14 research outputs found

    Searching for Realizations of Finite Metric Spaces in Tight Spans

    Full text link
    An important problem that commonly arises in areas such as internet traffic-flow analysis, phylogenetics and electrical circuit design, is to find a representation of any given metric DD on a finite set by an edge-weighted graph, such that the total edge length of the graph is minimum over all such graphs. Such a graph is called an optimal realization and finding such realizations is known to be NP-hard. Recently Varone presented a heuristic greedy algorithm for computing optimal realizations. Here we present an alternative heuristic that exploits the relationship between realizations of the metric DD and its so-called tight span TDT_D. The tight span TDT_D is a canonical polytopal complex that can be associated to DD, and our approach explores parts of TDT_D for realizations in a way that is similar to the classical simplex algorithm. We also provide computational results illustrating the performance of our approach for different types of metrics, including l1l_1-distances and two-decomposable metrics for which it is provably possible to find optimal realizations in their tight spans.Comment: 20 pages, 3 figure

    Polylogarithmic Approximation for Generalized Minimum Manhattan Networks

    Full text link
    Given a set of nn terminals, which are points in dd-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pair's Manhattan distance. Even for d=2d=2, the problem is NP-hard, but constant-factor approximations are known. For d3d \ge 3, the problem is APX-hard; it is known to admit, for any \eps > 0, an O(n^\eps)-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set RR of nn terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in RR is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an O(logd+1n)O(\log^{d+1} n)-approximation algorithm for GMMN (and, hence, MMN) in d2d \ge 2 dimensions and an O(logn)O(\log n)-approximation algorithm for 2D. We show that an existing O(logn)O(\log n)-approximation algorithm for RSA in 2D generalizes easily to d>2d>2 dimensions.Comment: 14 pages, 5 figures; added appendix and figure

    Exact algorithms for the order picking problem

    Full text link
    Order picking is the problem of collecting a set of products in a warehouse in a minimum amount of time. It is currently a major bottleneck in supply-chain because of its cost in time and labor force. This article presents two exact and effective algorithms for this problem. Firstly, a sparse formulation in mixed-integer programming is strengthened by preprocessing and valid inequalities. Secondly, a dynamic programming approach generalizing known algorithms for two or three cross-aisles is proposed and evaluated experimentally. Performances of these algorithms are reported and compared with the Traveling Salesman Problem (TSP) solver Concorde

    Optimal realisations of two-dimensional, totally split-decomposable metrics

    Get PDF
    A realization of a metric on a finite set is a weighted graph whose vertex set contains such that the shortest-path distance between elements of considered as vertices in is equal to . Such a realization is called optimal if the sum of its edge weights is minimal over all such realizations. Optimal realizations always exist, although it is NP-hard to compute them in general, and they have applications in areas such as phylogenetics, electrical networks and internet tomography. A. Dress (1984) showed that the optimal realizations of a metric are closely related to a certain polytopal complex that can be canonically associated to called its tight-span. Moreover, he conjectured that the (weighted) graph consisting of the zero- and one-dimensional faces of the tight-span of must always contain an optimal realization as a homeomorphic subgraph. In this paper, we prove that this conjecture does indeed hold for a certain class of metrics, namely the class of totally-decomposable metrics whose tight-span has dimension two. As a corollary, it follows that the minimum Manhattan network problem is a special case of finding optimal realizations of two-dimensional totally-decomposable metrics

    A Fast 2-Approximation of Minimum Manhattan Networks

    Get PDF
    Given a set P of n points in the plane, a Manhattan network of P is a network that contains a rectilinear shortest path between every pair of points of P. A minimum Manhattan network of P is a Manhattan network of minimum total length. It is unknown whether it is NP-hard to construct a minimum Manhattan network. The best approximations published so far are a combinatorial 3-approximation algorithm in time O(n log n), and an LP-based 2-approximation algorithm. We present a new combinatorial 2-approximation for this problem in time O(n log n)
    corecore