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Abstract: In this paper, we study the minimum cycle base of the planar graphs obtained

from two 2-connected planar graphs by identifying an edge (or a cycle) of one graph with the

corresponding edge (or cycle) of another, related with map geometries, i.e., Smarandache

2-dimensional manifolds. Also, we give a formula for calculating the length of minimum

cycle base of a planar graph N(d, λ) defined in paper [11].
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§1. Introduction

Throughout this paper we consider simple and undirected graphs. The cardinality of a set A

is |A|. Let’s begin with some terminologies and some facts about cycle bases of graphs. Let

G(V,E) be a 2-connected graph with vertex set V and edge set E. The set E of all subsets of E

forms an |E|-dimensional vector space overGF (2) with vector additionX⊕Y = (X∪Y )\(X∩Y )

and scalar multiplication 1 •X = X, 0 •X = ∅ for all X,Y ∈ E . A cycle is a connected graph

whose any vertex degree is 2. The set C of all cycles of G forms a subspace of (E ,⊕, •) which is

called the cycle space of G. The dimension of the cycle space C is the Betti number of G, say

β(G), which is equal to |E(G)| − |V (G)|+ 1. A base B of the cycle space of G is called a cycle

base of G.

The length |C| of a cycle C is the number of its edges. The length l(B) of a cycle base B
is the sum of lengths of all its cycles. A minimum cycle base (or MCB in short) is a cycle base

with minimal length. A graph may has many minimum cycle bases, but every two minimum

cycle bases have the same length.

Let G be a 2-connected planar graph embedded in the plane. G has |E(G)| − |V (G)| + 2

faces by Euler formula. There is exactly one face of G being unbounded which is called the
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exterior of G. All faces but the exterior of G are called interior faces of G. Each interior face

of G has a cycle as its boundary which is called an interior facial cycle. Also, the cycle of G

being incident with the exterior of G is called the exterior facial cycle.

We know that if G is a 2-connected planar graph embedded in the plane, then any set of

|E(G)| − |V (G)| + 1 facial cycles forms a cycle base of G. For a 2-connected planar graph, we

ask whether there is a minimum cycle base such that each cycle is a facial cycle. The answer

isn’t confirmed. The counterexample is easy to be constructed by Lemma 1.1. Need to say

that Lemma 1.1 is a special case of Theorem A in the reference [10] which is deduced by Hall

Theorem.

Lemma 1.1 Let B be a cycle base of a 2-connected graph G. Then B is a minimum cycle

base of G if and only if for any cycle C of G and cycle B in B, if B ∈ Int(C), then |C| ≥ |B|,
where Int (C) denotes the set of cycles in B which generate C.

For some special 2-connected planar graph, there exist a minimum cycle base such that

each cycle is a facial cycle. For example, Halin graph and outerplanar graph are such graphs.

A Halin graph H(T ) consists of a tree T embedded in the plane without subdivision of an edge

together with the additional edges joining the 1-valent vertices consecutively in their order in

the planar embedding. It is clear that a Halin graphs is a 3-connected planar graph. The

exterior facial cycle is called leaf-cycle.

Lemma 1.2[9,12] Let H(T ) be a Halin graph embedded in the plane such that the leaf-cycle

is the exterior facial cycle. Let F denote the set of interior facial cycles of H(T ). Then F is a

minimum cycle base of H(T ).

A planar graph G is outerplanar if it can be embedded in the plane such that all vertices

lie on the exterior facial cycle C.

Lemma 1.3[6,9] Let G(V,E) be a 2-connected outerplanar graph embedded in the plane with

C as its exterior facial cycle. Let F be the set of interior facial cycles. Then F is the minimum

cycle base of G, and l(F) = 2|E| − |V |.

Apart from the above mentioned minimum cycle bases of a Halin graph and an outerplanar

graph, many peoples researched minimum cycle bases of graphs. H. Ren et al. [9] not only gave

a sufficient and necessary condition for minimum cycle base of a 2-connected planar graph, but

also studied minimum cycle bases of graphs embedded in non-spherical surfaces and presented

formulae for length of minimum cycle bases of some graphs such as the generalized Petersen

graphs, the circulant graphs, etc. W.Imrich et al. [4] studied the minimum cycle bases for

the cartesian and strong product of two graphs. P.Vismara [13] discussed the union of all the

minimum cycle bases of a graph. What about the minimum cycle base of the graph obtained

from two 2-connected planar graphs by identifying some corresponding edges? This problem

is related with map geometries, i.e., Smarandache 2-dimensional manifolds (see [8] for details).

We will consider it in this paper.
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§2. MCB of graphs obtained by identifying an edge of planar graphs

Let G1 and G2 be two graphs and Pi be a path (or a cycle) in Gi for i = 1, 2. Suppose the

length of P1 is same as that of P2. By identifying P1 with P2, we mean that the vertices of P1

are identified with the corresponding vertices of P2 and the multiedges are deleted.

Theorem 2.1 Let G1 and G2 be two 2-connected planar graphs embedded in the plane. Let

ei be an edge in E(Gi) such that ei is in the exterior facial cycle of Gi for i = 1, 2. Let G be

the graph obtained from G1 and G2 by identifying e1 and e2 such that G2 is in the exterior of

G1. If the set of interior facial cycles of Gi, say Fi, is a minimum cycle base of Gi for i = 1, 2,

then F1 ∪ F2 is a minimum cycle base of G.

Proof Obviously, the graph G is a 2-connected planar graph and each cycle of F1 ∪F2 is

a facial cycle of G. Since |E(G)| = |E(G1)|+ |E(G2)|−1 and |V (G)| = |V (G1)|+ |V (G2)|−2, G

has |E(G)|−|V (G)|+2 = (|E(G1)|−|V (G1)|+1)+(|E(G2)|−|V (G2)|+1)+1 = |F1|+ |F2|+1

faces. So |F| = |F1|+ |F2| = |E(G)| − |V (G)|+ 1, and F is a cycle base of G.

Now we prove that F is a minimum cycle base of G. Suppose F is a cycle of G and

F = f1 ⊕ f2 ⊕ · · · ⊕ fq, where fj ∈ F for j = 1, 2, · · · , q. By Lemma 1.1, We need to prove

|F | ≥ |fj| for j = 1, 2, · · · , q.

If E(F ) ⊂ E(G1) (or E(G2)), then fj is in F1 (or F2) for j = 1, 2, · · · , q. By the fact that

Fi is a minimum cycle base of Gi for i = 1, 2 and Lemma 1.1, |F | ≥ |fj| for j = 1, 2, · · · , q.

Let e be the edge of G obtained by e1 identified with e2. Suppose e = {uv}. If edges of

F aren’t in G1 entirely, then F must pass through u and v. So e ∪ F can be partitioned into

two cycles, say F1 and F2. Suppose E(Fi) ⊂ E(Gi) for i = 1, 2. Then |F | > |Fi| for i = 1, 2.

Suppose F1 = f1 ⊕ f2 ⊕ · · · ⊕ fp and F2 = fp+1 ⊕ fp+2 ⊕ · · · ⊕ fq. By the fact that Fi is a

minimum cycle base of Gi for i = 1, 2 and Lemma 1.1, |F | > |F1| ≥ |fi| for i = 1, 2, · · · , p and

|F | > |F2| ≥ |fi| for i = p+ 1, p+ 2, · · · , q.

Thus we complete the proof. �

Applying Theorem 2.1 and the induction principle, it is easy to prove the following con-

clusion.

Corollary 2.1 Let G1, G2, · · · , Gk be k(k ≥ 3) 2-connected planar graphs embedded in the

plane. Let ei be an edge in E(Gi) such that ei is in the exterior facial cycle of Gi for i =

1, 2, · · · , k. Let G′
1 be the graph obtained from G1 and G2 by identifying e1 with e2 such that

G2 is in the exterior of G1, Let G′
2 be the graph obtained from G′

1 and G3 by identifying e3 with

some edge in the exterior face of G′
1 such that G3 is in the exterior of G′

1, and so on. Let G be

the last obtained graph in the above process. If the set of interior facial cycles of Gi, say Fi, is

a minimum cycle base of Gi for i = 1, 2, · · · , k, then ∪k
i=1Fi is a minimum cycle base of G.
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Fig.2.1

Remark: In Theorem 2.1, if e1 is replaced by a path with length at least two and e2 by the

corresponding path, then the conclusion of the theorem doesn’t hold. We consider the graph

H shown in Fig.2.1, where H is obtained from H1 and H2 by identified P1 = u1u2u3u4 with

P2 = v1v2v3v4. For the graph H , let C = x1x2x3x4x1 and D = x1yx4x1. Since |C| > |D|, the

set of interior facial cycle of H isn’t its minimum cycle base by Lemma 1.1.

Furthermore, if e1 is replaced by a cycle and e2 by the corresponding cycle in Theorem

2.1, then the conclusion of Theorem isn’t true. The counterexample is easy to construct, which

is left to readers. But if G1 is a special planar graph, similar results to Theorem 2.1 will be

shown in the next section.

§3. MCB of graphs obtained by identifying a cycle of planar graphs

An r× s cylinder is the graph with r radial lines and s cycles, where r ≥ 0, s > 0. A 4× 3

cylinder is shown in Fig.3.1. The innermost cycle is called the central cycle. r× s cylinder take

an important role in discussion of the minor of planar graph with sufficiently large tree-width

in paper[10].
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Theorem 3.1 Let G1 be an r × s(r ≥ 4) cylinder embedded in the plane such that C is its

central cycle. Let G2 be a planar graph embedded in the plane such that the exterior facial

cycle D has the same vertices as that of C. Let G be the graph obtained from G1 and G2 by

identifying C and D such that G2 is in the interior of G1. If the set of interior facial cycles of

G2, say F2, is its a minimum cycle base, then the set of interior facial cycles of G, say F , is

a minimum cycle base of G.
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Proof At first, F is a cycle base of G. We need prove F is minimal.

Let F1 = F\F2. Obviously, each element of F1 has length 4. Suppose F is a cycle of

G and F = f1 ⊕ f2 ⊕ · · · ⊕ fq, where fj ∈ F for j = 1, 2, · · · , q. If we prove |F | ≥ |fj| for

j = 1, 2, · · · , q, then F is a minimum cycle base of G by Lemma 1.1.

Let R be the open region bounded by F , and R′ be the open region bounded by C (or D)

of G1 (or G2). We consider the following four cases.

Case 1 R′ ∩R = ∅.

Then F is a cycle of G1 and F is generated by F1 . Since the girth of G1 is 4, |F | ≥ |fj | = 4

for j = 1, 2, · · · , q.

Case 2 R′ ⊂ R.

Then |F | ≥ |C| ≥ 4, because the number of radial lines which F crosses can’t be less than

the number of vertices of C. For a fixed fj , if it is in the interior of C then |fj | ≤ |C| ≤ |F |
by Lemma 1.1, because F2 is a minimum cycle base of G2. If fj is in the exterior of C, then

|fj | = 4. So |fi| ≤ |F | for j = 1, 2, · · · , q.

Case 3 R ⊂ R′.

Then F is a cycle of G2. By Lemma 1.1, |F | ≥ |fj| for j = 1, 2, · · · , q.

Case 4 R′ ∩R 6= ∅ and R′ is not in the interior of R.

Then F must has at least one edge in E(G2)\E(C) and at least three edges in E(G1). So

|F | ≥ 4. No loss of generality, suppose f1, f2, · · · , fp are cycles of {f1, f2, · · · , fq} that are in

the exterior of C. Since |fj| = 4, |F | ≥ |fj | for j = 1, 2, · · · , p.
Next we prove |F | ≥ |fj | for j = p+ 1, p+ 2, · · · , q, where fj is in the interior of C.
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Fig. 3.2

Let R” = R\ (R′∩R). R” may be the union of several regions. Let R” = R1∪R2∪· · ·∪Rl

satisfying the condition that Ri ∩ Rj is empty or a point for i 6= j, 1 ≤ i, j ≤ l. Let Bi be the

boundary of Ri for i = 1, 2, · · · , l. Then Bi is a cycle in the exterior of C. For a fixed Bi, there

may be many vertices of Bi in V (F ) ∩ V (C), which can be found in Fig.3.2. We select two

vertices ui and vi of Bi satisfying the following conditions:
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(1) ui and vi are in C;

(2) there is a path of Bi, say Pi, such that its endvertices are ui and vi and Pi is in the

exterior of C;

(3) if Mi is the path of Bi deleted E(Pi), and if M ′
i is the path of C such that its

endvertices are ui and vi and M ′
i is internally disjoint from Bi, then Mi is in the interior of the

cycle which is the union of M ′
i and Pi.

Note that Mi may contains many disjoint paths of C, suppose they are Qi
1, Q

i
2, · · · , Qi

t.

Let x, y be two vertices in Pi, which are adjacent to ui, vi respectively.

Obviously, x, y are in G1. Let P ′
i be the subpath of Pi between x and y. Considering the

number of radial lines (including radial line x, y lie on) which P ′
i crosses is not less than the

number of vertices of ∪t
j=1Q

i
j , |Pi| > |P ′

i | ≥
∑t

j=1 |Qi
j |.

Since R′ ∩R may be the union of some regions, we suppose R′ ∩R = D1 ∪D2 ∪ · · · ∪Ds.

Let A1, A2, · · · , As be boundaries of D1, D2, · · · , Ds respectively. For a fixed Ai, its edges may

be partitioned into two groups, one containing edges of F , denoted as AF
i , another containing

edges of C, denoted as AC
i . Then

∑s

i=1
|Ai| =

∑s

i=1
|AF

i |+
∑s

i=1
|AC

i |

=
∑s

i=1
|AF

i |+
∑l

i=1

∑t

j=1
|Qi

j |

<
∑s

i=1
|AF

i |+
∑s

i=1
|Pi|

< |F |

Hence |F | > |Ai| for i = 1, 2, · · · , s. Since any Ai is a cycle of G2 and F1 is a minimum

cycle base of G2, |Ai| ≥ |fj | for j = i1, i2, · · · , in, by lemma 2.1, where {i1, i2, · · · , in} ⊂
{p+ 1, p+ 2, · · · , q}. Hence, |F | > |fp+j | for i = 1, 2, · · · , q − p.

By the previous discussion and Lemma 1.1, F is a minimum cycle base of G. �

Since the minimum cycle base of a cycle is itself, a minimum cycle base of an r× s(r ≥ 4)

cylinder embedded in the plane is the set of its interior facial cycles by Theorem 3.1, and the

length of its MCB is r + 4r(s− 1) = r(4s− 3).

By Lemmas 1.2, 1.3 and Theorem 3.1. we get two corollaries following.

Corollary 3.1 Assume an r × s(r ≥ 4) cylinder, a Halin graph H(T ) are embedded in the

plane with C the central cycle and C′ the leaf-cycle of H(T ) containing the same vertices as C,

respectively. Let G be the graph obtained from the r × s cylinder and H(T ) by identifying C

and C′ such that H(T ) is in the interior of the r × s cylinder. Then a minimum cycle base of

G is the set of interior facial cycles of G.

Corollary 3.2 Assume an r×s(r ≥ 4) cylinder, a 2-connected outplanar graph H be embedded

in the plane with C the central cycle and C′ the exterior facial cycle containing same vertices

as C of H containing the same vertices as C, respectively. Let G be the graph obtained from the

r×s cylinder and H by identifying C and C′ such that H is in the interior of the r×s cylinder.

Then a minimum cycle base of G is the set of interior facial cycles of G. Furthermore, the

length of a MCB of G is r(4s− 5) + 2|E(H)| .
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Proof Let F be the set of interior facial cycles of G. By Theorem 3.1, F is a minimum

cycle base of G. F can be partitioned into two groups F1 and F2, where F1 is the set of

interior facial cycles of H and F2 the set of 4-cycles. Then the length of a MCB of G is

l(F) = l(F1) + l(F2) = 4r(s− 1) + 2|E(H)| − |V (H)| = (4s− 5)r + 2|E(H)|. �

As application of Corollary 3.1, we find a formula for the length of minimum cycle base of

a planar graph N(d, λ), which can be found in paper[10].

When λ ≥ 1 is an integer, the graph Yλ is tree as shown in Fig.3.3. Thus Yλ has 3× 2λ−1

1-valent vertices and Yλ has 3× 2λ− 2 vertices. If 1-valent vertices of Yλ are connected in their

order in the planar embedding, we obtain a special Halin graph, denoted by H(λ).

Suppose a (3 × 2λ−1) × d cylinder is embedded in the plane such that its central cycle C

has 3×2λ−1 vertices. The graph obtained from (3×2λ−1)×d cylinder and H(λ) with leaf-cycle

C′ containing 3 × 2λ−1 vertices by identifying C and C′ such that H(λ) is in the interior of

(3 × 2λ−1) × d cylinder is denoted as N(d, λ). N. Roberterson and P.D. Seymour[10] proved

that for all d ≥ 1, λ ≥ 1 the graph N(d, λ) has tree-width ≤ 3d+ 1.
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Theorem 3.2 The length of minimum cycle base of N(d, λ)(λ ≥ 2) is 3(d− 1)× 2λ+1 + 9×
2λ − 3× 2λ−1 − 6.

Proof Let F be the set of interior facial cycles of N(d, λ). Then F is a minimum cycle

base of N(d, λ) by Corollary 3.1.

Let F1 be a subset of F which is the set of interior facial cycles of N(1, λ) (a Halin graph).

Then F1 consists of 3 (2λ+1)-cycles and 3×2j (2λ−2j−1)-cycles for j = 0, 1, 2, · · · , λ−2.

Let F2 = F \ F1. Then each cycle of F2 has length 4. Since the leaf-cycle of N(1, λ) has

3× 2λ−1 vertices, there are 3(d− 1)× 2λ−1 4-cycles in F2 all together. The length of F is

l(F) =
∑λ−2

j=0
3× 2j−1(2λ− 2j − 1) + 3(2λ+ 1) + 4× 3(d− 1)× 2λ−1

= 3[
∑λ−2

j=0
λ2j+1 − 2

∑λ−2

j=0
j2j −

∑λ−2

j=0
2j ] + (6λ+ 3) + 3(d− 1)× 2λ+1

= 3[(λ2λ − 2λ)− 2(λ− 3)2λ−1 − 4− 2λ−1 + 1]

+ (6λ+ 3) + 3(d− 1)× 2λ+1

= 3(d− 1)× 2λ+1 + 9× 2λ − 3× 2λ−1 − 6

Hence, the length of minimum cycle base ofN(d, λ) is 3(d−1)×2λ+1+9×2λ−3×2λ−1−6.�
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