convex cycle basis and let Cn
be an elementary cycle. Then every isometric subgraph of G�Cn has a convex cycle basis.

Notice that this theorem is an immediate corollary of Theorem 6.16 if n is even since cycles of even
length are partial cubes [30, 45]. The proof of the general case is present after Lemma 6.19 below. For
this purpose we first have to introduce a graph operation for the case when C is a cycle of odd length.
So assume that C = C2k−1 for some integer k ≥ 2. First fix three vertices u, v, w ∈ V (C) with
{u, v}, {v, w} ∈ E(C2k−1). Create a new cycle C ′ ∼= C2k by splitting vertex v, that is, replace v by two
vertices v′ and v′′ and the edges {u, v}, {v, w} by three edges {u, v′}, {v′, v′′}, {v′′, w}.

This splitting operation can be generalized to subgraphs F of G�C. In essence, we replace F ∩ Gv
by (F ∩ Gv)�K2. In more detail, we introduce the graph operations Υ and its converse Υ∗ as follows:
For a fixed vertex v ∈ C, and any subgraph F ⊆ G�C, we obtain the subgraph Υ(F ) ⊆ G�C ′ by
splitting all vertices (x, v) ∈ F with x ∈ G in the following way: Replace vertex (x, v) by (x, v′)
and (x, v′′), and replace the edges {(x, u), (x, v)}, {(x, v), (x,w)}, and {(x, v), (y, v)}, when present,
by the corresponding edges {(x, u), (x, v′)}, {(x, v′), (x, v′′)}, {(x, v′′), (x,w)}, {(x, v′), (y, v′)} and
{(x, v′′), (y, v′′)}. Conversely, for a subgraph F ′ ⊆ B�C ′ we obtain the subgraph Υ∗(F ′) ⊆ G�C by
contracting all edges {(x, v′), (x, v′′)} ∈ E(G�C ′) and remove possible double edges. This construction
in particular has the property that Υ(G�C) = G�C ′ and Υ∗(G�C ′) = G�C.

Lemma 6.19. Let C = C2k−1 be an elementary cycle of odd length 2k − 1. If P is a shortest xy-path
in G�C, then Υ(P ) contains a shortest x′y′-path P ′ in G�C ′ where x′ and y′ are vertices in Υ(x) and
Υ(y), resp.

Proof. Let x = (xG, xC) and y = (yG, yC) be two vertices in G�C and let x′ = (x′G, x
′
C′) and

y′ = (y′G, y
′
C′) be two vertices in Υ(x) and Υ(y), resp. Let P ′ be a shortest x′y′-path in Υ(P ). We have

to show that P ′ is also a shortest x′y′-path in G�C ′. Observe that Lemma 6.4 implies that |πG(P )| =
|πG(P ′)| and |πC(P )| = |πC′(P ′)| − δ(P ′) where δ(P ′) = 1 if πC′(P ′) contains edge {v′, v′′} and
δ(P ′) = 0 otherwise. Moreover, distC(xC , yC) ≤ k − 1 and distC′(x′C′ , y′C′) ≤ k. Now suppose
that P ′ is not a shortest x′y′-path in G�C ′. Then there exists a x′y′-path P ′′ that is strictly shorter
than P ′, that is, |πC′(P ′′)| < |πC′(P ′)| ≤ k. As P is a shortest xy-path we have |πC(Υ∗(P ′′))| =
|πC(Υ∗(P ′))| = |πC(P )| ≤ k − 1. Again |πC(Υ∗(P ′′)| = |πC′(P ′′)| − δ(P ′′). Consequently πC′(P ′′)
must contain edge {v′, v′′} while πC′(P ′) must not. Therefore πC′(P ′′) ∩ πC′(P ′) ∼= C ′. However
|πC′(P ′′)|+ |πC′(P ′)| < k + k = 2k = |C ′|, a contradiction. This completes the proof.

Proof of Theorem 6.18. Let C be an odd cycle. Thus C ′ is even and hence a partial cube. Lemma 6.19
implies that Υ(M) is an isometric subgraph of G�C ′ if M is an isometric subgraph in G�C. In this
case, Υ(M) has a convex cycle basis B′. Now consider a convex cycle D′ ∈ B′. Lemma 6.11 implies
that Υ∗(D′) is either an elementary cycle or Υ∗(D′) is a single edge in layer Gv . The latter happens if
and only if D′ contains edges {(x, v′), (x, v′′)} and {(y, v′), (y, v′′)}. In this case D′ must be a convex
quadrangle. There are |E(M ∩Gv)| quadrangles of this type, and they form an linearly independent set
Q of convex cycles. Thus we can assume, w.l.o.g., that they all are contained in B′. Lemma 6.19 implies
that Υ∗(D′) is a convex subgraph of M . Thus let

B :=
{

Υ∗(D′)
∣∣D′ ∈ B′ and Υ∗(D′) is an elementary cycle

}
.

The cycles inB are linearly independent: Consider any linear combination of the form
∑
i λiΥ

∗(D′i) = 0.
Then there is a corresponding linear combination

∑
i λiD

′
i =

∑
j ξjQj , where Qj ∈ Q is a quadrangle
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that is contracted to 0 by Υ∗. Since B′ is linearly independent by assumption, all ξj and λi must be 0,
however.

It remains to show that |B| = µ(M). Observe that Υ(M) contains the subgraph induced by vertices
(x, v′) and (x, v′′) if (v, x) ∈ V (M) for some x ∈ G. Otherwise Υ(M) contains none of these two
vertices. Thus we find for the cyclomatic number µ(M) = µ(Υ(M))−|E(M ∩Gv)|. On the other hand
|B| = |B′| − |E(M ∩Gv)| = µ(Υ(M))− |E(M ∩Gv)| = µ(M). This completes the proof.

7 Convex Eulerian Graphs that are not Cycles
Convex cycles need not be elementary, even though they are necessarily connected when G is connected.
Furthermore, the elementary cycles whose union forms convex Eulerian subgraph need not be convex
themselves. An example is the K2,4, which can be decomposed into two elementary but not convex
squares. In fact, the sum of convex cycles typically is not convex:

Lemma 7.1. Let C1 and C2 be two convex cycles in G. If C1 ⊕ C2 is 2-connected, then C1 ⊕ C2 is not
convex.

Proof. If C1 ⊕ C2 is 2-connected, then it contains at least two distinct vertices u, v ∈ V (C1) ∩ V (C2).
Since C1 ∩C2 is also convex, it contains the set of all shortest uv-path which cannot be empty as u 6= v.
Consequently, C1 ⊕ C2 = (C1 ∪ C2) \ (C1 ∩ C2) cannot contain any of these shortest path and is thus
not convex.

If C1 ⊕ C2 is convex for two convex cycles C1 and C2, then C1 ⊕ C2 = C1 ∪ C2 and connected
(but not 2-connected). Thus V (C1) ∩ V (C2) consists of a single vertex. Notice, however, that even then
C1 ⊕ C2 need not be convex.

One may ask, therefore, whether the cycle space of a graph that does not have a convex cycle basis
nevertheless may have a basis consisting of convex Eulerian subgraphs. The example in Figure 5 shows
that this is indeed possible.

Figure 5: The 6 triangles and the whole graph are all convex cycles and form a cycle basis. However,
there is no convex cycle basis according to Definition 1.1: none of the elementary cycle that pass through
the square node is convex.
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Appendix A: Modified Dijkstra Algorithm
A shortest path algorithm that keeps track of the multiplicity of shortest paths and keeps some backtracing
information is required as a pre-processing step in the computation of convex cycle bases. We use a
modified version of Dijkstra’s approach [12]. Let `(x, y) denote the length of the edge {x, y} in G,
dxy = distG(x, y) is the length and Sxy is the number of shortest paths in between x and y, πsx is the
predecessor of x along the unique shortest path from s to x, and πsx = ∅ otherwise. Q denotes a priority
queue sorted by dsx for fixed s.
Input: G = (V,E, `) /∗ an edge-weighted graph ∗/
Output: Matrices [Sxy], [dxy], and [πxy].

1: for all s ∈ V do
2: /∗ Modified Dijkstra algorithm ∗/
3: for all v ∈ V do
4: dsv =∞; Ssv = 0; πsv = ∅
5: dss = 0; Sss = 0; πss = s
6: Q← V ;
7: while (Q 6= ∅) do
8: u := vertex with smallest dsu.
9: if (dsu =∞) then

10: break /∗ G not connected ∗/
11: remove u from Q
12: for all neighbors v ∈ Q ∩N(u) of u do
13: t := dsu + `(u, v)
14: if (dsv = t) then
15: Ssv := Ssv + 1; πs,v = ∅ /∗ more than one shortest path ∗/
16: if (dsv > t) then
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17: dsv := t; Ssv := 1; πsv = u

The algorithm runs in O(|V |(|E| + |V | log |V |)) when the min-priority queue Q is implemented by
means of a Fibonacci heap [16]. The modifications do not change the asymptotic complexity of the
algorithm.


